
Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

1

Implementation Guide for the Connection
of External Data Sources to SAP Business

Suite Applicat ions

Plant Connectivity 15.0

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

2

Copyright

© Copyright 2014 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components
of other software vendors.
Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.
IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z,
System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390,
OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+,
POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes, BladeCenter, System
Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA,
AIX, Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of
IBM Corporation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of
Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.
UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or
registered trademarks of Citrix Systems, Inc.
HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.
Java is a registered trademark of Sun Microsystems, Inc. JavaScript is a registered trademark of Sun
Microsystems, Inc., used under license for technology invented and implemented by Netscape.
SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer, and other SAP
products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries.
Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions,
Web Intelligence, Xcelsius, and other Business Objects products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of Business Objects Software Ltd. in the
United States and in other countries.
Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and
services mentioned herein as well as their respective logos are trademarks or registered trademarks of
Sybase, Inc. Sybase is an SAP company.
Data contained in this document serves informational purposes only. National product specifications may
vary. These materials are subject to change without notice. These materials are provided by SAP AG and
its affiliated companies (“SAP Group”) for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

3

SAP disclaimer

Document classification for SAP Library: PUBLIC

Coding samples

Any software coding and/or code lines/strings ("Code") included in this documentation are only examples
and are not intended to be used in a productive system environment. The Code is only intended better
explain and visualize the syntax and phrasing rules of certain coding. SAP does not warrant the correctness
and completeness of the Code given herein, and SAP shall not be liable for errors or damages caused by
the usage of the Code, except if such damages were caused by SAP intentionally or due to gross
negligence.

Internet hyperlinks

The SAP documentation may contain hyperlinks to the Internet. These hyperlinks are intended to serve as a
hint where to find supplementary documentation. SAP does not warrant the availability and correctness of
such supplementary documentation or the ability to serve for a particular purpose. SAP shall not be liable for
any damages caused by the use of such documentation unless such damages have been caused by SAP's
gross negligence or willful misconduct.

Accessibility

The information contained in the SAP Library documentation represents SAP's current view of accessibility
criteria as of the date of publication; it is in no way intended to be a binding guideline on how to ensure
accessibility of software products. SAP specifically disclaims any liability with respect to this document and
no contractual obligations or commitments are formed either directly or indirectly by this document.

Symbols

Symbol Meaning

Caution

Example

Recommendation

Note

Syntax

Tip

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

4

Table of Contents

Copyright .. 2

SAP disclaimer .. 3

Coding samples .. 3

Internet hyperlinks ... 3

Accessibility .. 3

Symbols .. 3

Version overview ... 6

Overview .. 6

System prerequisites .. 6

Installation of PCo 2.3 .. 7

Implementation options .. 7

1) Data exchange via PCo queries .. 7

Process steps for the data exchange using queries ... 7

2) Generating and processing notifications ... 8

Process steps for the generation and processing of notifications ... 9

Generating a PCo agent instance for an external data source .. 11

Application handle ... 11

Test program RPCO_BS_INT_TEST ... 12

Function keys on initial screen ... 13

Selection options on initial screen ... 13

Parameters for the communication between SAP Business Suite and PCo agent 13

Parameters for tag processing ... 14

Parameters for the ALV result display ... 15

Result list .. 15

Displayed tag information .. 16

Function keys in result list .. 16

Input help for the browsing of namespaces .. 17

Dealing with errors .. 18

ABAP Sample Implementations ... 19

Example for the data exchange using queries ... 19

Default values for order confirmation ... 19

Optimization possibilities ... 23

Examples for the generation and processing of notifications ... 23

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

5

1) Conversion of notifications to application logs ... 24

Implementation of class CL_PCO_IM_SAPTESTING_NOTIF for BAdI implementation 27

2) Automatic processing of time ticket confirmations .. 28

Implementation of class ZUD_RK_BADI_KONF for BAdI implementation... 30

Appendix: Tips and Tricks .. 32

1) Conversion of timestamp formats ... 32

2) Linking of individual quotation marks with text string .. 32

3) Linking of space/blank with a text string ... 32

4) Conversion and formatting of floating point numbers .. 33

Transfer of floating point numbers from the Business Suite to PCo ... 33

Display of floating point numbers that are transferred from PCo to the Business Suite 33

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

6

Version overview

Version 1.0 (April 2014): First version of the implementation guide for PCo 15.0

Overview

SAP Plant Connectivity (PCo) enables you to easily set up a connection between applications of the SAP
Business Suite with external data sources such as weighing systems, production machines, OPC servers or
process control systems. The data exchange between the external data sources and PCo is carried out using
PCo agents and agent instances.

 An agent is a NET-DLL Assembly component that can set up a connection between a data source and
PCo.

 An agent instance is a user-defined configuration of an agent that enables the data flow.

Until recently, only the SAP applications SAP Manufacturing Intelligence and Integration (SAP MII), SAP
Manufacturing Execution (SAP ME) and SAP Extended Warehouse Management (SAP EWM) were able to
use the options provided by SAP Plant Connectivity (PCo). For applications of the SAP Business Suite, the
corresponding PCo functionality was not available until now.

With the introduction of an ABAP-based integration layer, which forms part of the SAP NetWeaver system,
the range of applications for PCo has now also been extended to SAP Business Suite applications.

The data transfer between systems of the Business Suite and the PCo agents is based on RFC function calls
(TCP/IP). Every PCo agent is first assigned the corresponding RFC destination in the Business Suite system.
Business Suite applications that exchange data with PCo agents execute the corresponding methods of SAP
NetWeaver.

System prerequisites

The following technical prerequisites are necessary in order to connect external data sources using SAP
Plant Connectivity:

 Plant Connectivity starting with Version 2.3
o Microsoft .Net-Framework as of version 4.0

 An SAP Business Suite system with SAP NetWeaver Application Server ABAP as follows:
o NW ABAP Release 7.31
o NW ABAP Release 7.02, starting with Support Package SAPKB70024
o NW ABAP Release 7.01, starting with Support Package SAPKB70109
o NW ABAP Release 7.00, starting with Support Package SAPKB70208

 TCP/IP Communication between PCo and a system of the SAP Business Suite

Depending on the type of external data sources used, OPC data servers must also be installed and
configured.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

7

Installation of PCo 15.0

Detailed information on the installation of PCo 15.0 can be found in the PCo Installation Guide on the
Service Marketplace under http://www.service.sap.com/instguides.

Implementation options

PCo provides two basic ways for Business Suite Applications and external systems to exchange data:

 Via PCo queries that can access and change data of external sources through the Business Suite
applications

 Via the sending of PCo notification messages, triggered by external data sources, to Business Suite
applications for further processing

1) Data exchange via PCo queries

Using the PCo functions, Business Suite applications can address queries to external data sources, for
example, in order to read or change tag values of a data source. The PCo agent instance that is connected
to an external data source receives the query and interprets the instructions contained in it. The contents
of the query are created using the SAP MII protocol language.

