predict.KDE.Rd
apply Kernel Density Estimation analysis
# S3 method for KDE
predict(
model,
data = NULL,
key = NULL,
features = NULL,
thread.ratio = NULL,
stat.info = NULL
)
S3
methods
R6Class object
A 'KDE' object.
DataFrame
DataFrame containting the data points whose density value need
to be evaluated.
character, optional
Name of the ID column.
Defaults to the first column if not provided.
character or list of characters, optional
Names of features columns.
If is not provided, it defaults to all non-key columns of data
.
double, optional
Controls the proportion of available threads that can be used by this
function.
The value range is from 0 to 1, where 0 indicates a single thread,
and 1 indicates all available threads.
Values between 0 and 1 will use up to
that percentage of available threads.Values outside this
range are ignored.
Defaults to 0.
logical, optional
If TRUE, return a DataFrame with statistics information.
Defaults to FALSE.
Returns a list of DataFrames.
DataFrame 1
Evaluated log density value of the data points, structured as
follows:
ID: id.
DENSITY_VALUE: log Density value.
DataFrame 2
Statistics information, structured as follows:
COMMUNALITIES: DataFrame
TEST_ID: ID of evaluated test data point.
FITTING_IDS: Fitting IDs.
Input DataFrame data.df.fit and data.eval.df.fit:
> data.df.fit$Collect()
ID X1 X2
1 0 -2.1029683 -1.4283269
2 1 -2.1029683 0.7197969
3 2 -2.1029683 2.8679208
4 3 -0.6094340 -1.4283269
5 4 -0.6094340 0.7197969
6 5 -0.6094340 2.8679208
7 6 0.8841004 -1.4283269
8 7 0.8841004 0.7197969
9 8 0.8841004 2.8679208
> data.eval.df.fit$Collect()
ID X1 X2
1 0 -0.4257698 -1.39613035
2 1 0.8841004 1.38149350
3 2 0.1341262 -0.03222389
4 3 0.8455036 2.86792078
5 4 0.2884408 1.51333705
6 5 -0.6667847 1.24498042
7 6 -2.1029683 -1.42832694
8 7 0.7699024 -0.47300711
9 8 0.2102913 0.32843074
10 9 0.4823225 -0.43796174
Call the function:
estimation <- hanaml.KDE(data = data.df.fit,
leaf.size = 10,
algorithm = "kd-tree",
bandwidth = 0.68129,
distance.level = "euclidean",
kernel = "gaussian")
eval.result <- predict(estimation,
data = data.eval.df.fit,
stat.info = TRUE)
Output:
> eval.result[[1]]$Collect()
ID DENSITY_VALUE
1 0 -3.852755
2 1 -4.586453
3 2 -6.110158
4 3 -3.275507
5 4 -2.888267
6 5 -4.107246
7 6 -3.387239
8 7 -2.732173
9 8 -3.554738