

SAP SE • Neurottstrasse 16 • 69190 Walldorf • Germany • +49 6227 74 74 74 • fax +49 6227 75 75 75

SAP NetWeaver

Master Data Management (MDM)

MDM Console

Reference Guide

Release: MDM 7.1 SP19

December 2018

ii MDM Console Reference Guide

© 2018 SAP SE or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP SE and its distributors contain proprietary software components
of other software vendors.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are trademarks or registered trademarks of Adobe

Systems Incorporated in the United States and other countries.
Apple, App Store, FaceTime, iBooks, iPad, iPhone, iPhoto, iPod, iTunes, Multi-Touch, Objective-C, Retina,
Safari, Siri, and Xcode are trademarks or registered trademarks of Apple Inc.
Bluetooth is a registered trademark of Bluetooth SIG Inc.
Citrix, ICA, Program Neighborhood, MetaFrame now XenApp, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems Inc.

Computop is a registered trademark of Computop Wirtschaftsinformatik GmbH.
Edgar Online is a registered trademark of EDGAR Online Inc., an R.R. Donnelley & Sons Company.
Facebook, the Facebook and F logo, FB, Face, Poke, Wall, and 32665 are trademarks of Facebook.
Google App Engine, Google Apps, Google Checkout, Google Data API, Google Maps, Google Mobile Ads,
Google Mobile Updater, Google Mobile, Google Store, Google Sync, Google Updater, Google Voice, Google
Mail, Gmail, YouTube, Dalvik, and Android are trademarks or registered trademarks of Google Inc.

HP is a registered trademark of the Hewlett-Packard Development Company L.P.
HTML, XML, XHTML, and W3C are trademarks, registered trademarks, or claimed as generic terms by the
Massachusetts Institute of Technology (MIT), European Research Consortium for Informatics and
Mathematics (ERCIM), or Keio University.
IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z,
System z10, z10, z/VM, z/OS, OS/390, zEnterprise, PowerVM, Power Architecture, Power Systems,

POWER7, POWER6+, POWER6, POWER, PowerHA, pureScale, PowerPC, BladeCenter, System Storage,
Storwize, XIV, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, AIX, Intelligent Miner,
WebSphere, Tivoli, Informix, and Smarter Planet are trademarks or registered trademarks of IBM
Corporation.
Microsoft, Windows, Excel, Outlook, PowerPoint, Silverlight, and Visual Studio are registered trademarks of
Microsoft Corporation.

INTERMEC is a registered trademark of Intermec Technologies Corporation.
IOS is a registered trademark of Cisco Systems Inc.
The Klout name and logos are trademarks of Klout Inc.
Linux is the registered trademark of Linus Torvalds in the United States and other countries.
Motorola is a registered trademark of Motorola Trademark Holdings LLC.
Mozilla and Firefox and their logos are registered trademarks of the Mozilla Foundation.

Novell and SUSE Linux Enterprise Server are registered trademarks of Novell Inc.
OpenText is a registered trademark of OpenText Corporation.
Oracle and Java are registered trademarks of Oracle and its affiliates.
QR Code is a registered trademark of Denso Wave Incorporated.
RIM, BlackBerry, BBM, BlackBerry Curve, BlackBerry Bold, BlackBerry Pearl, BlackBerry Torch, BlackBerry
Storm, BlackBerry Storm2, BlackBerry PlayBook, and BlackBerry AppWorld are trademarks or registered

trademarks of Research in Motion Limited.
SAVO is a registered trademark of The Savo Group Ltd.
The Skype name is a trademark of Skype or related entities.
Twitter and Tweet are trademarks or registered trademarks of Twitter.
UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Wi-Fi is a registered trademark of Wi-Fi Alliance.
SAP, R/3, ABAP, BAPI, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer,

StreamWork, SAP HANA, the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions,
Web Intelligence, Xcelsius, Sybase, Adaptive Server, Adaptive Server Enterprise, iAnywhere, Sybase 365,
SQL Anywhere, Crossgate, B2B 360° and B2B 360° Services, m@gic EDDY, Ariba, the Ariba logo,
Quadrem, b-process, Ariba Discovery, SuccessFactors, Execution is the Difference, BizX Mobile
Touchbase, It's time to love work again, SuccessFactors Jam and BadAss SaaS, and other SAP products
and services mentioned herein as well as their respective logos are trademarks or registered trademarks of

SAP SE in Germany or an SAP affiliate company.
All other product and service names mentioned are the trademarks of their respective companies. Data
contained in this document serves informational purposes only. National product specifications may vary.
These materials are subject to change without notice. These materials are provided by SAP SE and its
affiliated companies ("SAP Group") for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only

warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.

SAP SE • Neurottstrasse 16 • 69190 Walldorf • Germany • +49 6227 74 74 74 • fax +49 6227 75 75 75

MDM Console Reference Guide iii

Contents

Part 1: Basic Concepts ... 13

What is a Master Data Server? .. 15
MDM Auxiliary Servers... 16

What is an MDM Repository? .. 17
MDM Repository Structure ... 18
Taxonomies ... 20
Attributes .. 21
Qualified Tables and Qualifiers .. 22
Product Applications and Application-Based Search 22
Product Families .. 23
Product Masks ... 24
Data Groups... 25
Validations and Validation Groups ... 25
Data Quality and MDM ... 26

Part 2: Starting MDM Console .. 27

Starting and Exiting MDM Console .. 29
MDM Console Settings File.. 30
Command Line Arguments .. 32

MDM Console Main Window .. 33
Console Hierarchy Pane .. 33
Objects Pane ... 34
Object Detail Pane ... 35
Functions Tab .. 36
Tables and Fields Tab.. 37
Status Bar .. 37

Configuration Parameters .. 38
Console Settings .. 38
Master Data Server Settings .. 38
MDM Auxiliary Server Settings .. 38
Repository Properties... 38
DBMS Settings ... 38

Part 3: MDM System Access... 39

Accessing MDM Repositories .. 41
DBMS Servers ..42
Repository Port Numbers ...42

Accessing an MDM Repository .. 44
Mounting and Unmounting an MDM Repository......................................46
Connecting to and Disconnecting from an MDM Repository48
Starting and Stopping an MDM Repository ...48

iv MDM Console Reference Guide

Part 4: Repository Design ...51

Planning the MDM Repository .. 53
MDM 7.1 Metamodel Enhancements ... 54
MDM Table Types .. 55

Main Tables .. 58
Multiple Main Tables ...59
Lookup [Main] Field Type ...60

Flat and Hierarchy Lookup Tables .. 61
Taxonomy Lookup Tables .. 61
Qualified Lookup Tables ... 62

Multiple Prices and Cross-Reference Part Numbers...............................63
Product Applications and Application-Based Search68

Valid Tables and Nested Lookups-within-Lookups 70
Lookup and Non-Lookup Subtables – A Comparison 72
Object Tables ... 74
Special Tables .. 75
Image Variants Table ... 76

Configuring the Watermark...84
Families Table .. 85
Relationships Table .. 86

Relationship Types ...87
Sibling vs. Parent/Child Relationships ...88
Single- vs. Multi-Table Relationships ...89
Single- vs. Multi-Level Relationships ...90
Hybrid Relationships ...90
Relationship Qualifiers ..91

MDM Data Types .. 92
Dimensions and Units ...95

Fields vs. Attributes – A Comparison .. 95
MDM Tuples ... 97

What is a Tuple?... 98
Tuples and Tables .. 98

Single-Valued Tuple Fields ..99
Multi-Valued Tuple Fields ...99

Tuples as Custom Composite Data Types 100
Tuples and Existing MDM Structures ... 100

Qualified Lookups ...101
Parent/Child Relationships ...101
Hierarchical Main Table Entities ...102

Tuples and XML ... 103
Tuples and Multi-Table Relationships ... 103
Tuples and Nested Structures .. 104
Sharing Tuple Subrecords .. 105
Tuples and the Relational Model .. 105
Tuple Terminology .. 106
Supported Field Types.. 106
Tuple Workflow ... 107

MDM Console Reference Guide v

Part 5: Repository Maintenance ... 109

Working with MDM Repositories .. 111
Creating an MDM Repository ... 111
Setting Number of Repository Partitions 116

Repository Partitions...116
Modifying Repository Properties .. 117

Photoshop and Photoshop Image Processing120
Using CSV Format to Import Delimited Text Files121

Deleting an MDM Repository ... 122
Working with Tables and Fields ... 124

The Code Property ... 124
Working with Tables ... 126

Table Properties ... 126
Display Fields ..127
Unique Fields ..131
Display Fields, Unique Fields, and Record Operations.........................133
Family Field ...134
Alternative Display Fields ...135

Adding Tables .. 136
Deleting Tables .. 136

Working with Fields .. 137
Field Properties .. 137

Required Fields ...140
Normalized Fields ...141
Sort-Indexed Fields...141
Sort Types ...142
Keyword Fields ...143
Caching Qualifiers ..144
Decimals, Fractions, and Floating Point Precision144
Show Fractions ...146
Calculation Fields..146
Create Stamp, Time Stamp, and User Stamp Fields147

Adding and Modifying Fields .. 149
Reordering Fields ... 151
Deleting Fields ... 151

Working with Tuples ... 153
Tuple Properties ... 153
Adding and Deleting Tuples ... 153
Working with Tuple Members... 154

Adding and Deleting Tuple Members...154
Reordering Tuple Members ..155

Part 6: Repository Administration 157

Repository Administration Operations .. 159
Appropriating an MDM Repository ... 160
Updating an MDM Repository .. 161
Verifying an MDM Repository .. 162

vi MDM Console Reference Guide

Duplicating an MDM Repository ... 164
Maintaining Master and Slave Repositories.................................... 169

Master/Slave Landscapes .. 169
Master/Slave Limitations... 171

Moving Master and Slave Repositories ...171
Synchronization Requires Identical MDS Versions171
Syndication Tracking Information is not Synchronized171

Identifying Master and Slave Repositories.................................. 172
Publication Slaves .. 172
Master/Slave-Related Operations... 173
Creating Master and Slave Repositories 173
Configuring Master/Slave Repositories for SSL.......................... 176
Synchronizing a Slave Repository .. 176
Broken Master/Slave Repositories ... 178
Normalizing a Master or Slave Repository.................................. 179

Backing Up and Restoring a Repository ... 180
MDM Repository Archive and Unarchive 181

Archiving an MDM Repository ..183
Archive Options Dialog ...184
Unarchiving an MDM Repository Over Another Repository..................186
Archive Report ..187
Managing Archive Files ..187
Dealing with Outdated Archives ...187

MDM Publication Model Archive and Unarchive 188
Exporting and Importing Schemas.. 190

Exporting an MDM Repository Schema 192
Importing an MDM Repository Schema 193

Import Schema Dialog at a Glance ..193
Color Coding in the Import Schema Dialog ...194
Comments ...195
Importing the Schema...196
Manually Overriding Schema Reconciliation ...197

MDM Transport Operations .. 198
Schema Migration ... 198

Commands ..198
Files ...198

CTS+ .. 198
Commands ..198
Files ...199
Errors ...200

Schema Transport versus CTS+ .. 200
Managing Units of Measure .. 201

Managing Dimensions .. 201
Managing Units... 203

Part 7: MDS Administration... 207

Accessing Master Data Servers ... 209
Accessing a Master Data Server .. 209

MDM Console Reference Guide vii

Mounting and Unmounting the Master Data Server210
Starting and Stopping Master Data Servers 211

Monitoring Master Data Server Activity .. 213
The MDM Console Activities Pane ... 213

Stopping an Activity ..214
Optimizing MDS Performance.. 215

What is Slicing? ... 215
Bulk and Non-Bulk Operations ... 216

Configuring Slicing for Bulk Operations ...217
Configuring Slicing for Non-Bulk Operations ...217

Slicing and Failure Handling .. 220
Slicing and Import .. 220

MDIS Chunk Size..220
Record Checkouts ..220
Workflows ..221

Optimizing MDM Client Performance ... 222
Notification Filtering.. 222
Object Cache Size Registry Setting ... 222

Logs, Traces, and Reports ... 223
Logs ... 223

Log File Types ..223
Viewing Log Files ..223
Log Message Severities ...224
Configuring Log Size and Rotation Parameters224

Traces .. 224
Trace Message Severities ..225
Filtering Logging of MDS-Related Trace Messages..............................225
Filtering Logging of Auxiliary MDM Server Trace Messages225

Performance Tracing.. 226
Turning Performance Tracing On or Off ..226
Configuration File Parameters for Performance Tracing.......................227

Reports .. 228
Report Types...228
Viewing Reports ..228

MDS Configuration ... 230
Master Data Server Parameters .. 230
MDM Repository Parameters ... 247
SSL-Related Parameters for a Client MDS 249

DBMS Settings ... 251
DBMS Initialization ... 253
MDM DBMS Server Account.. 254
Multiple DBMS Instances ... 255
DBMS Servers List ... 255

Part 8: MDIS Administration ... 259

The Master Data Import Server.. 261
MDIS vs. The Import Manager ... 261

viii MDM Console Reference Guide

What is Streaming? .. 263
Ports and MDIS .. 263

Port Requirements ..263
Import File Location ..264
Port Processing...264
File Aggregation ..265
Port Status ..265

File Formats Compatible With MDIS .. 266
Text Formats ...266
Simple vs. Complex XML ...267

Solutions for Other XML Formats ... 267
XML Files That Split Information Between Header and Body268
SAP R/3 MATMAS XML Files ..269

Virtual Extended Records ... 269
Using MDIS .. 272

MDIS Checklist ... 272
Monitoring Import Status From The MDM Console 273

Exception Handling ... 274
What Happens When Exceptions Occur?................................... 274

Structural Exceptions ..274
Value and Import Exceptions ...274
Port Blocking ...274

Exception Folders ... 275
How Do You “Fix” Exceptions? ... 275

MDIS Configuration .. 276
Global mdis.ini parameters ... 276
Repository-Specific mdis.ini parameters..................................... 278
SSL-Related mdis.ini Parameters... 279
Configuring MDIS from MDM Console 280
Optimizing MDIS Performance ... 281

Troubleshooting .. 282
Import Files Are Not Being Processed by MDIS 282

Checking Server and Repository Status ..282
Checking for Port Problems ...282
Checking MDIS Configuration Settings..283
Checking for Source File Problems (Structural Exceptions)283
Checking for Source File Problems (Incomplete Files)284

Port Has Exceptions ... 284
Source Fields or Values Not Being Imported 284
Source File is Too Large to Open in Import Manager 285
Enabling Tracing and Audit Trails in the Import Log 285

Part 9: MDSS Administration .. 287

The Master Data Syndication Server .. 289
MDSS vs. Syndicator .. 289
Ports and MDSS ... 290

Syndication File Location..290
Multi-Threaded Port Processing ...291

MDM Console Reference Guide ix

Using MDSS .. 292
MDSS Checklist ... 292
Scheduling Syndications to a Port ... 293
Monitoring Syndication Status from MDM Console........................ 294

MDSS Configuration .. 295
Global mdss.ini Parameters ... 295
Repository-Specific mdss.ini Parameters................................... 297
SSL-Related mdss.ini Parameters .. 297
Configuring MDSS from MDM Console...................................... 297

Troubleshooting ... 300
Syndications Are Not Being Executed By MDSS 300

Verifying Server and Repository Status ...300
Checking Port Settings ...300
Checking Map Properties and Search Selections301
Checking MDSS Credentials ..301

Scheduled Syndications Are Not Executed On Time 302
Unchanged Records Are Not Being Suppressed 302
“Changed” Records Are Not Being Syndicated 303
Syndication File Is Too Big For MDSS 303
Record Data Changes During Syndication................................. 303

Part 10: MDM System Administration 305

MDM Security Overview... 306
Master Data Server Security .. 307
MDM Repository Security .. 308

MDM User and Role Management ... 310
Users Table.. 310
Exporting Repository Users ... 312
Importing Repository Users.. 313
Roles Table .. 314

Functional Privileges...316
Table and Field Privileges for a Role ...322
Record Constraints ...325
Performing MDM Operations..327

Exporting Repository Roles.. 328
Importing Repository Roles .. 330
LDAP Support .. 331
Trusted Connections .. 335

Additional MDM Tables .. 336
Connections Table ... 336
Workflows Table .. 337
Change Tracking Table .. 338
Links Table... 340

URL Syntax ...341
XML Schemas Table .. 342

x MDM Console Reference Guide

Part 11: Multilingual Support .. 343

Introduction ... 345
Multi-Byte Unicode Implementation .. 345
Multi-Layered Data Model... 346
Language-Centric Views... 346
Multilingual Repository Metadata.. 346
Multilingual Repository Data ... 347
Multilingual Publishing .. 347
Multilingual GUI Software ... 347
Repository Languages and Language Names............................ 347
Multilingual Data and Metadata Elements 347

Multilingual Basics .. 349
Language Layers .. 349
Language Inheritance ... 350
Inheritance Levels .. 353

Quick Reference ... 354
Multilingual Operations ... 356

Modifying the Repository Languages ... 357
Changing the Display Name of a Repository Language 359
Modifying Language-Specific Language Inheritance 360
Defining Multilingual Table Names ... 361
Defining Multilingual Field Names .. 362
Defining Multilingual Fields ... 363

MDM Language Selector Tool .. 364

Part 12: Remote Systems and MDM 365

Remote Systems and MDM .. 367
What is a Remote System? .. 367
Key Mapping... 367
Remote Systems Table .. 368
[Remote System] and [Remote Key] Fields 369
Remote System Semantics .. 370

Ports and MDM... 371
What is a Port? ... 371
Port Benefits ... 371
Ports and the File System... 372
Ports Table ... 372

Editing the Sequence of Inbound Ports ...374
Remote System Operations.. 375

Remote Systems Table .. 375
Key Generation ...376

Specifying Key Mapping for a Table ... 377
Specifying Key Mapping for Attribute Definitions 378

MDM Console Reference Guide xi

Part 13: MDM UOM Manager ... 379

Introduction .. 381
Getting Started ... 382
Find Functionality ... 384
Working with Dimensions ... 385
Working with Units ... 387

Part 14: Data Protection and Privacy 391

Introduction .. 392
Data Blocking and Destruction ... 392

Roles ...392
Main Table Properties...393

13

PART 1: BASIC CONCEPTS

This part of the reference guide explains essential concepts that will
enable you to make the best use of MDM Console. We recommend that
you become familiar with this material before starting to work with MDM
servers and repositories.

MDM Console Reference Guide 15

What is a Master Data Server?

A Master Data Server (MDS) is the central hub of an MDM system. It
manages access to master data in one or more MDM repositories,
which it serves up to various clients across a network.

The various components of an MDM software environment and how
they interact with the Master Data Server are described below and
illustrated in Figure 1.

• MDM Console. MDM Console allows system managers to
administer and monitor MDM servers, and to create, maintain the
structure of, and control access to the MDM repositories.

• MDM Clients. MDM clients interact with a Master Data Server to
import, access, manage, syndicate, and publish master data. Clients
include MDM rich user interfaces such as MDM Data Manager, MDM
Import Manager, and MDM Syndicator, as well as customizable
interfaces such as iViews and APIs.

• DBMS engine. Master data is stored in a commercial SQL DBMS,

access to which is controlled by the Master Data Server. See the
MDM Master Guide and the MDM Product Availability Matrix for
information about supported databases.

Figure 1. MDM software environment

16 MDM Console Reference Guide

MDM AUXILIARY SERVERS

In addition to the Master Data Server, an MDM system can include the
following auxiliary servers:

• Master Data Import Server (MDIS). Automates import of data into
an MDM repository.

• Master Data Syndication Server (MDSS). Automates syndication of
data from an MDM repository.

• Master Data Layout Server (MDLS). Processes publication of

master data from an MDM repository.

Each of these auxiliary servers interact independently with a Master
Data Server and, like the Master Data Server, can be administered from
within MDM Console.

NOTE ►► See “The Master Data Import Server” for more information

about MDIS.

NOTE ►► See “The Master Data Syndication Server” for more

information about MDSS.

MDM Console Reference Guide 17

What is an MDM Repository?

What is an MDM repository? The incorrect or at best incomplete answer
is often that a master data repository is simply a database, and also
since a SQL-based RDBMS is often used for managing master data.

An MDM repository certainly includes a database of information
consisting of text, images, PDFs, and other data about each record, up
to millions of records for some repositories. But a master data repository
is much more than just a large database, and size by itself does not
make a database a master data repository. Rather, it is the richness and
complexity of the underlying information itself and the ways it can be
searched and published that uniquely characterize an MDM repository.

Moreover, when an MDM repository of product information is published
as a catalog, the repository of master data is also a sales tool, which
lists the products offered for sale by a vendor and allows potential
customers to browse those products in a convenient way. Often, the
published catalog is the only point of contact a customer will have with a
vendor, which makes the presentation of the product information – the
organization and the design of the published catalog – critically
important to creating brand recognition and a distinct vendor identity. So
a published catalog is also about creating and reinforcing a corporate
image.

Hundreds of details, large and small, must be addressed to turn a
database into a meaningful master data repository, including:

• Rich master data. Rich structured, master data is the essential
lifeblood of a usable MDM repository. For example, an MDM
repository of product information must contain much more than basic
transactional data consisting of just a part number, a price, and a
forty-character description for each product. Master data must
include not only fields of information common to all the products in
the repository, such as part number and price, but also detailed
product specifications (attributes) that may apply to only a subset of
the products. Master data should also include rich content such as
images, text blocks, and PDFs (for MSDS and other data sheets).

• Classification. Rich master data is not enough. The records need to
be organized and classified into a taxonomy consisting of an arbitrary
hierarchy of categories and subcategories, the hierarchy may contain
any number of levels, and multiple simultaneous taxonomies may
coexist in the same MDM repository. And a single category must be
able to appear in multiple places within the hierarchy. For example,
in an MDM repository of product information, a printer accessories
category might be placed under both a printers category and an
accessories category.

