hanaml.DoubleExponentialSmoothing.Rd
hanaml.DoubleExponentialSmoothing is a R wrapper for SAP HANA PAL Double Exponential Smoothing algorithm.
hanaml.DoubleExponentialSmoothing(
data,
key = NULL,
endog = NULL,
alpha = NULL,
beta = NULL,
forecast.num = NULL,
phi = NULL,
damped = NULL,
accuracy.measure = NULL,
ignore.zero = NULL,
expost.flag = NULL,
prediction.confidence.1 = NULL,
prediction.confidence.2 = NULL
)
DataFrame
DataFrame containting the data.
character, optional
Name of the ID column.
Defaults to the first column if not provided.
character, optional
The endogenous variable, i.e. time series.
Defaults to the first non-ID column.
double, optional
Weight for smoothing. Value range: 0 < alpha < 1.
Defaults to 0.1.
double, optional
Weight for the trend component. Value range: 0 <= beta < 1.
Defaults to 0.1.
integer, optional
Number of values to be forecast.
Defaults to 0.
double, optional
Value of the damped smoothing constant phi (0 < phi < 1).
Defaults to 0.1.
logical, optional
FALSE: Uses the Holt Winter method.
TRUE: Uses the additive damped seasonal Holt Winter method
Defaults to FALSE.
character or list of characters, optional
Specifies the method of accuracy evaluation.
"mpe"
: Mean percentage error.
"mse"
: Mean squared error.
"rmse"
: Root mean squared error.
"et"
: Error total.
"mad"
: Mean absolute deviation.
"mase"
: Out-of-sample mean absolute scaled error.
"wmape"
: Weighted mean absolute percentage error.
"smape"
: Symmetric mean absolute percentage error.
"mape"
: Mean absolute percentage error.
No default value.
logical, optional
FALSE: Uses zero values in the input dataset when calculating "mpe" or "mape".
TRUE: Ignores zero values in the input dataset when calculating "mpe" or "mape".
Only valid when accuracy.measure
is "mpe" or "mape".
Defaults to FALSE.
logical, optional
FALSE: Does not output the expost forecast, and just outputs the forecast values.
TRUE: Outputs the expost forecast and the forecast values.
Defaults to TRUE.
double, optional
Prediction confidence for interval 1.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.8.
double, optional
Prediction confidence for interval 2.
Only valid when the upper and lower columns are provided in the result table.
Defaults to 0.95.
Returns a list of two DataFrames:
DataFrame 1
Forecast values.
DataFrame 2
Statistics analysis content.
Double Exponential Smoothing model is suitable to model the time series with trend
but without seasonality.
In the model there are two kinds of smoothed quantities: smoothed signal and smoothed trend.
Input DataFrame data:
> data$Collect()
ID RAWDATA
1 1 143
2 2 152
3 3 161
......
21 21 223
22 22 242
23 23 239
24 24 266
Call the function:
> desm <- hanaml.DoubleExponentialSmoothing(data = data,
alpha=0.501,
beta=0.072,
forecast.num=6,
phi=NULL,
damped=NULL,
accuracy.measure="mse",
ignore.zero=NULL,
expost.flag=TRUE,
prediction.confidence.1=0.8,
prediction.confidence.2=0.95)
Output:
> desm[[2]]$Collect()
STAT_NAME STAT_VALUE
1 MSE 274.896