Preprocessing
- class hana_ml.algorithms.pal.auto_ml.Preprocessing(name, **kwargs)
Preprocessing class. Similar to the function preprocessing.
- Parameters:
- namestr
The preprocessing algorithm name. The options are:
"OneHotEncoder"
"FeatureNormalizer"
"KBinsDiscretizer"
"Imputer"
"Discretize"
"MDS"
"SMOTE"
"SMOTETomek"
"TomekLinks"
"Sampling"
- **kwargs: dict
A dict of the keyword args passed to the object. Please refer to the documentation of the specific preprocessing algorithm for parameter information.
"OneHotEncoder": no additional parameter is required.
Examples
>>> result = Preprocessing(name="FeatureNormalizer").fit_transform(data=data, key="ID", features=["BMI"])
Methods
fit_transform
(data[, key, features])Execute the preprocessing algorithm and return the transformed dataset.
- fit_transform(data, key=None, features=None, **kwargs)
Execute the preprocessing algorithm and return the transformed dataset.
- Parameters:
- dataDataFrame
Input data.
- keystr, optional
Name of the ID column.
Defaults to the index column of
data
(i.e. data.index) if it is set.- featureslist, optional
The columns to be preprocessed.
Defaults to None.
- **kwargs: dict
A dict of the keyword args passed to the fit_transform function. Please refer to the documentation of the specific preprocessing for parameter information.
Inherited Methods from PALBase
Besides those methods mentioned above, the Preprocessing class also inherits methods from PALBase class, please refer to PAL Base for more details.