predict.HGBTRegressor.Rd
Similar to other predict methods, this function predicts fitted values from a fitted "HGBTRegressor" object.
# S3 method for HGBTRegressor
predict(
model,
data,
key,
features = NULL,
thread.ratio = NULL,
missing.replacement = NULL,
...
)
S3
methods
R6Class object
An "HGBTRegressor" object for prediction.
DataFrame
DataFrame containting the data.
character
Name of the ID column.
character of list of characters, optional
Name of feature columns for prediction.
If not provided, it defaults to all non-key columns of data.
double, optional
Controls the proportion of available threads that can be used by this
function.
The value range is from 0 to 1, where 0 indicates a single thread,
and 1 indicates all available threads. Values between 0 and 1 will use up to
that percentage of available threads.
Values outside the range from 0 to 1 are ignored, and the actual number of threads
used is then be heuristically determined.
Defaults to -1.
character, optional
The missing replacement strategy:
"feature.marginalized"
- marginalise each missing feature out independently.
"instance.marginalized"
marginalise all missing features
in an instance as a whole corr
Reserved parameter.
DataFrame
DataFrame containing the prediction result, structured as follows:
ID, INTEGER
- ID column, with the same name and type as df's ID column
SCORE, NVARCHAR
- representing the predicted values.
CONFIDENCE, DOUBLE
- representing the confidence of
a class label assignment.
Input DataFrame df:
> df.predict$Collect()
ID ATT1 ATT2 ATT3 ATT4
1 1 19.76 6235.0 100.00 100.00
2 2 17.85 46230.0 43.67 84.53
3 3 19.96 7360.0 65.51 81.57
4 4 16.80 28715.0 45.16 93.33
5 5 18.20 21934.0 49.20 83.07
6 6 16.71 1337.0 74.84 94.99
7 7 18.81 17881.0 70.66 92.34
8 8 20.74 2319.0 63.93 95.08
9 9 16.56 18040.0 14.45 61.24
10 10 18.55 1147.0 68.58 97.90
Call the function and predict with a "HGBTRegressor" object hgr:
> result <- predict(hgr, df.predict, key = "ID")
> result$Collect()
ID SCORE CONFIDENCE
1 1 23.79109147050638 NA
2 2 19.09572889593064 NA
3 3 21.56501359501561 NA
4 4 18.622664075787082 NA
5 5 19.05159916592106 NA
6 6 18.815530665858763 NA
7 7 19.761714911364443 NA
8 8 23.79109147050638 NA
9 9 17.84416828725911 NA
10 10 19.915574945518465 NA