PCo itself has three types of queries:

 Queries relating to tags

 Queries relating to database contents

 Text-based queries with user-defined textual contents

Process steps for the data exchange using queries

The following steps are necessary to carry out and evaluate PCo queries:

1. Business Suite: Create an RFC connection (transaction SM59):
a. Maintain the Gateway options
b. Provide a name for the registered server program
c. Optional: Maintain the data for a secure network communication (SNC)

2. Business Suite: Maintenance of authorizations (transaction PFCG, authorization object S_PCO_INT)
for the authorization profile of the user to be utilized for the RFC data exchange between the
Business Suite and PCo. You can use the following PFCG profiles as templates:

 SAP_BC_SRV_PCO_BS_INT_ADMIN and

 SAP_BC_SRV_PCO_BS_INT_USER
3. PCo: Generating of a PCo agent instance for the external data source which is to communicate with

the Business Suite application. First you must add a source and a destination system (see next
steps).

4. Adding of the PCo source system

 Selection of a source system type (OPC DA agent, OLE DB agent, etc.)

 Maintenance of the RFC server connection data
5. Adding of the PCo destination systems

http://www.service.sap.com/instguides

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

8

 Selection of the PCo destination system type RFC Destination

 Maintenance of the RFC Client data

 Selection of SAP NetWeaver for the PCo Client type

 Maintenance of the application server and additional connection data for the
corresponding SAP Business Suite system

6. Creation of the PCo agent instance for the above-mentioned PCo source and destination systems

 Maintenance of the service user name and password for the execution of the PCo agent
instance as an MS Windows service

 Maintenance of the PCo Query Ports for the source system type SAP NW RFC Server

 Maintenance of the RFC server settings

 Entering the name of the registered server program that was previously specified
in the SAP RFC connection data

 Assignment of the PCo destination system providing the information for the
Repository structure of the SAP DotNet Connector (SAP NCo)

7. Business Suite: Implementation of method calls for the ABAP Wrapper classes of package S_PCO.

 Assignment of a name for the application handle to be passed to PCo

 Creation of the method calls in the appropriate coding segments (User Exit, BAdI, etc.) of
the Business Suite applications

 Sample implementations can be found at the end of this Implementation Guide
8. PCo: Starting of the PCo agent instance
9. Business Suite: Execution of the Business Suite application

2) Generating and processing notifications

For some business processes, it makes sense to trigger activities of the SAP Business Suite if certain values
or parameters of external data sources have changed. The following are examples of this:

Business process Activities in the SAP Business Suite

The status of a machine changes from “processing“
to “malfunction“

 Automatic generation of a plant maintenance
message

 Status change in the equipment master data
record

The value of a temperature sensor exceeds the
maximum temperature previously specified of
120°C

 Alarm/alert notification (Email, SMS) to the
shift manager

The weight of a semifinished product is calculated
by means of individual weighing

 Automatic generation of a time ticket
confirmation

 Release of the subsequent order

 Creation of a production inspection lot

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

9

In the above-mentioned examples, specific Business Suite applications must be automatically addressed.
They receive the required tag data and information via notifications. These notifications are generated and
sent by PCo as soon as the specified trigger conditions are fulfilled. The following applies here:

 The selection of the relevant tags is carried out using subscriptions on the part of the Business Suite
applications.

 The processing of PCo notifications to be sent back to the Business Suite application can be controlled
using BAdI implementations, for each specific case and in great detail.

Process steps for the generation and processing of notifications

The following steps are necessary to be able to generate and process PCo notifications:

Step System Activity

1 SAP Business Suite Creation of an RFC connection (transaction SM59):

 Maintenance of the Gateway options

 Name assignment for a registered server program

 Optional: Maintenance of the data for a secure
network communication (SNC)

2 SAP Business Suite Maintenance of authorizations (transaction PFCG) for
authorization object S_PCO_INT in the authorization
profile of the RFC user master record (see above).

 Use of the new PFCG profiles
SAP_BC_SRV_PCO_BS_INT_ADMIN and
SAP_BC_SRV_PCO_BS_INT_USER as templates

3 SAP Plant Connectivity (PCo) Generating of a PCo agent instance for the external data
source that is to communicate with the Business Suite
application.

4 SAP Plant Connectivity (PCo) Creation of notification templates for a PCo agent instance.
You can get further information under Generating a PCo
agent instance for an external data source.

5 SAP Business Suite Creation of classes for the processing of notifications
(transaction SE24). Classes inherit data from the
higher-level class CL_PCO_NOTIF_HANDLER and
overwrite the EXECUTE method with suitable
implementations.

 Implementation of the BAdI
BADI_S_PCO_HANDLE_NOTIF (transaction SE19 or
SE80 [package S_PCO, enhancement spot
S_PCO_ES_BADI_HANDLE_NOTIF]): Depending on the
BAdI filter value in the application of the
corresponding application handle, the name of the
class previously created is returned, which then is to
process the notification.

6 SAP Business Suite If the tag subscription is carried out by the Business Suite
application itself, the following steps for the

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

10

implementation of method calls for the ABAP wrapper
class of package S_PCO must also be carried out:
1. Assignment of a name for the application handle that

is to be passed to PCo
2. Creation of the method calls at the appropriate coding

sections (User Exit, BAdI or similar) of the Business
Suite applications. Sample implementations can be
found at the end of this implementation guide.

7 SAP Plant Connectivity (PCo) Start the PCo agent instance

8 SAP Business Suite Subscription to tags for which notifications are to be sent if
the trigger conditions are fulfilled

9 SAP Business Suite 1. Specification of an application handle to which
notifications are to be assigned. Via the application
handle, it is subsequently possible to control the
further processing of notifications when they are
received by the Business Suite applications.

 The sample program RPCO_BS_INT_TEST uses
SAPTESTING as the default value for the
application, as well as the log values of the
application handle.

 For the filter value of the application SAPTESTING,
there is an active BAdI implementation that can be
used to process and save the contents of the
notification as application log messages.

2. Assignment of a notification template of the
corresponding PCo agent instance

10 SAP Plant Connectivity (PCo) If the specified trigger conditions are fulfilled, PCo sends
the notification – per RFC call as an XML document – to the
corresponding recipients in the Business Suite.

 In this case, the function module
S_PCO_RFC_EXECUTE_RECEIVE_EVNT is executed, in
which the processing of the notification is to take
place:

 First the system checks whether a class for notification
processing exists for the application specified in the
corresponding application handle.

 If this is the case, an instance of this class is generated
and the EXECUTE instance method of the class is
executed.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

11

Generating a PCo agent instance for an external data source

In order to generate an agent instance for an external data source in the PCo system, which is to
communicate with the Business Suite application, proceed as follows:

1. Add a PCo source system. For this:

 Select the source system type (OPC DA Agent, OLE DB Agent, etc.)

 Maintain the RFC server connection data.
2. Add a PCo destination system. For this:

 Select the PCo destination system type RFC Destination.

 Maintain the RFC client data.
o Select the entry SAP NW for the PCo client type.
o Maintain the application server and additional connection data for the corresponding

Business Suite system.
3. Generation of the PCo agent instance for the above source and destination systems, as follows:

 Maintain the service user name and password for the starting of the PCo agent instance as an MS
Windows service.

