weibull
- hana_ml.algorithms.pal.random.weibull(conn_context, shape=1, scale=1, num_random=100, seed=None, thread_ratio=None)
Draw samples from a weibull distribution.
- Parameters:
- conn_contextConnectionContext
Database connection object.
- shapefloat, optional
Defaults to 1.
- scalesfloat, optional
Defaults to 1.
- num_randomint, optional
Specifies the number of random data to be generated.
Defaults to 100.
- seedint, optional
Indicates the seed used to initialize the random number generator:
0: Uses the system time.
Not 0: Uses the specified seed.
Note
When multithreading is enabled, the random number sequences of different runs might be different even if the SEED value remains the same.
Defaults to 0.
- thread_ratiofloat, optional
Controls the proportion of available threads to use.
The value range is from 0 to 1, where 0 indicates a single thread, and 1 indicates up to all available threads.
Values between 0 and 1 will use that percentage of available threads.
Values outside the range [0, 1] tell PAL to heuristically determine the number of threads to use.
Defaults to 0.
- Returns:
- DataFrame
Dataframe containing the generated random samples, structured as follows:
ID, type INTEGER, ID column.
GENERATED_NUMBER, type DOUBLE, sample value.
Examples
Draw samples from a weibull distribution.
>>> res = weibull(conn_context=cc, shape=1, scale=1, num_random=10) >>> res.collect() ID GENERATED_NUMBER 0 0 2.188750 1 1 0.247628 2 2 0.339884 3 3 0.902187 4 4 0.909629 5 5 0.514740 6 6 4.627877 7 7 0.143767 8 8 0.847514 9 9 2.368169