binary_classification_debriefing
- hana_ml.algorithms.pal.metrics.binary_classification_debriefing(data, label_true, label_pred, auc_data=None, positive_label=1, negative_label=0)
Computes debriefing coefficients for binary classification results.
- Parameters:
- dataDataFrame
DataFrame of true and predicted values.
- label_truestr
Name of the column containing true values.
- label_predstr
Name of the column containing values predicted by regression.
- auc_dataDataFrame, optional
Input data for calculating predictive power(KI), structured as follows:
ID column.
True class of the data point.
Classifier-computed probability that the data point belongs to the positive class.
- positive_labelstr or int, optional
Positive label for binary classification.
Defaults to 1.
- negative_labelstr or int, optional
Negative label for binary classification.
Defaults to 0.
- Returns:
- dict
Debriefing stats: ACCURACY, RECALL, SPECIFICITY, PRECISION, FPR, FNR, F1, MCC, KI, KAPPA, SELECTION RATE.