 Maintain the PCo Query Ports for the source system type SAP NW RFC Server as follows:

 Maintain the RFC server settings.

 Enter the name of the registered server program that was previously specified in the RFC
connection data.

 Assign the PCo destination system that provides the information for the Repository structure of
the SAP DotNet Connectors (SAP NCo).

4. Create notification templates for the PCo agent instance as follows:

 Specify a trigger type (preferred trigger type: Always).

 Specify the lifetime for the corresponding tag subscriptions. This refers to the duration for
which a notification message retains its validity for the destination system. PCo retains the
message for this period of time in the event of a transmission error.

 Assign the PCo target systems to which the notifications are to be sent.

Application handle

To facilitate communication between the Business Suite applications and PCo, every Business Suite applica-
tion creates a so-called “application handle“. This term refers to a system-wide unique application ID. The

application handle is passed to PCo when requests are processed. It consists of two different parts:

 APPLICATION: User-defined name for the application that triggers the request and later processes
the notification of a value change, for example:

o PRODORDCON (production order confirmation)
o MAINTMSGCR (generation of plant maintenance notifications)
o WEIGHINFO1 (information on the weighing process)

 HANDLE: User-defined content (max. of 80 characters), which can contain further information on
the application context, for example:

o Order confirmation data: plant, order type, confirmation number
o Plant maintenance notification: plant, equipment ID
o Weighing process: location, equipment ID, scale type

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

12

When you subscribe to tag value changes, the application handle is also passed. Please note the following:

 PCo groups the subscribed tabs using application handles.

 If messages are generated for these subscriptions, the messages also contain the application
handle of the respective subscriptions.

 Information on the application handle can later be precisely evaluated when the notification is
processed.

 An application handle containing the unique number of the production confirmation enables the
reading of the respective order and operation data.

Test program RPCO_BS_INT_TEST

The new test program RPCO_BS_INT_TEST provides a basic understanding of the communication between
PCo and the Business Suite applications. This program shows how easy it is to carry out the necessary
implementations on the side of the Business Suite applications, so that external data sources can be
connected to the Business Suite via PCo.

The focus of the test program is on the data exchange between the Business Suite application and external
data sources can get read/write access to the PCo tags. The test program contains the following default
values for the application handle:

 APPLICATION: SAPTESTING

 HANDLE: LOG

You can overwrite the default values of the test program with your own values if necessary.

If you want to carry out the sample implementation for the processing of notifications using the test
program, you must pass the value SAPTESTING to the application handle for the application (APPLICATION).

The test program contains all functions that are provided in the SAP standard for the integration of external
data sources using tag access options:

 Display of the supported agent features of PCo agent instances

 Browsing of namespaces for the tag hierarchies

 Reading of tags

 Writing of tag value changes

 Subscription to tags to be used for notifications

 Display of information on subscribed tags

 Extension of subscriptions

 Deletion of subscriptions

 Display of notification templates

 Display of application logs generated for the log object S_PCO.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

13

Function keys on initial screen

On the initial screen of the test program, the following function keys are displayed:

Function key Meaning

Execute The test report is executed according to the selection
conditions maintained on the initial screen.

Get Variant Previously created report variants can be loaded. The
selection conditions of the initial screen must previously
have been saved as a report variant (Save pushbutton).

Log Display Branches to the selection of application logs that were
generated and saved for the integration of Business Suite
applications.

Features/Properties of PCoAgent Display of properties (reading, writing, subscription,
support of native filters, etc.) of the PCo agent instance
connected with the Business Suite system via a selected
RFC connection.

Properties of RFC Destination Enables the branching to the detail view of the RFC
connection data maintenance for the selected RFC
connection (transaction SM59).

Selection options on initial screen

Parameters for the communication between SAP Business Suite and PCo agent

For the communication between the Business Suite and the PCo agent, make entries for the following
parameters:

Parameter Meaning

RFC connection of the PCo agent instance The F4 input help on a field lists all the RFC
connections of the type TCP/IP that exist in the
system.

Checkbox RFC Connection Test

If you select this checkbox, the system carries
out an RFC connection test for the PCo agent
that is to be accessed via the RFC connection
when the object instance is generated. The
results of the connection test are displayed in
the status line.

Input field Application The contents of the field are interpreted as the
application name of the application handle and
must have 10 characters.

Input field Application handle

The contents of the field are interpreted as the
“handle content“ of the application handle.

 The field content must contain at least one
character.

 A maximum of 80 characters can be

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

14

maintained as handle information.

Checkbox Logging active If the checkmark is set, application logs are
generated and saved automatically when
functions of the test report are executed.

Checkbox Automatic Load Features

When the object instances are generated, the
features of the corresponding PCo agent
instances are loaded and buffered if you set this
checkmark.

Checkbox Test Mode (without PCo)

If you set this checkmark, the test report runs in
test mode and uses hard-coded data for the
results display.

 There is no communication with PCo.

 The test mode serves primarily to simulate
the interface.

Parameters for tag processing

For the processing tags, the following parameters are significant:

 Field Mode Namespace Browsing. This field enables one of three different modes:
o Mode Preselection by Tag Hierarchy: Here the tag hierarchy of the connected external data source

is displayed in a tree structure. If you select individual tags in the hierarchy, then the respective tag
values, together with the fully qualified path and further details will be displayed when the test
report is executed. If you select a group folder, the system will determine all tags (child nodes)
having the group folder as a superior node. When you then execute the program, the system
determines further detail information on the tags and displays them in the results list.

o Mode Preselection by Specifying Qualified Path ID (F4 help): When you select this mode, an
additional input field for the fully qualified path, as well as a checkbox for this. Proceed as follows:
1. After pressing the F4 pushbutton on this field, the tag hierarchy is displayed in a tree structure.
2. You can now select an entry (tag or tag group). The system returns you to the initial screen,

where you can see your selection.
3. The system returns you to the initial screen, where you can see your selection with the fully

qualified path of the tag or tag group.
4. Now you can run the program. The system reads further tag data from the external data source

and displays this in the results list. If you select a tag group, the display of the respective detail
information is displayed in the results list.

o Mode Preselection via Filter Value for Tags. When you select this mode, two further fields are
displayed for entry:

 Input field Masking: Via the F4 help you can select the type of filter to be used for tag
searches. Depending on the PCo settings made for the corresponding agent instance, the
search may be supported by the selected filter type. The following filter types are available:

 Filter type NATIVE: The filter uses the filter options of the connected data source
(this filter access usually has very high performance)

 Filter type REGEX: The filter uses regular expressions

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

15

 Filter type LEGACY: The filter uses the filter logic of the former PCo function UDS
(Universal Data Sources), which is still in use by SAP MII for the connection of
external data sources.

 Input field Filter-String for Tag Alias: Here you can search for the name or alias of a tag
using wildcards (‚*‘). If tags are found, they are displayed in the results list when you run
the test program.

