hanaml.CDF is a R wrapper for SAP HANA PAL Cumulative Distribution Function

hanaml.CDF(data, distr.info, col = NULL, complementary = NULL)

Arguments

data

DataFrame
DataFrame containting the data.

distr.info

list
Specifies the probability distribution and its parameters. It should be specified by 3 parameters in the form of a list: list(distribution, distr.param1, distr.param2). distribution can be chosen from:

  • {'uniform','normal', 'weibull', 'gamma'}

. The distribution parameters should be chossen follow the following tabular

DistributionParameter NameParameter ValueConstraints
Uniform'DistributionName''Uniform'
'Min''0.0'Min<Max
'Max''1.0'
Normal'DistributionName''Normal'
'Mean''0.0'
'Variance''1.0'Variance>0
Weibull'DistributionName''Weilbull'
'Shape ''1.0'Shape>0
'Scale''1.0'Scale>0
Gamma'DistributionName''Gamma'
'Shape ''1.0'Shape>0
'Scale''1.0'Scale>0
col

character, optional
Name of the data column that needs to be tested.
If it is not given, the input dataframe must only have one column.

complementary

logical, optional
By having complementary is TRUE, it calculates the CCDF value.
Defaults to FALSE.

Value

  • DataFrame
    return the cdf value of the distribution, evaluated at input data

    • INPUT_DATA: input data x

    • ROBABILITY: Probability

Details

This algorithm evaluates the Cumulative Distribution Function or complementary cumulative distribution function (CCDF) of a specified probability distribution evaluated at the values in x. CDF describes the value F(x) = P[X<=x] and CCDF the value F_c(x)=1-F(x)=P[X>x] where X is a real-valued random variable.

Examples

Input DataFrame data:


> data$$Collect()
  DATACOL
1    37.4
2   277.9
3   463.2

Call the function:


> result <- hanaml.CDF(data = data,
                       distr.info = list("weibull", 2.11995,277.698),
                       correction = FALSE)

Results:


> result$Collect()
  DATACOL PROBABILITY
1    37.4  0.01416002
2   277.9  0.63268765
3   463.2  0.94809354