18 MDM Console Reference Guide

• Product families. A printed catalog of product information provides
an excellent model for how information on groups of records within
an MDM repository of product information should be organized into
product families (also called units, presentations, or modules), which
further partition the products in each category into smaller groups of
products based upon the values of other fields and/or attributes. In
addition to the individual products that comprise the family, a product
family includes the family data (such as an image, a descriptive
paragraph, and feature bullets) as well as detailed specifications on
each of the products arranged into a well-structured tabular layout.

• Product relationships. As a sales tool, a published catalog of
product information requires the wide variety of product relationships
that are essential for effective selling. Relationships include structural
relationships, such as assemblies (a “SKU of SKUs”), kits (a “SKU of
non-SKUs”), bundles (a “non-SKU of SKUs”), and matching sets
(e.g. nuts and screws), as well as merchandising relationships, such
as cross-sells, up-sells, accessories, and consumables. An MDM
repository of product information must be able to capture and
represent all of these product relationships.

MDM REPOSITORY STRUCTURE

A thorough understanding of the table and data types at your disposal is
essential for properly creating and maintaining MDM repositories. This
section provides an introduction to these concepts, which will be
addressed again later in this guide.

An MDM repository consists of the following tables:

• Main tables. Every MDM repository has one or more main tables. A
main table contains primary information about a business object such
as a product or supplier. For example, a repository might contain
separate main tables for products and business partners. The
products main table would include an individual record for each
product and individual fields that apply to all products, such as SKU,
product name, product description, manufacturer, price, and
business partner. The business partner main table would then
include an individual record for each partner and individual fields for
each piece of information that describes the partner. Most of the time
you will be looking at information in a main table.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates a main table named Products.

MDM Console Reference Guide 19

• Subtables. An MDM repository can have any number of subtables.
A subtable is usually used as a lookup table to define the set of legal
values to which a corresponding lookup field in the main table can be
assigned; these tables hold the lookup information. For example, a
main table of an MDM repository of product information may include
a field called Manufacturer; the actual list of allowed manufacturer
names would be contained in a subtable. Only values that exist in
records of the subtable can be assigned to the value of the
corresponding lookup field in the main table.

DATA INTEGRITY ►► Lookup subtables are just one of the powerful
ways that MDM enforces data integrity in an MDM repository. The set

of legal values associated with lookup fields also makes the MDM
repository much more searchable, since a consistent set of values is

used across the entire repository.

• Object tables. Object tables, including the Images, Sounds, Videos,

Binary Objects, Text Blocks, Copy Blocks, Text HTMLs, and PDFs
tables, are a special type of lookup subtable, where each object table
is used to store a single type of object. You cannot store an object
directly in a main or subtable field in an MDM repository. Instead,
each object is defined or imported into the repository once and then
linked to a main or subtable field as a lookup into the object table of
that type.

DATA INTEGRITY ►► Object tables eliminate redundant information,
since each object appears only once in the MDM repository even if it is

linked to multiple records.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the single instance of each object table.

NOTE ►► You can also store text blocks directly in a large text field in
main and subtable records rather than as a lookup into a text block

subtable if you do not intend to reuse the blocks of text.

• Special tables. Special tables include the Image Variants, Masks,
Families, Relationships, Workflows, Named Searches, Tuples, Data
Groups, and Validation Groups tables.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the single instance of each special table.

NOTE ►► The Data Groups and Validation Groups tables do not

appear anywhere in MDM Console.

20 MDM Console Reference Guide

• System tables. System tables appear under the Admin node in the
Console Hierarchy and include Roles, Users, Connections, Change
Tracking, Remote Systems, Ports, Links, XML Schemas, and
Reports, and Logs.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the single instance of each system table.

NOTE ►► The Logs table is MDM server-specific rather than MDM
repository-specific, and appears in the Console Hierarchy under an

MDM Server node after all of the MDM repository nodes.

TAXONOMIES

A taxonomy is a general term for classification scheme. The purpose of
a taxonomy is to group like things together into categories, usually
based on a set of common, category-specific characteristics, or
attributes.

In the context of master data management, a taxonomy is what makes it
possible to quickly locate a few specific records – or categories – in a
database of thousands, tens of thousands, or even millions of records.

A taxonomy is usually hierarchical, meaning that some categories are
subcategories of other categories. (In the MDM system, taxonomy
tables are always hierarchical.) Most people are familiar, for example,
with at least part of the hierarchical taxonomy used to classify animals,
such as vertebrates mammals primates chimpanzees, and so
on. Another example that you might experience in your daily life is
groceries beverages carbonated decaffeinated. Each level of
the hierarchy gets narrower in terms of what it includes.

MDM uses a hierarchical taxonomy of categories to structure master
data in an MDM repository. A hierarchical taxonomy is typically
represented as a “tree,” as shown in Figure 2.

MDM Console Reference Guide 21

Figure 2. Hierarchical taxonomy tree

ATTRIBUTES

In a taxonomy, every category has its own defining characteristics (in
addition to those of every category above it in the hierarchy). For
example, in the taxonomy of animals, primates have specific
characteristics as well as those of mammals and vertebrates.

In an MDM repository, these characteristics are called attributes, and
correspond to fields of information that apply only to some rather than
all of the main table records in the MDM repository. For example,
voltage might be an attribute that applies to motors but not to gears.

Every taxonomy table has a pool of attributes associated with it. From
this pool you can link attributes to one or more individual categories on
a category-by-category basis. MDM allows you to manage the pool of
attributes associated with a taxonomy table in Taxonomy mode.

In MDM, attributes are associated with – linked to – categories.
Attributes then become associated with main table records by assigning
records to categories. When you assign a record to a category, it
acquires the attributes linked to that category as well as the attributes
linked to the parent category and all of the other ancestors of that
category through inheritance. Thus, a main table record consists of
common fields, inherited attributes, and category-specific attributes. You
can modify the attributes themselves as well as the set of attributes
linked to any specific category in MDM using Taxonomy mode.

Category

Subcategories

22 MDM Console Reference Guide

NOTE ►► In MDM, an attribute is like a field, but one that applies only

to a subset of the records in the main table. By contrast, a field is part
of every record in the main table. If a particular attribute can be applied

to every main table record, then it should be set up as a field in the
main table. For example, every record in an MDM repository of

products probably has an item number; therefore “Item Number”

should be defined in the database as a field, and not as an attribute.

QUALIFIED TABLES AND QUALIFIERS

A qualified table is a special kind of lookup table that is extremely
versatile. It can be used to efficiently store complex relationships
between a main table record and one or more lookup table records that
contain various types of additional information.

A qualified table stores a set of lookup records, and also supports
qualifiers, database “subfields” that apply not to the qualified table
record by itself, but rather to each association of a qualified table record
with a main table record. Qualified tables offer self-configuring, out-of-
the-box support for multiple prices (including quantity price breaks),
cross-reference part numbers, other distributor/supplier/customer-
specific information; and product applications.

PRODUCT APPLICATIONS AND APPLICATION-BASED SEARCH

A product application is a particular use of a product. Applications are
especially important in certain industries where application-driven
product selection is the traditional way to locate products within a large
MDM repository of complex product information.

For example, in the automotive parts business, customers typically
select parts based not on the category or manufacturer but rather on the
particular year, make, model and engine type of the vehicle. There are
millions of parts, tens of thousands of different vehicles, and since each
part can be used in more than one vehicle, tens of millions of
applications. Finally, the use of the part is often further qualified by
specific characteristics of the vehicle, such as whether it has air
conditioning or is California-equipped.

In an MDM repository, product applications stored in qualified tables can
dramatically reduce the duplication of data that has historically plagued
most application-based systems. In the automotive example, parts are
stored in the main table, the “valid table” of vehicle specifications are
stored in the qualified table, and each application of a part to a vehicle is
represented by assigning the vehicle specification to the part.

Note that each lookup record in a qualified table is generic, in that it
does not include the various conditions that might further qualify the use
of the product in that application, even though the particular application
may require additional conditions to properly define it.

MDM Console Reference Guide 23

In MDM, these additional conditions are called qualifiers. Qualifiers
allow a single lookup record to be used for multiple applications that are
basically the same except for the additional conditions, dramatically
reducing the number of distinct applications in the qualified table and
avoiding a tremendous amount of data duplication.

In the automotive example, qualifiers allow a single vehicle specification
record to be used for vehicles that are equipped differently. This
eliminates the explosion of vehicle specifications that normally occurs
when the additional conditions for each application result in additional –
but almost identical – vehicle specification records, as in most existing
application-based systems.

TIP ►► With or without product applications per se (or the need for
application-based search), a qualified table can also be used to store

any large set of subtable records that contain fields whose values are
different for each main table record, such as multiple prices for

different quantities, divisions, regions, or trading partners, cross-
reference part numbers, and additional distributor/supplier/customer-

specific information for different distributors, suppliers, or customers.

PRODUCT FAMILIES

When you publish the contents of an MDM repository of product
information, records often need to be organized into a more granular
structure than that provided by the categories of the taxonomy. This
increased granularity often involves grouping main table records based
not only on the category but also on other criteria (such as the
manufacturer). Product families provide a way of organizing and
identifying these groupings.

A product family is a group of main table records that are related by one
or more common fields and/or attributes having the same value, and
that may also have additional fields of family data, such as an image, a
logo, a paragraph of descriptive text, bullets of specifications, and so on.

Product families enable master data to be efficiently published not only
to paper, but also to non-paper media such as the Web in a manner that
preserves the presentation and organization seen in printed catalogs,
with the added benefit of fast, efficient search.

Most master data management systems require that product families (of
which there may be thousands) be manually created. Further, they
require that main table records be manually added to the families, and
also that they be manually moved to a different family if changes in the
record result in its no longer belonging to its original family.

NOTE ►► In other systems, a product family may be referred to as a

presentation, a unit, or a module.

24 MDM Console Reference Guide

By contrast, the MDM system uses an innovative approach to
structuring, storing, and maintaining product family information that
overcomes the shortcomings of other master data management
systems. It embodies patent-pending technology that intelligently
automates the creation and management of product families, while at
the same time preserving family integrity across changes to the family
structure, changes to main table records (including adding and deleting
records), and even changes to the taxonomy itself.

DATA INTEGRITY ►► Layering the family hierarchy on top of the

taxonomy hierarchy leverages all of the planning and work that went

into developing the taxonomy in the first place.

PRODUCT MASKS

Using MDM product masks, you can slice and dice a single master
MDM repository of product information into an effectively unlimited
number of custom virtual repositories, dramatically simplifying the
maintenance of a single repository targeted at multiple audiences. Each
virtual repository can contain a different subset of products from the
master, and appears to the user as a completely private repository.

Product masks can be used to create virtual repositories for a variety of
purposes – including custom subsets for contract customers and
targeted market segments – all driven by a single MDM repository.

Unlike SQL views, product masks impose no performance penalty
whatsoever, and are defined at the individual product level rather than
the query level. To the user of the MDM system, they appear as simply
another dimension of the multidimensional search; on the Web, a mask
can be automatically applied to the published electronic catalog upon
site entry, so that each user sees only the slice of the MDM repository
that you want them to see.

DATA INTEGRITY ►► Product masks allow you to create multiple

custom subset repositories from a single master MDM repository

without duplicating the underlying main table records. This guarantees
consistency and synchronization of the data across updates, since

there is never more than one copy of each main table record.

DATA INTEGRITY ►► For proper organization of the records within
an MDM repository, a hierarchy lookup field can normally be assigned

only to the value of a leaf node in the hierarchy, and similarly, records

can be assigned only to a leaf node of the Masks hierarchy.

MDM Console Reference Guide 25

DATA GROUPS

As described under “Taxonomies” above, a large MDM repository may
contain hundreds of thousands and even millions of main table records,
and these records can be organized within MDM into a hierarchical
taxonomy of categories and subcategories.

Just as significantly, the same repository may contain tens or hundreds
of thousands of images, text blocks, and PDF files. These objects also
need to be organized so that it is possible to locate an object or group of
objects for linking to a particular record.

In MDM, each object is assigned to a data group when it is first created
or imported into the system. A data group is simply a group of objects,
and the set of data groups is organized into a hierarchy similar to the
taxonomy hierarchy.

Just as the taxonomy hierarchy is used to organize and break the entire
collection of main table records into manageable subgroups called
categories, the data groups hierarchy is a parallel classification scheme
used to organize objects into subgroups called data groups. For
example, you might have separate data groups for Product Images,
Category Icons, and Manufacturer Logos.

VALIDATIONS AND VALIDATION GROUPS

MDM validations are Excel-like formulas that return a Boolean success
or failure result. Validations can reference fields and attributes, perform
arithmetic, string, and logical operations, call built-in functions, and even
reference other previously defined validations.

Validations are defined and executed within MDM Data Manager. Using
MDM validations, you can define complex tests for all types of
conditions, and then run those tests against a group of one or more
records, all without using a query language.

You can also define category-specific validations as branches of a
single validation, and MDM automatically executes the applicable
validation based on the value of the category for each record.

Finally, you can assign each validation to one or more validation groups.
Each validation group is a set of validations that can be conveniently
executed as a group with a single selection rather than forcing you to
run each individual validation separately.

DATA INTEGRITY ►► Unlike an Excel formula, a validation
expression is token-based, so that you do not have to type field,

attribute, operator, or function names, and can instead select them

from drop-down lists, reducing the potential for typing error.

26 MDM Console Reference Guide

DATA INTEGRITY ►► Validation groups allow you to organize large

sets of related validations, eliminating the likelihood of forgetting to run

any of the individual validations in the group.

DATA QUALITY AND MDM

Despite lacking explicit semantic data quality capabilities, MDM is not
only a platform for master data management, but also a platform for
data quality. For example, MDM does not have an explicit capability to
“standardize part numbers” and yet it has functions that allow you to
search in strings, to replace in strings, and so on. From these basic
functions, you can build various and powerful standardize part number
capabilities.

27

PART 2: STARTING MDM CONSOLE

This part of the reference guide explains how to start and stop MDM
Console and describes the various panes and tabs of its main window.
It also includes a summary of options for configuring MDM Console,
MDM server, MDM repository, and DBMS settings.

MDM Console Reference Guide 29

Starting and Exiting MDM Console

This section gets you up and running as quickly as possible in MDM
Console. Before you begin, you need to be sure that the SQL DBMS is
up and running and that the MDM software is already installed on your
system.

NOTE ►► You can run multiple MDM Console sessions on the same

computer.

 To start MDM Console from either the Desktop or the Start menu:

• From the Desktop, double-click the MDM Console icon (shown at left),

or from the Start menu, choose Programs > SAP MDM > MDM

Console. After a few seconds, the MDM Console main window comes

up.

NOTE ►► Once MDM Console has been started, you may still need
to perform some or all of the following additional steps before an MDM

repository can be accessed by an MDM client or other clients on the

network:

(1) Mount a Master Data Server (see “Mounting and Unmounting the

Master Data Server”);

(2) Start the Master Data Server (see “Starting and Stopping ”);

(3) Create a new MDM Repository (see “Creating an MDM

Repository”) or mount an existing one (see “Mounting and

Unmounting the Master Data Server”; and/or

(4) Start the MDM repository (see “Starting and Stopping an MDM

Repository”).

 To exit MDM Console:

1. Click the close button in the upper right corner of the window, or

choose File > Exit from the main menu.

NOTE ►► If you exit MDM Console without stopping a running MDM

server, the server remains running without the connection to your MDM

Console session.

2. MDM prompts you to ask if you would like to save the list of mounted

servers to an MDM Console Settings file (described in the following

section). Click:

▪ Yes – save the settings and exit

▪ No – exit without saving

▪ Cancel – return to the MDM Console session

30 MDM Console Reference Guide

MDM CONSOLE SETTINGS FILE

Normally, each time you launch MDM Console, you must manually
mount one or more MDM servers one at a time (even if you left them
mounted when you exited the previous MDM Console session).

However, when you exit MDM Console, MDM allows you to save the list
of currently mounted MDM servers to an MDM Console settings file,
which then can be used to remount the servers as a group during a
subsequent MDM Console session.

NOTE ►► Just as the MDM Console settings file maintains a list of

currently mounted MDM servers that you can use to remount them as
a group during subsequent MDM Console sessions, each Master Data

Server maintains a list of currently mounted MDM repositories that
persists even after the Master Data Server is stopped that it uses to

automatically remount them as a group each time the Master Data

Server is restarted.

During a subsequent MDM Console session, you can either load the list

from the file using the File > Open command from the main menu, or
you can load the list automatically by appending the full pathname of a

specific .mcs file to the command line that launches MDM Console.

NOTE ►► You can save different sets of mounted MDM servers in

different .mcs files, which allows you to define and choose the specific

sets of MDM servers that you want to mount as a group.

 To load a specific MDM Console Settings file from within MDM
Console:

1. Choose File > Open from the main menu

2. MDM prompts you to save the current mounted settings. Click:

▪ Yes – save the settings and exit
▪ No – exit without saving

▪ Cancel – return to the MDM Console session

3. MDM opens the Windows file Open dialog. Navigate to the desired

folder, select the .mcs settings file you want to load, and click Open.

4. MDM replaces the set of mounted MDM servers with the group of

servers listed in the file.

MDM Console Reference Guide 31

 To automatically load an MDM Console Settings file at MDM Console
startup:

1. If a Desktop shortcut to MDM Console does not already exist, create

one.

2. In the Shortcut properties of MDM Console Desktop shortcut, add the

following text to the Target field:

-f "full-pathname-of-settings-file.mcs"

3. where full-pathname-of-settings-file is the full pathname of the .mcs file

you want to use when launching MDM Console.

4. When you start MDM Console from the Desktop shortcut, MDM
automatically mounts the MDM server(s) that were saved in the

specified .mcs file.

 To automatically save an MDM Console Settings file when exiting
MDM Console:

1. If a Desktop shortcut to MDM Console does not already exist, create

one.

2. In the Shortcut properties of MDM Console Desktop shortcut, add the

following text to the Target field:

- q

3. When you exit MDM Console, MDM automatically saves the list of

currently mounted MDM servers to the .mcs file.

TIP ►► You can save the list of currently mounted MDM servers to

the current .mcs file at any time by choosing File > Save from the main

menu. You can also use the File > Save As command to save the list to

an .mcs file that you name yourself.

NOTE ►► If you unmount all MDM servers from MDM Console, you

will not be prompted to save changes when exiting MDM Console nor

will the .mcs file be saved automatically.

32 MDM Console Reference Guide

COMMAND LINE ARGUMENTS

For convenience, several “command line” arguments can be used when
starting MDM Console from the command line or a Windows shortcut.

The arguments are either “-” switches or arguments to a particular
switch, as described in Table 1.

Table 1. MDM Console Command Line Arguments

Argument Description

-f "filepath"

Starts MDM Console and mounts the MDM servers
specified in a previously saved MDM Console Settings

(.mcs) file.

Console –f "C:\Desktop\SAP MDM

Servers.mcs"

Can be used with either -x or –q.

-m

<Servername>

Mounts (and starts, if needed) the specified Master Data

Server.

Console –m MyMDM

By also setting Autostart=True in the mds.ini file, you

can start the specified Master Data Server and

automatically start the repositories it has mounted. For

more information, see Table 66. Optional [MDM Server]

Parameters.

-q

Saves the MDM Console Settings (.mcs) file without

prompting when you exit MDM Console.

Console –f "C:\Desktop\SAP MDM

Servers.mcs" -q

Works only with -f but is superseded by -x.

-x

Does not save or prompt you to save the MDM Console

Settings (.mcs) file when you exit MDM Console.

Console –f "C:\Desktop\SAP MDM

Servers.mcs" -x

Works only with -f and supersedes -q.

-h Displays and describes these command line arguments.

NOTE ►► Use CLIX to perform Console operations from the

command line (see help.sap.com/nwmdm71 > CLIX Reference

for more information).

MDM Console Reference Guide 33

MDM Console Main Window

The main window of MDM Console consists of the panes and tabs
shown in the numbered callouts of Figure 3.

Figure 3. MDM Console main window

These panes and tabs, listed below, are described in further detail in the
following sections and throughout this reference guide:

1. Console Hierarchy pane

2. Objects pane

3. Object Detail pane

4. Functions tab

5. Tables and Fields tab

6. Status bar

CONSOLE HIERARCHY PANE

The Console Hierarchy pane (left pane) contains a tree representing the
hierarchy of MDM servers, MDM repositories, and tables. When fully
expanded, the tree shows the mounted MDM servers, the mounted
repositories on each Master Data server, and the tables within each
repository.

NOTE ►► In most cases, you will have only one Master Data Server

and one MDM repository. However, you can simultaneously mount
multiple MDM Servers and each Master Data Server can

simultaneously mount and access multiple MDM repositories.

1 2

3

6

4 5

34 MDM Console Reference Guide

OBJECTS PANE

The Objects pane (top-right pane) lists the MDM objects that
correspond to the selected node in the tree (i.e. root, Master Data
Server, MDM repository, table), with a row for each object and a column
for each object property. Use the Objects pane to browse, sort, and
select objects for editing or deletion.

Table 2. Nodes in the Console Hierarchy Tree

Selected Node Objects Pane Object Detail Pane

Root MDM Servers Server Detail

Any Master Data Server Repositories Repository Detail

Any MDM repository Tables Table Detail

Any main table Fields Field Detail

Any subtable Fields Field Detail

Image Variants table Variants Variant Detail

Masks table Fields Field Detail

Families table Fields Field Detail

Relationships table Relationships Relationship Detail

Workflows table Fields Field Detail

Named Searches table Fields Field Detail

Tuples table Tuples Tuple Detail

Tuple member Member Fields Member Field Detail

Admin Empty Empty

Roles table Roles Role Detail

Users table Users User Detail

Connections table Connections Connection Detail

Change Tracking Empty Change Tracking Detail

Remote Systems table Remote Systems Remote System Detail

Ports table Ports Port Detail

Links table Links Link Detail

XML Schemas table XML Schemas XML Schema Detail

Dimensions Dimensions Dimension Detail

Reports table Reports Report Detail

Logs table Logs Log Detail

Activities table Activities Activity Detail

Auxiliary Servers
MDM Auxiliary

Servers

MDM Auxiliary Server

Detail

MDM Console Reference Guide 35

Selected Node Objects Pane Object Detail Pane

Any Auxiliary Server Repositories Repository Detail

NOTE ►► The type of object displayed in the pane and the name of

the Objects pane itself change as you select each type of node in the

tree, as summarized in Table 2.

