hana_ml.visualizers package

The Visualizers Package consists of the following sections:

hana_ml.visualizers.eda

This module represents an eda plotter. Matplotlib is used for all visualizations.

hana_ml.visualizers.eda.quarter_plot(data, col, key=None, ax=None, fig=None, enable_plotly=False, **kwargs)

Perform quarter plot to view the seasonality.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> quarter_plot(data=df, col="Y", key="ID")
_images/quarter_plot.png
>>> quarter_plot(data=df, col="Y", key="ID", enable_plot=True)
_images/quarter_plotly.png
hana_ml.visualizers.eda.seasonal_plot(data, col, key=None, ax=None, fig=None, enable_plotly=False, **kwargs)

Plot time series data by year.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> seasonal_plot(data=df, col="Y", key="ID")
_images/seasonal_plot.png
>>> seasonal_plot(data=df, col="Y", key="ID", enable_plot=True)
_images/seasonal_plotly.png
hana_ml.visualizers.eda.timeseries_box_plot(data, col, key=None, ax=None, cycle='MONTH', fig=None, enable_plotly=False, **kwargs)

Plot year-wise/month-wise box plot.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

cycle{"YEAR", "QUARTER", "MONTH", "WEEK"}, optional

It defines the x-axis for the box plot.

Defaults to "MONTH".

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

Example 1: YEAR

>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="YEAR")
_images/ts_box_year_plot.png
>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="YEAR", enable_plotly=True)
_images/ts_box_year_plotly.png

Example 2: MONTH

>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="MONTH")
_images/ts_box_month_plot.png
>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="MONTH", enable_plotly=True)
_images/ts_box_month_plotly.png

Example 3: QUARTER

>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="QUARTER")
_images/ts_box_quarter_plot.png
>>> timeseries_box_plot(data=df, col="Y", key="ID", cycle="QUARTER", enable_plotly=True)
_images/ts_box_quarter_plotly.png
hana_ml.visualizers.eda.plot_acf(data, col, key=None, thread_ratio=None, method=None, max_lag=None, calculate_confint=True, alpha=None, bartlett=None, ax=None, title=None, enable_plotly=False, fig=None, **kwargs)

Autocorrelation function plot (ACF).

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

thread_ratiofloat, optional

The ratio of available threads.

  • 0: single thread

  • 0~1: percentage

  • Others: heuristically determined

Valid only when method is set as 'brute_force'.

Defaults to -1.

method{'auto', 'brute_force', 'fft'}, optional

Indicates the method to be used to calculate the correlation function.

Defaults to 'auto'.

max_lagint, optional

Maximum lag for the correlation function.

Defaults to sqrt(n), where n is the data number.

calculate_confintbool, optional

Controls whether to calculate confidence intervals or not.

If it is True, two additional columns of confidence intervals are shown in the result.

Defaults to True.

alphafloat, optional

Confidence bound for the given level are returned. For instance if alpha=0.05, 95 % confidence bound is returned.

Valid only when only calculate_confint is True.

Defaults to 0.05.

bartlettbool, optional
  • False: using standard error to calculate the confidence bound.

  • True: using Bartlett's formula to calculate confidence bound.

Valid only when only calculate_confint is True.

Defaults to True.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

titlestr, optional

The title of plot.

Defaults to "Autocorrelation".

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_acf(data=df, key='ID', col='ts', method='fft', thread_ratio=0.4, calculate_confint=True, max_lag=40)
_images/acf_plot.png
>>> plot_acf(data=df, key='ID', col='ts', method='fft', thread_ratio=0.4, calculate_confint=True, max_lag=40, enable_plotly=True)
_images/acf_plotly.png
hana_ml.visualizers.eda.plot_pacf(data, col, key=None, thread_ratio=None, method=None, max_lag=None, calculate_confint=True, alpha=None, bartlett=None, ax=None, title=None, enable_plotly=False, fig=None, **kwargs)

Plot partial autocorrelation function (PACF).

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr, optional

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

thread_ratiofloat, optional

The ratio of available threads.

  • 0: single thread

  • 0~1: percentage

  • Others: heuristically determined

Valid only when method is set as 'brute_force'.

Defaults to -1.

method{'auto', 'brute_force', 'fft'}, optional

Indicates the method to be used to calculate the correlation function.

Defaults to 'auto'.

max_lagint, optional

Maximum lag for the correlation function.

Defaults to sqrt(n), where n is the data number.

calculate_confintbool, optional

Controls whether to calculate confidence intervals or not.

If it is True, two additional columns of confidence intervals are shown in the result.

Defaults to True.

alphafloat, optional

Confidence bound for the given level are returned. For instance if alpha=0.05, 95 % confidence bound is returned.

Valid only when only calculate_confint is True.

Defaults to 0.05.

bartlettbool, optional
  • False: using standard error to calculate the confidence bound.

  • True: using Bartlett's formula to calculate confidence bound.

Valid only when only calculate_confint is True.

Defaults to True.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

titlestr, optional

The title of plot.

Defaults to "Partial Autocorrelation".

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_pacf(data=df, key='ID', col='ts', method='fft', thread_ratio=0.4, max_lag=20, calculate_confint=True)
_images/pacf_plot.png
>>> plot_pacf(data=df, key='ID', col='ts', method='fft', thread_ratio=0.4, max_lag=20, calculate_confint=True, enable_plotly=True)
_images/pacf_plotly.png
hana_ml.visualizers.eda.plot_time_series_outlier(data, col, key=None, tso_object=None, window_size=None, outlier_method=None, threshold=None, detect_seasonality=None, alpha=None, extrapolation=None, periods=None, random_state=None, n_estimators=None, max_samples=None, bootstrap=None, contamination=None, minpts=None, eps=None, thread_ratio=None, title=None, ax=None, enable_plotly=False, fig=None, **kwargs)

Perform OutlierDetectionTS and plot the time series with the highlighted outliers.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

data should have at least two columns: one is ID column, the other is raw data.

colstr

Column name of endog.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

tso_objectOutlierDetectionTS object, optional

An object of OutlierDetectionTS for time series outlier. Please initialize a OutlierDetectionTS object first. You could either enter a OutlierDetectionTS object or set values of parameters to create a new OutlierDetectionTS object in this function.

Defaults to None.

window_sizeint, optional

Odd number, the window size for median filter, not less than 3.

Defaults to 3.

outlier_methodstr, optional

The method for calculate the outlier score from residual.

  • 'z1' : Z1 score.

  • 'z2' : Z2 score.

  • 'iqr' : IQR score.

  • 'mad' : MAD score.

  • 'isolationforest' : isolation forest score.

  • 'dbscan' : DBSCAN.

Defaults to 'z1'.

thresholdfloat, optional

The threshold for outlier score. If the absolute value of outlier score is beyond the threshold, we consider the corresponding data point as an outlier.

Only valid when outlier_method = 'iqr', 'isolationforest', 'mad', 'z1', 'z2'. For outlier_method = 'isolationforest', when contamination is provided, threshold is not valid and outliers are decided by contamination.

Defaults to 3 when outlier_method is 'mad', 'z1' and 'z2'. Defaults to 1.5 when outlier_method is 'iqr'. Defaults to 0.7 when outlier_method is 'isolationforest'.

detect_seasonalitybool, optional

When calculating the residual,

  • False: Does not consider the seasonal decomposition.

  • True: Considers the seasonal decomposition.

Defaults to False.

alphafloat, optional

The criterion for the autocorrelation coefficient. The value range is (0, 1).

A larger value indicates a stricter requirement for seasonality.

Only valid when detect_seasonality is True.

Defaults to 0.2.

extrapolationbool, optional

Specifies whether to extrapolate the endpoints. Set to True when there is an end-point issue.

Only valid when detect_seasonality is True.

Defaults to False.

periodsint, optional

When this parameter is not specified, the algorithm will search the seasonal period. When this parameter is specified between 2 and half of the series length, autocorrelation value is calculated for this number of periods and the result is compared to alpha parameter. If correlation value is equal to or higher than alpha, decomposition is executed with the value of periods. Otherwise, the residual is calculated without decomposition. For other value of parameter periods, the residual is also calculated without decomposition.

Only valid when detect_seasonality is True. If the user knows the seasonal period, specifying periods can speed up the calculation, especially when the time series is long.

No Default value.

random_stateint, optional

Specifies the seed for random number generator.

  • 0: Uses the current time (in second) as seed.

  • Others: Uses the specified value as seed.

Only valid when outlier_method is 'isolationforest'.

Default to 0.

n_estimatorsint, optional

Specifies the number of trees to grow.

Only valid when outlier_method is 'isolationforest'.

Default to 100.

max_samplesint, optional

Specifies the number of samples to draw from input to train each tree. If max_samples is larger than the number of samples provided, all samples will be used for all trees.

Only valid when outlier_method is 'isolationforest'.

Default to 256.

bootstrapbool, optional

Specifies sampling method.

  • False: Sampling without replacement.

  • True: Sampling with replacement.

Only valid when outlier_method is 'isolationforest'.

Default to False.

contaminationdouble, optional

The proportion of outliers in the data set. Should be in the range (0, 0.5].

Only valid when outlier_method is 'isolationforest'. When outlier_method is 'isolationforest' and contamination is specified, threshold is not valid.

No Default value.

minptsint, optional

Specifies the minimum number of points required to form a cluster. The point itself is not included in minpts.

Only valid when outlier_method is 'dbscan'.

Defaults to 1.

epsfloat, optional

Specifies the scan radius.

Only valid when outlier_method is 'dbscan'.

Defaults to 0.5.

thread_ratiofloat, optional

The ratio of available threads.

  • 0: single thread.

  • 0~1: percentage.

  • Others: heuristically determined.

Only valid when detect_seasonality is True or outlier_method is 'isolationforest' or 'dbscan'.

Defaults to -1.

titlestr, optional

The title of plot.

Defaults to "Outliers".

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_time_series_outlier(data=df, key='ID', col='ts')
_images/time_series_outlier_plot.png
>>> plot_time_series_outlier(data=df, key='ID', col='ts', enable_plotly=True)
_images/time_series_outlier_plotly.png
hana_ml.visualizers.eda.plot_change_points(data, cp_object, col, key=None, display_trend=True, cp_style='axvline', title=None, ax=None, enable_plotly=False, fig=None, **kwargs)

Plot the time series with the highlighted change points and BCPD is used for change point detection.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

data should have at least two columns: one is ID column, the other is raw data.

colstr

Name of the time series data column.

cp_objectBCPD object

An object of BCPD for change points detection. Please initialize a BCPD object first.

An example is shown below:

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

cp_style{"axvline", "scatter"}, optional

The style of change points in the plot.

Defaults to "axvline".

display_trendbool, optional

If True, draw the trend component based on decomposed component of trend of BCPD fit_predict().

Default to True.

titlestr, optional

The title of plot.

Defaults to "Change Points".

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> bcpd = BCPD(max_tcp=5, max_scp=0, random_seed=1, max_iter=1000)
>>> plot_change_points(data=df, key='ts', col='y', cp_object=bcpd)
_images/change_points_plot.png
>>> bcpd = BCPD(max_tcp=5, max_scp=0, random_seed=1, max_iter=1000)
>>> plot_change_points(data=df, key='ts', col='y', cp_object=bcpd, enable_plotly=True)
_images/change_points_plotly.png
hana_ml.visualizers.eda.plot_moving_average(data, col, rolling_window, key=None, ax=None, compare=True, enable_plotly=False, fig=None, **kwargs)

Plot the rolling mean by the given rolling window size.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

rolling_windowint

Window size for rolling function. If negative, it will use the points before CURRENT ROW.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

comparebool, optional

If True, it will plot the data and its moving average. Otherwise, only moving average will be plotted.