For tag determination, there are the following functional restrictions:

 No tags are found for which the search string is only a part of the fully qualified path, for
example:

o Searching for ‚*Tag_A‘ returns the tag ‚Root/Temperature/TempTag_A‘, but not
the tag ‚Root/TagGroup_A/Temp_A‘

 The fully qualified path information cannot be determined for these tags. For the tag
subscription however, the fully qualified path of the tags is required. This means that
subscriptions are not possible. In this test program, therefore, the function keys for the
subscription, extension of subscriptions and deletion of subscriptions is hidden in the
ALV results display.

 Input field Maximal value (MaxRows)
o Using this input parameter, you can limit the number of tags and tag groups found. If a tag group is

selected, and the maximal value is set at “6”, the system reads the first six sub-groups as well as
the first six tags, which are child nodes for the selected tag group. If more tags or tag groups exist
than were selected, the system will output the corresponding message.

 Input field Number of Decimals (Floating Point)
o For floating point figures, the decimal display is usually preferred. A value of “0” leads to the

display of floating point numbers without limiting the number of decimals. Other values limit the
number of decimals and lead to rounded floating point numbers.

o Due to the internal display of the decimal places for a floating point number of the type “f“ using
dual fractions, there is no exact number corresponding to every number in the decimal system. This
means that assignments and interim results of calculations can contain rounding errors, which can
only be avoided by using a two-level rounding procedure.

Parameters for the ALV result display

Input field ALV Display Variant:
For the display of the results list, you can maintain application-specific ALV display variants. The input help
for this field contains the variants maintained.

Result list

If tags were found for the selection conditions defined, the system subsequently reads additional tag data
and displays the results in a table overview (ALV grid).

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

16

Displayed tag information

The following data is displayed in the results list:

Information Meaning

Name or alias of the tag (“Tag alias“) The alias can be changed when subscribing. As
long as a subscription exists, the alias name will
always be displayed. Otherwise, the system will
output the tag name.

Fully qualified path information (“Qualified Tag
ID”)

Display of the fully qualified path in the internal
PCo format (with “/” as a separator):

 For the communication with PCo , fully
qualified paths must always be passed to PCo
from tags in the PCo-internal format.

Subscription (icon) Indicates whether subscriptions exist for a tag or
not

Shortened display of the tag value (max. 40
characters)

 The field is ready for input

 Invalid tag values are indicated by the string
 “---“.

Value change In order to carry out changes in values for the
specified tags, you next have to carry out the
function to write the value change.

Short description Short text on the SQL data type of the tag

Timestamp Timestamp in UTC format

Date and Time fields Day and time of day

Function keys in result list

The following function keys are available:

Function key Meaning

Display Agent Features Dialog box display of all functions available for the PCo agent

Application Logs Display of application logs that are used for the application log
object S_PCO

Display Subscriptions Dialog box display of information on subscriptions that exist for
the specified application handle:

 Name of the subscription

 Name or alias of the tab

 Fully qualified path of the tag in native display

Notification Templates Dialog box with the name and description of notification
templates maintained for the selected PCo agent instance

Subscribe Selection of tags from the results list for which notifications are
to be created if the tag values change.

 After pressing this pushbutton, the system displays the
existing notification templates maintained for the PCo

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

17

agent.

 After selecting a notification request, the subscription is
executed.

 Tags that were successfully executed will display an icon in
the ”Subscr.” column of the results list.

Delete Subscriptions Removal of subscriptions:

 If no entries are marked in the results list, the system
deletes all subscriptions that exist for the specified
application handle.

 If individual entries of the results list are selected for which
subscriptions exist, the system deletes these tags from the
subscriptions.

Extend Subscription Extension of the validity period for all subscriptions of the
application handle. The validity period is extended by changing
the validity start to the value of the current date and time.

Write ValuesChange Passing of changed tag values (in column Value Chg.) to the
external data source that is linked to the Business Suite via a
PCo agent instance

Update Display Renewed loading of detail information for the selected tags

Input help for the browsing of namespaces

The SAP Business Suite applications require an easy way to process tags and tag groups of an external data
source. The elementary search help S_PCO_ELM_BROWSE_TAG (package S_PCO) serves as a sample
template for the selection of a tag or a tag group. The namespace of the tags is displayed in a dialog box.
After you select a tag or tag group, the search help returns the fully qualified path of the selected object.

The following search parameters are available:

Search help field Meaning

MAX_ENTRIES Entry of the maximum value for the selection of tags and tag groups. The
entered value must be > 0.

RFC_DEST Entry of the RFC connection for the selected PCo agent instance

SIMUL_MODE Execution of the search help in simulation mode (“X“). Note that there is no
communication with the PCo agent instance, but that instead, hard-coded
data is accessed.

TAG_ID Output field for the first 255 characters of the fully qualified path for the
selected object, in the PCo-internal format (with ”/” as separator)

TAG_DESCR Output field for the description of the tag:

 This only receives values in simulation mode.

 In productive mode, the tag description can currently not be
determined:

This PCo metadata is currently not returned to the calling Business Suite
application when a PCo request is executed.

NODE_TEXT Output field for the name of the tag or tag group

IS_GROUP Output field for the indicator specifying whether the selected object is a tag
group or a tag

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

18

Due to the width of 464 characters, it is not possible to create a personal search input help. The output of
the fully qualified path must also be limited to a maximum of 255 characters when the character string is
output in search help screens.

If you want to avoid the above restriction, then you can also use the function module
S_PCO_CALL_POPUP_NAMESP_BROWS (package S_PCO, function group S_PCO) instead of the search
help.

Dealing with errors

If there are errors on the PCo side during the processing of PCo requests, the PCo agent instance passes the
corresponding messages (PCo user messages) to the calling Business Suite application and raises a classed-
based exception (class CX_PCO_BS_INT). The calling application intercepts this exception.

PCo messages are saved in the table attribute PCO_MSG_OBJ of the exception objet and can be evaluated
by the Business Suite application. The auxiliary class CL_PCO_UTILITY provides further methods to convert
PCo messages in application log records and to save them in the application log.

Please note that when you are carrying out the F4 search help, the raised exceptions may NOT be output as
error or termination messages (message type “Error” [E] or “Abend” [A]). This would lead to a program
termination (short dump).

Instead, please use a more suitable message type (“Status“ [S], “Information“ [I] or “Warning“ [W]) and set
the display format Error or Abend via the ABAP command DISPLAY LIKE:

 MESSAGE lv_err_txt TYPE cl_pco_utility=>gc_msgty_stat

 DISPLAY LIKE cl_pco_utility=>gc_msgty_error.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

19

ABAP Sample Implementations

The following sections contain ABAP sample implementations showing how easily the exchange of
information between external data sources and Business Suite applications can be implemented on the
ABAP side.

For the communication with the external data source, it is necessary in addition to create and start the
corresponding PCo agent instances.