OBJECT DETAIL PANE

The Object Detail pane (bottom-right pane, or tab in bottom-right pane
for Roles table) contains a two-column grid. The first column is the row
header and lists the properties for each object; the second column lists
the corresponding values. Use the Object Detail pane to view and edit
the properties of the object selected in the Objects pane.

NOTE ►► As you select each type of node in the tree, the name of
the Object Detail pane changes to correspond to the type of object

contained in the Objects pane, as summarized in Table 2 above.

36 MDM Console Reference Guide

FUNCTIONS TAB

The Functions tab (tab in bottom-right pane; Roles table only) contains
a grid (Figure 4) with a hierarchy of functions (e.g. Add Records, Modify
Records, and so on), and for each function, whether the function can be
executed or not.

Figure 4. Functions tab for the Roles table

NOTE ►► The functions Data Privacy Specialist and External Auditor

are set to None by default when creating a new role. This is a

changeable setting.

MDM Console Reference Guide 37

TABLES AND FIELDS TAB

The Tables and Fields tab (tab in bottom-right pane; Roles table only)
contains a grid (Figure 5) with a hierarchy of tables and fields, and for
each one, the type of read-write access granted, and any additional
constraints.

Figure 5. Tables and Fields tab for the Roles table

STATUS BAR

The status bar displays the number of objects displayed in the Objects
pane.

38 MDM Console Reference Guide

Configuration Parameters

You can configure settings for MDM Console, MDM servers, MDM
repositories, and the underlying DBMS server.

CONSOLE SETTINGS

These settings include those that define the graphic layout of your MDM
Console main window, which are stored in the Windows registry, and
the list of mounted MDM Servers, which are saved in an MDM Console

Settings (.mcs) file and can be loaded from the File menu or on startup

(see “MDM Console Settings File”).

MASTER DATA SERVER SETTINGS

These settings determine how the MDM Server behaves on the
machine on which it is installed, independent of the MDM Console on
which it is mounted and any DBMS Servers that hold the MDM
repository information. They will be the same for this MDM Server
regardless of which machine is running MDM Console and which
repository is mounted or started. The settings are stored in an operating
system independent file (rather than the Windows registry) named

mds.ini. Following installation, and on an occasional basis, you may

need to edit this file (see “MDS Configuration”).

MDM AUXILIARY SERVER SETTINGS

Each auxiliary server (MDIS, MDSS, and MDLS) has its own
configuration file which governs its behavior. See “MDIS Configuration”
for more information about the MDIS configuration file and “MDSS
Configuration” for more information about the MDSS configuration file.

REPOSITORY PROPERTIES

These properties are specific to each MDM repository and will be the
same regardless of which Master Data Server mounts and starts the
repository and which client accesses it (see “Modifying Repository
Properties”).

DBMS SETTINGS

Unlike the Repository Properties, which are specific to a particular MDM
repository, these settings are relevant to a particular DBMS Server, and
are the same for any Master Data Server that accesses it and for all
repositories mounted on it. In general, these settings allow you to
configure parameters regarding the DBMS Server’s use of the file
system (see “DBMS Settings”).

39

PART 3: MDM SYSTEM ACCESS

This part of the reference guide provides an overview of Master Data
Servers and repositories, and the operations for accessing and
controlling them.

41

Accessing MDM Repositories

When the selected node in the Console Hierarchy tree is a Master Data
Server, the Objects pane (top-right) is titled Repositories and the Object
detail pane (bottom-right) is titled Repository Detail.

The Repositories pane contains a grid with a list of mounted MDM
repositories, where each repository in the list corresponds to a child of
the selected Master Data Server node; to view a repository’s basic
properties, select the repository from the Repositories pane.

The basic properties for each MDM repository are listed in Table 3.

NOTE ►► For information about configuring additional repository

properties, see Modifying Repository Properties.

Table 3. MDM Basic Repository Properties

Property Description

Name The MDM repository name.

Description1 The MDM repository description.

DBMS Server
The network ID of the DBMS server that is hosting the

repository.

DBMS Type

The DBMS brand:

▪ SQL Server

▪ Oracle

▪ DB2

▪ MaxDB

▪ SAP ASE

▪ HANA (for MDM-SRM only)

Login The login name for the DBMS server.

Password2 The password for the DBMS server.

Port1
The TCP/IP port number on which to connect to the

repository.

Type1

The MDM repository type:

▪ Normal

▪ Master

▪ Slave

▪ Publication Slave

Languages
The set of languages used in the MDM repository. For
information about adding and changing repository

languages, see Modifying the Repository Languages.

42 MDM Console Reference Guide

Property Description

Status3

The MDM repository status:

▪ Disconnected
▪ Stopped

▪ Starting

▪ Started

▪ Running Remotely

▪ Outdated

▪ Newer than MDM Server
▪ Archiving

▪ Unarchiving

▪ Duplicating

▪ Invalid

▪ Busy

1 Hidden by default in the Repositories pane; unhide to display.
2 Not visible in either the Repositories or Repository Detail panes.
3 Not visible in the Repository Detail pane.

DBMS Servers

The DBMS Server property defines the network identification string of
the DBMS instance / machine / server that is used by the DBMS-
specific client on the Master Data Server machine to connect to the
DBMS. The brand of DBMS on which the repository is running is shown
in the DBMS Type property.

NOTE ►► When you mount two MDM repositories with the same

name (but located on different DBMS Servers) on the same Master
Data Server, MDM distinguishes them in the Console Hierarchy pane

by appending the name of the DBMS Server in angular brackets to the

repository name (e.g. “repository <server>”).

Repository Port Numbers

The Port property defines the TCP/IP port number that MDM client
applications use to connect to the repository. This port number is
actually the first of three sequential port numbers used by MDM (e.g.
when MDM Console shows port 2345, it will also be using 2346 and
2347). You may change the base port number to any value between
2000 and 9999 in accordance with your preferences or system
requirements, so long as you keep in mind that three sequential ports
are actually used for each assigned port number. Also, because only
one repository can be started on a port at a time, it is recommended to
assign each repository its own unique port number.

MDM Console users can assign or edit TCP/IP port numbers from the

Repositories pane and during Mount, Create, Duplicate, and Unarchive
repository operations.

MDM Console Reference Guide 43

CAUTION ►► MDM client applications remember the port they used

to first connect to a repository, and, when attempting to connect to that
repository in the future, will start whatever repository is currently

running on that port, even if it is not the repository expected by the
user. To avoid confusion, assign each repository its own unique port

number and notify client users whenever a repository’s port number

changes.

44 MDM Console Reference Guide

ACCESSING AN MDM REPOSITORY

In order to make an existing MDM repository visible to your MDM
Console session, you must first mount it. Once mounted, you can see
the repository’s current type and state and perform a number of
administrative functions on it.

The type and current state of mounted repositories are indicated in the
Repositories pane and by the icon used to represent the repository in
the Console Hierarchy tree, as shown in Table 4 and Table 5.

Table 4. MDM Repository Types

Icon1 Type

 Normal MDM repository.

 Master MDM repository.

 Slave MDM repository.

 Publication slave MDM repository.

 Broken master MDM repository.

 Broken slave MDM repository.

 Broken publication slave MDM repository.

Undetermined MDM repository type.2

1 Type of MDM repository indicated by color on top of cylinder.
2 Type cannot be determined if repository is busy, disconnected, outdated, or invalid.

Table 5. MDM Repository States

Icon1 State

 MDM repository is not connected to MDM Console.

 MDM repository is not started.

 MDM repository is being started.

 MDM repository is started.

 MDM repository is started on another MDS (running remotely).

 MDM repository is scheduled to stop.

 MDM repository is stopped and being duplicated.

 MDM repository is stopped and being archived.

MDM Console Reference Guide 45

Icon1 State

 MDM repository is being unarchived.

 MDM repository is outdated.

 Repository version is newer than Master Data Server

 MDM repository is invalid.

 MDM repository is busy.

 MDM repository must be restarted.

MDM repository has a corrupt schema.

1 State of repository indicated by symbol at the lower right of the cylinder.

If a repository’s type is undetermined, its state often indicates the
reason why. Suggested solutions for resolving undetermined repository
types are listed in Table 6.

Table 6. Solutions for Resolving Undetermined Repository Types

Repository

State
Suggested Solution

Busy
Refresh MDM Console after the currently running activity

finishes.

Disconnected Connect to the repository.

Invalid Unmount and re-mount the repository.

Outdated Update the repository

Running

Remotely

Stop the repository on the remote Master Data Server or

appropriate it.

CAUTION ►► Appropriating a remotely-running Master Data Server

is potentially dangerous (see “Appropriating an MDM Repository for

more information.

Suggested solutions for resolving repository states Requires Restart and

Schema Corrupt are listed in the table below.

Table 7. Solutions for Resolving Requires Restart and Schema Corrupt

Repository

State
Suggested Solution

Requires Restart Stop the repository and start it again.

Schema Corrupt Delete the repository and restore (unarchive) its backup.

46 MDM Console Reference Guide

The MDM Console operations to mount an existing MDM repository,
and the various administrative functions that you can perform on a
mounted repository, are described in the following sections.

Mounting and Unmounting an MDM Repository

Mount an existing MDM repository in order to access it from a Master
Data Server. If your organization has more than one MDM repository,
you only need to mount those that are of interest to you.

NOTE ►► An MDM repository can exist on any machine on the

network to which you have access to the underlying DBMS, and any
Master Data Server on the network can access and control access to

each MDM repository.

NOTE ►► Each Master Data Server maintains a list of currently
mounted MDM repositories that persists even after the server is

stopped and then restarted. When you mount and connect to a Master

Data Server that is already running, you will automatically see from
your MDM Console all of the MDM repositories that have already been

mounted on that Master Data Server by any other MDM Console

(including your own MDM Console during a previous session).

NOTE ►► Mounting an MDM repository is a password-protected

operation which requires you to enter the password for the Master
Data Server, if you have not already done so during the current MDM

session (see “Master Data Server Security”).

 To mount an existing MDM repository:

1. In the Console Hierarchy tree, right-click on the Master Data Server

and choose Mount Repository from the context menu, or select the tree

node and choose Repositories > Mount from the main menu.

2. MDM opens the Mount MDM Repository dialog shown in Figure 6 with

the DBMS Name, Login, and Password fields enabled.

Figure 6. Mount MDM Repository dialog (1 of 2)

3. Select the DBMS Server to which you want to connect from the drop-

down list.

MDM Console Reference Guide 47

4. Enter the appropriate DBMS login (which must have system

administrator privileges) and password for the selected DBMS Server

and click Next.

5. MDM disables the DBMS Server, Login, and Password fields and

enables the Repository Name and Port fields, as shown in Figure 7.

Figure 7. Mount MDM Repository dialog (2 of 2)

6. Select the MDM repository you want to mount from the drop-down list.

7. If necessary, edit the TCP/IP port number in the Port text box.

NOTE ►► See “Repository Port Numbers” for more information about

port numbers.

8. Click Finish to mount the MDM repository.

9. MDM adds a node for the MDM repository to the Console Hierarchy
tree as a child of the Master Data Server. The repository status icon

(shown at left) displays a gray lock to indicate that a connection to

repository has not yet been established.

 To unmount an MDM repository:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to unmount and choose Unmount Repository from the context

menu, or select the tree node and choose Repositories > Unmount
from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Unmount from the context menu.

2. MDM removes the repository node from the Console Hierarchy tree.

48 MDM Console Reference Guide

Connecting to and Disconnecting from an MDM Repository

Once you have mounted an MDM repository, you must connect to it
before any further repository operations can be performed.

 To connect to a disconnected MDM Repository (gray lock):

1. In the Console Hierarchy tree, right-click on the MDM repository to

which you want to connect and choose Connect to Repository from the

context menu, or select the tree node and choose Repositories >

Connect to Repository from the main menu.

2. MDM opens the Repository Login dialog shown in Figure 8. Enter your
MDM user name and password for the selected repository and click

OK.

Figure 8. Connect to Repository dialog

NOTE ►► See “Users Table” for more information about MDM user

names and passwords.

3. Once you are connected to the repository, MDM changes the

repository’s icon in the Console Hierarchy tree to reflect is current type

and state.

4. MDM also populates the Tables and Table Detail panes with table

information for the MDM repository.

 To disconnect from an MDM Repository:

1. In the Console Hierarchy tree, right-click on the MDM repository from

which you want to disconnect and choose Disconnect from Repository

from the context menu, or select the tree node and choose

Repositories > Disconnect from Repository from the main menu.

2. MDM changes the repository status icon to a gray lock to indicate that

the repository is now disconnected from the Console.

Starting and Stopping an MDM Repository

Once you have mounted and connected to an MDM repository, it must
be started before it can be accessed by clients on the network.

NOTE ►► An MDM repository can be simultaneously mounted by
multiple Master Data Servers. When you start the MDM repository on a

particular Master Data Server, it then becomes inaccessible to all other

Master Data Servers that have it mounted.

MDM Console Reference Guide 49

NOTE ►► You can only start one repository on a TCP/IP port at a

time (see “Repository Port Numbers” for more information).

NOTE ►► The structure of an MDM repository cannot be modified

through MDM Console while the repository is started.

NOTE ►► You can set the Master Data Server to automatically start

mounted servers by configuring the autostart option in the mds.ini

file. For more information about the autostart option, see Table 66.

Optional [MDM Server] Parameters.

TIP ►► If you want to modify the structure of an MDM repository while
preserving access to the current version, you can duplicate the

repository and give it a new name, or use the same name and move it

to another DBMS machine.

 To start a stopped MDM repository (red square):

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to start and choose Start Repository from the context menu, or

select the tree node and choose Repositories from the main menu.

2. Choose whether to start the repository immediately or to update

indices first.

NOTE ►► When you choose Immediate, MDM automatically updates
indices that it knows to be out of date as a result of changes you make

to the MDM repository data through MDM Data Manager. However,

when the structure of the repository has been modified through MDM
Console, MDM cannot know precisely which indices need to be

updated. In these cases, you should choose Update Indices rather

than Immediate when you start the repository.

3. MDM starts the MDM repository. While the repository is being started,

MDM changes the repository status icon (shown at left) to a blue
arrow , and reports the progress of the start in the Status field for the

repository in the Repositories pane.

4. When the starting process is complete, MDM changes the repository

status icon (shown at left) to a green triangle to indicate that the MDM

repository is started.

 To stop a started MDM repository (green triangle):

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to stop and choose Stop Repository from the context menu, or

select the tree node and choose Repositories > Stop from the main

menu.

50 MDM Console Reference Guide

2. Choose how long to wait before stopping the MDM repository from the

cascading menu:

▪ Immediate

▪ 1 Minute
▪ 2 Minutes

▪ 5 Minutes

NOTE ►► The non-Immediate choices allow users of MDM client
applications time to finish using the MDM repository and exit before the

repository is stopped and no longer available. With the delayed
options, each client application receives text messages at five, two,

and one minute before shutdown. When a delayed stop option is

selected, the repository state changes to Stop scheduled and a red

square is added to the repository status icon (shown at left).

3. After the selected wait time, MDM stops the MDM repository and

changes the repository status icon to a red square.

TIP ►► It is usually faster with a large MDM repository to simply stop

the Master Data Server than to stop the repository, although the Stop
command is clearly necessary if two or more repositories are started

and you want to stop just one of them.

NOTE ►► Once an MDM repository is stopped: (1) the Master Data
Server will no longer serve the repository’s data to any client; (2) any

MDM clients using the repository will be automatically shut down (the
delayed options give MDM client users warning that this is about to

occur); and (3) MDM client attempts to connect to it will fail with the

message “The MDM repository is not started”.

 To cancel a scheduled stop:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to stop and choose Stop Repository from the context menu, or

select the tree node and choose Repositories > Stop from the main

menu.

2. Choose Cancel Stop from the cascading menu.

3. MDM changes the repository status from Stop scheduled to Started

Running and changes the repository status icon (shown at left) to a

green triangle.

51

PART 4: REPOSITORY DESIGN

This part of the reference guide describes the data modeling capabilities
of MDM. It includes basic procedures for designing and creating a new
MDM repository and for creating and modifying tables and fields within a
new or existing MDM repository.

MDM Console Reference Guide 53

Planning the MDM Repository

This chapter presents general guidelines for designing an MDM
repository. However, there are no hard-and-fast rules, and good
judgment is involved nearly every step of the way. Ultimately you will
want a repository design that optimizes ease of maintenance (for you)
and ease of searching (for your customers). Increased granularity and
structure of the data will make it easier to maintain the repository; well
thought-out categories and attributes will make it easier to search it.

NOTE ►► Although an MDM repository can be used to store many

types of master data records, for the sake of example this reference

guide describes a product information repository.

Planning the structure of an MDM repository starts with knowing all of
the different kinds of information available in your product database that
describe the products to your customers.

The total range of information needs to be separated into that which
applies to: (1) all product records, regardless of product category; and
(2) only certain categories of products. For example, in an MDM
repository that contains both tools and furniture, some types of
information will apply to all products, such as item number,
manufacturer, price, package quantity, and so on. However, much of the
information about tools will not apply to furniture, and vice-versa.

Information common to all product records will become the fields of the
main table in the repository, while category-specific information will be
stored in the category-specific attributes (see “Fields vs. Attributes – A
Comparison”).

The initial steps of designing an MDM repository typically include the
following:

• Decide which types of records will be stored in the repository’s main
table(s).

• List all the fields to be included in the repository.

• Decide what type of data each field will contain.

• Decide which data can be stored in lookup tables or tuples.

• Describe the taxonomy of product categories and the attributes
needed to define the categories.

To help your decision-making, the table and data types supported the
MDM data model are described in the following sections.

54 MDM Console Reference Guide

MDM 7.1 Metamodel Enhancements

MDM 7.1 has major metamodel enhancements that allow you to create
a repository structure that more closely models your master data.

These enhancements include:

• Multiple main tables. Multiple main tables allow multiple business
objects (e.g. Suppliers and Products) to reside in a single repository.

• Lookup [Main] field type. Lookups into a main table allow business
objects to reference each other (e.g. Products Suppliers).

• Tuple data type. Tuples allow you to define custom composite data

types consisting of a set of multiple fields (e.g. Address).

• Nested structures. Tuples allow you to create deeply nested multi-

level structures (e.g. Address Contact Phone).

• Hierarchy management. Tuples can be used to model arbitrarily
complex hierarchical main entity relationships.

• Extended qualifier support. Tuples can be used to create qualified
references to the records of any other table.

These enhancements are described further in following sections.

NOTE ►► Nested structures, hierarchy management, and extended

qualifier support are not explicit metamodel enhancements but rather
beneficial “side effects” of combining Lookup [Main] and tuple fields in

various ways (see “Tuples” for more information).

MDM Console Reference Guide 55

MDM Table Types

A traditional SQL DBMS stores data in the records and fields (rows and
columns) of a collection of flat database tables. All tables have the same
rectangular structure in SQL. A SQL database is relational because of
the relationships set up between the different tables.

In an relational DBMS (RDBMS), information about a single record can
be combined from multiple tables by relating values in matching
columns. This helps to eliminate redundant data; beyond that, however,
an RDBMS does not support any additional structuring of the data itself.

By contrast, the MDM system supports a variety of different table types
that are specifically suited for the particular requirements of storing,
organizing, structuring, classifying, managing, and publishing
information in an MDM repository (including efficient support for
category-specific attributes, which are inherently non-relational).

Table 8. MDM Data Table Types

Table Type Description

Main and subtables

Main1

A main table is a f lat table containing the primary
information about a business object. For example, an

MDM repository of product information would include an
individual record for each product and an individual field

for each piece of information that applies to all products,

such as SKU, product name, manufacturer, and price.

New MDM repositories include a main table named

Products.

Flat

A flat table has the standard, rectangular SQL structure

consisting of records and fields (rows and columns). A
main table in an MDM repository typically contains some

fields whose possible data values are limited and can
therefore be selected from a list, rather than entered

manually. For example, a Country field would naturally
have a limited set of possible values. These values can be

stored as records in a separate, flat subtable associated

with a Country lookup field in a main table.

New MDM repositories do not include any f lat tables.

56 MDM Console Reference Guide

Table Type Description

Hierarchy

A hierarchy table organizes information in a hierarchy,

where each record is related to a parent record (even if the
only parent is the root) and may also be related to sibling

records and/or child records. The main table in an MDM
repository typically contains some fields whose data may

be hierarchical in nature. For example, a Manufacturer

field may need to accommodate division and subdivision
information for manufacturers. This hierarchical

information is stored in a separate, hierarchy subtable
associated with the Manufacturer lookup field in the main

table.

Note that a hierarchy table is useful even when it is flat
(i.e. only leaf nodes below the root), because it stores the

ordered sequence of sibling records, allowing you to

override the unordered sequence of values in a flat table

and instead put the values in a fixed order.

New MDM repositories include the following hierarchy

tables: a default taxonomy table, the Masks table, and the

Families table.

Taxonomy1

Pre-defined. A taxonomy is the classification scheme that

defines the categories and subcategories that apply to a

collection of records. Categorizing records enables you to
isolate subsets of records for various organizing,

searching, editing and publishing purposes.

A taxonomy table in MDM stores a hierarchy of categories
and subcategories and also supports attributes, “subfields”

that apply to particular categories rather than to the entire
collection of records. MDM supports multiple simultaneous

taxonomies.

New MDM repositories include a single taxonomy table

named Categories.

Qualified Flat

Subtable. A qualified table in MDM stores a set of lookup
records, and also supports qualifiers, “subfields” that apply

not to the qualified table record by itself, but rather to each
association of a qualified table record with a main table

record. MDM supports multiple simultaneous qualified

tables.

Qualified tables can be used to support product
applications and application-based search, and also to

store any large set of subtable records that contain fields
whose values are different for each main table record,

such as multiple prices for different quantities, divisions,
regions, or trading partners, cross-reference part numbers,

and additional distributor/supplier/customer-specific
information for different distributors, suppliers, or

customers.

New MDM repositories do not include any qualified flat

tables.

