wprec
- hana_ml.algorithms.pal.tsa.wavelet.wprec(dwt, wavelet=None, boundary=None)
Python wrapper for PAL multi-level inverse discrete wavelet transform.
- Parameters:
- dwtDWT
A DWT object containing wavelet packet coefficients as well as other related information to apply the inverse transformation(i.e. reconstruction).
- waveletstr, optional
Specifies the wavelet filter used for discrete wavelet transform. Valid options include:
Daubechies family : 'db1' ~ 'db20'
Biorthogonal family: 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'
Reverse Biorthogonal family : 'rbio1.1', 'rbio1.3', 'rbio1.5', 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7', 'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'
Coifman family: 'coif1' ~ 'coif5'
Symmetric family: 'sym2' ~ 'sym20'
If not specified, the value in dwt.wavelet will be used.
- boundarystr, optional
Specifies the padding method for boundary values. Valid options include:
'zero' : Zero padding
'symmetric' : Symmetric padding
'periodic' : Periodic padding
'reflect' : Reflect padding
'smooth' : Smooth padding
'constant' : Constant padding
If not specified, the value in dwt.boundary will be used.
- Returns:
- DataFrame
The reconstructed time-series data from inverse wavelet packet transform, structured as follows:
1st column : ID, type INTEGER, which reflects the order of time-series.
2nd column : VALUE, type DOUBLE, the reconstructed time-series data(signal) from wavelet decomposition coefficients.
Examples
Assume dwt is a DTW object with the following attributes:
>>> dwt.coeff_.collect() NODE ID COEFFICIENTS 0 0 0 451.442328 1 0 1 405.506091 ... 18 2 3 131.581926 19 2 4 -27.289140 >>> dwt.stats_.collect() NAME VAL 0 LEVEL_COEFF_SIZE {"coeffSize":[14,8,5]} >>> dwt.packet True
The original time-series data then can be reconstructed as follows:
>>> rec = wprec(dwt=dwt) >>> rec.collect() ID VALUE 0 0 266.0 1 1 145.9 ... 12 12 194.3 13 13 149.5