Example for the data exchange using queries

Default values for order confirmation

Scenario
In this scenario, production progress of a discrete manufacturing facility is monitored via confirmations. For
this, the user creates a time ticket confirmation in transaction CO11N. After pressing the pushbutton
Propose actual data, the input fields are prefilled with the corresponding data of the operation. The
machine used for production provides the actual data for yield, scrap and manual rework. This data is to be
transferred when the actual data is automatically proposed for the corresponding input fields.

Implementation
A reading access to the data of the external data source is required. A suitable coding section for the
implementation of the corresponding PCo query would be the Include ZXCOFU06, which belongs to the
user exit CONFPP01. The coding of the user exit is processed when the user presses the pushbutton
Propose actual data.

Simplification
For reasons of simplification, the fully qualified paths are specified in hard-coded form for the tags of the
data source. The entry of a fully qualified path must always be specified in the PCo-internal format (with ”/”
as separator). Please note the following:

 Use the test program RPCO_BS_INT_TEST or the search help S_PCO_ELM_BROWSE_TAG to
determine the fully qualified path.

 If the fully qualified path of the tag is too long, you can use function module
S_PCO_CALL_POPUP_NAMESP_BROWS and evaluate the output parameter ET_SEL_NODES. You
can get the fully qualified path as a string variable from the component TAG_ID.

Implementation of a user exit
1. Start transaction CMOD and create a new project.
2. Assign the enhancement CONFPP01.
3. Switch to the component view and position the cursor on the entry EXIT_SAPLCORF_101 of the

function module exit.
4. When you double-click, the system switches to the display of the function module

EXIT_SAPLCORF_101.
5. Create the implementation for the user exit by putting the cursor on ZXCOFU11 and double-clicking it.
6. Insert the following source code.
7. Save and activate your changes and finally, activate the user exit.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

20

Sample coding
The following sections of the corresponding ABAP coding are provided below:

 Generation of an application handle

 Instantiation of a wrapper class for the integration of PCo (CL_PCO_PAC)

 Creation of a buffer table with information on the tags whose values are to be read

 Calling of the wrapper method for the reading of tag information

 Conversion of query results (data reference) into floating point values and assignment to the
corresponding fields of the confirmation structure.

 Error handling or success message

ABAP Coding
&---

*& Include ZXCOFU11

&---

DATA:

 lt_tag_data TYPE pco_t_tag_data,

 lt_tag_results TYPE pco_t_query_result_tag_data.

DATA:

 ls_appl_handle TYPE pco_s_appl_handle,

 ls_tag_data TYPE pco_s_tag_data,

 ls_tag_result TYPE pco_s_query_result_tag_data.

DATA:

 lv_log_handle TYPE balloghndl,

 lv_msg_txt TYPE string.

DATA:

 lo_pco_exc TYPE REF TO cx_pco_bs_int,

 lo_pco_msg TYPE REF TO cl_pco_query_message,

 lo_pco_pac TYPE REF TO cl_pco_pac,

 lo_pco_util TYPE REF TO cl_pco_utility,

 lo_tag_query TYPE REF TO if_pco_tag_query.

CONSTANTS:

 lc_pco_rfc_dest TYPE rfcdest VALUE 'PCO_BS_INT_UD_Q63',

 lc_tag_alias_quant TYPE string VALUE 'UD_CONF_QUANT',

 lc_tag_alias_rework TYPE string VALUE 'UD_CONF_REWORK',

 lc_tag_alias_scrap TYPE string VALUE 'UD_CONF_SCRAP',

 lc_tag_id_quant TYPE string

 VALUE 'Channel_0_User_Defined/A_Uwes tags/UD_CONF_QUANT',

 lc_tag_id_rework TYPE string

 VALUE 'Channel_0_User_Defined/A_Uwes tags/UD_CONF_REWORK',

 lc_tag_id_scrap TYPE string

 VALUE 'Channel_0_User_Defined/A_Uwes tags/UD_CONF_SCRAP'.

FIELD-SYMBOLS:

 <ld_value> TYPE any.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

21

CLEAR: lt_tag_data, lt_tag_results.

* General part: Map default values for AFRUD_EXP

MOVE-CORRESPONDING afrud_imp TO afrud_exp.

* UoM

afrud_exp-meinh = caufvd_imp-gmein.

* PCo integration part

ls_appl_handle-appl = 'PRODORCONF'.

* Create application handle: Use order number, plant, sequence,

* operation, and ID of confirmation

CONCATENATE caufvd_imp-aufnr caufvd_imp-werks afrud_imp-aplfl

afrud_imp-vornr afrud_imp-rueck INTO ls_appl_handle-handle.

TRY.

 CREATE OBJECT lo_pco_pac

 EXPORTING

 is_appl_handle = ls_appl_handle

 iv_check_dest = abap_false

 iv_load_feat = abap_false

 iv_log_active = abap_true

 iv_rfc_dest = lc_pco_rfc_dest.

 lo_tag_query = lo_pco_pac->get_tag_query_obj().

* Fill buffer table with tag information to be read for confirmation

* (produced quantity, rework, scrap)

 ls_tag_data-tag_id = lc_tag_id_quant.

 ls_tag_data-tag_alias = lc_tag_alias_quant.

 INSERT ls_tag_data INTO TABLE lt_tag_data.

 CLEAR ls_tag_data.

 ls_tag_data-tag_id = lc_tag_id_rework.

 ls_tag_data-tag_alias = lc_tag_alias_rework.

 INSERT ls_tag_data INTO TABLE lt_tag_data.

 CLEAR ls_tag_data.

 ls_tag_data-tag_id = lc_tag_id_scrap.

 ls_tag_data-tag_alias = lc_tag_alias_scrap.

 INSERT ls_tag_data INTO TABLE lt_tag_data.

 CLEAR ls_tag_data.

* Read tag data via PCo agent

 lo_tag_query->read_tag(

 EXPORTING

 it_tag_data = lt_tag_data

 IMPORTING

 et_tag_result = lt_tag_results).

* Convert data references into confirmation values

 LOOP AT lt_tag_results INTO ls_tag_result.

 IF sy-subrc = 0.

 CASE ls_tag_result-datatype.

* Float point values

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

22

 WHEN cl_pco_utility=>gc_sdt_float OR

 cl_pco_utility=>gc_sdt_real OR

 cl_pco_utility=>gc_sdt_double.

* Get value from data reference

 ASSIGN ls_tag_result-value->* TO <ld_value>.

 IF <ld_value> IS ASSIGNED.

 CASE ls_tag_result-tag_alias.

 WHEN lc_tag_alias_quant.

 afrud_exp-lmnga = <ld_value>.

 WHEN lc_tag_alias_rework.

 afrud_exp-rmnga = <ld_value>.

 WHEN lc_tag_alias_scrap.

 afrud_exp-xmnga = <ld_value>.

 ENDCASE.

 ENDIF.

 WHEN OTHERS.

* Unsupported data format

 ENDCASE.

 ELSE.

 RAISE EXCEPTION TYPE cx_pco_bs_int

 EXPORTING

 textid = cx_pco_bs_int=>error_query_exec

 error_cause = text-ert.

 ENDIF.

 ENDLOOP.