MDM Console Reference Guide 57

Table Type Description

Object tables1

Images
A single table named Images. Stores image files, where

each image is stored as a record in the table.

Sounds
A single table named Sounds. Stores sound files, where

each sound file is stored as a record in the table.

Videos
A single table named Videos. Stores video files, where

each video file is stored as a record in the table.

Binary Objects

A single table named Binary Objects. Stores other binary

object files, where each binary object file is stored as a

record in the table.

Text Blocks
A single table named Text Blocks. Stores blocks of text,

where each text block is stored as a record in the table.

Copy Blocks

A single table named Copy Blocks. Stores blocks of text
interpreted as copy, where each text block is stored as a

record in the table.

Text HTMLs

A single table named Text HTMLs. Stores blocks of text

interpreted as HTML, where each text block is stored as a

record in the table.

PDFs
A single table named PDFs. Stores PDF files, where each

PDF is stored as a record in the table.

Special tables1

Image Variants

A single table named Image Variants. Used to define the
structure and format of each of the variants for each

image. Each variant is a modified version derived from an

original image; the original image is never modified. This
table is managed in the MDM Console and is not visible in

MDM Data Manager.

Families

A single hierarchy table named Families. Used to further
partition main table records in each category into smaller

groups based upon the values of other fields and/or
attributes. You can associate family data (a paragraph, an

image, bullets) once with a family of products rather than
with each individual product, and also define the table

layout of the field and/or attribute data (field order; stack,

vertical, and horizontal pivots; and other display options).

This table is available only in Family mode.

Data Groups2

A single hierarchy table named Data Groups. Stores the

hierarchy of data groups used to break the entire set of
objects in the MDM repository into manageable

subgroups.

Relationships
A single table named Relationships. Used to define

relationships between records in your tables.

1 Created by default in new MDM repositories.
2 Does not appear anywhere in the MDM Console.

58 MDM Console Reference Guide

NOTE ►► MDM repositories include additional special and system
tables which do not directly relate to data modeling. These tables are

described later in this reference guide.

MAIN TABLES

A main table contains the primary information about a business object,
such as a product, customer, employee, or supplier. By convention,
MDM refers to a repository’s default main table as the Products table.
This is a flat table whose fields are common to all products.

For each field in a main table, you must determine how its data should
be represented and what data type should be used. This consideration
encompasses how to store the data (as numeric values – integers or
real numbers – currency, text, images, and so on), whether the field
should be single-valued or multi-valued, and whether the field’s values
should be entered manually (a normal field), selected from a list of legal
values (a lookup field), or included in private subrecords of related
information (a tuple field).

A typical Products table might include the following fields:

• Item Number

• Product Name

• Price

• Description

• Category

• Manufacturer

If other descriptive information such as “pipe size” and “paint color”
happen to apply to all products in your MDM repository, then they, too,
would be candidates for fields in the Products table. However, if “pipe
size” and “paint color” are qualities that exist for only some products,
then they should be defined as attributes of a taxonomy table and
associated with the appropriate product categories.

Thus, the process of determining what information should be
represented as fields in the Products table entails sorting out what
information should be represented as attributes, as well as the product
categories with which each of the attributes should be associated. This
category and attribute information is stored in a taxonomy table.

MDM Console Reference Guide 59

Once you have determined the fields of the main table and the attributes
of the taxonomy table (which can be defined later and continuously
refined over time), you must then determine the set of additional
“support” tables you will need, including flat, hierarchy, taxonomy, and
qualified lookup tables, along with object tables and tuple definitions.

NOTE ►► Each lookup field in the main table can become a

searchable dimension of the MDM repository.

NOTE ►► Each nested lookup field in a lookup table also becomes a

searchable dimension of the repository.

DATA INTEGRITY ►► When you create any kind of lookup field,

MDM automatically creates implicit primary key and foreign key

matching fields within each of the two tables (the table that contains
the lookup field and the lookup table itself), defining the many-to-one

“join” relationship and maintaining referential integrity behind the
scenes. The matching fields are hidden, while the value of the lookup

field is the value(s) of the display field(s) of the lookup table record.

Multiple Main Tables

Recall that previous versions of MDM allowed each repository to have
just a single main table. This meant that multiple repositories were
necessary to store multiple objects, where each repository contained its
own duplicate copy of common reference data and it was difficult if not
impossible to link records across repositories, as shown in Figure 9.

Supplier repository: Customer repository:

 Suppliers ↔ Customers

 ▼ ▼

 Countries Countries

Figure 9. Multiple repositories with one object per repository

By contrast, MDM 7.1 allows each repository to contain as many main
tables as necessary, so that multiple business objects (e.g. Suppliers
and Products) can reside in a single repository.

As illustrated by Figure 10, multiple main tables within a single
repository has two primary benefits:

• Shared reference data. Business objects can share access to

common lookup data (e.g. Customers + Suppliers Countries).

• Object cross references. Business objects can reference each
other using a Lookup [Main] field type (e.g. Customers Suppliers).

60 MDM Console Reference Guide

Multi-object repository:

 Suppliers ◄► Customers

 ▼ ▼

 Countries

Figure 10. Single repository with multiple objects

NOTE ►► Multiple main tables – and the corresponding ability to
store data about multiple objects within a single repository – eliminates

an entire class of “phantom” MDM requirements around the challenges

of cross-repository integration, including cross-repository references,

validations, and exchange of common reference data.

Lookup [Main] Field Type

Lookup [Main] fields allow you to lookup data from a main table into
another main table.

This has several benefits:

• Object cross references. Coupled with multiple main tables, objects

can now reference each other (e.g. Customers Suppliers).

• Object self-references. Objects can also recursively reference
themselves (e.g. Employees Employees).

NOTE ►► MDM features a data entry control for entering data into a

Lookup [Main] field (see the MDM Data Manager Reference Guide for

more information).

NOTE ►► Lookup [Main] fields are like Lookup [Flat] references to
lookup subtables, but without pick lists for data entry and search (since

the number of records in a main table is likely to be substantially

greater than the number of records in a lookup table).

MDM Console Reference Guide 61

FLAT AND HIERARCHY LOOKUP TABLES

A lookup table is used to store values that are shared by many records
in other tables, and also to act as a valid table that defines the set of
legal values of the corresponding lookup field for data entry and search.
For example, a single manufacturer is typically associated with many
product records. By storing manufacturer data in a lookup table, you can
edit the single copy of a manufacturer’s data to immediately update all
records that reference it. At the same time, by defining a lookup field
into the manufacturers table, you can constrain the set of legal values of
the lookup field to the corresponding set of values for manufacturer in
the manufacturers table.

For simple lookup tables, you need to decide whether the lookup values
should be stored in a flat table or a hierarchical table, and what subtable
fields are needed to store the additional information about each
subtable record. For example, the Manufacturer field in the Products
table typically should be a lookup field, with the Manufacturer data
stored in a lookup table. Furthermore, the Manufacturers lookup table
should be hierarchical if, for example, you need to accommodate
company divisions.

TIP ►► SAP recommends using the singular for lookup field names

(“Manufacturer”) and the plural for table names (“Manufacturers”).

TIP ►► A hierarchy lookup table is useful even when it is flat (i.e. only

leaf nodes below the root), because it stores the ordered sequence of
sibling records, allowing you to override the unordered sequence of

values in a f lat table and instead put the values in a fixed order.

DATA INTEGRITY ►► For proper organization of the records within
an MDM repository, a hierarchy lookup field can normally be assigned

only to the value of a leaf node in the hierarchy.

NOTE ►► MDM supports hierarchies with unlimited number of

parent/child levels.

TAXONOMY LOOKUP TABLES

Product categories and subcategories, along with the attributes
associated with them, are represented in an MDM repository as a
hierarchy in a taxonomy table. A taxonomy table is a special kind of
lookup table that provides support not only for a hierarchy of category
and subcategory records, but also for category-specific attributes that
can be assigned to each category on a category-by-category basis.

By convention MDM often refers to this table as the Categories table.
Every product should belong to a category.

62 MDM Console Reference Guide

NOTE ►► A product can belong to at most one leaf-node category.

Whereas the taxonomy table itself and the fields of each of its records
are created and defined in MDM Console, the hierarchy of product
categories and their associated category-specific attributes are created
and managed using MDM Data Manager in Taxonomy mode.

NOTE ►► MDM supports multiple simultaneous taxonomies within a

single MDM repository.

NOTE ►► In repositories with multiple main tables, MDM does not

permit Lookup [Taxonomy] fields in different main tables to look into

the same taxonomy table.

DATA INTEGRITY ►► For proper organization of the records within

an MDM repository, a taxonomy lookup field can normally be assigned

only to the value of a leaf node in the hierarchy.

QUALIFIED LOOKUP TABLES

A qualified table is a special kind of lookup table that is extremely
versatile. It can be used to efficiently store complex relationships
between a main table product record and one or more lookup table
records that contain various types of additional information.

A qualified table stores a set of lookup records, and also supports
qualifiers, database “subfields” that apply not to the qualified table
record by itself, but rather to each association of a qualified table record
with a main table record.

NOTE ►► An MDM repository can have multiple qualified tables.

The recommended structure of the qualified table varies depending on
the number of qualified table fields that represent lookup values to the
main table, as follows:

• Two or more. Make each a single-valued lookup field of the qualified
table and define fields whose values are different for each main table
record as qualifiers. The qualified table will contain a record for each
combination of lookup values, and will support multi-level search-
within-a-search in the qualified lookup search tab in the main table.

• Exactly one. Make it a non-lookup field of the qualified table and
define the other fields as qualifiers. The qualified table will contain a
record for each lookup value, and will support single-level drilldown
search in the qualified lookup search tab in the main table.

MDM Console Reference Guide 63

• None. Define a dummy non-lookup field in the qualified table, define
all the other fields as qualifiers, and do not make the dummy field a
display field. The qualified table will contain a single dummy record
(making it memory efficient) that links to the qualifier values, which
will contain the actual subtable information. This approach provides
no lookup value selection when specifying the values for the qualified
lookup field during data entry, and no validation against subtable
values or records, because all the information is stored as qualifiers.

NOTE ►► Since a qualified table with no lookups cannot support

either multi-level search-within-a-search nor single-level drilldown
search in the qualified lookup search tab anyway, a parent/child

(main/subtable) product relationship is usually a better approach in this
case. The subtable will store the complete records of additional

information (e.g. cross-reference part numbers) that are related to
main table product records. This approach also provides no lookup

value selection when defining relationships during data entry, but does
provide full validation against existing subtable values and records,

and establishes the traditional one-to-many relationship between main

table records and subtable records (see “Lookup and Non-Lookup

Subtables – A Comparison”).

Qualified tables offer self-configuring, out-of-the-box support for:

• Multiple prices (including quantity price breaks)

• Cross-reference part numbers

• Other distributor-, supplier-, and customer-specific information

• Product applications for application-based search

Each of the different uses of a qualified table is described in the
following sections.

Multiple Prices and Cross-Reference Part Numbers

A normal flat or hierarchy lookup table is effective for a single multi-
valued lookup field when: (1) the lookup table contains a relatively small
number of records compared to the main table; and (2) the lookup table
records themselves are standard for every main table record and
represent a predefined and relatively fixed set of lookup values, such as
a lookup into a list of legal manufacturer names.

However, a qualified table is necessary when the number of lookup
table records would otherwise be very large, because each main table
record is related not just to the predefined lookup values of the lookup
table records but also to one or more additional fields of information that
are different for every main table record (such as quantity price breaks,
multiple prices for different divisions, regions, or trading partners, or
cross-reference part numbers for different distributors or contract
customers).

64 MDM Console Reference Guide

In these cases, the fields whose values are different for each main table
record should be defined as qualifier fields of the qualified table; the
qualified table will then contain an actual record for each of the
predefined lookup values or value combinations (such as distributor,
contract customer, division, region, or trading partner).

NOTE ►► A qualified table used for multiple prices, cross-reference

part numbers, or other distributor-specific information usually contains

few, if any, lookup fields and multiple qualifiers.

NOTE ►► Qualified table records also provide a way to store

additional distributor/supplier/customer-specific information for each of

multiple distributors/suppliers/customers for each main table record.

NOTE ►► In practice, the use of qualifiers and a qualified table
instead of normal fields and a subtable keeps the number of actual

records in the qualified table very small, but since every link between a
main table record and an instance of a qualified table record contains

additional information, the number of qualified link table records
necessary to store the additional information is very large, often larger

than the number of records in the main table itself.

When used for multiple prices or cross reference part numbers, qualified
tables and qualifiers allow you to store a massive amount of potentially
sparse data, by eliminating n fields from the main table and replacing
them with a single qualified lookup field into a qualified table that has n
corresponding records and one or more qualifiers. For example, n price
fields, one for each distributor or quantity price break (or worse, each
distributor / quantity price break combination) can be replaced with n
qualified table records, one for each distributor / quantity price
combination, and a qualifier for the price.

Consider first the main table of product records shown in Figure 11 that
contains sparse quantity pricing data for each product.

SKU Name 1-9 1-24 1-49 10-24 25-49 50-99

113 Widget $3.51 $3.48 $3.44 $3.40

114 Wrench $8.75 $8.30 $7.99

115 Bearing $5.12 $4.80

Figure 11. Sparse pricing data using normal fields

MDM Console Reference Guide 65

Using a qualifier to store the quantity pricing data, the qualified table
would have a single field Quantity and a single qualifier Price, and
would contain the quantity records shown in Figure 12.

Pricing:

Quantity [Price]

1-9

1-24

1-49

10-24

25-49

50-99

Figure 12. Qualified table with valid quantity records

A qualified lookup field in the main table would replace all of the quantity
price fields, and the pricing data would be stored as qualifier values
associated with main table / qualified table links, as shown in Figure 13.

SKU Name Lookup [Pricing]

113 Widget 1-9; $3.51

 10-24; $3.48

 25-49; $.344

 50-99; $3.40

114 Wrench 1-24; $8.75

 25-49; $8.30

 50-99; $7.99

115 Bearing 1-49; $5.12

 50-99; $4.80

Figure 13. Sparse fields replaced by qualified lookup field

NOTE ►► A main table / qualified table link is created only for those

product/quantity combinations for which a price value actually exists.

Now consider the main table of product records shown in Figure 14 that
contains one or more cross-reference part numbers for each product.

SKU Name Grainger McMaster Applied Newark

213 Gear G-408 A4Y-227

215 Sprocket 45-680 MA-215 A4Y-285

Figure 14. Cross-reference part numbers using normal fields

66 MDM Console Reference Guide

Using a qualifier to store the cross-reference part number data, the
qualified table would have a single field Distributor and a single qualifier
Part No, and would contain the distributor records shown in Figure 15.

Part Numbers:

Distributor [Part No]

Grainger

McMaster

Applied

Newark

Figure 15. Qualified table with valid distributor records

A qualified lookup field in the main table would replace all of the
distributor cross-reference part number fields, and the part number data
would be stored as qualifier values associated with main table / qualified
table links, as shown in Figure 16.

SKU Name Lookup [Part Numbers]

213 Gear Grainger; G-408

 Newark; A4Y-227

215 Sprocket McMaster; 45-680

 Applied; MA-215

 Newark; A4Y-285

Figure 16. Part number fields replaced by qualified lookup field

Finally, consider the main table of product records shown in Figure 17
that contains distributor-specific quantity pricing data for each product.

SKU Name Grainger/1 Grainger/10 Applied/1 Applied/25

213 Gear $3.51 $3.28 $3.49 $2.99

215 Sprocket $5.01 $4.80 $5.04 $4.81

Figure 17. Distributor-specific quantity pricing data using normal fields

MDM Console Reference Guide 67

Using a qualifier to store the distributor-specific pricing data, the
qualified table would now have fields Distributor and Quantity and the
qualifier Price, and would contain the records shown in Figure 18.

Pricing:

Distributor Quantity [Price]

Grainger 1

Grainger 10

Applied 1

Applied 25

Figure 18. Qualified table with valid distributor/quantity records

A qualified lookup field in the main table would replace all of the price
fields, and the pricing data would be stored as qualifier values
associated with main table / qualified table links, as shown in Figure 19.

SKU Name Lookup [Pricing]

213 Gear Grainger; 1; $3.51

 Grainger; 10; $4.28

 Applied; 1; $3.49

 Applied; 25; $2.99

215 Sprocket Grainger; 1; $5.01

 Grainger; 10; $4.80

 Applied; 1; $5.04

 Applied; 25; $4.81

Figure 19. Pricing fields replaced by qualified lookup fields

NOTE ►► Each qualified table field that becomes a qualifier reduces
the level of validation by reducing the number of qualifier table records

and associated set of valid value combinations. For example, in the
example above, Price is the only qualifier, so only Distributor/Quantity

combinations that exist among the four records of the qualified table
are valid. By contrast, if Quantity were also a qualifier, the qualified

table would have just two records – one for each Distributor – and the

price for any quantity for a valid Distributor would be valid.

These examples illustrate just a flavor of the power of qualifiers and
qualified tables. As you can see, the use of qualifiers offers a great deal
of flexibility when it comes to restructuring data for more efficient
storage and searching within an MDM repository.

68 MDM Console Reference Guide

NOTE ►► When used to store entire records of distributor-, supplier-,

or customer-specific information, qualified tables and qualifiers
complement and extend the virtual subset repository capability offered

by product masks, allowing the virtual repository associated with each
mask to become a custom virtual repository that contains additional

custom information for each product record.

Product Applications and Application-Based Search

A product application is a particular use of a product. Applications are
especially important in certain industries where application-driven
product selection is the traditional way to locate products.

With qualified lookup tables, the MDM system features a new data
model for product applications that replaces the traditional application-
centric view (consisting of a single table of applications) with a product-
centric view (consisting of both a main table of products and a qualified
table of applications).

In an MDM repository, the list of generic applications is stored in a
qualified table, which can itself contain multiple lookup fields for multi -
level search-within-a-search from the main table. You can also flag any
field of the qualified table to be an application-specific qualifier (subject
to the restrictions on qualifier field type). A qualifier applies not to the
qualified table record by itself, but rather to the association of the
qualified table record with a main table record.

Each record in the qualified table defines a single unqualified application
of a product in the main table; the complete set of qualified table records
together comprise the entire universe of valid unqualified applications
for all of the products in the MDM repository.

Applications provide yet another way to locate products within a large
repository of complex product information, so that in addition to drill-
down search by manufacturer, category, attributes, keyword, and other
traditional criteria, you can also search for products by their application.

For example, in an MDM repository of automotive parts, each part may
be compatible with one or more vehicles; these vehicle specifications
represent the unqualified applications and appear in the qualified table
of valid vehicles (the valid table). You can then search for parts within
the repository by the various specifications of a vehicle, such as year,
make, model, engine type, and so on.

NOTE ►► A qualified table used for product applications usually

contains multiple lookup fields and multiple qualifiers.

When you link an unqualified application to a product (by assigning the
qualified table record to the value of a qualified lookup field in the main
table), you can also assign a value to one or more application qualifiers.

MDM Console Reference Guide 69

A qualifier is an additional specification for that particular combination of
product and application that further defines the unqualified application.

NOTE ►► You can assign multiple instances of the same unqualified
application to a single product, where each instance has a different set

of qualifier values.

Consider the multiple main table records shown in Figure 20 that store
application data for just a single automotive part using normal fields.

Part No Year Make Model CA Equip A/C P/B

A2-444 1998 Toyota Celica Yes Yes Yes

A2-444 1998 Toyota Celica No Yes Yes

A2-444 1996 Toyota Celica No Yes Yes

A2-444 1998 Ford Mustang No Yes Yes

A2-444 1997 Ford Mustang No No No

Figure 20. Automotive part and application data using normal fields

Using qualifiers to store the additional application specifications, the
qualified table would have fields Year, Make, and Model, and the
qualifiers CA Equip, A/C, and P/B, and for the applications above, would
contain the records shown in Figure 21.

Vehicles:

Year Make Model [CA Equip] [A/C] [P/B]

1998 Toyota Celica

1996 Toyota Celica

1998 Ford Mustang

1997 Ford Mustang

Figure 21. Qualified table with valid vehicle records

A qualified lookup field in the main table would replace all of the vehicle
specification fields, and the application specifications would be stored
as qualifier values associated with main table / qualified table links,
resulting in the single main table record shown in Figure 22.

70 MDM Console Reference Guide

Part No Lookup [Vehicles]

A2-444 1998; Toyota; Celica; Yes; Yes; Yes

 1998; Toyota; Celica; No; Yes; Yes

 1996; Toyota; Celica; No; Yes; Yes

 1998; Ford; Mustang; No; Yes; Yes

 1997; Ford; Mustang; No; No; No

Figure 22. Vehicle specification fields replaced by qualified lookup field

DATA INTEGRITY ►► Using qualifiers to distinguish between

different uses of the same unqualified application: (1) eliminates the
need to enumerate every distinct value combination of fields and

qualifiers taken together; (2) in so doing, dramatically reduces the

number of distinct records in the qualified table, making it more useful
as a valid table of legal lookup values; and (3) avoids a tremendous

amount of data duplication, especially when rich content (such as

images, text blocks, and PDFs) is added to each qualified table record.

DATA INTEGRITY ►► This innovative data model has the following

advantages: (1) it completely eliminates all duplication of both product

data and application data typical of previous systems; (2) it efficiently
enforces validation against the table of qualified table records; (3) it

dramatically reduces memory and storage requirements; and (4) it is
radically more efficient for maintenance and searching. For example,

an automotive parts catalog that historically contained over twenty
million application records is represented within an MDM repository

with just over one million part records and forty thousand vehicle

specification records.

VALID TABLES AND NESTED LOOKUPS-WITHIN-LOOKUPS

Each of the flat, hierarchy, taxonomy, and qualified lookup table types
acts as a valid table that defines the set of legal values of the
corresponding lookup field for data entry and search.

Moreover, lookup fields can appear not only in the main table but also
within the lookup tables themselves, such as when the Manufacturer
field in the main table is a lookup into the Manufacturers table of legal
manufacturer names, and the State field in the Manufacturers table is in
turn a lookup into the States table of legal two-letter state abbreviations.

