predict.IsolationForest.Rd
Similar to other predict methods, this function predicts fitted values from a fitted "hanaml.IsolationForest" object.
# S3 method for IsolationForest
predict(
model,
data,
key = NULL,
features = NULL,
contamination = NULL,
thread.ratio = NULL
)
S3
methods
R6Class object
A "hanaml.IsolationForest" object for prediction.
DataFrame
Input data which includes key and feature columns.
character, optional
Name of the ID column.
Defaults to the first column if not provided.
character of list of characters, optional
Name of feature columns.
If not provided, it defaults all non-key columns of data
.
numeric, optional
The proportion of outliers in the data set. Should be in the range (0, 0.5].
Defaults to 0.1.
numeric, optional
The ratio of available threads.
0: single thread.
0~1: percentage.
Others: heuristically determined.
Defaults to -1.
A hanaml.DataFrame which is the aggregated forecasted values.
Input DataFrame data:
> data$Collect()
ID V000 V001
1 0 -2.0 -1.0
2 1 -1.0 -1.0
3 2 -1.0 -2.0
4 3 1.0 1.0
5 4 1.0 2.0
6 5 2.0 1.0
7 6 6.0 3.0
8 7 -4.0 7.0
Call the predict function with a "hanaml.IsolationForest" object isof and obtain the result:
> res <- predict(isof,
data,
key='ID',
features=list('V000', 'V001'),
contamination=0.25)
Print the output:
> res$Collect()
ID SCORE LABEL
1 0 0.446897 1
2 1 0.411048 1
3 2 0.498931 1
4 3 0.407796 1
5 4 0.423264 1
6 5 0.443270 1
7 6 0.619513 -1
8 7 0.638874 -1