Defaults to True.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_moving_average(data=df, key='ID', col='ts', rolling_window=10)
_images/moving_average_plot.png
>>> plot_moving_average(data=df, key='ID', col='ts', rolling_window=10, enable_plotly=True)
_images/moving_average_plotly.png
hana_ml.visualizers.eda.plot_rolling_stddev(data, col, rolling_window, key=None, ax=None, enable_plotly=False, fig=None, **kwargs)

Plot the rolling standard deviation by given rolling window size.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

rolling_windowint, optional

Window size for rolling function. If negative, it will use the points before CURRENT ROW.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_rolling_stddev(data=df, key='ID', col='ts', rolling_window=10)
_images/rolling_stddev_plot.png
>>> plot_rolling_stddev(data=df, key='ID', col='ts', rolling_window=10, enable_plotly=True)
_images/rolling_stddev_plotly.png
hana_ml.visualizers.eda.plot_seasonal_decompose(data, col, key=None, alpha=None, thread_ratio=None, decompose_type=None, extrapolation=None, smooth_width=None, axes=None, enable_plotly=False, fig=None, **kwargs)

Plot the seasonal decomposition.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

alphafloat, optional

The criterion for the autocorrelation coefficient. The value range is (0, 1). A larger value indicates stricter requirement for seasonality.

Defaults to 0.2.

thread_ratiofloat, optional

Controls the proportion of available threads to use. The ratio of available threads.

  • 0: single thread.

  • 0~1: percentage.

  • Others: heuristically determined.

Defaults to -1.

decompose_type{'additive', 'multiplicative', 'auto'}, optional

Specifies decompose type.

  • 'additive': Additive decomposition model.

  • 'multiplicative': Multiplicative decomposition model.

  • 'auto': Decomposition model automatically determined from input data.

Defaults to 'auto'.

extrapolationbool, optional

Specifies whether to extrapolate the endpoints. Set to True when there is an end-point issue.

Defaults to False.

smooth_widthint, optional

Specifies the width of the moving average applied to non-seasonal data. 0 indicates linear fitting to extract trends. Can not be larger than half of the data length.

Defaults to 0.

axesAxes array, optional

The axes for the plot.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_seasonal_decompose(data=df, col='ts', key= 'ID')
_images/seasonal_decompose_plot.png
>>> plot_seasonal_decompose(data=df, col='ts', key= 'ID', enable_plotly=True)
_images/seasonal_decompose_plotly.png
hana_ml.visualizers.eda.kdeplot(data, key, features=None, kde=<hana_ml.algorithms.pal.kernel_density.KDE object>, points=1000, enable_plotly=False, **kwargs)

Display a kernel density estimate plot for SAP HANA DataFrame.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

keystr

Name of the ID column in the data.

featuresstr/list of str, optional

Name of the feature columns in the data.

kdehana_ml.algorithms.pal.kernel_density.KDE, optional

KDE Calculation.

Defaults to KDE().

pointsint, optional

The number of points for plotting.

Defaults to 1000.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • Poly3DCollection, The surface plot object. Only valid for matplotlib 2D plotting.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> f = plt.figure(figsize=(19, 10))
>>> ax = kdeplot(data=df, key="PASSENGER_ID", features=["AGE"])
>>> ax.grid()
>>> plt.show()
_images/kde_plot.png
>>> f = plt.figure(figsize=(19, 10))
>>> ax, surf = kdeplot(data=df, key="PASSENGER_ID", features=["AGE", "FARE"])
>>> ax.grid()
>>> plt.show()
_images/kde_plot2.png
>>> fig = kdeplot(data=df.filter("SURVIVED = 1"), key="PASSENGER_ID", features=["AGE"], enable_plotly=True, width=600, height=600)
>>> fig.show()
_images/kde_plotly.png
>>> fig = kdeplot(data=df, key="PASSENGER_ID", features=["AGE", "FARE"], enable_plotly=True, width=600, height=600)
>>> fig.show()
_images/kde_plotly2.png
hana_ml.visualizers.eda.hist(data, columns, bins=None, debrief=False, x_axis_fontsize=10, x_axis_rotation=0, title_fontproperties=None, default_bins=20, rounding_precision=3, replacena=0, enable_plotly=False, **kwargs)

Plot histograms for SAP HANA DataFrame.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

columnslist of str

Columns in the DataFrame being plotted.

binsint or dict, optional

The number of bins to create based on the value of column.

Defaults to 20.

debriefbool, optional

Whether to include the skewness debrief.

Defaults to False.

x_axis_fontsizeint, optional

The size of x axis labels.

Defaults to 10.

x_axis_rotationint, optional

The rotation of x axis labels.

Defaults to 0.

title_fontpropertiesFontProperties, optional

Change the font properties for title. Only for Matplotlib plot.

Defaults to None.

default_binsint, optional

The number of bins to create for the column that has not been specified in bins when bins is dict.

Defaults to 20.

debriefbool, optional

Whether to include the skewness debrief.

Defaults to False.

rounding_precisionint, optional

The rounding precision for bin size.

Defaults to 3.

replacenafloat, optional

Replace na with the specified value.

Defaults to 0.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> hist(data=df, columns=['PCLASS', 'AGE', 'SIBSP', 'PARCH', 'FARE'], default_bins=10, bins={"AGE": 10})
_images/hist_plot.png
>>> hist(data=df, columns=['PCLASS', 'AGE', 'SIBSP', 'PARCH', 'FARE'], default_bins=10, bins={"AGE": 10}, enable_plotly=True)
_images/hist_plotly.png
hana_ml.visualizers.eda.plot_psd(data, col, key=None, sampling_rate=None, num_fft=None, freq_range=None, spectrum_type=None, window=None, alpha=None, beta=None, attenuation=None, mode=None, precision=None, r=None, title=None, xlabel_name=None, ylabel_name=None, semilogy=False, ax=None, periodogram_res=None, enable_plotly=False, fig=None, **kwargs)

Plot Power Spectral Density (PSD) with periodogram.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

colstr

Name of the time series data column.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

sampling_ratefloat, optional

Sampling frequency of the sequence.

Defaults to 1.0.

num_fftinteger, optional

Number of DFT points. If num_fft is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros.

Defaults to the length of sequence.

freq_range{"one_sides", "two_sides"}, optional

Indicates result frequency range.

Defaults to "one_sides".

spectrum_type{"density", "spectrum"}, optional

Indicates power spectrum scaling type.

  • "density": power spectrum density.

  • "spectrum": power spectrum.

Defaults to "density".

windowstr, optional

Available input window type:

  • 'none',

  • 'bartlett',

  • 'bartlett_hann',

  • 'blackman',

  • 'blackman_harris',

  • 'bohman',

  • 'chebwin',

  • 'cosine',

  • 'flattop',

  • 'gaussian',

  • 'hamming',

  • 'hann',

  • 'kaiser',

  • 'nuttall',

  • 'parzen',

  • 'tukey'

No default value.

alphafloat, optional

Window parameter. Only valid for blackman and gaussian window. Default values:

  • "Blackman", defaults to 0.16.

  • "Gaussian", defaults to 2.5.

betafloat, optional

Parameter for Kaiser Window. Only valid for kaiser window.

Defaults to 8.6.

attenuationfloat, optional

Parameter for Chebwin. Only valid for chewin window.

Defaults to 50.0.

mode{'symmetric', 'periodic'}, optional

Parameter for Flattop Window. Can be:

  • 'symmetric'.

  • 'periodic'.

Only valid for flattop window. Defaults to 'symmetric'.

precisionstr, optional

Parameter for Flattop Window. Can be:

  • 'none'

  • 'octave'

Only valid for flattop window. Defaults to 'none'.

rfloat, optional

Parameter for Tukey Window. Only valid for tukey window.

Defaults to 0.5.

titlestr, optional

The plot title.

Defaults to "Periodogram".

xlabel_namestr, optional

Name of x label.

Defaults to None.

ylabel_namestr, optional

Name of y label.

Defaults to None.

semilogybool, optional

Whether to make a plot with log scaling on the y axis.

Defaults to False.

axmatplotlib.axes.Axes, optional

The axes for the plot.

Default to None.

periodogram_resDataFrame, optional

The returned result DataFrame from function periodogram().

Defaults to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figplotly.graph_objects.Figure, optional

If None, a new graph object will be created. Valid when enable_plotly is True.

Defaults to None.

kwargsoptional

Keyword/value pair of properties to be updated when enable_plotly is True.

Defaults to None.

Returns:
matplotlib:

The axes for the plot, returns a matplotlib.axes.Axes object.

plotly:

If enable_plotly is True, returns a plotly.graph_objects.Figure object.

Examples

>>> plot_psd(data=df, col="ts",  key="ID", sampling_rate=100.0, window="hamming", freq_range="two_sides", title="Periodogram", semilogy=True)
_images/psd_plot.png
>>> plot_psd(data=df, col="ts",  key="ID", sampling_rate=100.0, window="hamming", freq_range="two_sides", title="Periodogram", enable_plotly=True, width=600, height=400, semilogy=True)
_images/psd_plotly.png
class hana_ml.visualizers.eda.EDAVisualizer(ax=None, size=None, cmap=None, enable_plotly=False, fig=None, no_fig=False)

Bases: Visualizer

Class for all EDA visualizations, including:

  • bar_plot

  • box_plot

  • correlation_plot

  • distribution_plot

  • pie_plot

  • scatter_plot

Parameters:
axmatplotlib.axes.Axes, optional

The axes used to plot the figure. Only for matplotlib plot.

Default value is current axes.

sizetuple of integers, optional

(width, height) of the plot in dpi. Only for matplotlib plot.

Default value is the current size of the plot.

cmapmatplotlib.pyplot.colormap, optional

Color map used for the plot. Only for matplotlib plot.

Defaults to None.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

figFigure, optional

Plotly's figure. Only valid when enable_plotly is True.

Defaults to None.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(10,10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
Attributes:
ax

Returns the matplotlib Axes where the Visualizer will draw.

cmap

Returns the color map being used for the plot.

size

Returns the size of the plot in pixels.

Methods

bar_plot(data, column, aggregation[, title, ...])

Displays a bar plot for the SAP HANA DataFrame column specified.

box_plot(data, column[, outliers, title, ...])

Displays a box plot for the SAP HANA DataFrame column specified.

correlation_plot(data[, key, corr_cols, ...])

Displays a correlation plot for the SAP HANA DataFrame columns specified.

distribution_plot(data, column, bins[, ...])

Displays a distribution plot for the SAP HANA DataFrame column specified.

pie_plot(data, column[, explode, title, ...])

Displays a pie plot for the SAP HANA DataFrame column specified.

reset()

Reset.

scatter_plot(data, x, y[, x_bins, y_bins, ...])