NOTE ►► Recall that each lookup field in the main table can appear
in MDM Data Manager as a search tab in the Search Parameters pane

in Record mode, and that each nested lookup field in a lookup table
appears within the search tab for the main table lookup field, for multi-

level search-within-a-search.

MDM Console Reference Guide 71

DATA INTEGRITY ►► A lookup field with just a single nested lookup

that is the only display field does not require multi -level search-within-
a-search (since the set of nested lookup values and the set of lookup

values is identical) and allows you to use a single nested lookup table

to contain the shared set of legal values for more than one lookup field.

A data entry validation problem arises when the main table contains
multiple lookup fields that are related and must be restricted to specific
value combinations, since the legal value lists offered by individual
lookup fields cannot enforce the selection of legal value combinations
across the multiple lookup fields.

A more serious problem – one of inaccurate data representation within
the repository rather than simply inadequate data entry validation –
arises when the main table contains multiple multi-valued lookup fields,
since even with careful data entry to avoid the validation problem, each
main table record will define all of the value combinations among the
multiple values of each of the multiple lookup fields rather than specific
value combinations.

In both cases, the solution is to: (1) make each of the multiple lookup
fields of the main table a single-valued lookup field of a lookup table,
which becomes the valid table whose records will define each valid
combination of values for the multiple lookup fields; (2) make each of
the lookup table lookup fields a display field; and (3) create a single
corresponding lookup field into the lookup table in the main table. Each
individual value combination represented by a record of the lookup table
can then be explicitly selected as a value for the main table lookup field
during data entry, eliminating both the data entry validation problem
and, when the main table lookup field is multi-valued, the data
representation problem as well.

72 MDM Console Reference Guide

LOOKUP AND NON-LOOKUP SUBTABLES – A COMPARISON

All lookup tables in an MDM repository are subtables, but not all
subtables are used as lookup tables. There are a number of subtle
differences among the different types of lookup tables, as well as
subtables that are not used for lookups, as described below:

• Flat, hierarchy, or taxonomy lookup tables. A flat, hierarchy, or
taxonomy lookup table typically contains a relatively small number of
lookup records compared to the number of main table records. It is
used as a valid table that facilitates data entry and drilldown search,
where each lookup table record represents a valid lookup value from
which the user can select directly, and the list of lookup values can
be limited by main table search results. A flat, hierarchy, or taxonomy
lookup table provides full validation against lookup table values and
records, since all of the subtable information is stored in the records
of the lookup table. The relationship between main table records and
flat, hierarchy, or taxonomy lookup table records is typically many-to-
one (or perhaps many-to-few, if the lookup field is multi-valued).

• Qualified lookup tables. A qualified lookup table typically contains a
much larger number of lookup records compared to a flat, hierarchy,
or taxonomy lookup table, but still much smaller than the number of
main table records. It too is used as a valid table that facilitates data
entry and drilldown search, where each lookup table record often
represents a valid combination of nested lookup values from which
the user can select directly, or indirectly using the multi-level search-
within-a-search of a qualified lookup search tab; however, a qualified
table provides only partial validation against lookup table values and
records, since some of the subtable information is stored as
qualifiers. The relationship between main table records and qualified
table records is typically many-to-many.

NOTE ►► Unlike the number of qualified table records, the number of

qualified link table records (where each record corresponds to a main
table record / qualified table record link) is typically much larger than

the number of main table records, and the relationship between

qualified table records and qualified link table records is one-to-many.
The use of qualifiers creates a two-level relationship (from main table

to qualified table to qualified link table) that eliminates data duplication
and dramatically reduces the number of qualified table records, making

the qualified table more usable as a searchable lookup table.

MDM Console Reference Guide 73

• Non-lookup subtables. A flat or hierarchy subtable that is not used
as a lookup table but rather as the subtable in a parent/child product
relationship (e.g. for the parts records in a “kits and parts” product
relationship or for cross-reference part numbers) typically contains a
much larger number of records than the main table, and a typical
subtable record is referenced only once. The subtable does not
define valid lookup values for data entry, is too large to facilitate
drilldown search, and its values do not need to be limited by the main
table search results; instead, it is typically used to establish the
traditional one-to-many relationship between main table records and
subtable records (or alternatively, a one-to-many relationship
between subtable records and main table records if the parent/child
relationship is from subtable to main table).

The relationships between records in the main table, lookup tables, and
non-lookup subtables – and the relative number of records in each for a
hypothetical MDM repository – are summarized in Table 9.

TIP ►► In practice, an MDM repository can often represent the same

subtable information using either a qualified table or a parent/child

product relationship, each with slightly different effect; choosing the
right structure depends on how you intend to search the MDM

repository. For example, if: (1) the subtable records have one or more
lookups fields; (2) a portion of the subtable records consists of values

that are shared by the main table records while another portion
consists of values that are different for each main table / subtable

record link; or (3) you want MDM to limit main table product records
using drilldown search against the subtable records, then use a

qualified table (which reduces the number of subtable records through

the use of qualifiers). Alternatively, if the number of subtable records is
very large (larger than the number of main table records), and full

validation against all of the subtable record values is important, then

use a parent/child product relationship.

74 MDM Console Reference Guide

Table 9. Lookup and Non-Lookup Subtable Examples

Example Table Type Main-to-Subtable # of Records

Products Main Table n/a 1,000,000

Countries of Origin Flat Lookup Many-to-one 100

Manufacturers Hierarchy Lookup Many-to-one 2,500

Categories Taxonomy Lookup Many-to-one 5,000

Vehicle Specifications Qualified Lookup Many-to-many 50,000

Vehicle Qualifiers Qualifier One-to-many 20,000,000

Distributors Qualified Lookup Many-to-many 5

Distributor Prices Qualifier One-to-many 2,500,000

Quantity Price Breaks Qualified Lookup Many-to-many 50

Quantity Prices Qualifier One-to-many 5,000,000

Parts (parent/child) Non-Lookup Subtable One-to-many 5,000,000

x-Ref Part Numbers Non-Lookup Subtable One-to-many 2,500,000

OBJECT TABLES

An MDM repository can include very rich content, such as images, text
blocks, and PDFs. Images can be used to create a more visual
experience, and can be associated with product records, categories,
manufacturers, attributes, and even attribute text values. Text blocks
can be used to store descriptions, marketing text, and bullets. And
PDFs can be used to store PDF documents such as marketing
brochures, specification sheets, MSDS information, and so on.

In an MDM repository, these types of “objects” are stored in object
tables of the corresponding type. Using an object table allows a single
copy of an object to be associated with multiple records. For example, a
single image may be linked to several product records within a category,
and also to the category itself. Moreover, any change to the object, such
as an edit to a text block, needs to be made only once and is
immediately reflected in all the associated records.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the single instance of each object table.

NOTE ►► You cannot add fields to object tables. Instead, object

tables have a predefined and fixed set of fields, as listed in Table 10.

MDM Console Reference Guide 75

Table 10. Predefined Object Table Fields

Property T
a

b
le

B
in

a
ry

 O
b

je
c
ts

C
o

p
y
 B

lo
c
k
s

Im
a

g
e

s

P
D

F
s

S
o

u
n

d
s

T
e

x
t
B

lo
c
k
s

T
e

x
t
H

T
M

L
s

V
id

e
o

s

Object1 ● ● ● ● ● ● ● ●

Name ● ● ● ● ●

Code ● ● ● ● ● ● ● ●

Description ● ● ● ● ● ● ● ●

Data Group ● ● ● ● ● ● ● ●

Print Size ●

Original Name ● ● ● ● ●

Source ● ● ● ● ●

Original in Repository ● ● ● ● ●

Width ●

Height ●

Format ●

Rotation ●

Cropping ●

CRC of Original ●

Has Thumbnail ●

Is Vector ●

Data Size ● ● ● ● ● ● ● ●

Has Clipping Path2 ●

Resolution ●

1 Object is the object type of the table (e.g. Image, Text Block).
2 Clipping paths are supported for EPS and PSD file formats only.

SPECIAL TABLES

Finally, an MDM repository also includes support for several special and
system tables that do not contain traditional fields within the table and/or
records within the repository, but rather define additional repository
elements and structure, as shown in Table 11.

76 MDM Console Reference Guide

Table 11. Structure Types Defined by the Special and System Tables

Table Type of Structure

Image

Variants

Image variant records consist of a predefined set of fields

and are user-created in MDM Console. Each record defines
a particular image variant, including the image size, color

space, output format, cropping, borders, watermarks,
Digimarcs, and so on. An image variant is a different version

of the original image based on the specs you define for
different publishing purposes. Each image variant is

generated automatically by MDM; the original image is

never modified.

Families1

Family records consist of user-defined fields and are

automatically created and maintained by MDM based on

specifications provided for the Family Hierarchy in Family
mode within MDM Data Manager. Each family corresponds

to a single leaf-node record in the Family Hierarchy. In
addition to storing family data for the family in each of the

fields you specify for the table, each leaf node family record
automatically contains the set of like main table product

records that are members of the family. The family structure

allows you to associate family data once with the family

rather than with each individual product within the family.

Relationships

Relationship records consist of a predefined set of fields and

are user-created in MDM Console. Each record defines a
particular product-level relationship, chosen from among

several different basic structural relationship types. Each
type of relationship (e.g. parent/child) corresponds to a real-

world product relationship (e.g. assemblies and

components). For each relationship defined in MDM
Console, you specify the related products and/or non-

products for each main table product in Record mode within

MDM Data Manager.

Data Groups

Data group records are user-created within MDM Data

Manager using the Edit Data Groups command. Each leaf-

node record is used to break the set of objects in the MDM

repository into manageable subgroups.

IMAGE VARIANTS TABLE

The Image Variants table is a special table with a predefined set of
fields, and records that appear in the top-right Image Variants pane of
MDM Console. Each record that you add in MDM Console defines a
particular image variant, including the image size, color space, output
format, cropping, borders, watermarks, Digimarcs, and so on. An image
variant is a different version of the original image based on the
specifications you define for different publishing purposes. Each image
variant is generated based on the original, which is never modified.

MDM Console Reference Guide 77

TIP ►► You can add, modify, and delete image variants just like the

fields of a normal table.

DATA INTEGRITY ►► Image variants allow you to define different

versions of each image for different publishing purposes without ever

modifying the original image.

A variant defines the structure of the image but does not specify if the
variant is actually required for a particular image. Instead, each image

lookup field in the repository has a Variants property that allows you to
associate one or more variants with the image lookup field, and in so
doing, identify which variants should be generated when an image is
associated with that particular field.

NOTE ►► When you create a new variant, you only define a template

for how to generate it, but you do not actually create the “bucket” in

which to store the variant until you use the Variants property of an

image lookup field to associate it with that image lookup field.

When you import an image: (1) the original is loaded and stored in the
MDM repository and serves as the starting point for any image
processing; and (2) a thumbnail is created to serve as a proxy for the
original image (primarily for use in MDM clients). If you crop/rotate an
image, MDM stores the crop/rotate settings for the image and uses
them to immediately generate a new thumbnail to replace the old one.
For each variant, all the images associated with that variant will be
generated according to the specifications of the variant and the
crop/rotate settings stored for that image. MDM tracks the changes to
the variant definitions, the variant associations, each image, and the
crop/rotate settings for each image, and thus know when the variants
need to be regenerated.

The properties for each image variant are listed in Table 12; all of the
properties applicable to each format are directly editable in the Variant
Detail pane.

NOTE ►► Not all of the variant properties apply to all image formats;

only the common properties appear as columns in the Variants grid.

NOTE ►► The available choices for the Color Space property are

dependent upon the current selection for the Output Format property,

as shown in Table 13.

78 MDM Console Reference Guide

Table 12. Image Variant Properties

Property Description

Name

The variant name (text string).

▪ Original variant = Original; Thumbnail variant =

Thumbnail

Code The image variant code.

Scale Should the original image be scaled (Yes/No)?

 Width The maximum width of the scaled variant (integer value).

 Height The maximum height of the scaled variant (integer value).

Interchangeable
Are the height and width interchangeable (Yes/No)?

 Vector Image

How to handle a vector image when generating the variant:

▪ Rasterize

▪ Copy Vector

▪ Original variant = Original; Thumbnail variant = Rasterize

Output Format

The output format of the variant:

▪ Web Optimized [JPEG or GIF based on palette for each

image]
▪ BMP

▪ GIF

▪ PNG

▪ TIFF

▪ JPEG

▪ EPS

▪ Original variant = Original; Thumbnail variant = JPEG

 Quality*

The quality of a Web Optimized variant in the JPEG format

or a JPEG variant (integer value between 0 and 100).

▪ Output Format = Web Optimized or JPEG only

 BMP

Subformat*

The subformat of a BMP variant:

▪ 16M Colors

▪ 256 Colors

▪ 256 Colors RLE

▪ 16 Colors
▪ 16 Colors RLE

▪ Monochrome Custom

▪ Output Format = BMP only

 Interlaced*
Is a GIF variant interlaced (Yes/No)?

▪ Output Format = GIF only

MDM Console Reference Guide 79

Property Description

 Progressive*
Is a PNG variant progressive (Yes/No)?

▪ Output Format = PNG only

 Compression

 Filter*

The compression filter (integer value between 0 and 4).

▪ Output Format = PNG only

 Zlib Level*
The ZLib level (integer value between 1 and 9).

▪ Output Format = PNG only

 TIFF

Subformat*

The subformat of a TIFF variant:

▪ LZW

▪ Uncompressed

▪ Fax CTTI Group 3

▪ Fax CTTI Group 4

▪ Output Format = TIFF only

 DPI*
The dots per inch of a TIFF variant (integer value).

▪ Output Format = TIFF only

 Progressive*

Is a JPEG variant progressive (Yes/No)?

▪ Output Format = JPEG only

▪ Automatically set to Yes for the Web Optimized format

 Quality*

The quality of a JPEG variant (integer value between 0 and

100).

▪ Output Format = JPEG only

 EPS

Subformat*

The subformat of an EPS variant:

▪ Binary

▪ JPEG

▪ Output Format = EPS only

Color Space

The color space of the variant:

▪ RGB

▪ CMYK
▪ Grayscale

▪ Black & White
▪ Lab

▪ Original variant = Original

80 MDM Console Reference Guide

Property Description

 Palette Type*

The palette type for the variant:

▪ Optimized
▪ Macintosh

▪ Web

▪ Windows

▪ Adaptive

▪ Exact

▪ Perceptual
▪ Selective

▪ Uniform

▪ Custom

▪ Color Mode = RGB Indexed only

 Custom

 Palette*

The file containing a custom palette (file Open dialog).

▪ Palette Type = Custom only

 Color

Reduction

 Method*

The color reduction method for the variant:

▪ Optimized

▪ Nearest color
▪ Ordered dither

▪ Error diffusion (Burkes)

▪ Error diffusion (Floyd-Steinberg)

▪ Error diffusion (Stucki)

▪ Color Mode = RGB Indexed only

 ICC Profile*
The file containing an ICC profile (file Open dialog).

▪ Color Mode = CMYK or Lab Color

Gamma

Correction
The gamma correction (real value between 0.20 and 5.00).

Rotation

Should the variant be rotated, and if so, how:

▪ Custom

▪ None
▪ 90° CW

▪ 90° CCW

▪ 180°

▪ Mirrored

▪ 90° CW Mirrored
▪ 90° CCW Mirrored

▪ 180° Mirrored

▪ Original variant = None; Thumbnail variant = Custom

▪ Overrides rotation set for each image unless set to

Custom

MDM Console Reference Guide 81

Property Description

Cropping

Should the variant be cropped, and if so, how:

▪ Custom
▪ None

▪ Pixels

▪ Percent

▪ Clipping Path Bounding Box

▪ Original variant = None; Thumbnail variant = Custom

▪ Overrides crop set for each image unless set to Custom

▪ Clipping Path Bounding Box uses the bounding box of
the image’s selected clipping path; if there is no

selected clipping path, no cropping is done.

 Left*

The amount to crop off the left border of the original image:

▪ an integer value in pixels (Cropping = Pixels)

▪ a real value from 0.00 and 100.00 percent (Cropping =

Percent)

▪ Cropping <> Clipping Path Bounding Box

 Right*

The amount to crop off the right border of the original

image:

▪ an integer value in pixels (Cropping = Pixels)

▪ a real value from 0.00 and 100.00 percent (Cropping =

Percent)

▪ Cropping <> Clipping Path Bounding Box

 Top*

The amount to crop off the top border of the original image:

▪ an integer value in pixels (Cropping = Pixels)

▪ a real value from 0.00 and 100.00 percent (Cropping =

Percent)

▪ Cropping <> Clipping Path Bounding Box

 Bottom*

The amount to crop off the bottom border of the original

image:

▪ an integer value in pixels (Cropping = Pixels)

▪ a real value from 0.00 and 100.00 percent (Cropping =

Percent)

▪ Cropping <> Clipping Path Bounding Box

 Clipping Type*

The type of clipping path cropping:

▪ None – ignore clipping path

▪ Fill – area outside clipping path filled with

color
▪ Transparent – area outside clipping path

transparent

▪ Cropping = Clipping Path Bounding Box

▪ Output Format = GIF or PNG for Transparent

82 MDM Console Reference Guide

Property Description

 Matte Color*
The matte color (color picker dialog).

▪ Clipping Type = Fill or Transparent

Border Should a colored border be added to the variant (Yes/No)?

 Color* The color to add (Color picker dialog).

 Horizontal*
The number of pixels to color on the top and bottom

(integer value).

 Vertical*
The number of pixels to color on the left and right (integer

value).

Custom Script Whether to apply a custom Photoshop script (Yes/No)?

 Set Name*
Name of custom script set (also called Photoshop action

set).

 Script Name* Name of custom script (also called Photoshop action).

Watermark

Should a watermark be added to the variant (Yes/No)?

(enables Configure Watermark dialog [Add Watermark =

Yes]).

 Watermark

 Image*
The name of the watermark file (file Open dialog).

 Image

Weight*

The percentage weight of the image variant (integer value

between 0 and 100).

 Watermark

 Weight*

The percentage weight of the watermark file (integer value

between 0 and 100).

 Position*

The position of the watermark on the variant:

▪ Scaled and Centered

▪ Tiled

▪ Centered

▪ Left Edge

▪ Right Edge

▪ Top Edge
▪ Bottom Edge

▪ Top Left Corner

▪ Top Right Corner

▪ Bottom Left Corner

▪ Bottom Right Corner

 Method*

The method by which the pixels of the watermark image
are combined with the pixels of the image to which it is

being applied:

▪ Lighten – lighten the image where the watermark is

applied

▪ Darken – darken the image where the watermark is

applied

MDM Console Reference Guide 83

Property Description

 Threshold

 Direction*

The method by which the pixels of the watermark image

are combined with the pixels of the image to which it is

being applied:

▪ > – lighten the image where the watermark is applied

▪ < – darken the image where the watermark is applied

 Threshold*
The percentage of density of the original image above or

below which the application of the watermark is triggered.

 Background*

The background color of the watermark image (not really

the background color but rather an indication of whether

the background is darker or lighter than the foreground):

▪ Light – for light-colored backgrounds (ideally white)

▪ Dark – for dark-colored backgrounds (ideally black)

Digimarc Should a Digimarc be added to the variant (Yes/No)?

 Year 1*

The start year of the Digimarc notice (4-digit integer

between 1922 and the current year).

▪ Cannot be None if Year 2 is specified

 Year 2*
The end year of the Digimarc notice (4-digit integer

between 1922 and the current year).

 Durability*

The extent to which the Digimarc will remain intact after
additional image processing (high durability results in

higher distortion):

▪ Low

▪ Medium

▪ High

▪ Highest

 Target

Output*

The intended usage of the image:

▪ Monitor

▪ Print

▪ Web

 Content*

A flag to indicate the type of image:

▪ Adult

▪ Normal

 Usage*

A flag to indicate permission for others to use the image:

▪ Not Restricted

▪ Restricted

 Replace URL* (Yes/No)?

* Not visible in Variant Detail pane unless property applies to setting of parent property.

84 MDM Console Reference Guide

Table 13. Available Color Spaces for Each Output Format

Color Space O
u

tp
u

t
F

o
rm

a
t

W
e
b
 O

p
ti
m

iz
e
d

B
M

P

G
IF

P
N

G

T
IF

F
 /

 L
Z

W

T
IF

F
 /

 U
n
c
o
m

p
re

ss
e
d

T
IF

F
 /

 F
A

X
 C

T
T
I

G
ro

u
p
 3

T
IF

F
 /

 F
A

X
 C

T
T
I

G
ro

u
p
 4

JP
E
G

E
P
S
 /

 B
in

a
ry

E
P
S
 /

 J
P
E
G

RGB ● ● ● ● ● ● ● ● ●

CMYK ● ● ● ● ●

Grayscale ● ● ● ● ● ● ● ● ●

Black & White ● ● ● ● ● ● ● ● ●

Lab ● ● ●

NOTE ►► The image processing sequence is: (1) orient (rotate and

mirror); (2) crop; (3) clip out background; (4) scale to desired size (less
added borders); (5) execute custom Photoshop script; (6) add

watermark; (7) add borders; (8) correct gamma; (9) add digimarc; (10)

convert to desired color space; and (11) write in desired format.

Configuring the Watermark

When you set the Add Watermark property to Yes, MDM Console makes
visible the subproperties associated with the watermark configuration –

Image Weight, Watermark Image, Watermark Weight, Position, Method,

and Background – each of which you must set to properly configure the

watermark.

MDM also enables access to the Configure Watermark dialog shown in
Figure 23 that allows you to set each of the subproperties as a group,
and to preview the effect of the settings you choose within the dialog by
applying the watermark image to a test image.

MDM Console Reference Guide 85

Figure 23. Configure Watermark dialog

TIP ►► To open the Configure Watermark dialog, click the “…”

(browse) button on the far right of the Add Watermark cell, to the right

of the open arrow.

FAMILIES TABLE

The Families table is a special table that contains family records. Like
the normal tables, family records consist of fields you specify within
MDM Console; however, the records themselves are created and
maintained automatically by MDM based on the specifications you
provide for the Family Hierarchy in MDM Data Manager in Family mode.