* Send success message

 CONCATENATE text-suc ls_appl_handle-appl ls_appl_handle-handle

 INTO lv_msg_txt SEPARATED BY space.

 CREATE OBJECT lo_pco_msg

 EXPORTING

 iv_msg_sev = lo_pco_msg->gc_msg_sev_info

 iv_msg_text = lv_msg_txt.

 CATCH cx_pco_bs_int INTO lo_pco_exc.

* Error occurred

 lo_pco_util->add_exc_obj_to_log(

 EXPORTING

 is_appl_handle = ls_appl_handle

 iv_activity = lo_pco_util->gc_act_read

 iv_bal_subobj = lo_pco_util->gc_bal_subobj_tag

 iv_msg_severity = cl_pco_query_message=>gc_msg_sev_error

 iv_req_type = cl_pco_query=>gc_tag_req_type

 io_exc_obj = lo_pco_exc

 CHANGING

 cv_log_handle = lv_log_handle).

 lv_msg_txt = lo_pco_exc->get_longtext().

 MESSAGE lv_msg_txt TYPE cl_pco_utility=>gc_msgty_error.

ENDTRY.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

23

Optimization possibilities

There are the following ways of optimizing the performance of the system:

 Dynamic determination of path information via the work center of the operation to be confirmed:
o Use of characteristics classification for work centers or equipment, in order to store parts of

the path as characteristic values

 Evaluation of PCo user messages:
o Table PCO_MSG_OBJ of the exception object LO_PCO_EXC
o Evaluation of the exporting parameter ET_PCO_MSG_OBJ of method READ_TAG

Examples for the generation and processing of notifications

Notifications are generated if the trigger conditions of a subscription are fulfilled by tags. PCo sends the
notification to the target systems that are assigned in the notification.

In the case of a subscription on the part of Business Suite applications, PCo first creates a notification for
the passed application handle. For this, the Business Suite application must select an existing notification
template of the corresponding PCo agent instance when subscribing to tags. The notification template is
created in the PCo Management Console for an agent instance. The following information is stored in the
notification template:

Information in notification template Meaning

Trigger type and trigger expression The trigger type Always is the preferred type for
Business Suite integration scenarios. The other
trigger types cannot be used fully for Business
Suite integration scenarios.

The lifetime of the subscription (in seconds) The default value for the lifetime is one hour
(3,600 seconds).

Settings for reliable connections and reliable
delivery of messages

 Number of connection tries, if the connection
of PCo to an external data source is
interrupted

 Lifetime of notification messages that could
not be delivered. The default value for the
lifetime is one day.

PCo target systems to which the notification is to
be sent

Here you assign the PCo destination system for
your Business Suite system, which is to receive
and process the notification message. The
connection data to the Business Suite system must
previously have been maintained when the
corresponding PCo destination system is defined
in the PCo Management Console.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

24

1) Conversion of notifications to application logs

Scenario
Using the test program RPCO_BS_INT_TEST you can create subscriptions for tag value changes. If the
values of these tags change, PCo generates a notification and sends it to the Business Suite systems that
were assigned as PCo destination systems in the notification templates used. From the contents of the
notification (header data, error messages, expressions), the system generates application log entries. These
application logs can be displayed using the test program.

Implementation
A new class for the processing of notifications is necessary. This class inherits data from class
CL_PCO_NOTIF_HANDLER and redefines the instance method EXECUTE. In addition, the BAdI
BADI_S_PCO_HANDLE_NOTIF for the filter value APPLICATION = SAPTESTING must also be implemented.

Note:
In package S_PCO the above-mentioned ABAP objects are already implemented.

Implementation of a class for the processing of notifications (class CL_PCO_SAPTESTING_NOTIF)

Program blocks

 Setting the severity to Error, if error messages are part of the notification

 Generation of an application log entry containing the name and the description of the notification

 Evaluation of the passed expressions and generation of the corresponding application log entries
o Conversion of the expressions into instances of the exception class CX_PCO_BS_INT, since

this can easily be implemented in application logs

 Creation of error messages for the application log

 Saving of the application logs and posting of the changes

ABAP Coding of the method EXECUTE (class CL_PCO_SAPTESTING_NOTIF)

1. First maintain the following method parameters:

Parameter Type Data type Optional Description

IT_ERROR_MSG Importing Type PCO_T_QUERY_MESSAGE_OBJ X
Error messages for
notifications (Object inst.)

IT_EXPR_DATA Importing Type PCO_T_EXPR_DATA X PCo expression data

IS_APPL_HANDLE Importing Type PCO_S_APPL_HANDLE X
PCo: Data structure for
application handle

IS_NOTIF_HEADER Importing Type PCO_S_NOTIF_HEADER X
PCo: Header data for
notification

IV_TEST_MODE Importing Type BOOLE_D X 'X': Test mode

2. Next, assign the exception class CX_PCO_BS_INT (PCo Suite Integration: Exception Class)
3. After this, copy the following ABAP coding into the method:

METHOD execute.

* This redefined method writes data of sent notification into

* application log

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

25

 DATA:

 lt_exc_obj TYPE pco_t_exc_obj.

 DATA:

 ls_bal_context TYPE bal_s_cont,

 ls_expr_data TYPE pco_s_expr_data.

 DATA:

 lv_log_handle TYPE balloghndl,

 lv_msg_severity TYPE s_pco_query_message_severity,

 lv_msg_stext TYPE text40,

 lv_msg_txt TYPE string.

 DATA:

 lo_exc_obj TYPE REF TO cx_pco_bs_int,

 lo_pco_util TYPE REF TO cl_pco_utility.

* Determine message severity for application log messages

 IF it_error_msg[] IS INITIAL.

 lv_msg_severity = cl_pco_query_message=>gc_msg_sev_info.

 ELSE.

 lv_msg_severity = cl_pco_query_message=>gc_msg_sev_error.

 ENDIF.

* Notification header: Add message containing notification name and

* description

 CLEAR: lv_msg_txt, lv_msg_stext, lo_exc_obj.

 CONCATENATE text-not is_notif_header-name text-des

 is_notif_header-descr INTO lv_msg_txt SEPARATED BY space.

 WRITE lv_msg_txt TO lv_msg_stext.

 CREATE OBJECT lo_exc_obj

 EXPORTING

 msg_stxt = lv_msg_stext

 msg_ltxt = lv_msg_txt.

 INSERT lo_exc_obj INTO TABLE lt_exc_obj.

* Notification header: Add message containing notification destination,

* ID and status

 CLEAR: lv_msg_txt, lv_msg_stext, lo_exc_obj.

 CONCATENATE text-dst is_notif_header-dest text-nid

 is_notif_header-id text-sta is_notif_header-status

 INTO lv_msg_txt SEPARATED BY space.

 WRITE lv_msg_txt TO lv_msg_stext.

 CREATE OBJECT lo_exc_obj

 EXPORTING

 msg_stxt = lv_msg_stext

 msg_ltxt = lv_msg_txt.

 INSERT lo_exc_obj INTO TABLE lt_exc_obj.

* Add expression data of PCo notification message

 LOOP AT it_expr_data INTO ls_expr_data.