Displays a scatter plot for the SAP HANA DataFrame columns specified.

set_ax(ax)

Sets the Axes

set_cmap(cmap)

Sets the colormap

set_size(size)

Sets the size

distribution_plot(data, column, bins, title=None, x_axis_fontsize=10, x_axis_rotation=0, debrief=False, rounding_precision=3, title_fontproperties=None, replacena=0, x_axis_label='', y_axis_label='', subplot_pos=(1, 1), return_bin_data_only=False, **kwargs)

Displays a distribution plot for the SAP HANA DataFrame column specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

columnstr

Column in the DataFrame being plotted.

binsint

Number of bins to create based on the value of column.

titlestr, optional

Title for the plot.

Defaults to None.

x_axis_fontsizeint, optional

Size of x axis labels.

Defaults to 10.

x_axis_rotationint, optional

Rotation of x axis labels.

Defaults to 0.

debriefbool, optional

Whether to include the skewness debrief.

Defaults to False.

rounding_precisionint, optional

The rounding precision for bin size.

Defaults to 3.

title_fontpropertiesFontProperties, optional

Change the font properties for title.

Defaults to None.

replacenafloat, optional

Replace na with the specified value.

Defaults to 0.

x_axis_labelstr, optional

x axis label. Only for plotly plot.

Defaults to "".

y_axis_labelstr, optional

y axis label. Only for plotly plot.

Defaults to "".

subplot_postuple, optional

(row, col) for plotly subplot. Only for plotly plot.

Defaults to (1, 1).

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the distribution plot.

  • graph object trace. The trace of the plot, used in hist().

  • pandas.DataFrame. The data used in the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(35, 10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, dist_data = eda.distribution_plot(data=df, column="FARE", bins=10, title="Distribution of FARE")
>>> plt.show()
_images/distribution_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig, trace, bin_data = eda.distribution_plot(data=df, column="FARE", bins=10, title="Distribution of FARE", width=600, height=400)
>>> fig.show()
_images/distribution_plotly.png
pie_plot(data, column, explode=0.03, title=None, legend=True, title_fontproperties=None, legend_fontproperties=None, subplot_pos=(1, 1), **kwargs)

Displays a pie plot for the SAP HANA DataFrame column specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

columnstr

Column in the DataFrame being plotted.

explodefloat, optional

Relative spacing between pie segments. Only for matplotlib plot.

Defaults to 0.03.

titlestr, optional

Title for the plot.

Defaults to None.

legendbool, optional

Whether to show the legend for the plot. Only for matplotlib plot.

Defaults to True.

title_fontpropertiesFontProperties, optional

Change the font properties for title. Only for matplotlib plot.

Defaults to None.

legend_fontpropertiesFontProperties, optional

Change the font properties for legend. Only for matplotlib plot.

Defaults to None.

subplot_postuple, optional

(row, col) for plotly subplot. Only for plotly plot.

Defaults to (1, 1).

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the plot.

  • pandas.DataFrame. The data used in the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(8, 8))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, pie_data = eda.pie_plot(data=df, column="PCLASS", title="% of passengers in each class")
>>> plt.show()
_images/pie_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig, pie_data = eda.pie_plot(data=df, column="PCLASS", title="% of passengers in each class", width=600, height=600)
>>> fig.show()
_images/pie_plotly.png
correlation_plot(data, key=None, corr_cols=None, label=True, cmap=None, title="Pearson's correlation (r)", **kwargs)

Displays a correlation plot for the SAP HANA DataFrame columns specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

keystr, optional

Name of ID column.

Defaults to None.

corr_colslist of str, optional

Columns in the DataFrame being plotted. If None then all numeric columns will be plotted.

Defaults to None.

labelbool, optional

Plot a colorbar. Only for matplotlib plot.

Defaults to True.

cmapmatplotlib.pyplot.colormap or str, optional

Color map used for the plot.

Defaults to "RdYlBu" for matplotlib and "blues" for plotly.

titlestr, optional

Title of the plot.

Defaults to "Pearson's correlation (r)".

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the plot.

  • pandas.DataFrame. The data used in the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(35, 10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, corr = eda.correlation_plot(data=df, corr_cols=['PCLASS', 'AGE', 'SIBSP', 'PARCH', 'FARE'], cmap="Blues")
>>> plt.show()
_images/correlation_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig, _ = eda.correlation_plot(data=df, corr_cols=['PCLASS', 'AGE', 'SIBSP', 'PARCH', 'FARE'], cmap="Blues", width=600, height=600, title="correlation plot")
>>> fig.show()
_images/correlation_plotly.png
scatter_plot(data, x, y, x_bins=None, y_bins=None, title=None, label=None, cmap=None, debrief=True, rounding_precision=3, label_fontsize=12, title_fontproperties=None, sample_frac=1.0, **kwargs)

Displays a scatter plot for the SAP HANA DataFrame columns specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

xstr

Column to be plotted on the x axis.

ystr

Column to be plotted on the y axis.

x_binsint, optional

Number of x axis bins to create based on the value of column.

Defaults to None.

y_binsint

Number of y axis bins to create based on the value of column.

Defaults to None.

titlestr, optional

Title for the plot.

Defaults to None.

labelstr, optional

Label for the color bar.

Defaults to None.

cmapmatplotlib.pyplot.colormap or str, optional

Color map used for the plot.

Defaults to "Blues" for matplotlib and "blues" for plotly.

debriefbool, optional

Whether to include the correlation debrief.

Defaults to True

rounding_precisionint, optional

The rounding precision for bin size. Only for matplotlib plot.

Defaults to 3.

label_fontsizeint, optional

Change the font size for label. Only for matplotlib plot.

Defaults to 12.

title_fontpropertiesFontProperties, optional

Change the font properties for title.

Defaults to None.

sample_fracfloat, optional

Sampling method is applied to data. Valid if x_bins and y_bins are not set.

Defaults to 1.0.

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(10, 10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, corr = eda.scatter_plot(data=df, x="AGE", y="SIBSP", x_bins=5, y_bins=5)
>>> plt.show()
_images/scatter_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig = eda.scatter_plot(data=df, x="AGE", y="SIBSP", x_bins=5, y_bins=5, width=600, height=600)
>>> fig.show()
_images/scatter_plotly.png
>>> f = plt.figure(figsize=(10, 10))
>>> ax2 = f.add_subplot(111)
>>> eda = EDAVisualizer(ax2)
>>> ax2 = eda.scatter_plot(data=df, x="AGE", y="SIBSP", sample_frac=0.8, s=10, marker='o')
>>> plt.show()
_images/scatter_plot2.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig = eda.scatter_plot(data=df, x="AGE", y="SIBSP", sample_frac=0.8, width=600, height=600)
>>> fig.show()
_images/scatter_plotly2.png
bar_plot(data, column, aggregation, title=None, label_fontsize=12, title_fontproperties=None, orientation=None, **kwargs)

Displays a bar plot for the SAP HANA DataFrame column specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

columnstr

Column to be aggregated.

aggregationdict

Aggregation conditions ('avg', 'count', 'max', 'min').

titlestr, optional

Title for the plot.

Defaults to None.

label_fontsizeint, optional

The size of label. Only for matplotlib plot.

Defaults to 12.

title_fontpropertiesFontProperties, optional

Change the font properties for title.

Defaults to None.

orientationstr, optional

One of 'h' for horizontal or 'v' for vertical.

Only valid when plotly plot is enabled.

Defaults to 'v'.

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the plot.

  • pandas.DataFrame. The data used in the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(10,10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, bar = eda.bar_plot(data=df, column="PCLASS", aggregation={'AGE':'avg'})
>>> plt.show()
_images/bar_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig, bar = eda.bar_plot(data=df, column="PCLASS", aggregation={'AGE':'avg'}, width=600, height=600, title="bar plot")
>>> fig.show()
_images/bar_plotly.png
box_plot(data, column, outliers=False, title=None, groupby=None, lower_outlier_fence_factor=0, upper_outlier_fence_factor=0, title_fontproperties=None, vert=False, legend=True, multiplier=1.5, **kwargs)

Displays a box plot for the SAP HANA DataFrame column specified.

Parameters:
dataDataFrame

HANA DataFrame containing the data.

columnstr

Column in the DataFrame being plotted.

outliersbool

Whether to plot suspected outliers and outliers.

Defaults to False.

titlestr, optional

Title for the plot.

Defaults to None.

groupbystr, optional

Column to group by and compare.

Defaults to None.

lower_outlier_fence_factorfloat, optional

The lower bound of outlier fence factor.

Defaults to 0.

upper_outlier_fence_factor

The upper bound of outlier fence factor.

Defaults to 0.

title_fontpropertiesFontProperties, optional

Change the font properties for title.

Defaults to None.

vertbool, optional

Vertical box plot if True.

Defaults to False.

legendbool, optional

Display legend if True. Only available for matplotlib.

Defaults to True.

multiplierfloat, optional

The multiplier used in the IQR test.

Defaults to 1.5.

Returns:
matplotlib:
  • The axes for the plot, returns a matplotlib.axes.Axes object.

  • pandas.DataFrame. The data used in the plot.

plotly:

If enable_plotly is True:

  • plotly.graph_objects.Figure object of the plot.

  • pandas.DataFrame. The data used in the plot.

Examples

>>> import matplotlib.pyplot as plt
>>> f = plt.figure(figsize=(10, 10))
>>> ax = f.add_subplot(111)
>>> eda = EDAVisualizer(ax)
>>> ax, corr = eda.box_plot(data=data, column="AGE", vert=True, groupby="SEX")
>>> plt.show()
_images/box_plot.png
>>> eda = EDAVisualizer(enable_plotly=True)
>>> fig, corr = eda.box_plot(data=df, column="AGE", groupby="SEX", vert=True, width=600, height=600, title="box plot")
>>> fig.show()
_images/box_plotly.png
property ax

Returns the matplotlib Axes where the Visualizer will draw.

property cmap

Returns the color map being used for the plot.

reset()

Reset.

set_ax(ax)

Sets the Axes

set_cmap(cmap)

Sets the colormap

set_size(size)

Sets the size

property size

Returns the size of the plot in pixels.

class hana_ml.visualizers.eda.Profiler(*args, **kwargs)

Bases: object

A class to build a SAP HANA Profiler, including:

  • Variable descriptions

  • Missing values %

  • High cardinality %

  • Skewness

  • Numeric distributions

  • Categorical distributions

  • Correlations

  • High correlation warnings

Methods

description(data, key[, bins, ...])

Returns a SAP HANA profiler, including:

set_size(fig, figsize)

Set the size of the data description plot, in inches.

description(data, key, bins=20, missing_threshold=10, card_threshold=100, skew_threshold=0.5, figsize=None)

Returns a SAP HANA profiler, including:

  • Variable descriptions

  • Missing values %

  • High cardinality %

  • Skewness

  • Numeric distributions

  • Categorical distributions

  • Correlations

  • High correlation warnings

Parameters:
dataDataFrame

HANA DataFrame containing the data.

keystr, optional

Name of the key column in the DataFrame.

binsint, optional

Number of bins for numeric distributions.

Defaults to 20.

missing_thresholdfloat

Percentage threshold to display missing values.

Defaults to 10.

card_thresholdint

Threshold for column to be considered with high cardinality.

Defaults to 100.

skew_thresholdfloat

Absolute value threshold for column to be considered as highly skewed.

Defaults to 0.5.

figsizetuple, optional

Size of figure to be plotted. First element is width, second is height.

