BrownExponentialSmoothing
- class hana_ml.algorithms.pal.tsa.exponential_smoothing.BrownExponentialSmoothing(alpha=None, delta=None, forecast_num=None, adaptive_method=None, accuracy_measure=None, ignore_zero=None, expost_flag=None, prediction_confidence_1=None, prediction_confidence_2=None)
Brown exponential smoothing is suitable to model the time series with trend but without seasonality. Both non-adaptive and adaptive brown linear exponential smoothing are provided in PAL.
- Parameters
- alphafloat, optional
The smoothing constant alpha for brown exponential smoothing or the initialization value for adaptive brown exponential smoothing (0 < alpha < 1).
Defaults to 0.1 when Brown exponential smoothing
Defaults to 0.2 when Adaptive brown exponential smoothing
- deltafloat, optional
Value of weighted for At and Mt.
Only valid when
adaptive_method
is True.Defaults to 0.2
- forecast_numint, optional
Number of values to be forecast.
Defaults to 0.
- adaptive_methodbool, optional
False: Brown exponential smoothing.
True: Adaptive brown exponential smoothing.
Defaults to False.
- accuracy_measurestr or list of str, optional
The metric to quantify how well a model fits input data. Options: "mpe", "mse", "rmse", "et", "mad", "mase", "wmape", "smape", "mape".
No default value.
Note
Specify a measure name if you want the corresponding measure value to be reflected in the output statistics self.stats_.
- ignore_zerobool, optional
False: Uses zero values in the input dataset when calculating "mpe" or "mape".
True: Ignores zero values in the input dataset when calculating "mpe" or "mape".
Only valid when
accuracy_measure
is "mpe" or "mape".Defaults to False.
- expost_flagbool, optional
False: Does not output the expost forecast, and just outputs the forecast values.
True: Outputs the expost forecast and the forecast values.
Defaults to True.
- prediction_confidence_1float, optional
Prediction confidence for interval 1.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.8.
- prediction_confidence_2float, optional
Prediction confidence for interval 2.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.95.
Examples
Input dataframe df for BrownExponentialSmoothing:
>>> df.collect() ID RAWDATA 1 143.0 2 152.0 3 161.0 4 139.0 5 137.0
21 223.0 22 242.0 23 239.0 24 266.0
Create BrownExponentialSmoothing instance:
>>> brown_exp_smooth = BrownExponentialSmoothing(alpha=0.1, delta=0.2, forecast_num=6, adaptive_method=False, accuracy_measure='mse', ignore_zero=0, expost_flag=1)
Perform fit on the given data:
>>> brown_exp_smooth.fit_predict(data=df)
Output:
>>> brown_exp_smooth.forecast_.collect().set_index('TIMESTAMP').head(6) TIMESTAMP VALUE 2 143.00000 3 144.80000 4 148.13000 5 146.55600 6 144.80550 7 150.70954
>>> brown_exp_smooth.stats_.collect() STAT_NAME STAT_VALUE MSE 474.142004
- Attributes
- forecast_DateFrame
Forecast values.
- stats_DataFrame
Statistics analysis content.
Methods
Generate time series report.
fit_predict
(data[, key, endog])Fit and predict based on the given time series.
generate_html_report
([filename])Display function.
Display function.
- fit_predict(data, key=None, endog=None)
Fit and predict based on the given time series.
- Parameters
- dataDataFrame
Input data. At least two columns, one is ID column, the other is raw data.
- keystr, optional
The ID column.
Defaults to the first column of data if the index column of data is not provided. Otherwise, defaults to the index column of data.
- endogstr, optional
The column of series to be fitted and predicted.
Defaults to the first non-ID column.
- Returns
- DataFrame: Forecast values.
- build_report()
Generate time series report.
- property fit_hdbprocedure
Returns the generated hdbprocedure for fit.
- generate_html_report(filename=None)
Display function.
- generate_notebook_iframe_report()
Display function.
- property predict_hdbprocedure
Returns the generated hdbprocedure for predict.