 CLEAR: lv_msg_txt, lv_msg_stext, lo_exc_obj.

 CONCATENATE text-not text-nam ls_expr_data-name

 text-val ls_expr_data-value INTO lv_msg_txt SEPARATED BY space.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

26

 WRITE lv_msg_txt TO lv_msg_stext.

 CREATE OBJECT lo_exc_obj

 EXPORTING

 msg_stxt = lv_msg_stext

 msg_ltxt = lv_msg_txt.

 INSERT lo_exc_obj INTO TABLE lt_exc_obj.

 ENDLOOP.

 CREATE OBJECT lo_pco_util.

 lo_pco_util->add_exc_obj_to_log(

 EXPORTING

 it_exc_obj = lt_exc_obj

 is_appl_handle = is_appl_handle

 iv_activity = cl_pco_utility=>gc_act_not_cbck

 iv_bal_subobj = cl_pco_utility=>gc_bal_subobj_tag

 iv_msg_severity = lv_msg_severity

 iv_req_type = cl_pco_query_xml_builder=>gc_req_type_tag

 CHANGING

 cv_log_handle = lv_log_handle).

* Add error messages to application log

 IF NOT it_error_msg[] IS INITIAL.

 lo_pco_util->create_msg_context(

 EXPORTING

 is_appl_handle = is_appl_handle

 iv_activity = cl_pco_utility=>gc_act_not_cbck

 iv_req_type = cl_pco_query=>gc_tag_req_type

 IMPORTING

 es_msg_context = ls_bal_context).

 lo_pco_util->add_msg_obj_to_log(

 EXPORTING

 it_msg_obj = it_error_msg

 is_msg_context = ls_bal_context

 iv_log_handle = lv_log_handle).

 ENDIF.

* Save all application logs

 lo_pco_util->save_logs(

 EXPORTING

 iv_execute_commit = abap_true

 iv_in_update_task = abap_false

 iv_log_handle = lv_log_handle

 iv_save_all = abap_false) .

* Execute COMMIT WORK to store application log entries on database

 CALL FUNCTION 'DB_COMMIT'.

ENDMETHOD.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

27

Implementation of class CL_PCO_IM_SAPTESTING_NOTIF for BAdI implementation

Program block

 Return of the class name of the class processing notifications (CL_PCO_SAPTESTING_NOTIF), if the
application name for the application handle has the value SAPTESTING.

ABAP Coding of the method IF_EX_S_PCO_HANDLE_NOTIF~GET_CLASS_NAME

1. First create the following parameters for the method:

Parameter Type Data type Optional Description

IS_APPL_HANDLE Importing Type PCO_S_APPL_HANDLE
PCo: Data structure for application
handle

EV_CLASS_NAME Exporting Type SEOCLSNAME
Name of the class processing
notifications

2. Then assign the exception class CX_PCO_BS_INT (PCo Suite Integration: Exception Class).
3. Finally, copy the following ABAP coding into the method:

METHOD if_ex_s_pco_handle_notif~get_class_name.

* Processing of notifications is executed with the help of classes that

* inherit super class CL_PCO_NOTIF_HANDLER.

* Based on entered application handle information this BAdI

* implementation returns the name of handler class

 CONSTANTS:

 lc_appl_name_saptesting TYPE pco_s_appl_handle-appl

 VALUE 'SAPTESTING',

 lc_class_name_saptesting TYPE seoclsname

 VALUE 'CL_PCO_SAPTESTING_NOTIF'.

 CLEAR: ev_class_name.

 IF is_appl_handle-appl = lc_appl_name_saptesting.

 ev_class_name = lc_class_name_saptesting.

 ENDIF.

ENDMETHOD.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

28

2) Automatic processing of time ticket confirmations

Scenario
Time ticket confirmations are to be carried out automatically as soon as values for manufactured
quantities, scrap and rework change. These values are assigned to tags for which a subscription exists.

Implementation
A new class for the processing of notifications is required. From class CL_PCO_NOTIF_HANDLER, this class
inherits data and redefines the instance method EXECUTE. ABAP Objects. A redefinition can be used to
reimplement an instance method in a subclass without changing the interface.

In addition, the BAdI BADI_S_PCO_HANDLE_NOTIF must be implemented using the filter value
APPLICATION = PRODORDCON. The application handle contains the unique confirmation number as part of
the handle; the other confirmation data, such as the order and operation number, is completed via the
confirmation number.

Simplified procedure

 No evaluation of error messages that can be part of a notification.

 Use of hard-coded names for tags (evaluation of expressions in the notification)

 Reading of order number and operation data from the database (per SELECT)

 No rework of confirmations for which the corresponding goods movement could not be carried out

Implementation of class for the processing of notifications (class ZUD_RK_CONF)

Program sections

 Determination of the confirmation number from the application handle of the confirmation.

 Read operation for confirmation number

 Read order number of the corresponding production order from the database

 Determination of sequence and operation number

 Generation of confirmation using the BAPI BAPI_PRODORDCONF_CREATE_TT.

 Execution of posting by calling the function module BAPI_TRANSACTION_COMMIT

ABAP Coding of the method EXECUTE (class ZUD_RK_CONF)

1. First create the following parameters for the method:

Parameter Type Data type Optional Description

IT_ERROR_MSG Importing Type PCO_T_QUERY_MESSAGE_OBJ X
Error messages for
notifications (Object inst.)

IT_EXPR_DATA Importing Type PCO_T_EXPR_DATA X PCo expression data

IS_APPL_HANDLE Importing Type PCO_S_APPL_HANDLE X
PCo: Data structure for
application handle

IS_NOTIF_HEADER Importing Type PCO_S_NOTIF_HEADER X
PCo: Header data for
notification

IV_TEST_MODE Importing Type BOOLE_D X 'X': Test mode

2. Next, assign the exception class CX_PCO_BS_INT (PCo Suite Integration: Exception Class)
3. After this, copy the following ABAP coding into the method:

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

29

METHOD execute.

 DATA:

 lt_conf TYPE STANDARD TABLE OF bapi_pp_timeticket.

 DATA:

 ls_appl_handle TYPE pco_s_appl_handle,

 ls_cafko_ru TYPE cafko_ru,

 ls_cafvc_ru TYPE cafvc_ru,

 ls_afvc TYPE afvc,

 ls_conf TYPE bapi_pp_timeticket,

 ls_expr_data TYPE pco_s_expr_data.

* Get confirmation number from handle information

 ls_conf-conf_no = is_appl_handle-handle.

 CALL FUNCTION 'CO_DB_CAFVC_RU_READ'

 EXPORTING

 rueck_imp = ls_conf-conf_no

 IMPORTING

 cafvc_ru_exp = ls_cafvc_ru

 EXCEPTIONS

 not_found = 1

 OTHERS = 2.

 IF sy-subrc <> 0.

 RAISE EXCEPTION TYPE cx_pco_bs_int

 EXPORTING

 textid = cx_pco_bs_int=>error_query_exec

 error_cause = 'Error reading order data'.