Defaults to None.

Note: categorical columns with cardinality warnings are not plotted.
Returns:
The matplotlib axis of the profiler
set_size(fig, figsize)

Set the size of the data description plot, in inches.

Parameters:
figax

The returned axes constructed by the description method.

figsizetuple

Tuple of width and height for the plot.

hana_ml.visualizers.metrics

This module represents a visualizer for metrics.

The following class is available:

class hana_ml.visualizers.metrics.MetricsVisualizer(ax=None, size=None, cmap=None, title=None, enable_plotly=False)

Bases: Visualizer, object

The MetricVisualizer is used to visualize metrics.

Parameters:
axmatplotlib.Axes, optional

The axes to use to plot the figure. Default value : Current axes

sizetuple of integers, optional

(width, height) of the plot in dpi Default value: Current size of the plot.

titlestr, optional

Title for the plot.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

Attributes:
ax

Returns the matplotlib Axes where the Visualizer will draw.

cmap

Returns the color map being used for the plot.

size

Returns the size of the plot in pixels.

Methods

plot_confusion_matrix(df[, normalize])

This function plots the confusion matrix and returns the Axes where this is drawn.

reset()

Reset.

set_ax(ax)

Sets the Axes

set_cmap(cmap)

Sets the colormap

set_size(size)

Sets the size

plot_confusion_matrix(df, normalize=False, **kwargs)

This function plots the confusion matrix and returns the Axes where this is drawn.

Parameters:
dfDataFrame

Data points to the resulting confusion matrix. This dataframe's columns should match columns ('CLASS', '')

property ax

Returns the matplotlib Axes where the Visualizer will draw.

property cmap

Returns the color map being used for the plot.

reset()

Reset.

set_ax(ax)

Sets the Axes

set_cmap(cmap)

Sets the colormap

set_size(size)

Sets the size

property size

Returns the size of the plot in pixels.

hana_ml.visualizers.m4_sampling

This module contains M4 algorithm for sampling query.

The following function is available:

hana_ml.visualizers.m4_sampling.get_min_index(data)

Get Minimum Timestamp of Time Series Data Only for internal use, do not show it in the doc.

Parameters:
dataDataFrame

Time series data whose the 1st column is index and the 2nd one is value.

Returns:
datetime

Return the minimum timestamp.

hana_ml.visualizers.m4_sampling.get_max_index(data)

Get Maximum Timestamp of Time Series Data Only for internal use, do not show it in the doc.

Parameters:
dataDataFrame

Time series data whose 1st column is index and 2nd one is value.

Returns:
datetime

Return the maximum timestamp.

hana_ml.visualizers.m4_sampling.m4_sampling(data, width)

M4 algorithm for big data visualization

Parameters:
dataDataFrame

Data to be sampled. Time series data whose 1st column is index and 2nd one is value.

widthint

Sampling Rate. It is an indicator of how many pixels being in the picture.

Returns:
DataFrame

Return the sampled dataframe.

hana_ml.visualizers.model_debriefing

This module represents a visualizer for tree model.

The following class is available:

class hana_ml.visualizers.model_debriefing.TreeModelDebriefing

Bases: object

Visualize tree model.

Currently, the TreeModelDebriefing class can be used to parse tree model built with the PAL algorithm, but it cannot be used to parse tree model built with the APL algorithm.

The TreeModelDebriefing class can be used to parse tree model generated by the following classes:

  • Classes in hana_ml.algorithms.pal.trees module

    • RDTClassifier

    • RDTRegressor

    • RandomForestClassifier

    • RandomForestRegressor

    • DecisionTreeClassifier

    • DecisionTreeRegressor

    • HybridGradientBoostingClassifier

    • HybridGradientBoostingRegressor

  • Class UnifiedClassification

    Supported the following values of parameter func:

    • RandomDecisionTree

    • DecisionTree

    • HybridGradientBoostingTrees

Examples

  1. Using RDTClassifier class

Input dataframe for training:

>>> df1.collect()
      OUTLOOK     TEMP  HUMIDITY WINDY        LABEL
 0      Sunny     75.0      70.0   Yes         Play
 1      Sunny     80.0      90.0   Yes  Do not Play
 2      Sunny     85.0      85.0    No  Do not Play
 3      Sunny     72.0      95.0    No  Do not Play
 4      Sunny     69.0      70.0    No         Play
 5   Overcast     72.0      90.0   Yes         Play
 6   Overcast     83.0      78.0    No         Play
 7   Overcast     64.0      65.0   Yes         Play
 8   Overcast     81.0      75.0    No         Play
 9       Rain     71.0      80.0   Yes  Do not Play
10       Rain     65.0      70.0   Yes  Do not Play
11       Rain     75.0      80.0    No         Play
12       Rain     68.0      80.0    No         Play
13       Rain     70.0      96.0    No         Play

Creating RDTClassifier instance:

>>> from hana_ml.algorithms.pal.trees import RDTClassifier
>>> rdtc = RDTClassifier(n_estimators=3,
...                      max_features=3,
...                      random_state=2,
...                      split_threshold=0.00001,
...                      calculate_oob=True,
...                      min_samples_leaf=1,
...                      thread_ratio=1.0)

Performing fit() on given dataframe:

>>> rdtc.fit(data=df1, features=['OUTLOOK', 'TEMP', 'HUMIDITY', 'WINDY'], label='CLASS')

Visualize tree model in JSON format:

>>> TreeModelDebriefing.tree_debrief(rdtc.model_)
_images/rdtc01.png

Visualize tree model in DOT format:

>>> TreeModelDebriefing.tree_debrief_with_dot(rdtc.model_, iframe_height=500)
_images/rdtc02.png

Visualize tree model in XML format:

>>> rdtc = RDTClassifier(n_estimators=3,
...                      max_features=3,
...                      random_state=2,
...                      split_threshold=0.00001,
...                      calculate_oob=True,
...                      min_samples_leaf=1,
...                      thread_ratio=1.0,
...                      model_format='pmml')
>>> rdtc.fit(data=df1, features=['OUTLOOK', 'TEMP', 'HUMIDITY', 'WINDY'], label='CLASS')
>>> TreeModelDebriefing.tree_debrief(rdtc.model_)
_images/rdtc03pmml.png
  1. Using UnifiedClassification class

>>> from hana_ml.algorithms.pal.unified_classification import UnifiedClassification
>>> rdt_params = dict(random_state=2,
                      split_threshold=1e-7,
                      min_samples_leaf=1,
                      n_estimators=10,
                      max_depth=55)
>>> uc_rdt = UnifiedClassification(func='RandomDecisionTree', **rdt_params)
>>> uc_rdt.fit(data=df1,
               partition_method='stratified',
               stratified_column='CLASS',
               partition_random_state=2,
               training_percent=0.7,
               ntiles=2)
>>> TreeModelDebriefing.tree_debrief(uc_rdt.model_[0])
>>> TreeModelDebriefing.tree_debrief_with_dot(uc_rdt.model_[0], iframe_height=500)

Methods

shapley_explainer(reason_code_data, feature_data)

Create Shapley explainer to explain the output of machine learning model.

tree_debrief(model[, display])

Visualize tree model by data in JSON or XML format.

tree_debrief_with_dot(model[, ...])

Visualize tree model by data in DOT format.

tree_export(model, filename)

Save the tree model as a html file.

tree_export_with_dot(model, filename)

Save the tree model as a html file.

tree_parse(model)

Transform tree model content using DOT language.

static tree_debrief(model, display=True)

Visualize tree model by data in JSON or XML format.

Parameters:
modelDataFrame

Tree model.

Returns:
HTML Page

This HTML page can be rendered by browser.

static tree_export(model, filename)

Save the tree model as a html file.

Parameters:
modelDataFrame

Tree model.

filenamestr

Html file name.

static tree_parse(model)

Transform tree model content using DOT language.

Parameters:
modelDataFrame

Tree model.

static tree_debrief_with_dot(model, iframe_height: int = 800, digraph_config: DigraphConfig = None, display=True)

Visualize tree model by data in DOT format.

Parameters:
modelDataFrame

Tree model.

iframe_heightint, optional

Frame height.

Defaults to 800.

digraph_configDigraphConfig, optional

Configuration instance of digraph.

Returns:
HTML Page

This HTML page can be rendered by browser.

static tree_export_with_dot(model, filename)

Save the tree model as a html file.

Parameters:
modelDataFrame

Tree model.

filenamestr

Html file name.

static shapley_explainer(reason_code_data: DataFrame, feature_data: DataFrame, reason_code_column_name=None, **kwargs)

Create Shapley explainer to explain the output of machine learning model.

It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions.

To get an overview of which features are most important for a model we can plot the Shapley values of every feature for every sample.

Parameters:
reason_code_dataDataFrame

The Dataframe containing only reason code values.

feature_dataDataFrame

The Dataframe containing only feature values.

Returns:
ShapleyExplainer

Shapley explainer.

hana_ml.visualizers.dataset_report

class hana_ml.visualizers.dataset_report.DatasetReportBuilder

Bases: object

The DatasetReportBuilder instance can analyze the dataset and generate a report in HTML format.

The instance will call the dropna method of DataFrame internally to handle the missing value of dataset.

The generated report can be embedded in a notebook, including:

  • Overview
    • Dataset Info

    • Variable Types

    • High Cardinality %

    • Highly Skewed Variables

  • Sample
    • Top ten rows of dataset

  • Variables
    • Numeric distributions

    • Categorical distributions

    • Variable statistics

  • Data Correlations

  • Data Scatter Matrix

Examples

Create a DatasetReportBuilder instance:

>>> from hana_ml.visualizers.dataset_report import DatasetReportBuilder
>>> datasetReportBuilder = DatasetReportBuilder()

Assume the dataset DataFrame is df and then analyze the dataset:

>>> datasetReportBuilder.build(df, key="ID")

Display the dataset report as a notebook iframe.

>>> datasetReportBuilder.generate_notebook_iframe_report()
_images/dataset_report_example.png

Methods

build(data, key[, scatter_matrix_sampling, ...])

Build a report for dataset.

generate_html_report(filename)

Save the dataset report as a html file.

generate_notebook_iframe_report()

Render the dataset report as a notebook iframe.

get_iframe_report_html()

Return the iframe report.

get_report_html()

Return the html report.

build(data, key, scatter_matrix_sampling: Sampling = None, ignore_scatter_matrix: bool = False, ignore_correlation: bool = False, subset_bins=None)

Build a report for dataset.

Note that the name of data is used as the dataset name in this function. If the name of data (which is a dataframe.DataFrame object) is not set explicitly in the object instantiation, a name like 'DT_XX' will be assigned to the data.

Parameters:
dataDataFrame

DataFrame to use to build the dataset report.

keystr

Name of ID column.

scatter_matrix_samplingSampling, optional

Scatter matrix sampling.

ignore_scatter_matrixbool, optional

Skip calculating scatter matrix.

Defaults to False.

ignore_correlationbool, optional

Skip calculating correlation.

Defaults to False.

generate_html_report(filename)

Save the dataset report as a html file.

Parameters:
filenamestr

Html file name.

generate_notebook_iframe_report()

Render the dataset report as a notebook iframe.

get_report_html()

Return the html report.

get_iframe_report_html()

Return the iframe report.

hana_ml.visualizers.shap

This module provides some explainers for Shapley values.