Each family corresponds to a single record in the Family Hierarchy. In
addition to storing family data for the family in each of the fields you
specify for the table, each leaf node family record stores the set of like
main table product records that are members of the family. The family
structure allows you to associate family data once with the family rather
than with each individual product within the family.

The Field Detail pane for the Families table includes an additional

property for the Family Field. This is the main table lookup field that will
be used as the primary partition of main table records into families. In a
Family Hierarchy, the Family Field is a taxonomy lookup field.

NOTE ►► When you first create a new MDM repository, MDM
automatically: (1) creates the Families table; and (2) sets the Family

Field to the Category taxonomy lookup field of the main table. To add
the Families table manually, there must be a taxonomy lookup field in

the main table that can be used as the Family Field (typically the

Category field).

NOTE ►► Only object lookup fields are valid Families table fields.

86 MDM Console Reference Guide

RELATIONSHIPS TABLE

The Relationships table is a special table with a predefined set of fields,
and records that that appear in the top-right Relationships pane of MDM
Console. Each record that you add in MDM Console defines a particular
product-level relationship, chosen from among several different basic
structural relationship types.

NOTE ►► A relationship defines the type of relationship but does not
specify any of the records that participate in that relationship. For each

relationship defined in MDM Console, you specify the related products

and/or non-products for each record in MDM Data Manager

TIP ►► You can add, modify, and delete product relationships just

like the fields of a normal table.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the Relationships table.

The properties for each relationship are listed in Table 14; all of the
properties applicable to each type are directly editable in the
Relationship Detail pane.

Table 14. Relationship Properties

Property Description

Position (Pos.) The display order of the relationship within the table ([n]).

Name The relationship name.

Code The relationship code.

Type

The relationship type:

▪ Parent/Child

▪ Sibling

 Name Is

For Parent/Child relationships, what the Name applies to:

▪ Parent

▪ Child

 Name 2 The second name for Parent/Child relationships.

 Has Position The child has a position value associated with it (Yes/No)?

 Has Required The record has a required value associated with it (Yes/No)?

 Has Quantity The record has a quantity value associated with it (Yes/No)?

 Parent Table The parent table for a Parent/Child relationship.

 Child Table The child table for a Parent/Child relationship.

MDM Console Reference Guide 87

NOTE ►► Not all of the properties apply to all relationship types;

however, all of them appear as columns in the Relationships grid.

Relationship Types

Each type of MDM relationship corresponds to a real-world relationship
between product records and/or non-product records, as summarized in
Table 15 and described in the following sections.

Table 15. Relationship Types

Type Table(s) Examples

Sibling Main
▪ Cross-sells (related products)

▪ Interchange products (all equivalent)

Parent/Chi

ld

Main/Main

▪ Assemblies and components (“SKU of

SKUS”)

▪ Up-sells

▪ Accessories

▪ Consumables

▪ Replacements

▪ Supercessions

▪ Interchange products (one preferred)

Main/Subtable
▪ Kits and parts (“SKU of non-SKUs”)

▪ Cross-reference part numbers

Subtable/Main
▪ Bundles (“non-SKU of SKUs”)

▪ Interchange product groups

Subtable/Subtable
▪ Parts and subparts (“kits of kits”)

▪ Bill of materials

Subtable1/Subtabl

e2
▪ Interchange part number groups

NOTE ►► The tables of a parent/child relationship can be of type

Main, Flat, Hierarchy, or Qualified (but not of type Taxonomy).

88 MDM Console Reference Guide

NOTE ►► An interchange is an alternate product that can be

substituted for a given product, both of which are main table product
records in the MDM repository. If the interchange product records are

all completely equivalent, use a sibling product relationship to
represent this information; if one of the group of interchange products

is the “preferred” product, use a parent/child relationship. By contrast,

a cross-reference is an alternate part number for a given product that
can be used to find the main table product record but that is not itself a

product record; use a parent/child relationship (main/subtable) to
represent this information. (When the cross-reference part numbers

come from a known set of alternate sources, you can instead use a
qualified table to represent this information, which improves the ability

to search by the cross reference part number information.)

NOTE ►► Category-level relationships are defined within MDM Data

Manager in Taxonomy mode using matching sets.

NOTE ►► Product-level relationships can be used to store not only
relationships between products but also between products and other

records of additional information, establishing the traditional one-to-
many relationship between main table records and subtable records.

(See “Lookup and Non-Lookup Subtables – A Comparison” for a

discussion of alternative MDM repository structures.)

Sibling vs. Parent/Child Relationships

MDM supports two basic types of product-level relationships:

• Sibling. A sibling relationship relates a group of main table product
records that are equivalent and/or interchangeable from some
merchandising or structural standpoint.

NOTE ►► Sibling relationships are symmetric. In other words, if A, B,
and C are in a single group of related sibling records, then A is related

to its siblings B and C, B is related to its siblings A and C, and C is

related to its siblings A and B.

• Parent/child. A parent/child relationship relates a group of records
that are not equivalent, where one of them is the parent, and the rest
of them are the children.

NOTE ►► Parent/child relationships are asymmetric. In other words,

if A, B, and C are in a group of related parent/child records and A is the

parent of B and C, then B is the child of A and the sibling of C, and C is

the child of A and the sibling of B.

Examples of sibling relationships include “cross-sells” and “interchange
products.” Examples of parent/child relationships include “assemblies
and components” and “kits and parts.”

MDM Console Reference Guide 89

Figure 24 illustrates both a sibling “cross-sells” relationship and an
“assemblies and components” parent/child relationship.

Figure 24. Sibling and parent/child relationships

NOTE ►► The siblings in a sibling relationship are like the sibling

children in a parent/child relationship; the sibling relationship itself is

like a parent/child relationship without the parent.

NOTE ►► In the figure above, there could also be a third relationship

called “Products and Accessories” to store more cross-sell information.

Single- vs. Multi-Table Relationships

A sibling relationship always relates main table product records. By
contrast, a parent/child relationship can relate records within a single
table or between any two tables. Specifically, it can relate: (1) records
within the products of the main table (e.g. “products and accessories”);
(2) between product records of the main table and non-product records
of a subtable in either direction (e.g. “kits and parts” [mainsubtable] or
“bundles and products” [subtablemain]); (3) records within the non-
products of a single subtable (e.g. “parts and subparts”); or (4) between
non-product records of one subtable and non-product records of a
different subtable (e.g. “interchange part number groups”).

Figure 25 illustrates two parent/child relationships between tables: a
“bundles and products” relationship and a “kits and parts” relationship.

 Products:

Bundles: SKU Name

Id Name 101 Washer Parts:

101 Bundle 1 202 Dryer Part No Name

202 Bundle 2 203 Refrigerator 101-01 Drawer

203 Bundle 3 204 Freezer 102-02 Shelf

 301 Stove 103-03 Icetray

 105 Microwave 204-04 Drum

Figure 25. Two different parent/child relationships

90 MDM Console Reference Guide

NOTE ►► From a relationship-centric standpoint, a parent/child

relationship represents a single relationship among a set of related
records. By contrast, from a product-centric standpoint, a parent/child

relationship within a single table (e.g. main/main or subtable/subtable)

in effect represents two distinct relationships for each record: (1) the
“parent” relationship of the parent/child relationship in which the record

is the parent (looking “down” at its children); and (2) the “child”
relationship of the parent/child relationship in which the record is one of

the children (looking “up” at its parent).

Single- vs. Multi-Level Relationships

A parent/child relationship that relates records between two different
tables (e.g. main/subtable, subtable/main, or subtable1/subtable2) is
automatically a single-level relationship, in that you can traverse at most
once from a parent in one table to its children in the other table.

By contrast, a parent/child relationship within a single table (e.g.
main/main or subtable/subtable) can be multi-level, in that you can
recursively traverse from a parent to its children, from a child to its
children, and so on.

For example, for an “assembly and components” parent/child
relationship within the main table of product records, a parent assembly
record can be related to child component records, while a component
that is itself an assembly becomes a parent that can be further related
to child subcomponent records. Similarly, for a “parts and subparts”
parent/child relationship within a subtable of parts records, a parent part
record can be related to child subpart records, and then further related
to subparts of the subparts.

Hybrid Relationships

The sibling and parent/child relationship types described above are the
full set of product-level relationships explicitly supported by MDM.

However, if a relationship embodies both sibling and parent/child data,
and/or the parent/child data relates records both within the main table
and between the main table and one or more subtables, you can create
multiple independent product relationships to store the data, and then
combine them at the presentation layer into a hybrid relationship.

In this way, individual relationships act as building blocks that can be
combined into complex hybrid relationships to represent many different
multi-dimensional relationships between product records and/or non-
product records, and can be navigated in a variety of ways.

For example, an “interchange” sibling relationship can be combined with
a “cross-reference” parent/child relationship (main/subtable) to
represent all of the different SKUs and part numbers that can be used to
identify and locate a particular product or group of products.

MDM Console Reference Guide 91

NOTE ►► Alternatively, if the same set of cross-reference part

numbers always applies to each of the interchange products, then you
can eliminate the need to maintain cross-reference part numbers

individually for each product by replacing the sibling and parent/child
relationships above with two parent/child relationships from a subtable

of interchange groups (really, a “super-table”) to: (1) the main table

(the “interchange product groups” relationship); and (2) the part

number subtable (the “interchange part number groups” relationship).

Relationship Qualifiers

A product-level relationship allows you to store any of three additional
pieces of information about each related sibling or child record:

• Position. The record’s position in the sequence (parent/child only).

• Required. Whether the record is required (Yes/No).

• Quantity. The quantity of the record (defaults to 1).

92 MDM Console Reference Guide

MDM Data Types

A traditional SQL DBMS has a standard set of relatively simple data
types (such as text, integer, and real) that allow you store a single
element of unstructured data in each field. Beyond knowing how to
accept input of and properly store each type of data, SQL has no real
understanding of the internal structure of each data element.

By contrast, an MDM repository supports a variety of compound and
structured data types that, like the set of MDM table types, are
specifically suited for managing information in a master data repository.
The standard SQL data types for fields are shown in Table 16 and the
extended MDM data types for fields are shown in Table 17. The data
types for attributes, along with their corresponding field data types, are
shown in Table 18.

NOTE ►► In the tables below, a bullet (•) in the column labeled “MV”
means that the data type can be defined as multi-valued, so that a

single field or attribute can be used to store multiple values.

DATA INTEGRITY ►► Multi-valued fields and attributes make the

structure of an MDM repository dramatically simpler, more compact,
and more searchable, by allowing you to store all the values

corresponding to a particular data element in the same place. The
alternative requires creating multiple fields or attributes, in some cases

up to a maximum of one field or attribute for each possible value.

Table 16. Field Data Types (Standard SQL)

Data Type
SQL

Server
Oracle DB2 MaxDB HANA ASE

Text

Text field
(<= 500

chars).

Nvarcha

r

Nvarcha

r2

Varch

ar
Varchar

Nvarcha

r
Nvarchar

Text Large

Text field (>

500 chars).

Text CLOB CLOB
Long

Unicode
CLOB Text

Integer

4-byte

integer field.

Int Number Int
Fixed

(10)
Int Int

Real

4-byte real

field.

Real Number Float
Float

(16)
Real Real

Real8

8-byte real

field.

Real Number Float
Float

(38)
Real Real

MDM Console Reference Guide 93

Data Type
SQL

Server
Oracle DB2 MaxDB HANA ASE

TimeStamp

DateTime

field.

DateTim

e
Date

Timest

amp

Timesta

mp

Timesta

mp

DateTim

e

Boolean

Two-valued

field.

Bit Number
Smalli

nt
Fixed (1) TINYINT TINYINT

Table 17. Field Data Types (MDM Extended)

Field Data Type MV Description

Text Normalized

Text field with “special” (non-alphanumeric)

characters removed for searching/sorting (always

displays original).

Name

Text field with internal structure for storing parts of

a name

(prefix, first, middle, last, suffix).

Log

Text Large field with internal structure for managing

multiple timestamped blocks of text within a single

field.

AutoID Integer field that MDM automatically increments.

Currency

Real8 field displayed with a currency symbol.

Note: The maximum field length is 15 characters.
MDM will not save numbers that are longer,

irrespective of the maximum number of decimal
places set for the Currency field in the MDM

Console.

GM Time
TimeStamp field that is adjusted to a particular time

zone.

Measurement ● Real field with an associated unit of measure.

Literal Date TimeStamp field that ignores the time part.

Literal Time TimeStamp field that ignores the date part.

Create Stamp
TimeStamp field that MDM automatically sets with

the date/time of record creation.

Time Stamp

TimeStamp field that MDM automatically updates

with the date/time of modification when any of the

fields being tracked are updated.

User Stamp

Text field that MDM automatically updates with

name of user who makes the change when any of

the fields being tracked are updated.

94 MDM Console Reference Guide

Field Data Type MV Description

Mask ●

Virtual field that stores an enumeration of main

table records. It is never displayed but is used for

searching.

Lookup [Flat] ● Field whose value(s) are a lookup into a flat table.

Lookup

[Hierarchy]
●

Field whose value(s) are a lookup into a hierarchy

table.

Lookup

[Taxonomy]

Field whose single value is a lookup into a

taxonomy table.

Lookup

[Qualified]
●

Field whose values are a lookup into a qualified

table.

Lookup [Image] ● Field whose value(s) lookup into the Images table.

Lookup [Text

Block]
●

Field whose value(s) lookup into the Text Blocks

table.

Lookup [Copy

Block]
●

Field whose value(s) lookup into the Copy Blocks

table.

Lookup [Text

HTML]
●

Field whose value(s) lookup into the Text HTMLs

table.

Lookup [PDF] ● Field whose value(s) lookup into the PDFs table.

Lookup [Sound] ● Field whose value(s) lookup into the Sounds table.

Lookup [Video] ● Field whose value(s) lookup into the Videos table.

Lookup [Binary

Object]
●

Field whose value(s) lookup into the Binary Objects

table.

Table 18. Attribute Data Types

Attribute Data

Type

M

V
Corresponding MDM Field Type

Text ● Lookup [Flat]

Numeric ● Measurement

Coupled Numeric ● n/a

NOTE ►► In the tables above, a bullet (•) in the column labeled “MV”
means that the data type can be defined as multi-valued, so that a

single field or attribute can be used to store multiple values.

TIP ►► A regular Text field is faster than a Text Large field; only use

a Text Large field if you are certain that some values will require over

500 characters.

NOTE ►► Previous versions of MDM allowed a maximum Text field

width of 4000. This has been reduced to 500 due to database storage

and Unicode-encoding issues

MDM Console Reference Guide 95

NOTE ►► A Text Normalized field stores the actual text value, but
uses the normalized value for sorting and searching. The normalized

value is an upper-case version of the original with non-alphanumeric

characters removed (includes a-z, A-Z, and 0-9 from original value).

Dimensions and Units

As noted in the tables above, MDM has a compound data type for
storing physical measurements that combines a numeric value with a
unit of measure. It allows you to associate a physical dimension with a
measurement field or numeric attribute, and then to assign to every
numeric value a unit of measure chosen from the list of units applicable
to that dimension. For more information, see Managing Units of
Measure.

FIELDS VS. ATTRIBUTES – A COMPARISON

A main table field is created in MDM Console and applies to all of the
records in an MDM repository. By contrast, an attribute is created and
linked in MDM Data Manager in Taxonomy mode and applies just to
records in categories to which the attribute is linked.

Table 19 highlights the similarities and differences between fields and
attributes that affect how they appear and are used within MDM.

Table 19. A Comparison of Fields and Attributes

Field Attribute

General

Created in MDM Console. Created in MDM Data Manager in Taxonomy
mode.

Represents a schema change, so the
MDM repository must be stopped to add

a field.

Does not represent a schema change; the
MDM repository must be started to link an

attribute.

Category-independent; applies to all
main table records.

Category-specific; applies just to main table
records in categories to which the attribute is
linked; cannot be linked to the taxonomy root.

Fields appear in schema order and
cannot be hidden in the Record Detail

tab.

Attributes appear in priority order in the
Record Detail tab – and can be hidden

entirely – on a per category basis based on
the link priority.

Included in both the Records grid and
Record Detail tab; always of interest

even with large record sets.

Not included in Records grid; included in
Record Detail tab only for the selected

records; generally of interest only when you
select a single or several main table records.

Text Values (not limited to a set of specific values)

Text field; used to permit data entry of a
unique value for each record.

No corresponding attribute type that permits
entry of a unique value for each record.

96 MDM Console Reference Guide

Text Values (limited to a relatively small set of specific values enumerated in advance)

Lookup field into a flat table; pick list
forces user to choose from a set of
specific lookup values during data entry.

Text attribute (like a “mini” lookup table); pick
list forces user to choose from a set of
specific text values during data entry.

The lookup table record corresponding to
each lookup value can contain any

number of user-defined fields.

Each text value consists of: (1) a fixed-width
Text field for the text value itself; (2) a Text

Large field for the text value description; and
(3) a single-valued Image field for the text

value image.

Supports both drilldown search and free-
form search.

Supports drilldown search; does not support
free-form search.

Numeric and Measurement Values

Numeric or measurement field. Numeric attribute with or without a dimension.

Supports free-form search; does not
support drilldown search.

Supports drilldown search using a pick list of
unique numeric values; does not support
free-form search.

Coupled Numeric Values

No field type for representing two-
dimensional data.

Coupled numeric attribute; used for
representing two-dimensional data.

TIP ►► From a design standpoint, sparseness of data is less

important than whether the data item applies to all main table records

(should be a field) or just some subset (should be an attribute). For
example, you may not have a Weight value for every product, but

weight certainly applies to every product and therefore should most

likely be a field.

MDM Console Reference Guide 97

MDM Tuples

An MDM tuple is a basic, all-purpose, data-modeling building block that
has many uses and capabilities for structuring and storing MDM data.

NOTE ►► Tuples that include lookups subsume, extend, and

generalize other specialized MDM structures such as qualified lookup

tables and parent/child relationships.

Features and benefits of MDM tuples include:

• Custom types. Defines custom composite data type consisting of a
set of multiple fields (a “tuple”).

• Grouping. Groups related fields together into a reusable object; like
a table definition (but without an instance of the table).

• Reusability. Unlike a table definition, the named set of fields can be

defined once and reused many times in multiple places.

• Properties. Can attach validations, security provisions and other
properties to the tuple definition [NYI].

• Encapsulation. Any change to the tuple structure or to its
associated properties is immediately propagated to every usage.

• Composite anything. Complements existing composite types (e.g.

Measurement and Coupled Numeric) with a custom composite type.

• Qualified lookups. Can be used to create a fully qualified reference

from the records of one table to the records of any other table type.

• Parent/child relationships. Can be used to model parent/child
relationships with full support for relationship qualifiers.

• Hierarchy management. Can be used to model arbitrarily complex
hierarchical main entity relationships, including support for qualifiers.

• XML compatible. Provides a natural way of representing an XML

schema definition and storing the corresponding XML data.

• Referential clarity. Appears as a field in the parent record, exposing
the parent/child association between records in multiple tables.

• Nested structures. Stores nested private subrecords that are owned
by and do not exist outside of the parent record (i.e. “containment”).

• Deep nesting. Can include a reference to another tuple for arbitrarily

deep multi-level nesting (e.g. Plant > Address > Contact > Phone).

• One-to-many relationships. Tuple reference can be multi-valued

(e.g. multiple addresses > multiple contacts > multiple phones).

NOTE ►► The most notable feature of tuples is that they allow you to

create nested structures, including deeply nested multi-level structures

of arbitrary depth, with a one-to-many relationship at every level.

98 MDM Console Reference Guide

WHAT IS A TUPLE?

Webster’s New Millennium™ dictionary defines tuple as follows:

tuple. noun. 1. in a database, an ordered set of data
constituting a record; 2. a data structure consisting of comma-
separated values passed to a program or operating system.

Elaborating on (1) as it relates to MDM, a tuple is effectively a record
template that groups together and names a set of related fields into a
reusable object or type definition that describes or composes a
particular object or type.

For example, an Address tuple might consist of the following fields:

Address

Street City State Zip Country

While capturing the simple essence of a tuple, the example above is not
particularly illustrative of the extreme versatility of tuples. So let’s start
by taking a step back and looking at tuples in the context of tables, and
then compare and contrast them with other MDM structures.

TUPLES AND TABLES

Recall that a table is comprised of a set of records, where each record
consists of a set of fields. Moreover, the definition of the table gives the
table its name, defines the set of fields included in each record, gives
each field a name and type, and finally, creates a storage container for
each of the records.

Consider the Customers table below, in which each customer has an Id,
a Name, and an Address consisting of five additional fields:

Customers

Id Name Street City State Zip Country

In the context of tables, a tuple is like a table without an instance of the
table itself; more precisely, the definition of a tuple is like the definition
of a table that effectively groups together and names a set of related
fields (where each record conforms to that type definition), but without
the actual storage container for the records of the table.

And whereas the tuple definition that is implicit in the definition of a table
cannot be reused, a tuple can be defined once and reused many times
within multiple tables across a repository.

Address

MDM Console Reference Guide 99

Single-Valued Tuple Fields

Note that both table and tuple definitions create a template for the fields
of the corresponding table or tuple records, respectively. But whereas
you can create and store table records immediately after the table is
defined, you can create and store tuple records only after the tuple is
subsequently referenced as a field in the definition of a real table.

If we were to redefine the Customers table above using the Address
tuple, it might look something like this:

Customers

Id Name
Address

Street City State Zip Country

NOTE ►► A single-valued tuple reference does not directly add any

data modeling power to MDM per se. However, it does offer: (1)
reusability, so that unlike a table definition, a tuple can be defined once

and reused many times; and (2) encapsulation, so that subsequent

changes to the tuple definition or its associated properties are

immediately propagated to every use of the tuple.

Multi-Valued Tuple Fields

In the example above, the reference to the Address tuple is single-
valued. If Address were instead defined as multi-valued, the Customers
table could then store multiple Address records per Customer record,
creating a one-to-many relationship between Customer records and its
private Address records.

Customers

Id Name
Address

Street City State Zip Country

NOTE ►► A multi-valued tuple field is like a private table-within-a-
table, in that each record of the referencing table can “contain” multiple

tuple records, allowing MDM to express a one-to-many relationship in

a very natural way. Alternatively, if you need a fixed number of
instances, you can simply include multiple references to the same

tuple in a single record (e.g. Billing Address and Shipping Address).

