TextClassificationWithModel

class hana_ml.text.tm.TextClassificationWithModel(language=None, enable_stopwords=True, keep_numeric=None, allowed_list=None, notallowed_list=None)

Text classification class. This class enables us to train an RDT classifier for TF-IDF vectorized text data firstly and then apply it for inference.

Parameters:
languagestr, optional

Specify the language type. HANA cloud instance currently supports 'EN', 'DE', 'ES', 'FR', 'RU', 'PT'. If None, auto detection will be applied.

Defaults to None (auto detection).

enable_stopwordsbool, optional

Determine whether to turn on stopwords.

Defaults to True.

keep_numericbool, optional

Determine whether to keep numbers.

Valid only when enable_stopwords is True.

Defaults to False.

allowed_listbool, optional

A list of words that are retained by the stopwords logic.

Valid only when enable_stopwords is True.

notallowed_listbool, optional

A list of words, which are recognized and deleted by the stopwords logic.

Valid only when enable_stopwords is True.

Examples

>>> tc = TextClassificationWithModel(enabel_stopwords=True)
>>> tc.fit(data=document_file_train_data)
>>> pred_res = tc.predict(data=document_file_test_data)

Methods

fit(data[, seed, thread_ratio])

Train the model.

get_model_metrics()

Get the model metrics.

get_score_metrics()

Get the score metrics.

predict(data[, rdt_top_n, thread_ratio])

Predict the model.

fit(data, seed=None, thread_ratio=None)

Train the model.

Parameters:
dataDataFrame

Input data, structured as follows:

  • 1st column, ID.

  • 2nd column, Document content.

  • 3rd column, Document category.

seedint, optional

Specify the seed for random number generation.

thread_ratiofloat, optional

The ratio of total number of threads that can be used by this function.

Returns:
A fitted instance of class TextClassificationWithModel.
predict(data, rdt_top_n=None, thread_ratio=None)

Predict the model.

Parameters:
dataDataFrame

Input data, structured as follows:

  • 1st column, ID.

  • 2nd column, Document content.

rdt_top_nint, optional

Specify the number of top terms to be used for the Random Decision Tree algorithm.

thread_ratiofloat, optional

The ratio of total number of threads that can be used by this function.

Returns:
DataFrame
get_model_metrics()

Get the model metrics.

Returns:
DataFrame

The model metrics.

get_score_metrics()

Get the score metrics.

Returns:
DataFrame

The score metrics.

Inherited Methods from PALBase

Besides those methods mentioned above, the TextClassificationWithModel class also inherits methods from PALBase class, please refer to PAL Base for more details.