The following classes are available:

class hana_ml.visualizers.shap.ShapleyExplainer(reason_code_data: DataFrame, feature_data: DataFrame, reason_code_column_name=None, **kwargs)

Bases: object

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of machine learning model.

It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions.

To get an overview of which features are most important for a model we can plot the Shapley values of every feature for every sample.

If the output table contains the reason code column, the output table can be parsed by this class in most cases, rather than only valid for the tree model.

Parameters:
reason_code_dataDataFrame

The Dataframe containing only reason code values.

feature_dataDataFrame

The Dataframe containing only feature values.

Examples

In the following example, training data is called diabetes_train and test data is diabetes_test.

First, we create an UnifiedClassification instance:

>>> uc_hgbdt = UnifiedClassification('HybridGradientBoostingTree')

Then, create a GridSearchCV instance:

>>> gscv = GridSearchCV(estimator=uc_hgbdt,
                        param_grid={'learning_rate': [0.1, 0.4, 0.7, 1],
                                    'n_estimators': [4, 6, 8, 10],
                                    'split_threshold': [0.1, 0.4, 0.7, 1]},
                        train_control=dict(fold_num=5,
                                           resampling_method='cv',
                                           random_state=1,
                                           ref_metric=['auc']),
                        scoring='error_rate')

Call the fit() function to train the model:

>>> gscv.fit(data=diabetes_train, key= 'ID',
             label='CLASS',
             partition_method='stratified',
             partition_random_state=1,
             stratified_column='CLASS',
             build_report=True)
>>> features = diabetes_train.columns
>>> features.remove('CLASS')
>>> features.remove('ID')

Use diabetes_test for prediction:

>>> pred_res = gscv.predict(diabetes_test, key='ID', features=features)

Create a ShapleyExplainer class and then invoke summary_plot() :

>>> shapley_explainer = ShapleyExplainer(reason_code_data=pred_res.select('REASON_CODE'), feature_data=diabetes_test.select(features))
>>> shapley_explainer.summary_plot()

Output:

_images/shap.png

Methods

force_plot([iframe_height])

Draw the force plot.

get_bar_plot_item()

Get bar plot item.

get_beeswarm_plot_item()

Get beeswarm plot item.

get_dependence_plot_items()

Get dependence plot item.

get_enhanced_dependence_plot_items()

Get enhanced dependence plot item.

get_feature_value_and_effect()

Get feature value and effect.

get_force_plot_item()

Get the force plot item.

summary_plot([iframe_height])

Global Interpretation using Shapley values.

get_feature_value_and_effect()

Get feature value and effect.

Parameters:
None
Returns:
An object of class 'FeatureValueAndEffect'.
get_force_plot_item()

Get the force plot item.

Parameters:
None
Returns:
An object of class 'ForcePlotItem'.
get_beeswarm_plot_item()

Get beeswarm plot item.

Parameters:
None
Returns:
An object of class 'BeeswarmPlot'.
get_bar_plot_item()

Get bar plot item.

Parameters:
None
Returns:
An object of class 'BarPlot'.
get_dependence_plot_items()

Get dependence plot item.

Parameters:
None
Returns:
An object of class 'DependencePlot'.
get_enhanced_dependence_plot_items()

Get enhanced dependence plot item.

Parameters:
None
Returns:
An object of class 'EnhancedDependencePlot'.
force_plot(iframe_height=800)

Draw the force plot.

Parameters:
iframe_heightint, optional

iframe height.

Defaults to 800.

Returns:
Renders the force plot as a notebook iframe.
summary_plot(iframe_height=600)

Global Interpretation using Shapley values.

To get an overview of which features are most important for a model we can plot the Shapley values of every feature for every sample.

Parameters:
iframe_heightint, optional

iframe height.

Defaults to 600.

Returns:
Renders the summary plot as a notebook iframe.
class hana_ml.visualizers.shap.TimeSeriesExplainer

Bases: object

The TimeSeriesExplainer instance can visualize the training and prediction results of time series.

The generated html can be embedded in a notebook, including:

  • Compare

    • YHAT

    • YHAT_LOWER

    • YHAT_UPPER

    • REAL_Y

  • Trend

  • Seasonal

  • Holiday

  • Exogenous variable

Methods

explain_additive_model(amf[, iframe_height])

The static method can visualize the training and prediction results of AdditiveModelForecast.

explain_arima_model(arima[, iframe_height])

The static method can visualize the training and prediction results of Arima.

static explain_arima_model(arima, iframe_height=800)

The static method can visualize the training and prediction results of Arima.

The generated html can be embedded in a notebook, including:

  • Compare

    • PREDICTIVE_Y

    • REAL_Y

  • Trend

  • Seasonal

  • Holiday

  • Exogenous variable

Parameters:
arima

Arima related instances.

iframe_heightint, optional

Specifies iframe height.

Defaults to 800.

static explain_additive_model(amf, iframe_height=800)

The static method can visualize the training and prediction results of AdditiveModelForecast.

The generated html can be embedded in a notebook, including:

  • Compare

    • YHAT

    • YHAT_LOWER

    • YHAT_UPPER

    • REAL_Y

  • Trend

  • Seasonal

  • Holiday

  • Exogenous variable

Parameters:
amfadditive_model_forecast.AdditiveModelForecast

AdditiveModelForecast instances.

iframe_heightint, optional

Specifies iframe height.

Defaults to 800.

hana_ml.visualizers.unified_report

This module is to build report for PAL/APL models.

The following class is available:

class hana_ml.visualizers.unified_report.UnifiedReport(obj)

Bases: object

The report generator for PAL/APL models. Currently, it only supports UnifiedClassification and UnifiedRegression.

Examples

Data used is called diabetes_train.

Case 1: UnifiedReport for UnifiedClassification is shown as follows, please set build_report=True in the fit() function:

>>> from hana_ml.algorithms.pal.model_selection import GridSearchCV
>>> from hana_ml.algorithms.pal.model_selection import RandomSearchCV
>>> hgc = UnifiedClassification('HybridGradientBoostingTree')
>>> gscv = GridSearchCV(estimator=hgc,
                        param_grid={'learning_rate': [0.1, 0.4, 0.7, 1],
                                    'n_estimators': [4, 6, 8, 10],
                                    'split_threshold': [0.1, 0.4, 0.7, 1]},
                        train_control=dict(fold_num=5,
                                           resampling_method='cv',
                                           random_state=1,
                                           ref_metric=['auc']),
                        scoring='error_rate')
>>> gscv.fit(data=diabetes_train, key= 'ID',
             label='CLASS',
             partition_method='stratified',
             partition_random_state=1,
             stratified_column='CLASS',
             build_report=True)

To look at the dataset report:

>>> UnifiedReport(diabetes_train).build().display()
_images/unified_report_dataset_report.png

To see the model report:

>>> UnifiedReport(gscv.estimator).display()
_images/unified_report_model_report_classification.png

We could also see the Optimal Parameter page:

_images/unified_report_model_report_classification2.png

Case 2: UnifiedReport for UnifiedRegression is shown as follows, please set build_report=True in the fit() function:

>>> hgr = UnifiedRegression(func = 'HybridGradientBoostingTree')
>>> gscv = GridSearchCV(estimator=hgr,
                        param_grid={'learning_rate': [0.1, 0.4, 0.7, 1],
                                    'n_estimators': [4, 6, 8, 10],
                                    'split_threshold': [0.1, 0.4, 0.7, 1]},
                        train_control=dict(fold_num=5,
                                           resampling_method='cv',
                                           random_state=1),
                        scoring='rmse')
>>> gscv.fit(data=diabetes_train, key= 'ID',
             label='CLASS',
             partition_method='random',
             partition_random_state=1,
             build_report=True)

To see the model report:

>>> UnifiedReport(gscv.estimator).display()
_images/unified_report_model_report_regression.png

Methods

build([key, scatter_matrix_sampling, ...])

Build the report.

display([save_html, metric_sampling])

Display the report.

get_iframe_report()

Return iframe report without display.

set_metric_samplings([roc_sampling, ...])

Set metric samplings to report builder.

set_model_report_style(version)

Switch different style of model report

tree_debrief([save_html, digraph])

Visualize tree model.

set_model_report_style(version)

Switch different style of model report

Parameters:
version{'v2', 'v1'}, optional

new: using report builder framework. old: using pure html template.

Defaults to 'v2'.

build(key=None, scatter_matrix_sampling: Sampling = None, ignore_scatter_matrix: bool = False, ignore_correlation: bool = False, subset_bins=None)

Build the report.

Parameters:
keystr, valid only for DataFrame

Name of ID column.

Defaults to the first column.

scatter_matrix_samplingSampling, valid only for DataFrame

Scatter matrix sampling.

ignore_scatter_matrixbool, optional

Ignore the plotting of scatter matrix if True.

Defaults to False.

ignore_correlationbool, optional

Ignore the correlation computation if True.

Defaults to False.

subset_binsdict, optional

Define the bin number in distribution chart for each column, e.g. {"col_A": 20}.

Defaults to 20 for all.

set_metric_samplings(roc_sampling: Sampling = None, other_samplings: dict = None)

Set metric samplings to report builder.

Parameters:
roc_samplingSampling, optional

ROC sampling.

other_samplingsdict, optional

Key is column name of metric table.

  • CUMGAINS

  • RANDOM_CUMGAINS

  • PERF_CUMGAINS

  • LIFT

  • RANDOM_LIFT

  • PERF_LIFT

  • CUMLIFT

  • RANDOM_CUMLIFT

  • PERF_CUMLIFT

Value is sampling.

Examples

Creating the metric samplings:

>>> roc_sampling = Sampling(method='every_nth', interval=2)
>>> other_samplings = dict(CUMGAINS=Sampling(method='every_nth', interval=2),
                      LIFT=Sampling(method='every_nth', interval=2),
                      CUMLIFT=Sampling(method='every_nth', interval=2))
>>> unified_report.set_metric_samplings(roc_sampling, other_samplings)
tree_debrief(save_html=None, digraph=True, **kwargs)

Visualize tree model.

Parameters:
save_htmlstr, optional

If it is not None, the function will generate a html report and stored in the given name.

Defaults to None.

digraphbool, optional

If True, it will output the digraph tree structure.

Defaults to False.

display(save_html=None, metric_sampling=False)

Display the report.

Parameters:
save_htmlstr, optional

If it is not None, the function will generate a html report and stored in the given name.

Defaults to None.

metric_samplingbool, optional (deprecated)

Whether the metric table needs to be sampled. It is only valid for UnifiedClassification and used together with set_metric_samplings. Since version 2.14, the metric_sampling is no need to specify and replaced by ntiles in unified API parameter settings.

Defaults to False.

get_iframe_report()

Return iframe report without display.

hana_ml.visualizers.visualizer_base

The following function is available:

hana_ml.visualizers.visualizer_base.forecast_line_plot(pred_data, actual_data=None, confidence=None, ax=None, figsize=None, max_xticklabels=10, marker=None, enable_plotly=False, pred_option={'zorder': 3}, actual_option={'alpha': 0.1, 'zorder': 1}, confidence_option={'alpha': 0.2, 'zorder': 2})

Plot the prediction data for time series forecast or regression model.

Parameters:
pred_dataDataFrame

The forecast data to be plotted.

actual_dataDataFrame, optional

The actual data to be plotted.