100 MDM Console Reference Guide

TUPLES AS CUSTOM COMPOSITE DATA TYPES

Recall that in addition to the traditional SQL data types (e.g. Integer,
Text, Date), MDM also supports two predefined composite data types:

• Measurement fields and attributes. Each measurement consists of
two components: (1) a numeric value; and (2) a unit of measure.

• Coupled numeric attributes. A coupled numeric attribute is a
composite data type that consists of pairs of measurement values.

In the context of these predefined composite data types, a tuple in MDM
is just a custom-defined composite data type, where you can create and
name a type comprised of a precise set of participating fields.

NOTE ►► Tuples generalize the concept of composite data types

(e.g. coupled numeric tupled anything).

TUPLES AND EXISTING MDM STRUCTURES

MDM has historically included many different data modeling structures,
each of which was well-suited and optimized for a different set of data
modeling challenges.

Each structure had its own particular – and often unique – properties
and semantics around definition, data entry, navigation, and search.
And each was relatively rigid and suffered from both a lack of generality
and various limitations on when it could be used.

By contrast, the tuple data structure is a basic building block that
subsumes, completely generalizes, and dramatically enhances these
structures, as summarized in Table 20 and more fully described in the
following sections.

Table 20. Tuples vs. Existing MDM Structures

Capability Tuples Qualified Parent/Child Hierarchy Tables

Hierarchical main table entity •

Include qualified information • •

Qualify reference to any table •

Reference records of same table • • •

Reference records of different table • • •

Multi-level nesting • • •

Bidirectional navigation • •

Bidirectional visibility • •

NOTE ►► Since the unique capabilities of each existing structure

cannot be mixed-and-matched, users were often forced to compromise

by choosing an imperfect “best fit” for each data modeling challenge.

MDM Console Reference Guide 101

Qualified Lookups

A qualified lookup allows you to reference the records of a qualified
lookup table, and also to further “qualify” the reference by storing
additional link-specific information in fields known as qualifiers.

By contrast, including the lookup to what would previously have been
the qualified lookup table among the fields of a tuple rather than adding
qualifiers to the definition of the lookup table allows you to:

• Extend to all lookup tables the specialized qualifier support

previously offered only by qualified lookup tables.

• Create a qualified reference to any normal lookup table, not just one
explicitly and already defined as a qualified lookup table.

• Share the lookup table among different referencing tuple fields, each
with a different set of qualifiers.

Finally, in the degenerate case of no applicable table of lookup records,
a tuple without lookups can store a set of nested “link-specific” records
without forcing the data modeler to create a “phantom” lookup table
containing a single record and a single non-qualifier field.

NOTE ►► Tuples generalize the concept of qualified lookup tables

(e.g. qualified lookup qualified anything). And whereas qualified
lookup tables support just a single level of nesting, tuples support

arbitrarily deep multi-level nesting (see “Tuples“for more information).

Parent/Child Relationships

Parent/child relationships are extremely flexible and allow you to store
references between records of any tables. Like a lookup without pick-list
search and data entry, they support several unique features:

• References to records of the same table in addition to those of

another table.

• References to main and other non-lookup subtables that contain a

very large number of records.

• Nested multi-level relationships of arbitrary depth in addition to
single-level relationships.

• Bidirectional navigation both from the parent to the child and from the
child to the parent.

• Bidirectional visibility of the relationship both from the parent record

and from the child record.

NOTE ►► Despite their flexibility, relationships are hard to navigate

and impossible to search, and can only be qualified with optional

Required and Quantity fields rather than an arbitrary set of qualifiers.

102 MDM Console Reference Guide

By contrast, including one or more lookups into the same or another
table among the fields of a tuple provides an alternative for modeling
parent/child relationships, and allows you to include link-specific
“qualified” information on every pair of related records.

NOTE ►► Tuples are an alternative to parent/child relationships that

add full qualifier support but do not offer the bidirectional navigation nor

bidirectional relationship visibility offered by parent/child relationships.

Hierarchical Main Table Entities

Recall that hierarchy tables within MDM allow you to create parent/child
relationships between the records of a single lookup table, and then to
create a single- or multi-valued lookup into that table.

However, hierarchy tables offer only limited support for trees rather than
arbitrary hierarchies, with specialized and limited semantics (e.g. single
parent; no cycles), parent/child relationships only between the same
type of entity, and no ability to store link-specific information.

And most importantly, hierarchy tables provide support only for
hierarchy lookups rather than for hierarchical main table entities.

By contrast, MDM tuples allow you to model flexible hierarchies and
networks, complementing hierarchy lookups and tables with generalized
support for hierarchical main table entities.

Specifically, by including one or more lookups into the same or another
table among the fields of a tuple, you can express composite and
arbitrarily complex relationships between similar and dissimilar business
entities and also attach link-specific “qualified” information to every set
of related records.

NOTE ►► Tuples generalize the concept of hierarchy management

(trees fully qualified hierarchies and networks) and extend support

for hierarchy lookups to support for hierarchical main table entities.

NOTE ►► You can use either of two alternative approaches to

modeling a hierarchy: (1) include a tuple with a lookup within the
primary record (e.g. Org Chart); or (2) create a separate “links” table

with multiple lookups and other fields (e.g. BOM).

NOTE ►► Tuples offer generalized hierarchy support only from a data

storage perspective. However, the specialized hierarchy semantics,
functionality, and behavior (e.g. visual UI materialization, tree-view

navigation, hierarchy manipulation, import and export) are NYI.

MDM Console Reference Guide 103

TUPLES AND XML

Whereas XML is notoriously inefficient with respect to storage and
searching, tuples provide an efficient way of representing an XML
schema definition and storing the corresponding XML data within MDM.
In particular, the natural correlation between tuples and XML includes:

• Complex types. The definition of the tuple corresponds to the

complex type definition within an XML schema.

• Repeating nodes. A multi-valued reference to a tuple corresponds
to an element that may occur more than once (maxOccurs > 1).

• Hierarchy. The multi-level nested hierarchy of tuple records
corresponds to the hierarchy of an XML schema.

TUPLES AND MULTI-TABLE RELATIONSHIPS

In some ways, tuples are really just another manifestation of the
traditional primary key / foreign relationship between the records of two
tables, where the records of a primary table control the lifetime and
ownership of the records in a secondary table.

Specifically, when the records of a secondary table are owned by and
private to the records of a primary table, the relationships between the
records of the two tables are represented by primary key / foreign key
relationships between them.

Consider the Customer/Address relationship from the previous example
represented with the traditional relational approach:

Customers

Id Name

 Addresses

 Cust Id Street City State Zip Country

Unfortunately, the traditional relational approach to representing nested
records has two problems: (1) the relationship itself is obscured, since
the relationship exists as a foreign key field of the child record rather
than as a field of the parent record; and (2) users see a “decomposed”
view of all the records of one table or all the records of the other table.

By contrast, tuples manifest this relationship in a way that is more
consistent with the semantic rather than relational model, highlighting
the relationship between parent records and child tuple subrecords.

104 MDM Console Reference Guide

Specifically, the tuple exposes the relationship from each parent record
to its one or more child records by appearing explicitly as a field in the
parent rather than as a foreign key field of the child, where the child
records are shown grouped with and owned by each corresponding
parent record.

NOTE ►► Tuples provide a more natural way of expressing the

nested primary key / foreign key relationship from the records of a

primary table to the records of a secondary table.

TUPLES AND NESTED STRUCTURES

The definition of a tuple can itself contain a reference to another tuple,
for an arbitrarily deep multi-level nesting of records and subrecords, and
a one-to-many relationship at every level.

NOTE ►► The term “nested structures” refers to the overall concept
of a multi-level hierarchy of private subrecords. Tuples are the

structure that support the creation of these nested structures.

Nested tuples allow MDM to model complex business entities (e.g.
Business Partner) as shown in the example below, which illustrates a
three-level nesting (Customers Address Contact Phone):

• The Customers table has a reference to the Address tuple.

• The Address tuple has a reference to the Contact tuple.

• The Contact tuple has a reference to the Phone tuple.

Customers

Id Name Address

Address

Type Street City State Zip Country Contact

Contact

Type First Last Phone

Phone

Type Number Ext

NOTE ►► Tuples extend the one-level nesting of qualified tables to

an unlimited depth and number of levels.

MDM Console Reference Guide 105

SHARING TUPLE SUBRECORDS

Typically, each child tuple subrecord is private to the single parent
record that owns it. However, if you want to be able to reference each
tuple subrecord from multiple parent records, you must explicitly store
the tuple subrecords as records in an actual table, and then reference
them from the records of the parent table.

The previous example of Customers referencing Addresses would then
contain two tables (Customers and Addresses) rather than a Customers
table and an Address tuple.

Customers

Id Name Address

Addresses

Type Street City State Zip Country Contact

TUPLES AND THE RELATIONAL MODEL

Recall from earlier sections that tuples are a generalized form of custom
composite data types, and that tuples can be used to model various
“exotic” data structures, such as flexible hierarchies and networks.

When using tuples to model these data types and structures, however,
consider that tuples can model only their data storage aspects but not
necessarily their specialized semantics and associated functionality.

For example, a measurement is more than just a composite data type
comprised of a numeric value and a unit of measure. In fact, it features
built-in support for various semantics, including dimension-specific pick
lists of units, unit conversion, sorting across units, unit synonyms, and
parsing of inbound string values (e.g. “3 inches”). Similarly, hierarchical
structures modeled using tuples require a layer of additional semantics
that allow you to conveniently materialize, navigate, manipulate, import,
and export the hierarchy.

NOTE ►► In essence, tuples are just a way to access the pure

relational aspects of a relational DBMS, with the added ability to reuse
the definition so that the tuple can be used in multiple tables across a

data model. And just as a relational DBMS: (1) does not provide
semantics around the relationships it defines, neither do tuples; and (2)

cannot always model data efficiently (and hence the need for other
types of databases), so too tuples are not always going to be efficient

(and hence there is a need for other native types)

106 MDM Console Reference Guide

TUPLE TERMINOLOGY

The various terms associated with tuples are defined in Table 21.

Table 21. Tuple Terminology

Term Definition

Tuple A group of related fields.

Tuple definition A named tuple definition (e.g. Address).

Tuple type The named type of a field of type tuple.

Tuple field A field of type tuple that contains tuple records.

Tuple instance The set of tuple records resulting from a tuple field.

Tuple member A member of a tuple.

Tuple record One of the subrecords of type tuple residing in the tuple instance.

Tuple value The set of values comprising a single tuple record.

Multi-valued tuple A multi-valued field of type tuple.

SUPPORTED FIELD TYPES

The field types supported in tuple definitions are shown in Table 22.

Table 22. Supported Field Types in Tuple Definitions

Supported Not Supported

Text / Text Large Normalized Text

Integer / Real / Boolean Log

GMTime / Literal Date / Literal Time Measurement (multi-valued)

Measurement (single-valued) Lookup [Taxonomy]

Lookup [Main] (single and multi-valued) Lookup [Qualified]

Lookup [Flat] (single and multi-valued)

Lookup [Hierarchy] (single and multi-valued)

Lookup [object] (single and multi-valued)

Tuple (single and multi-valued)

Calculated / Assignment

AutoID

CreateStamp / TimeStamp / UserStamp

Currency

TIP ►► You can simulate a multi-valued measurement within a tuple
by: (1) defining a tuple with a single-valued measurement field; and

then (2) creating a multi-valued tuple field that references it.

MDM Console Reference Guide 107

TUPLE WORKFLOW

The process of incorporating tuples into an MDM repository consists of
the following steps:

1. Add a tuple definition to the repository, as described in “Adding and
Deleting Tuples”.

2. Add tuple members to the tuple definition, as described in ”Adding
and Deleting Tuple Members”.

3. Add fields of type Tuple to tables in your repository, as described in
“Adding and Modifying Fields”.

4. Enter tuple values for your records through an MDM client
application such as MDM Data Manager or MDM Import Manager.

NOTE ►► Instructions for populating records with tuple values are not

included in this reference guide; instead, consult the appropriate MDM

client documentation.

109

PART 5: REPOSITORY MAINTENANCE

This part of the reference guide describes how to create and delete
MDM repositories, add, delete, and modify repository tables, and add,
delete, and modify repository fields.

111

Working with MDM Repositories

The following sections describe the various operations for creating,
deleting, and modifying the properties of an MDM repository.

CREATING AN MDM REPOSITORY

When you first create a new MDM repository, MDM automatically
creates a repository with the tables and fields shown in Table 23.

Table 23. Default Tables of a New MDM Repository

Type Table Name Notes

Main ▪ Products

▪ Includes a Name field of type Text

▪ Includes a Category field of type Taxonomy
[Lookup]

Taxonomy ▪ Categories ▪ Includes a Name field of type Text

Object

▪ Images
▪ Sounds

▪ Videos
▪ Binary Objects
▪ Text Blocks

▪ Copy Blocks
▪ Text HTMLs
▪ PDFs

Special

▪ Image Variants
▪ Masks
▪ Families
▪ Relationships

▪ Workflows
▪ Named Searches
▪ Tuples

▪ Data Groups
▪ Validation Groups

▪ Includes a Name field of type Text
▪ Family Field set to the main table Category field
▪ Includes a Name field of type Text

▪ Includes a Name field of type Text

▪ Does not appear anywhere in MDM Console
▪ Does not appear anywhere in MDM Console

Admin

▪ Roles
▪ Users

▪ Connections
▪ Change Tracking
▪ Remote Systems

▪ Ports
▪ Links

▪ XML Schemas
▪ Reports

▪ Includes an Admin role

▪ Includes an Admin user with all privileges

▪ By default, no changes are tracked

▪ Includes an MDM remote system

Once the new repository is created, you can begin customizing the
repository to match your design.

NOTE ►► Creating an MDM repository is a password-protected

operation which requires you to enter the password for the Master
Data Server, if you have not already done so during the current MDM

session (see “Master Data Server Security”).

112 MDM Console Reference Guide

 To create a new MDM repository:

1. In the Console Hierarchy tree, right-click on a Master Data Server node

and choose Create Repository from the context menu, or select the

tree node and choose Repositories > Create from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click in the grid and choose Create from

the context menu.

2. MDM opens the Create MDM Repository dialog shown in Figure 26.

Figure 26. Create MDM Repository dialog (1 of 2)

3. Select the DBMS Server for the MDM repository from the drop-down

list.

TIP ►► To reference a SQL Server named instance, append a

backslash (\) and the instance name after the machine name above.

TIP ►► To use Windows authentication, leave the Login empty

(requires the SQL SRVR Allow Windows Authentication Mode

parameter in the Master Data Server Settings file (mds.ini) to be set to

True).

TIP ►► To remove an entry from the drop-down list of DBMS Servers,

make it visible in the closed drop-down control and press Del.

TIP ►► The drop-down list of DBMS Servers includes only those
servers that you have previously added to the list and will usually

include for selection all the servers to which you might want to connect.

If the desired server is not in the list, click the “…” (browse) button to
open the Select DBMS Server dialog, and select from the list of DBMS

Servers known to MDM. If the desired DBMS Server is not in this list

either, then click the Add button in the Select DBMS Server dialog to
open the Add DBMS Server dialog, and select from the list of servers

(or type in a new name in the text entry control at the top of the dialog),

and choose the DBMS type from the drop-down list.

MDM Console Reference Guide 113

4. Enter the appropriate DBMS login (which must have system

administrator privileges) and password for the selected DBMS Server

and click Next.

5. MDM disables the DBMS Server, Login, and Password fields and

enables the Repository Name and Port fields, as shown in Figure 27.

Figure 27. Create MDM Repository dialog (2 of 2)

TIP ►► You can click the Options button to open the Repository
Options dialog to: (1) change the number of partitions given to the new

MDM repository from the default currently set for the Default Partitions

DBMS setting; and/or (2) create a subset or schema-only repository

(see “Setting ” for more information about the repository options).

6. Enter the name for the new MDM repository.

NOTE ►► The repository name must begin with an alpha character

and can be as long as the data entry field.

7. If necessary, edit the TCP/IP port number in the Port text box. This
would be necessary only if there are multiple MDM repositories, or if

the default port number and/or two numbers following it in sequence
are used by some other program on the host computer. Your Network

Administrator can provide an alternate port number, if needed.

8. Click Finish to create the MDM repository.

9. MDM creates the new MDM repository and adds it to the Console
Hierarchy tree. The new repository automatically includes the tables

and fields listed in Table 23.

 To create a new MDM repository from an MDM archive:

1. In the Console Hierarchy tree, right-click on the Master Data Server on

which you want to restore the repository and choose Unarchive

Repository from the context menu, or select the tree node and choose

Repositories > Unarchive from the main menu.

TIP ►► If the top-right pane is currently displaying the list of Master
Data Servers, you can also right-click on the Master Data Server in the

grid and choose Unarchive Repository from the context menu.

114 MDM Console Reference Guide

MDM opens the Unarchive MDM Repository dialog.

Figure 28. Unarchive MDM Repository dialog (server node / 1 of 2)

NOTE ►► The Unarchive MDM Repository dialog from a Master Data
Server node is similar to the Create MDM Repository dialog, with the

Port field replaced by the Archive field.

2. Select the DBMS Server for the repository from the drop-down list.

TIP ►► To reference a SQL Server named instance, append a

backslash (\) and the instance name after the machine name above.

TIP ►► To use Windows authentication, leave the Login empty

(requires the SQL Server Allow Windows Authentication

Mode parameter in the Master Data Server Settings file (mds.ini) to be

set to True).

TIP ►► To remove an entry from the drop-down list of DBMS Servers,

make it visible in the closed drop-down control and press Del.

TIP ►► The drop-down list of DBMS Servers includes only those

servers that you have previously added to the list and will usually
include for selection all the servers to which you might want to connect.

If the desired server is not in the list, click the “…” (browse) button to

open the Select DBMS Server dialog, and select from the list of DBMS
Servers known to MDM. If the desired DBMS Server is not in this list

either, then click the Add button in the Select DBMS Server dialog to

open the Add DBMS Server dialog, and select from the list of servers
(or type in a new name in the text entry control at the top of the dialog),

and choose the DBMS type from the drop-down list.

3. Enter the appropriate DBMS login (which must have system

administrator privileges) and password for the selected DBMS Server

and click Next.

4. MDM disables the DBMS Server, Login, and Password fields and
enables the Repository Name and Archive fields, as shown in Figure

29.

MDM Console Reference Guide 115

Figure 29. Unarchive MDM Repository dialog (server node / 2 of 2)

TIP ►► You can click the Options button to open the Repository

Options dialog to: (1) change the number of partitions given to the new

MDM repository from the default currently set for the Default Partitions
DBMS setting; and/or (2) create a subset or schema-only repository

(see “Setting ” for more information on repository options).

5. MDM places “Type or select a repository name” into the Repository

Name drop-down list. Type the name for a new MDM repository or

select an existing repository from the drop-down list.

NOTE ►► The repository name must begin with an alpha character

and can be as long as the data entry field.

6. Select the archive file from the drop-down list.

NOTE ►► MDM archive files are retrieved from the directory specified

by Archive Dir in the mds.ini file.

7. Click Finish to unarchive the repository.

8. If the repository name already exists, MDM prompts you to confirm that

you really want to overwrite the existing repository. Click Yes to

overwrite the repository.

9. MDM restores the repository from the archive file, overwriting the

existing repository or creating a new repository. While the repository is
being unarchived, MDM changes the repository status icon (shown at

left) to two gray dots, and reports the progress of the unarchive in the

Status field for the existing repository in the Repositories pane.

NOTE ►► An existing repository that is not mounted or a new

repository created as a result of the unarchive operation is

automatically mounted prior to the unarchive operation.

10. When the unarchive process is complete, MDM displays a message

dialog indicating whether the unarchive was successful, as shown in

Figure 30.

116 MDM Console Reference Guide

Figure 30. Repository Unarchive Complete dialog

11. To view the report, click Yes. MDM opens the Report Detail dialog to

view the XML report.

SETTING NUMBER OF REPOSITORY PARTITIONS

When an MDM Console operation is about to create a new MDM

repository as a result of a Create, Duplicate, or Unarchive operation, you

can click the Options button in the applicable dialog to specify the
number of repository partitions.

Repository Partitions

A repository partition is simply the underlying physical database in
which the repository is stored. By default, MDM gives a new MDM

repository the number of partitions currently set for the Default Partitions

DBMS setting (one, two, or four).

You can change the number of partitions by selecting the applicable
radio button in the Repository Options dialog.

TIP ►► The Set Default button in the Repository Options dialog lets

you change the default number of partitions created for a repository to

the number selected in the dialog.

Breaking an MDM repository into multiple partitions has two main
benefits:

• Different parts of an MDM repository change at different rates.
Typically, the Images table changes much more slowly than other
tables. You can partition an MDM repository so that different
partitions can be assigned to different operating system or DBMS
backup schedules.

• As an MDM repository gets larger, multiple partitions allow you to
store and backup the different partitions onto different drives and/or
machines.

Keep in mind that a single partition eliminates certain risks that multiple
partitions have. In particular, a single partition is likely to have one
backup set. Having multiple partitions increases the likelihood that, upon
backup or restore, you might inadvertently mix non-matching partitions
and corrupt the MDM repository. It is especially important to maintain
multiple-partition backup sets with care.

MDM Console Reference Guide 117

CAUTION ►► Because orphaned records may be created when

restoring non-matching backup sets from a multi-partitioned MDM
repository, it may be safer to have a one-partition repository. The IS

department or System Administrator needs to make this decision.

Table 24 shows the parts of an MDM repository that are placed into
each partition, and how each one is named, depending on the number
of partitions.

Table 24. Partition Contents and Names

of Partitions Partition Partition Names1

1 Entire MDM repository repositoryName_Mnnn

2
Main + Thumbnails repositoryName_Mnnn

Originals + Variants repositoryName_Bnnn

4

Main repositoryName_Mnnn

Thumbnails repositoryName_Tnnn

Originals repositoryName_Onnn

Variants repositoryName_Vnnn

1 ”nnn” is a sequence number.