 ENDIF.

* Determine order number

 SELECT SINGLE aufnr FROM afko INTO ls_conf-orderid

 WHERE

 aufpl = ls_cafvc_ru-aufpl.

* Determine order operation data for which confirmation shall

* be executed

 SELECT SINGLE * FROM afvc INTO ls_afvc

 WHERE

 aplzl = ls_cafvc_ru-aplzl AND

 aufpl = ls_cafvc_ru-aufpl.

 ls_conf-sequence = ls_afvc-plnfl.

 ls_conf-operation = ls_afvc-vornr.

 LOOP AT it_expr_data INTO ls_expr_data.

 CASE ls_expr_data-name.

 WHEN 'UD_CONF_QUANT'.

 ls_conf-yield = ls_expr_data-value.

 WHEN 'UD_CONF_SCRAP'.

 ls_conf-scrap = ls_expr_data-value.

 WHEN 'UD_CONF_REWORK'.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

30

 ls_conf-rework = ls_expr_data-value.

 WHEN 'UD_STATUS'.

 ls_conf-fin_conf = ls_expr_data-value.

 ENDCASE.

 ENDLOOP.

 INSERT ls_conf INTO TABLE lt_conf.

* Use BAPI to create confirmation

 CALL FUNCTION 'BAPI_PRODORDCONF_CREATE_TT'

 TABLES

 timetickets = lt_conf.

* Execute COMMIT WORK

 CALL FUNCTION 'BAPI_TRANSACTION_COMMIT'.

ENDMETHOD.

Implementation of class ZUD_RK_BADI_KONF for BAdI implementation

Program block

 Return of the class name of the handler class (ZUD_RK_CONF), if the application name of the
application handle has the value ”SAPTESTING”.

ABAP Coding of the method IF_EX_S_PCO_HANDLE_NOTIF~GET_CLASS_NAME

1. First create the following parameters for the method:

Parameter Type Data type Optional Description

IS_APPL_HANDLE Importing Type PCO_S_APPL_HANDLE
PCo: Data structure for application
handle

EV_CLASS_NAME Exporting Type SEOCLSNAME
Name of the class processing the
notification

2. Next assign exception class CX_PCO_BS_INT (PCo Suite Integration: exception class).
3. Finally, copy the following ABAP Coding into the method:

METHOD if_ex_s_pco_handle_notif~get_class_name.

CONSTANTS:

 lc_appl_name_prodordcon TYPE pco_s_appl_handle-appl

 VALUE 'PRODORDCON',

 lc_class_name_zud_rk_conf TYPE seoclsname

 VALUE 'ZUD_RK_CONF'.

 CLEAR ev_class_name.

 IF is_appl_handle-appl = lc_appl_name_prodordcon.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

31

 ev_class_name = lc_class_name_zud_rk_conf.

 ENDIF.

ENDMETHOD.

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

32

Appendix: Tips and Tricks

1) Conversion of timestamp formats

Timestamps generated and processed in ABAP do not exist in a timestamp format which can be used in
JAVA or other programming languages. In order to convert the ABAP timestamp value into the ISO format
yyyy-mm-ddThh:mm:ss you can use the following ABAP expression starting with Basis release 7.02:

ev_conv_tstmp = |{ iv_time_stamp TIMESTAMP = ISO TIMEZONE = 'UTC ' }|

2) Linking of individual quotation marks with text string

Use case: If string variables are linked, they should be set in single quotes.

Example: Output of text strings ‘Templates ’text‘-Module‘

CONCATENATE 'Templates' 'text' '-Module' INTO lv_result.

Result: lv_result = 'Templatestext-Module'

Solution: Use of double quotes, in order to bracket a text string with single quotes. See the constant
GC_TXT_QM of the class CL_PCO_QUERY:

CONCATENATE 'Templates' cl_pco_query=>gc_txt_qm 'text' cl_pco_query=>gc_txt_qm

 '-Module' INTO lv_result.

Result: lv_result = 'Template'text'-Module'

3) Linking of space/blank with a text string

Use case: The linking of text string variables containing a blank (SPACE) leads to a text string in which the
blanks no longer exist.

Example: Output of the text string ‘ABCD EFGH’

lv_string_1 = 'ABCD ' lv_string_2 = 'EFGH'

CONCATENATE lv_string_1 lv_string_2 INTO lv_string_3.

Result: lv_string_3 = 'ABCDEFGH'

Solution: Use of single quotes to mask blanks. See the constant GC_TXT_SP of class CL_PCO_QUERY.

CONCATENATE lv_string_1 cl_pco_query=>gc_txt_sp lv_string_2 INTO lv_string_3.

Result: lv_string_3 = 'ABCD EFGH'

Implementation Guide for SAP Business Suite Integration with PCo Rel. 15.0, Version 1.0

33

4) Conversion and formatting of floating point numbers

Floating point numbers can exist in two formats: the scientific format (1.2345E01) or the decimal format
(12.345). If floating point numbers are to be displayed in the ABAP system, one of three decimal point
formats must be used. Via the user master record (table USR01, field DCPFM), the system determines the
formatting settings of the user who is logged on. The following format types exist in the system:

 Decimal format: 1,234,567.89 (USR01-DCPFM = ‘X’)

 Decimal format: 1 234 567,89 (USR01-DCPFM = ‘Y’)

 Decimal format: 1.234.567,89 (USR01-DCPFM = ‘’)

With respect to the integration of the Business Suite applications, there are two different cases:

 Floating point numbers are converted to string variables and added to the CDATA segment of the
PCo Query. The Business Suite application then transfers the contents of the PCo query to PCo per
RFC call.

 The Business Suite contains floating point numbers as the result of PCo queries in the form of data
references. The data references are converted to string variables and output on the Results screen
of the test program.

If you are working with the “thousand” separator, the correct formatting of floating point numbers for the
display of values is difficult to achieve: No SAP standard solution exists for this problem. Other approaches
to this problem, also discussed on the internet, might be SDN thread 1449990 and SDN thread115017,
however, these may lead to inadequate results.

Transfer of floating point numbers from the Business Suite to PCo

In order to transfer floating point numbers from Business Suite applications to PCo, the conversion to a
string value must be carried out. The string value is then a part of the query data string that is subsequently
passed to PCo. At the same time, there is a standardization of decimal separators and removal of the
thousand separator (see class CL_PCO_UTILITY, method CONVERT_STRVAL_TO_SDT_DREF). PCo can then
process the string values formatted in this way without further conversion steps.

Display of floating point numbers that are transferred from PCo to the Business Suite

In the test program RPCO_BS_INT_TEST the display of floating point numbers is in the decimal format.
Using the instance method FORMAT_FLOAT_CHAR (class CL_PCO_UTILITY), the system sets the thousand
and decimal separators according to the formatting settings made in the master record of the current user.
In this method, a special algorithm has been defined, which ensures the correct positioning of the thousand
and decimal separators.

http://forums.sdn.sap.com/thread.jspa?threadID=1449990
http://forums.sdn.sap.com/thread.jspa?threadID=115017