Default value is None.

confidencetuple of str, optional

The column names of confidence bound.

Default value is None.

axmatplotlib.Axes, optional

The axes to use to plot the figure. Default value : Current axes

figsizetuple, optional

(weight, height) of the figure. For matplotlib, the unit is inches, and for plotly, the unit is pixels.

Defaults to (15, 12) when using matplotlib, auto when using plotly.

max_xticklabelsint, optional

The maximum number of xtick labels. Defaults to 10.

marker: character, optional

Type of maker on the plot.

Default to None indicates no marker.

enable_plotlybool, optional

Use plotly instead of matplotlib.

Defaults to False.

pred_optiondict, optional

Matplotlib options for pred_data line plot.

Defaults to {'zorder': 3}.

actual_optiondict, optional

Matplotlib options for actual_data line plot.

Defaults to {'zorder': 1, 'alpha': 0.1}.

confidence_optiondict, optional

Matplotlib options for confidence area plot.

Defaults to {'zorder': 2, 'alpha': 0.2}.

Examples

Create an 'AdditiveModelForecast' instance and invoke the fit and predict functions:

>>> amf = AdditiveModelForecast(growth='linear')
>>> amf.fit(data=train_df)
>>> pred_data = amf.predict(data=test_df)

Visualize the forecast values:

>>> ax = forecast_line_plot(pred_data=pred_data.set_index("INDEX"),
                    actual_data=df.set_index("INDEX"),
                    confidence=("YHAT_LOWER", "YHAT_UPPER"),
                    max_xticklabels=10)
_images/line_plot.png

hana_ml.visualizers.digraph

This module represents the whole digraph framework. The whole digraph framework consists of Python API and page assets(HTML, CSS, JS, Font, Icon, etc.). The application scenarios of the current digraph framework are AutoML Pipeline and Model Debriefing.

The following classes are available:
class hana_ml.visualizers.digraph.Node(node_id: int, node_name: str, node_icon_id: int, node_content: str, node_in_ports: list, node_out_ports: list)

Bases: object

The Node class of digraph framework is an entity class.

Parameters:
node_idint [Automatic generation]

Unique identification of node.

node_namestr

The node name.

node_icon_idint [Automatic generation]

Unique identification of node icon.

node_contentstr

The node content.

node_in_portslist

List of input port names.

node_out_portslist

List of output port names.

class hana_ml.visualizers.digraph.InPort(node: Node, port_id: str, port_name: str, port_sequence: int)

Bases: object

The InPort class of digraph framework is an entity class.

A port is a fixed connection point on a node.

Parameters:
nodeNode

Which node is the input port fixed on.

port_idstr [Automatic generation]

Unique identification of input port.

port_namestr

The input port name.

port_sequenceint [Automatic generation]

The position of input port among all input ports.

class hana_ml.visualizers.digraph.OutPort(node: Node, port_id: str, port_name: str, port_sequence: int)

Bases: object

The OutPort class of digraph framework is an entity class.

A port is a fixed connection point on a node.

Parameters:
nodeNode

Which node is the output port fixed on.

port_idstr [Automatic generation]

Unique identification of output port.

port_namestr

The output port name.

port_sequenceint [Automatic generation]

The position of output port among all output ports.

class hana_ml.visualizers.digraph.Edge(source_port: OutPort, target_port: InPort)

Bases: object

The Edge class of digraph framework is an entity class.

The output port of a node is connected with the input port of another node to make an edge.

Parameters:
source_portOutPort

Start connection point of edge.

target_portInPort

End connection point of edge.

class hana_ml.visualizers.digraph.DigraphConfig

Bases: object

Configuration class of digraph.

Methods

set_digraph_layout([digraph_layout])

Set the layout of a digraph.

set_node_sep([node_sep])

Set distance between nodes.

set_rank_sep([rank_sep])

Set distance between layers.

set_text_layout([make_text_center])

Set node"s text layout.

set_text_layout(make_text_center: bool = False)

Set node"s text layout.

Parameters:
make_text_centerbool, optional

Should the node"s text be centered.

Defaults to False.

set_digraph_layout(digraph_layout: str = 'horizontal')

Set the layout of a digraph.

Parameters:
digraph_layoutstr, optional

The layout of a digraph can only be horizontal or vertical.

Defaults to horizontal layout.

set_node_sep(node_sep: int = 80)

Set distance between nodes.

Under horizontal layout, this parameter represents horizontal distance between nodes.

Under vertical layout, this parameter represents vertical distance between nodes.

Parameters:
node_sepint, optional

The distance between nodes.

The value range of parameter is 20 to 200.

Defaults to 80.

set_rank_sep(rank_sep: int = 80)

Set distance between layers.

Under horizontal layout, this parameter represents vertical distance between nodes.

Under vertical layout, this parameter represents horizontal distance between nodes.

Parameters:
rank_sepint, optional

The distance between layers.

The value range of parameter is 20 to 200.

Defaults to 80.

class hana_ml.visualizers.digraph.Digraph(digraph_name: str, embedded_mode: bool = False)

Bases: BaseDigraph

Using the Digraph class of digraph framework can dynamically add nodes and edges, and finally generate an HTML page. The rendered HTML page can display the node information and the relationship between nodes, and provide a series of auxiliary tools to help you view the digraph. A series of auxiliary tools are provided as follows:

  • Provide basic functions such as pan and zoom.

  • Locate the specified node by keyword search.

  • Look at the layout outline of the whole digraph through the minimap.

  • Through the drop-down menu to switch different digraph.

  • The whole page can be displayed in full screen.

  • Adjust the distance between nodes and distance between layers dynamically.

  • Provide the function of node expansion and collapse.

Parameters:
digraph_namestr

The digraph name.

Examples

  1. Importing classes of digraph framework

>>> from hana_ml.visualizers.digraph import Digraph, Node, Edge
  1. Creating a Digraph instance:

>>> digraph: Digraph = Digraph("Test1")
  1. Adding two nodes to digraph instance, where the node1 has only one output port and the node2 has only one input port:

>>> node1: Node = digraph.add_model_node("name1", "content1", in_ports=[], out_ports=["1"])
>>> node2: Node = digraph.add_python_node("name2", "content2", in_ports=["1"], out_ports=[])
  1. Adding an edge to digraph instance, where the output port of node1 points to the input port of node2:

>>> edge1_2: Edge = digraph.add_edge(node1.out_ports[0], node2.in_ports[0])
  1. Create a DigraphConfig instance:

>>> digraph_config = DigraphConfig()
>>> digraph_config.set_digraph_layout("vertical")
  1. Generating notebook iframe:

>>> digraph.build(digraph_config)
>>> digraph.generate_notebook_iframe(iframe_height=500)
_images/digraph.png
  1. Generating a local HTML file:

>>> digraph.generate_html("Test1")

Methods

add_edge(source_port, target_port)

Add edge to digraph instance.

add_model_node(name, content, in_ports, ...)

Add node with model icon to digraph instance.

add_python_node(name, content, in_ports, ...)

Add node with python icon to digraph instance.

build([digraph_config])

Build HTML string based on current data.

generate_html(filename)

Save the digraph as a html file.

generate_notebook_iframe([iframe_height])

Render the digraph as a notebook iframe.

to_json()

Return the nodes and edges data of digraph.

to_json() list

Return the nodes and edges data of digraph.

Returns:
list

The nodes and edges data of digraph.

build(digraph_config: DigraphConfig = None)

Build HTML string based on current data.

Parameters:
digraph_configDigraphConfig, optional

Configuration instance of digraph.

generate_html(filename: str)

Save the digraph as a html file.

Parameters:
filenamestr

HTML file name.

generate_notebook_iframe(iframe_height: int = 800)

Render the digraph as a notebook iframe.

add_edge(source_port: OutPort, target_port: InPort) Edge

Add edge to digraph instance.

Parameters:
source_portOutPort

Start connection point of edge.

target_portInPort

End connection point of edge.

Returns:
Edge

The added edge.

add_model_node(name: str, content: str, in_ports: list, out_ports: list) Node

Add node with model icon to digraph instance.

Parameters:
namestr

The model node name.

contentstr

The model node content.

in_portslist

List of input port names.

out_portslist

List of output port names.

Returns:
Node

The added node with model icon.

add_python_node(name: str, content: str, in_ports: List, out_ports: List) Node

Add node with python icon to digraph instance.

Parameters:
namestr

The python node name.

contentstr

The python node content.

in_portslist

List of input port names.

out_portslist

List of output port names.

Returns:
Node

The added node with python icon.

class hana_ml.visualizers.digraph.MultiDigraph(multi_digraph_name: str, embedded_mode: bool = False)

Bases: object

Using the MultiDigraph class of digraph framework can dynamically add multiple child digraphs, and finally generate an HTML page. The rendered HTML page can display the node information and the relationship between nodes, and provide a series of auxiliary tools to help you view the digraph. A series of auxiliary tools are provided as follows:

  • Provide basic functions such as pan and zoom.

  • Locate the specified node by keyword search.

  • Look at the layout outline of the whole digraph through the minimap.

  • Through the drop-down menu to switch different digraph.

  • The whole page can be displayed in fullscreen.

  • Adjust the distance between nodes and distance between layers dynamically.

  • Provide the function of node expansion and collapse.

Parameters:
multi_digraph_namestr

The digraph name.

Examples

  1. Importing classes of digraph framework

>>> from hana_ml.visualizers.digraph import MultiDigraph, Node, Edge
  1. Creating a MultiDigraph instance:

>>> multi_digraph: MultiDigraph = MultiDigraph("Test2")
  1. Creating first digraph:

>>> digraph1 = multi_digraph.add_child_digraph("digraph1")
  1. Adding two nodes to digraph1, where the node1_1 has only one output port and the node2_1 has only one input port:

>>> node1_1: Node = digraph1.add_model_node("name1", "content1", in_ports=[], out_ports=["1"])
>>> node2_1: Node = digraph1.add_python_node("name2", "content2", in_ports=["1"], out_ports=[])
  1. Adding an edge to digraph1, where the output port of node1_1 points to the input port of node2_1:

>>> digraph1.add_edge(node1_1.out_ports[0], node2_1.in_ports[0])
  1. Creating second digraph:

>>> digraph2 = multi_digraph.add_child_digraph("digraph2")
  1. Adding two nodes to digraph2, where the node1_2 has only one output port and the node2_2 has only one input port:

>>> node1_2: Node = digraph2.add_model_node("name1", "model text", in_ports=[], out_ports=["1"])
>>> node2_2: Node = digraph2.add_python_node("name2", "function info", in_ports=["1"], out_ports=[])
  1. Adding an edge to digraph2, where the output port of node1_2 points to the input port of node2_2:

>>> digraph2.add_edge(node1_2.out_ports[0], node2_2.in_ports[0])
  1. Generating notebook iframe:

>>> multi_digraph.build()
>>> multi_digraph.generate_notebook_iframe(iframe_height=500)
_images/multi_digraph.png
  1. Generating a local HTML file:

>>> multi_digraph.generate_html("Test2")

Methods

ChildDigraph(child_digraph_id, ...[, ...])

