ftest_equal_var
- hana_ml.algorithms.pal.stats.ftest_equal_var(data_x, data_y, test_type=None)
Tests the equality of two random variances using F-test. The null hypothesis is that two independent normal variances are equal. The observed sums of some selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.
- Parameters:
- data_xDataFrame
DataFrame containing the first column data.
- data_yDataFrame
DataFrame containing the second column data.
- test_type{'two_sides', 'less', 'greater'}, optional
Specifies the alternative hypothesis type.
Default to "two_sides".
- Returns:
- DataFrame
Test results, structured as follows:
STAT_NAME, name of statistics.
STAT_VALUE, value of statistics.
Examples
Original data:
>>> df_x.collect() X 0 1 1 2 2 4 3 7 4 3 >>> df_y.collect() Y 0 10.0 1 15.0 2 12.0
Apply the ftest_equal_var function:
>>> res = ftest_equal_var(data_x=df_x, data_y=df_y, test_type='two_sides') >>> res.collect() STAT_NAME STAT_VALUE 0 F Value 0.836842 1 numerator degree of freedom 4.000000 2 denominator degree of freedom 2.000000 3 p-value 0.783713