ks_test
- hana_ml.algorithms.pal.stats.ks_test(data, distribution_name=None, distribution_parameter=None, test_type=None)
Performs one-sample or two-sample Kolmogorov-Smirnov test for goodness of fit.
- Parameters:
- dataDataFrame
HANA DataFrame containing the data.
- distribution_namestr, optional
The distribution name. If not provided, it will take first two columns to do the two-sample test.
'beta'
'cauchy'
'chi_square'
'exponential'
'gamma'
'lognormal'
'normal'
'student_t'
'uniform'
'weibull'
- distribution_parameterdict, optional
The distribution parameter for the given distribution. The key is the parameter name.
beta: {'shape1' : 0.5, 'shape2' : 0.5}
cauchy: {'location' : 0, 'scale' : 1}
chi_square: {'degrees_of_freedom' : 1}
exponential: {'rate' : 1}
gamma: {'shape' : 1, 'scale' : 1}
lognormal: {'location' : 0, 'scale' : 1}
normal: {'mean' : 0, 'sd' : 1}
student_t: {'degrees_of_freedom' : 1}
uniform: {'min' : 0, 'max' : 1}
weibull: {'shape' : 1, 'scale' : 1}
- test_type{'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses.
Defaults to 'two-sided'.
- Returns:
- DataFrame
Statistics.
Examples
>>> res = ks_test(data=df, distribution_name='uniform', distribution_parameter={'min':0, 'max':1}) >>> res.collect()