Multiple child digraphs are logically a whole.

add_child_digraph(child_digraph_name)

Add child digraph to multi_digraph instance.

build([digraph_config])

Build HTML string based on current data.

generate_html(filename)

Save the digraph as a html file.

generate_notebook_iframe([iframe_height])

Render the digraph as a notebook iframe.

to_json()

Return the nodes and edges data of whole digraph.

class ChildDigraph(child_digraph_id: int, child_digraph_name: str, embedded_mode: bool = False)

Bases: BaseDigraph

Multiple child digraphs are logically a whole.

Methods

add_edge(source_port, target_port)

Add edge to digraph instance.

add_model_node(name, content, in_ports, ...)

Add node with model icon to digraph instance.

add_python_node(name, content, in_ports, ...)

Add node with python icon to digraph instance.

to_json()

Return the nodes and edges data of child digraph.

to_json() list

Return the nodes and edges data of child digraph.

Returns:
list

The nodes and edges data of whole digraph.

add_edge(source_port: OutPort, target_port: InPort) Edge

Add edge to digraph instance.

Parameters:
source_portOutPort

Start connection point of edge.

target_portInPort

End connection point of edge.

Returns:
Edge

The added edge.

add_model_node(name: str, content: str, in_ports: list, out_ports: list) Node

Add node with model icon to digraph instance.

Parameters:
namestr

The model node name.

contentstr

The model node content.

in_portslist

List of input port names.

out_portslist

List of output port names.

Returns:
Node

The added node with model icon.

add_python_node(name: str, content: str, in_ports: List, out_ports: List) Node

Add node with python icon to digraph instance.

Parameters:
namestr

The python node name.

contentstr

The python node content.

in_portslist

List of input port names.

out_portslist

List of output port names.

Returns:
Node

The added node with python icon.

add_child_digraph(child_digraph_name: str) ChildDigraph

Add child digraph to multi_digraph instance.

Parameters:
child_digraph_namestr

The child digraph name.

Returns:
ChildDigraph

The added child digraph.

to_json() list

Return the nodes and edges data of whole digraph.

Returns:
list

The nodes and edges data of whole digraph.

build(digraph_config: DigraphConfig = None)

Build HTML string based on current data.

Parameters:
digraph_configDigraphConfig, optional

Configuration instance of digraph.

generate_html(filename: str)

Save the digraph as a html file.

Parameters:
filenamestr

Html file name.

generate_notebook_iframe(iframe_height: int = 800)

Render the digraph as a notebook iframe.

hana_ml.visualizers.word_cloud

WordCloud Visualization.

The following classes and functions are available:

class hana_ml.visualizers.word_cloud.WordCloud(font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=0.9, mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random_state=None, background_color='black', max_font_size=None, font_step=1, mode='RGB', relative_scaling='auto', regexp=None, collocations=True, colormap=None, normalize_plurals=True, contour_width=0, contour_color='black', repeat=False, include_numbers=False, min_word_length=0, collocation_threshold=30)

Bases: WordCloud

Extended from wordcloud.WordCloud.

Methods

build(data[, content_column, lang])

Generate wordcloud.

fit_words(frequencies)

Create a word_cloud from words and frequencies.

generate(text)

Generate wordcloud from text.

generate_from_frequencies(frequencies[, ...])

Create a word_cloud from words and frequencies.

generate_from_text(text)

Generate wordcloud from text.

process_text(text)

Splits a long text into words, eliminates the stopwords.

recolor([random_state, color_func, colormap])

Recolor existing layout.

to_array()

Convert to numpy array.

to_file(filename)

Export to image file.

to_svg([embed_font, optimize_embedded_font, ...])

Export to SVG.

build(data, content_column=None, lang=None)

Generate wordcloud.

Parameters:
dataDataFrame

The input SAP HANA DataFrame.

content_columnstr, optional

Specified the column to do wordcloud.

Defaults to the first column.

langstr, optional

Specify the language type. HANA cloud instance currently supports 'EN', 'DE', 'ES', 'FR' and 'RU'. If None, auto detection will be applied.

Defaults to None.

Examples

>>> wordcloud = WordCloud(background_color="white", max_words=2000,
                          max_font_size=100, random_state=42, width=1000,
                          height=860, margin=2).build(data=data,
                                                      content_column="CONTENT",
                                                      lang='EN')
>>> import matplotlib.pyplot as plt
>>> plt.imshow(wordcloud, interpolation='bilinear')
>>> plt.axis("off")
fit_words(frequencies)

Create a word_cloud from words and frequencies.

Alias to generate_from_frequencies.

Parameters:
frequenciesdict from string to float

A contains words and associated frequency.

Returns:
self
generate(text)

Generate wordcloud from text.

The input "text" is expected to be a natural text. If you pass a sorted list of words, words will appear in your output twice. To remove this duplication, set collocations=False.

Alias to generate_from_text.

Calls process_text and generate_from_frequencies.

Returns:
self
generate_from_frequencies(frequencies, max_font_size=None)

Create a word_cloud from words and frequencies.

Parameters:
frequenciesdict from string to float

A contains words and associated frequency.

max_font_sizeint

Use this font-size instead of self.max_font_size

Returns:
self
generate_from_text(text)

Generate wordcloud from text.

The input "text" is expected to be a natural text. If you pass a sorted list of words, words will appear in your output twice. To remove this duplication, set collocations=False.

Calls process_text and generate_from_frequencies.

..versionchanged:: 1.2.2

Argument of generate_from_frequencies() is not return of process_text() any more.

Returns:
self
process_text(text)

Splits a long text into words, eliminates the stopwords.

Parameters:
textstring

The text to be processed.

Returns:
wordsdict (string, int)

Word tokens with associated frequency.

..versionchanged:: 1.2.2

Changed return type from list of tuples to dict.

Notes

There are better ways to do word tokenization, but I don't want to include all those things.

recolor(random_state=None, color_func=None, colormap=None)

Recolor existing layout.

Applying a new coloring is much faster than generating the whole wordcloud.

Parameters:
random_stateRandomState, int, or None, default=None

If not None, a fixed random state is used. If an int is given, this is used as seed for a random.Random state.

color_funcfunction or None, default=None

Function to generate new color from word count, font size, position and orientation. If None, self.color_func is used.

colormapstring or matplotlib colormap, default=None

Use this colormap to generate new colors. Ignored if color_func is specified. If None, self.color_func (or self.color_map) is used.

Returns:
self
to_array()

Convert to numpy array.

Returns:
imagend-array size (width, height, 3)

Word cloud image as numpy matrix.

to_file(filename)

Export to image file.

Parameters:
filenamestring

Location to write to.

Returns:
self
to_svg(embed_font=False, optimize_embedded_font=True, embed_image=False)

Export to SVG.

Font is assumed to be available to the SVG reader. Otherwise, text coordinates may produce artifacts when rendered with replacement font. It is also possible to include a subset of the original font in WOFF format using embed_font (requires fontTools).

Note that some renderers do not handle glyphs the same way, and may differ from to_image result. In particular, Complex Text Layout may not be supported. In this typesetting, the shape or positioning of a grapheme depends on its relation to other graphemes.

Pillow, since version 4.2.0, supports CTL using libraqm. However, due to dependencies, this feature is not always enabled. Hence, the same rendering differences may appear in to_image. As this rasterized output is used to compute the layout, this also affects the layout generation. Use PIL.features.check to test availability of raqm.

Consistant rendering is therefore expected if both Pillow and the SVG renderer have the same support of CTL.

Contour drawing is not supported.

Parameters:
embed_fontbool, default=False

Whether to include font inside resulting SVG file.

optimize_embedded_fontbool, default=True

Whether to be aggressive when embedding a font, to reduce size. In particular, hinting tables are dropped, which may introduce slight changes to character shapes (w.r.t. to_image baseline).

embed_imagebool, default=False

Whether to include rasterized image inside resulting SVG file. Useful for debugging.

Returns:
contentstring

Word cloud image as SVG string

hana_ml.visualizers.automl_progress

This module contains related classes for monitoring the pipeline progress status.

The following class is available:

class hana_ml.visualizers.automl_progress.PipelineProgressStatusMonitor(connection_context: ConnectionContext, automatic_obj, fetch_table_interval=1, runtime_platform='jupyter')

Bases: object

The instance of this class can monitor the progress of AutoML execution.

Parameters:
connection_contextConnectionContext

The connection to the SAP HANA system.

For example:

automatic_objAutomaticClassification or AutomaticRegression

An instance object of the AutomaticClassification type or AutomaticRegression type that contains the progress_indicator_id attribute.

fetch_table_intervalfloat, optional

Specifies the time interval of fetching the table of pipeline progress.

Defaults to 1s.

runtime_platform{'jupyter', 'sap_bas', 'vscode'}, optional

Specify the running environment of the monitor.

  • 'jupyter': running on the JupyterLab or Jupyter Notebook platform.

  • 'sap_bas': running on the SAP Business Application Studio platform.

  • 'vscode': running on the VSCode platform.

Defaults to 'jupyter'.

Examples

Create an AutomaticClassification instance:

>>> progress_id = "automl_{}".format(uuid.uuid1())
>>> auto_c = AutomaticClassification(generations=2,
                                     population_size=5,
                                     offspring_size=5,
                                     progress_indicator_id=progress_id)
>>> auto_c.enable_workload_class("MY_WORKLOAD")

Invoke a PipelineProgressStatusMonitor:

>>> progress_status_monitor = PipelineProgressStatusMonitor(connection_context=dataframe.ConnectionContext(url, port, user, pwd),
                                                            automatic_obj=auto_c)
>>> progress_status_monitor.start()
>>> auto_c.fit(data=df_train)

Output:

_images/progress_classification.png

Methods

start()

Call the method before executing the fit method of Automatic Object.

start()

Call the method before executing the fit method of Automatic Object.

hana_ml.visualizers.automl_report

This module contains related class for generating the best pipeline report.

The following class is available:

class hana_ml.visualizers.automl_report.BestPipelineReport(automatic_obj)

Bases: object

The instance of this class can generate the best pipeline report.

Parameters:
automatic_objAutomaticClassification or AutomaticRegression

An instance object of the AutomaticClassification type or AutomaticRegression type.

Examples

Create an AutomaticClassification instance:

>>> progress_id = "automl_{}".format(uuid.uuid1())
>>> auto_c = AutomaticClassification(generations=2,
                                     population_size=5,
                                     offspring_size=5,
                                     progress_indicator_id=progress_id)

Training:

>>> auto_c.fit(data=df_train)

Plot the best pipeline:

>>> BestPipelineReport(auto_c).generate_notebook_iframe()
_images/best_pipeline_classification.png

Methods

generate_html(filename)

Saves the best pipeline report as a html file.

generate_notebook_iframe([iframe_height])

Renders the best pipeline report as a notebook iframe.

generate_notebook_iframe(iframe_height: int = 1000)

Renders the best pipeline report as a notebook iframe.

Parameters:
iframe_heightint, optional

Frame height.

Defaults to 1000.

generate_html(filename: str)

Saves the best pipeline report as a html file.

Parameters:
filenamestr

Html file name.

hana_ml.visualizers.time_series_report

This module represents the whole time series report. A report can contain many pages, and each page can contain many items. You can use the class 'DatasetAnalysis' to generate all the items and combine them into different pages at will.

The following classes are available:
class hana_ml.visualizers.time_series_report.TimeSeriesReport(title: str)

Bases: ReportBuilder

This class is the builder of time series report.

Parameters:
titlestr

The name of time series report.

