DoubleExponentialSmoothing
- class hana_ml.algorithms.pal.tsa.exponential_smoothing.DoubleExponentialSmoothing(alpha=None, beta=None, forecast_num=None, phi=None, damped=None, accuracy_measure=None, ignore_zero=None, expost_flag=None, prediction_confidence_1=None, prediction_confidence_2=None)
Double exponential smoothing is suitable to model the time series with trend but without seasonality. In the model there are two kinds of smoothed quantities: smoothed signal and smoothed trend.
- Parameters:
- alphafloat, optional
Weight for smoothing. Value range: 0 < alpha < 1.
Defaults to 0.1.
- betafloat, optional
Weight for the trend component. Value range: 0 < beta < 1.
Defaults to 0.1.
- forecast_numint, optional
Number of values to be forecast.
Defaults to 0.
- phifloat, optional
Value of the damped smoothing constant phi (0 < phi < 1).
Defaults to 0.1.
- dampedbool, optional
Specifies whether or not to use damped trend method.
False: No, uses the Holt's linear trend method.
True: Yes, use damped trend method.
Defaults to False.
- accuracy_measurestr or a list of str, optional
The metric to quantify how well a model fits input data. Options: "mpe", "mse", "rmse", "et", "mad", "mase", "wmape", "smape", "mape".
No default value.
Note
Specify a measure name if you want the corresponding measure value to be reflected in the output statistics self.stats_.
- ignore_zerobool, optional
False: Uses zero values in the input dataset when calculating "mpe" or "mape".
True: Ignores zero values in the input dataset when calculating "mpe" or "mape".
Only valid when
accuracy_measure
is "mpe" or "mape".Defaults to False.
- expost_flagbool, optional
False: Does not output the expost forecast, and just outputs the forecast values.
True: Outputs the expost forecast and the forecast values.
Defaults to True.
- prediction_confidence_1float, optional
Prediction confidence for interval 1.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.8.
- prediction_confidence_2float, optional
Prediction confidence for interval 2.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.95.
Examples
>>> desm = DoubleExponentialSmoothing(alpha=0.501, beta=0.072, forecast_num=6)
Perform fit_predict():
>>> desm.fit_predict(data=df)
Output:
>>> desm.forecast_.collect() >>> desm.stats_.collect()
- Attributes:
- forecast_DataFrame
Forecast values.
- stats_DataFrame
Statistics.
Methods
fit_predict
(data[, key, endog])Fit and predict based on the given time series.
Get the model metrics.
Get the score metrics.
- fit_predict(data, key=None, endog=None)
Fit and predict based on the given time series.
- Parameters:
- dataDataFrame
Input data. At least two columns, one is ID column, the other is raw data.
- keystr, optional
The ID column.
Defaults to the first column of data if the index column of data is not provided. Otherwise, defaults to the index column of data.
- endogstr, optional
The column of series to be fitted and predicted.
Defaults to the first non-ID column.
- Returns:
- DataFrame
Forecast values.
- get_model_metrics()
Get the model metrics.
- Returns:
- DataFrame
The model metrics.
- get_score_metrics()
Get the score metrics.
- Returns:
- DataFrame
The score metrics.
Inherited Methods from PALBase
Besides those methods mentioned above, the DoubleExponentialSmoothing class also inherits methods from PALBase class, please refer to PAL Base for more details.