Examples

  1. Importing classes

>>> from hana_ml.visualizers.time_series_report import TimeSeriesReport, DatasetAnalysis
>>> from hana_ml.visualizers.report_builder import Page
  1. Creating a report instance:

>>> report = TimeSeriesReport('Time Series Data Report')
  1. Create a data analysis instance and a page array:

>>> dataset_analysis = DatasetAnalysis(data=df_acf, endog="Y", key="ID")
>>> pages = []
  1. Construct the contents of each page of the report:

>>> page0 = Page('Stationarity')
>>> page0.addItem(dataset_analysis.stationarity_item())
>>> pages.append(page0)
>>> page1 = Page('Partial Autocorrelation')
>>> page1.addItem(dataset_analysis.pacf_item())
>>> pages.append(page1)
>>> page2 = Page('Rolling Mean and Standard Deviation')
>>> page2.addItems([dataset_analysis.moving_average_item(-3), dataset_analysis.rolling_stddev_item(10)])
>>> pages.append(page2)
>>> page3 = Page('Real and Seasonal')
>>> page3.addItem(dataset_analysis.real_item())
>>> page3.addItem(dataset_analysis.seasonal_item())
>>> page3.addItems(dataset_analysis.seasonal_decompose_items())
>>> pages.append(page3)
>>> page4 = Page('Box')
>>> page4.addItem(dataset_analysis.timeseries_box_item('YEAR'))
>>> page4.addItem(dataset_analysis.timeseries_box_item('MONTH'))
>>> page4.addItem(dataset_analysis.timeseries_box_item('QUARTER'))
>>> pages.append(page4)
>>> page5 = Page('Quarter')
>>> page5.addItem(dataset_analysis.quarter_item())
>>> pages.append(page5)
>>> page6 = Page('Outlier')
>>> page6.addItem(dataset_analysis.outlier_item())
>>> pages.append(page6)
>>> page7 = Page('Change Points')
>>> bcpd = BCPD(max_tcp=2, max_scp=1, max_harmonic_order =10, random_seed=1, max_iter=10000)
>>> page7.addItem(dataset_analysis.change_points_item(bcpd))
>>> pages.append(page7)
  1. Add all pages to report instance:

>>> report.addPages(pages)
  1. Generating notebook iframe:

>>> report.build()
>>> report.generate_notebook_iframe()
  1. Generating a local HTML file:

>>> report.generate_html("TimeSeriesReport")

An example of time series data report is below:

_images/ts_data_report.png

Methods

addPage(page)

Add a page instance to report instance.

addPages(pages)

Add many page instances to report instance.

build([debug])

Build HTML string based on current config.

generate_html(filename)

Save the report as a html file.

generate_notebook_iframe([iframe_height])

Render the report as a notebook iframe.

to_json()

Return the all config data of report.

addPage(page: Page)

Add a page instance to report instance.

Parameters:
pagePage

Every report consists of many pages.

addPages(pages: List[Page])

Add many page instances to report instance.

Parameters:
pagesList[Page]

Every report consists of many pages.

build(debug=False)

Build HTML string based on current config.

Parameters:
debugbool

Whether the log should be printed to the console.

Defaults to False.

generate_html(filename)

Save the report as a html file.

Parameters:
filenamestr

HTML file name.

generate_notebook_iframe(iframe_height=600)

Render the report as a notebook iframe.

Parameters:
iframe_heightint

iframe height.

Defaults to 600.

to_json()

Return the all config data of report. This method is automatically called by the internal framework.

class hana_ml.visualizers.time_series_report.DatasetAnalysis(data, endog, key=None)

Bases: object

This class will generate all items of dataset analysis result.

Parameters:
dataDataFrame

Input data.

endogstr

Name of the dependent variable.

keystr, optional

Name of the ID column.

Defaults to the index column of data (i.e. data.index) if it is set.

Methods

change_points_item(cp_object[, ...])

Plot time series with the highlighted change points and BCPD is used for change point detection.

moving_average_item(rolling_window)

It will plot rolling mean by given rolling window size.

outlier_item([window_size, ...])

Perform PAL time series outlier detection and plot time series with the highlighted outliers.

pacf_item([thread_ratio, method, max_lag, ...])

It will plot PACF for two time series data.

quarter_item()

It performs quarter plot to view the seasonality.

real_item()

It will plot a chart based on the original data.

rolling_stddev_item(rolling_window)

It will plot rolling standard deviation by given rolling window size.

seasonal_decompose_items([alpha, ...])

It will to decompose a time series into three components: trend, seasonality and random noise, then to plot.

seasonal_item()

It will plot time series data by year.

stationarity_item([method, mode, lag, ...])

Stationarity means that a time series has a constant mean and constant variance over time.

timeseries_box_item([cycle])

It will plot year-wise/month-wise box plot.

pacf_item(thread_ratio=None, method=None, max_lag=None, calculate_confint=True, alpha=None, bartlett=None)

It will plot PACF for two time series data.

Parameters:
colstr

Name of the time series data column.

thread_ratiofloat, optional

The ratio of available threads.

  • 0: single thread

  • 0~1: percentage

  • Others: heuristically determined

Valid only when method is set as 'brute_force'.

Defaults to -1.

method{'auto', 'brute_force', 'fft'}, optional

Indicates the method to be used to calculate the correlation function.

Defaults to 'auto'.

max_lagint, optional

Maximum lag for the correlation function.

calculate_confintbool, optional

Controls whether to calculate confidence intervals or not.

If it is True, two additional columns of confidence intervals are shown in the result.

Defaults to True.

alphafloat, optional

Confidence bound for the given level are returned. For instance if alpha=0.05, 95 % confidence bound is returned.

Valid only when only calculate_confint is True.

Defaults to 0.05.

bartlettbool, optional
  • False: using standard error to calculate the confidence bound.

  • True: using Bartlett's formula to calculate confidence bound.

Valid only when only calculate_confint is True.

Defaults to True.

Returns:
itemChartItem

The item for the plot.

moving_average_item(rolling_window)

It will plot rolling mean by given rolling window size.

Parameters:
rolling_windowint, optional

Window size for rolling function. If negative, it will use the points before CURRENT ROW.

Returns:
itemChartItem

The item for the plot.

rolling_stddev_item(rolling_window)

It will plot rolling standard deviation by given rolling window size.

Parameters:
rolling_windowint, optional

Window size for rolling function. If negative, it will use the points before CURRENT ROW.

Returns:
itemChartItem

The item for the plot.

seasonal_item()

It will plot time series data by year.

Returns:
itemChartItem

The item for the plot.

timeseries_box_item(cycle=None)

It will plot year-wise/month-wise box plot.

Parameters:
cycle{"YEAR", "QUARTER", "MONTH", "WEEK"}, optional

It defines the x-axis for the box plot.

Returns:
itemChartItem

The item for the plot.

seasonal_decompose_items(alpha=None, thread_ratio=None, decompose_type=None, extrapolation=None, smooth_width=None)

It will to decompose a time series into three components: trend, seasonality and random noise, then to plot.

Parameters:
alphafloat, optional

The criterion for the autocorrelation coefficient. The value range is (0, 1). A larger value indicates stricter requirement for seasonality.

Defaults to 0.2.

thread_ratiofloat, optional

Controls the proportion of available threads to use. The ratio of available threads.

  • 0: single thread.

  • 0~1: percentage.

  • Others: heuristically determined.

Defaults to -1.

decompose_type{'additive', 'multiplicative', 'auto'}, optional

Specifies decompose type.

  • 'additive': additive decomposition model

  • 'multiplicative': multiplicative decomposition model

  • 'auto': decomposition model automatically determined from input data

Defaults to 'auto'.

extrapolationbool, optional

Specifies whether to extrapolate the endpoints. Set to True when there is an end-point issue.

Defaults to False.

smooth_widthint, optional

Specifies the width of the moving average applied to non-seasonal data. 0 indicates linear fitting to extract trends. Can not be larger than half of the data length.

Defaults to 0.

Returns:
itemChartItem

The item for the plot.

quarter_item()

It performs quarter plot to view the seasonality.

Returns:
itemChartItem

The item for the plot.

outlier_item(window_size=None, detect_seasonality=None, alpha=None, periods=None, outlier_method=None, threshold=None, **kwargs)

Perform PAL time series outlier detection and plot time series with the highlighted outliers.

Parameters:
window_sizeint, optional

Odd number, the window size for median filter, not less than 3.

Defaults to 3.

outlier_methodstr, optional

The method for calculate the outlier score from residual.

  • 'z1' : Z1 score.

  • 'z2' : Z2 score.

  • 'iqr' : IQR score.

  • 'mad' : MAD score.

Defaults to 'z1'.

thresholdfloat, optional

The threshold for outlier score. If the absolute value of outlier score is beyond the threshold, we consider the corresponding data point as an outlier.

Defaults to 3.

detect_seasonalitybool, optional

When calculating the residual,

  • False: Does not consider the seasonal decomposition.

  • True: Considers the seasonal decomposition.

Defaults to False.

alphafloat, optional

The criterion for the autocorrelation coefficient. The value range is (0, 1). A larger value indicates a stricter requirement for seasonality.

Only valid when detect_seasonality is True.

Defaults to 0.2.

periodsint, optional

When this parameter is not specified, the algorithm will search the seasonal period. When this parameter is specified between 2 and half of the series length, autocorrelation value is calculated for this number of periods and the result is compared to alpha parameter. If correlation value is equal to or higher than alpha, decomposition is executed with the value of periods. Otherwise, the residual is calculated without decomposition. For other value of parameter periods, the residual is also calculated without decomposition.

No Default value.

thread_ratiofloat, optional

The ratio of available threads.

  • 0: single thread.

  • 0~1: percentage.

  • Others: heuristically determined.

Only valid when detect_seasonality is True.

Defaults to -1.

Returns:
itemChartItem

The item for the plot.

stationarity_item(method=None, mode=None, lag=None, probability=None)

Stationarity means that a time series has a constant mean and constant variance over time. For many time series models, the input data has to be stationary for reasonable analysis.

Parameters:
methodstr, optional

Statistic test that used to determine stationarity. The options are "kpss" and "adf".

Defaults "kpss".

modestr, optional

Type of stationarity to determine. The options are "level", "trend" and "no". Note that option "no" is not applicable to "kpss".

Defaults to "level".

lagint, optional

The lag order to calculate the test statistic.

Default value is "kpss": int(12*(data_length / 100)^0.25" ) and "adf": int(4*(data_length / 100)^(2/9)).

probabilityfloat, optional

The confidence level for confirming stationarity.

Defaults to 0.9.

Returns:
itemTableItem

The item for the statistical data.

real_item()

It will plot a chart based on the original data.

Parameters:
None
Returns:
itemChartItem

The item for the plot.

change_points_item(cp_object, display_trend=True, cp_style='axvline', title=None)

Plot time series with the highlighted change points and BCPD is used for change point detection.

Parameters:
cp_objectBCPD object

An object of BCPD for change points detection. Please initialize a BCPD object first. An example is shown below:

cp_style{"axvline", "scatter"}, optional

The style of change points in the plot.

Defaults to "axvline".

display_trendbool, optional

If True, draw the trend component based on decomposed component of trend of BCPD fit_predict().

Default to True.

titlestr, optional

The title of plot.

Defaults to "Change Points".

Returns:
itemChartItem

The item for the plot.