The main database (for SQL Server) or schema (for Oracle or DB2)
partition names are derived from the MDM repository name. “Non-
filename-friendly” characters (non-alphanumeric characters) are
removed to create a base name and the DBMS is examined to
determine if that base name already exists. If so, the sequence number
in the suffix is incremented. For example, a single-partition MDM

repository named Acme Widgets would be named AcmeWidgets_M000.
If a new repository is created on the same DBMS with the name
*Acme*Widgets*, the new database/schema would be named
AcmeWidgets_M001.

MODIFYING REPOSITORY PROPERTIES

 To view and edit repository properties:

1. In the Console Hierarchy tree, right-click on the MDM repository and

choose Properties from the context menu, or choose Repositories >

Properties from the main menu.

NOTE ►► You can modify properties of any mounted repository

(running or stopped).

2. MDM opens the Repository Properties dialog.

3. Click in the Value column for the repository property you want to

change.

118 MDM Console Reference Guide

4. If the Value cell is a drop-down list, select the desired option. If the

Value cell is an edit field, double-click inside the field and replace the

existing value with a new value.

5. Click OK to save any new values and close the dialog.

The properties for each MDM repository are listed in Table 25.

NOTE ►► The default setting for each property is noted in bold.

Table 25. Repository Properties

Property Description

Layouts
These properties set the default values for various layout

options within MDM Publisher.

Default unit

The default unit for layout measurements:

▪ inch

▪ point

▪ pica

▪ mm

▪ Q
▪ didot

▪ cicero

Default image

bounding box

width

The default width of the box surrounding images in MDM

Publisher (in pixels). Default is 100.

Default image

bounding box

height

The default height of the box surrounding images in MDM

Publisher (in pixels). Default is 100.

Default image

DPI

The default resolution of images in MDM Publisher (in

dots per inch). Default is 150.

Image
These properties set the type of images allowed in the

repository.

Prohibit

Photoshop

images

(Yes/No). Whether Photoshop images are prohibited in

the repository. A Photoshop Image is an image that either
prefers or actually requires the use of Photoshop for

processing. Photoshop images include all CMYK images,
and those with the following extensions: .ai, .eps, .ept,

.pcd, .ps, .psd.

Use only

Photoshop for

processing

(Yes/No). If Photoshop images are allowed, whether MDM
must use Photoshop to process them, or whether it can

instead use another processing engine.

Allow invalid

images

(Yes/No). Whether invalid images are permitted in the
repository. An image is invalid if MDM cannot generate a

thumbnail for it.

PDF
These properties set the type of PDFs that are allowed

into the MDM repository.

MDM Console Reference Guide 119

Property Description

Allow invalid

PDFs

(Yes/No). Whether invalid PDFs are permitted in the

repository. A PDF is invalid if MDM cannot generate a

thumbnail for it

Matrix Product
This property sets Matrix product support for the

repository.

Enable Matrix

product support

(Yes/No). Whether the repository supports the Matrix

product.

Import
This property sets import-related properties for the

repository.

Use CSV format

to import

delimited text

files

(Yes/No). Whether standard CSV formatting rules are

applied when importing delimited text files into this

repository.

Skip Unchanged

Records

(Yes/No). If set to Yes, records that are updated by an

import do not receive a change timestamp if their field,
cached qualifier, or tuple field data values are not

changed by the import. Import- and syndication-tracking
timestamps are also skipped. Skipped records are still

recorded in the Import log.

Note: Attributes, non-cached qualifiers, and key mapping
values are not covered by this parameter, and any import

to these data types triggers a record change timestamp,
whether the data values in the record actually change as a

result of the import.

Bulk Import Silo
(On/Off). Dramatically increases import performance by

optimizing SQL access methods.

Safe Silo Mode

(Yes/No). When the Bulk Import Silo option is set to On,
some import operations might not work correctly due to

the way that the silo delays and rearranges database
operations. When Safe Silo Mode is set to Yes, the

database silo performs database operations in a safer but

slower way to enable the import job to import successfully.

Expressions use

grapheme based

positions

(Yes/No). Whether expression functions related to string

positions (Length, Left, Right, Find, Mid, etc.) use

grapheme-based positions. If No, these expressions use

code point based positions.

Prepend ‘Copy of’ on

duplicate record

(Yes/No). Whether MDM prepends the text, ‘Copy of’, to

the primary display field values of records copied by the

MDM Duplicate operation.

Maximum Record

Modify Limit

The maximum number of records a user can edit, delete,

check-in, check-out, roll back, recalculate, or merge in a

single operation in the Data Manager or using Java and

.NET API.

120 MDM Console Reference Guide

Property Description

Valid Keyword

Characters

The keyword characters to tokenize when a keyword

field’s Stemmer property is set to None.

Enable Typographic

Sensitivity

Whether to match specially-formatted characters to

versions of the same characters that have different font

properties. For example, whether ¼ should match 1/4 or

™ should match TM.

Demote Errors to

Warnings when

Merging Checked-out

Records

Whether validation errors on checked-out records should

be treated as errors or as warnings. Default behavior is to

treat them as warnings.

Disable Read-Only

fields in Data

Manager

(Yes/No). Whether fields, dialog boxes, and context

menus in MDM Data Manager for which the user has
read-only access are disabled. Disabled fields appear

grayed out.

Enable Tracking of

Checked-Out Records

(Yes/No). When set to No, changes to checked-out

records will not be recorded (including roll back
operations). When a record is checked in, all the changes

that were made to the checked-out record are recorded:

Multi-value delimiter Separator character for exported values from multi-valued

fields:

▪ comma (,)
▪ semi-colon (;)

▪ pipe (|)

This property is used when exporting repository users and

roles.

Text file field

delimiter

Separator character for exported values from different

fields:

▪ comma (,)

▪ semi-colon (;)
▪ pipe (|)

This property is used when exporting repository users and

roles.

Photoshop and Photoshop Image Processing

Depending upon the settings of the Allow Photoshop Images and Use
Only Photoshop for Processing properties, Photoshop may or may not
be required for image import to check that the original is a valid image
file and to generate the thumbnail. In particular:

• If Allow Photoshop Images is set to No, then Photoshop is not

required; or Yes, then Photoshop Images are allowed in the
repository, and how they are handled is dictated by the properties of
the image.

MDM Console Reference Guide 121

• If Use Only Photoshop for Processing is set to Yes, then only
Photoshop can be used in order to process a Photoshop Image (i.e.
no other image processing engine will be used, and if Photoshop
does not exist, the thumbnail will not be generated; or No, then if
Photoshop is not present, MDM will try to complete the processing
with another image processing engine, though it may not be
successful (or the results may be of lower quality, as with CMYK
images)

• Allow Invalid Images allows an image import to complete without

verification that the original has a valid format or that a thumbnail can
be generated for it; useful for allowing image import to occur on any
machine regardless of whether Photoshop is present, and then delay
the generation of thumbnails until a later time

• Photoshop may also be required by the Image Manager in order to
generate image variants, depending on the properties of the image
and the variant definition.

MDM requires Photoshop 6.0.1 or later to process Photoshop images
(previous versions have many bugs in functionality on which MDM
relies).

NOTE ►► Adobe Photoshop does not properly install registry keys for

connectivity via COM. The MDM software detects these registry errors
and offers to correct them for you automatically when you perform any

image operations that need to access Photoshop.

Using CSV Format to Import Delimited Text Files

The repository property Use CSV format to import delimited text files
determines whether MDM imports delimited text files into the selected
repository using standard CSV formatting rules. The property applies to
all delimited files being imported into the repository.

When set to Yes, the double-quote character (") is the only character
which can be used to enclose data values. The single-quote character
(') is treated as any other text character. Also, enclosing a comma or
double-quote within a data value is permitted.

For example, when Use CSV format to import delimited text files is set
to Yes, the comma-separated values:

'96, 10""", "1"","" 2"","" 3"

are interpreted as:

 '96 10" 1, 2, 3

122 MDM Console Reference Guide

When Use CSV format to import delimited text files is set to No, either
the single-quote character (') or the double-quote character (") can
enclose text. In this case, apostrophes (') or single quotes (') which you
want to preserve in a text value must be escaped, otherwise an error or
unwanted interpretations may occur.

When set to No, the comma-separated values

'96, 10""", "1"","" 2"","" 3"

would result in a error because MDM would interpret the apostrophe in
'96 as an escape character and not find a closing '.

Further, when Use CSV format to import delimited text files is set to No,
enclosing characters within a value (such as "1"","" 2"","" 3") is

not supported.

DELETING AN MDM REPOSITORY

You can use the Delete command to permanently delete an MDM
repository from the system. Once deleted, the corresponding
databases/schemas are completely removed from the DBMS.

NOTE ►► You can only delete mounted, stopped MDM repositories.

NOTE ►► When you delete a repository, SQL Server, Oracle 9, and

DB2 also remove the underlying file storage. With Oracle 8, the Oracle
tablespace files must be manually deleted via the operating system; they

are named similarly to the schema partition names, with extension .DBF.

NOTE ►► Deleting an MDM repository is a password-protected

operation which requires you to enter the password for the Master

Data Server, if you have not already done so during the current MDM

session (see “Master Data Server Security”).

CAUTION ►► Deleting an MDM repository is not reversible. If the

repository has been archived, it is possible to recreate it, however (see

“MDM Repository Archive and Unarchive” for more information).

 To permanently delete an MDM repository:

1. In the Console Hierarchy tree, right-click on the repository you want to

delete and choose Delete Repository from the context menu, or select

the tree node and choose Repositories > Delete from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM
repositories, you can also right-click on the repository in the grid and

choose Delete from the context menu.

MDM Console Reference Guide 123

2. MDM prompts you to confirm that you really want to delete the

repository. Click Yes to permanently delete the repository.

3. MDM deletes the repository.

124 MDM Console Reference Guide

Working with Tables and Fields

The following sections describe the various operations for changing the
structure of an MDM repository, such as adding, modifying, and deleting
tables and fields. These operations are summarized in Table 26.

Table 26. Repository Structure Operations

 Operation Description

Add Table Adds a new table to the MDM repository.

Delete Table

Permanently deletes a table from the MDM

repository.

Add Field Adds a new field to the table.

Delete Field Permanently deletes a field from the table.

 Reorder Fields Changes the display order of the fields of the table.

NOTE ►► You can only change the structure of an MDM repository

that is mounted and stopped.

CAUTION ►► It is strongly recommended that you duplicate or

backup an MDM repository prior to changing its structure, as described
in “Duplicating an MDM Repository”, and “Backing Up and Restoring a

Repository”.

NOTE ►► Adding or deleting tables and fields causes the MDM

repository to automatically update its indices the next time it is started.

THE CODE PROPERTY

Most objects within an MDM repository (e.g. tables and fields) have a
Code property that is limited to the following characters:

• A-Z

• a-z

• 0-9

• underscore

When you create the object, MDM automatically generates the Code
based on the Name in the main language (e.g. English), replacing all
special characters and spaces with underscores. You can also edit the
Code within MDM Console.

MDM Console Reference Guide 125

The Code property is non-lingual and allows you to refer to objects in a
language-layer independent way. Unlike Name, which is for display
purposes and may include non-portable characters, Code is used within
the MDM APIs to reference objects, and can also be used in a variety of
external contexts (e.g. as a folder name, within XML, and so on).

The objects that have the code property are summarized in Table 27.

Table 27. Code Properties

Object Description

Expression The expression code.

Field The field code.

Image Variant The image variant code

Mask The mask code.

Named Search The named search code.

Port The port code.

Relationship The relationship code.

Remote System The remote system code.

Table The table code.

Tuple The tuple code.

Validation The validation code.

Workflow The workflow code.

126 MDM Console Reference Guide

Working with Tables

When the selected node in the Console Hierarchy tree is an MDM
repository, the objects pane (top-right) is titled Tables and the detail
pane (bottom-right) is titled Table Detail.

The Tables pane contains a grid with a list of tables in the MDM
repository, where each table in the list corresponds to a child of the
selected repository node.

TABLE PROPERTIES

The properties for each table are listed in Table 28.

Table 28. Table Properties

Property Description and Constraints

Name

The unique name for the table.

▪ The object, special, and system table names are

reserved

Code The unique code for the table.

Description The table description.

Type

The table type.

▪ Once a table is saved, its Type cannot be changed

▪ All the object tables and all the special tables are added
automatically when you first create a new MDM
repository

▪ An MDM repository can have at most a single instance of

each object, special, and system table type

Display Field1

The field whose value is used as: (1) the value of a lookup
field; (2) the node name in hierarchy trees; and (3) the name
of the record in the Product Relationships popup window.

▪ Not available for the object tables or special tables

Unique Fields1

The fields that must contain unique values, or the field
combinations whose combined values must be unique.

▪ Not available for the object tables or special tables

Key Mapping Whether to maintain key mapping for the table (Yes/No)?

Attribute Definition Key
Mapping 3

Whether to maintain key mapping for attribute definitions

(Yes/No)?

▪ Applies to all attributes in the taxonomy

Hide Table

Whether to hide the table from client applications (Yes/No)?

▪ Available on Masks, Named Searches, and user-created
tables

MDM Console Reference Guide 127

Property Description and Constraints

Family Field

The main table lookup field that will be used as the primary
partition of main table records into families.

▪ Families table only

▪ Automatically set to the Category taxonomy lookup field
of the main table when you first create a new MDM
repository

Alternative Display Fields

Fields from lookup tables to be added as family layout
items.

▪ Families table only

Attribute Image Variants2, 3 The applicable variants for the attribute images.

Text Value Image
Variants2, 3

The applicable variants for the text value images.

Personal Data

Whether to block and destroy personal data for the table

(Yes/No)?

▪ Only available for main table types.

▪ Must have Data Privacy Specialist authorization.

1 Hidden by default in the Tables pane; unhide to display.
2 Does not appear in the Tables pane.
3 Taxonomy tables only

TIP ►► There is no explicit command to modify a table. To modify a
table, select it in the Tables pane, move the focus into the Table Detail

pane, and edit those properties that can be changed for the field.

Display Fields

A Display Field for a table is a field whose value is used as:

• the corresponding lookup field value for each record

• the node name for the record in hierarchy trees

• the name of the record in the Product Relationships popup window

• the corresponding tuple record value in a tuple field cell

When a table has multiple display fields, the value that is used for each
record is the value combination among the display fields, with each pair
of values separated by a comma (,).

NOTE ►► Object tables and special tables do not have Display

Fields.

NOTE ►► Every MDM table type that has a display field: (1) must

have at least one display field; and (2) permits multiple display fields.

TIP ►► For optimal MDM performance and usability, limit the number

of display fields to those required to uniquely identify a record.

128 MDM Console Reference Guide

For example, in a hierarchy table named Manufacturers, you might
select the Company Name field as the Display Field. The value of
Company Name will then be used as the value for any lookup field into
the Manufacturers table, as well as the value of the tree node that
corresponds to each Manufacturers record.

NOTE ►► MDM uses one of the display field(s) as the primary display

field for various record operations (see “Display Fields, Unique Fields,

and Record Operations” for more information).

Valid data types for Display Fields are AutoID, Integer, Real, Text, Text
Normalized, Lookup [Flat], Lookup [Hierarchy], and Lookup [Taxonomy].

Display fields are also subject to additional rules and constraints based
on table type, as summarized in Table 29.

MDM Console Reference Guide 129

Table 29. Display Field Rules and Constraints for Different Table Types

Table Type Rules and Constraints

All Normal and
Masks Tables

The Display Field defaults to the Name field that MDM creates
automatically when the table is added.

▪ If there is only one display field, it cannot be a lookup.

Flat Tables

The primary display field is implicit; MDM uses: (1) an AutoId display
field, if one exists; (2) the first Text display field based on field

ordering; or (3) the first display field based by field ordering.

Hierarchy and
Taxonomy Tables

The Name field is used as the primary display field, which cannot be
unselected as a display field because a hierarchy or taxonomy table
must have at least one fixed-width Text display field.

▪ In hierarchy tables, sibling node names must be unique, and the
Name field is used as the unique portion of the node name. In
taxonomy tables, you can partition a category by an attribute,

and the Name field is used for the attribute text values that
become the names of the new child categories. For this

reason, Name fields on Taxonomy tables must have a
minimum width of 30 characters.

▪ With multiple display fields, the Add Sibling, Add Child , and

Rename commands: (1) place you into the Record Detail tab
for editing the new record in Hierarchy mode (as if you chose

Add Record); and (2) cannot be performed in Taxonomy mode.

Qualified Tables
Must have at least one Display Field that is not a qualifier.

▪ The Display Fields of a qualified table are often lookups.

Object Tables
Do not have an explicit Display Field, since the object itself is
automatically the display field for the table.

Tuples
The Display Field defaults to the Name field that MDM creates
automatically when the tuple is added.

Special Tables Special tables other than the Masks table have no Display Field.

NOTE ►► Display fields are ordered as follows: (1) in the order you

add them, if you use the Display Field property in the Field Detail pane;

or (2) in the order in the Display Fields list, if you use the dual-list drop-

down control for multiple-item selection in the Display Fields property in

the Table Detail pane.

130 MDM Console Reference Guide

 To change the Display Field(s) for a table:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. In the Tables pane, select the applicable table.

3. In the Table Detail pane, double-click on the Display Fields property.

4. MDM opens a dual-list drop-down control for multiple-item selection, as

shown in Figure 31.

Figure 31. Display Field selection

5. Select or deselect fields from the drop-down list, as follows:

▪ To add Available list fields(s) to the Display Fields list, highlight

them and click the Add button.

▪ To remove fields from the Display Fields list, highlight them and

click the Remove button.

▪ To add all of the fields to the Display Fields list, click All.

▪ To remove all of the fields from the Display Fields list, click None.

▪ To reorder the display fields, drag-and-drop them in the list of

Display Fields.

6. Press Enter or click on the up triangle to close the drop-down control.

7. To save the new Display Fields, right-click on the Table Detail pane

and choose Save Table from the context menu, or press Shift+Enter.

NOTE ►► MDM indicates the Display Fields in the Fields pane by

placing the numeric value of the display field in square brackets ([]) in

the DF column for the applicable fields.

TIP ►► If the top-right pane is currently displaying the list of Fields,
you can also click on a field in the grid and change its status as a

Display Field by changing its Display Field property between Yes and

No in the Field Detail pane. (You cannot, however, change the Display

Field property for the single Display Field from Yes to No since this

would leave the table without a Display Field.)

MDM Console Reference Guide 131

Unique Fields

A Unique Field for a table is a field that must contain a unique value for
each record, or in the case of a Unique Field combination, the field
combinations whose combined values must be unique for each record.

For example, in the main Products table, SKU and UPC might each be
a Unique Field, and the combination of Manufacturer and Part Number
might be a Unique Field combination.

NOTE ►► Object tables and special tables do not have Unique

Fields.

NOTE ►► The uniqueness test is case-insensitive. For example, the

values “ABC-123” and “abc-123” would be considered the same by MDM.

DATA INTEGRITY ►► Even though a unique field generally prevents

more than one record from having the same value (or value

combination in the case of a unique field combination), multiple records
are permitted to have the value NULL for the unique field. The reason

for this is that while unique fields are used to distinguish between
multiple records, a unique field with the value NULL means the record

has not yet been fully defined, and therefore should not conflict with

other records that are also not yet fully defined.

 To specify the Unique Field(s) for a table:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. In the Tables pane, select the applicable table.

3. In the Table Detail pane, double-click on the Unique Fields property.

4. MDM opens a dual-list drop-down control for multiple-item selection, as

shown in Figure 32.

Figure 32. Unique Field selection

132 MDM Console Reference Guide

5. Select or deselect fields from the drop-down list, as follows:

▪ To add Available list fields(s) to the Unique Fields list, highlight

them and click the Add button.

▪ To remove fields from the Unique Fields list, highlight them and

click the Remove button.

▪ To add all of the fields to the Unique Fields list, click All.

▪ To remove all of the fields from the Unique Fields list, click None.

▪ To reorder the unique fields, drag-and-drop them in the list of

Unique Fields.

6. To require the combination of selected field values to be unique, select

the fields in the Selected fields list and click Combine. The individual

field items are replaced by a single item listing each of the fields

separated by a plus sign (+), as shown in Figure 33.

Figure 33. Unique Fields combination

TIP ►► To undo a Combine, select the combined item and click Split.

7. Press Enter or click on the up triangle to close the drop-down control.

8. To save the new Unique Fields, right-click on the Table Detail pane

and choose Save Table from the context menu, or press Shift+Enter.

NOTE ►► MDM indicates the Unique Fields in the Fields pane by

placing the numeric value of the unique field in square brackets ([]) in
the UF column for the applicable fields. Combined fields will have the

same numeric value.

TIP ►► If the top-right pane is currently displaying the list of Fields,
you can also click on a field in the grid and change its status as a

Unique Field by changing its Unique Field property between Yes and

No in the Field Detail pane.

Combined
unique

fields

MDM Console Reference Guide 133

Display Fields, Unique Fields, and Record Operations

When you add or duplicate a record in the Record Detail tab of MDM
Data Manager, or when you add or duplicate a node in its Hierarchy or
Taxonomy pane, MDM automatically attempts to populate the Display
Field of new records with appropriate values. You have the opportunity
to change the values of Write-once fields on a duplicated record
immediately after the duplication, before it is saved.

For example, when you use the Add Sibling command in Taxonomy
mode to add a new node, MDM automatically names it “New Item (n)” if
a sibling node named “New Item” already exists (where ‘n’ is the first
available numeric value that will avoid a conflict).

When a table: (1) does not have a fixed-width display field; (2) has
multiple display fields; and/or (3) has one or more unique constraints,
the rules for automatically populating the Display Field and clearing the
fields involved in a unique constraint become somewhat more ornate,
as summarized in Table 30.

Table 30. Value Rules for Display Fields and Unique Fields

Field Add Copy Move

Commands

Record Detail Tab Add Record Duplicate Record n/a

Hierarchy Tree
Add Sibling
Add Child

Copy-and-paste
Cut-and-paste
Drag-and-drop

Cases (data type, display field, and unique constraint characteristics of field)

If: (1) Text; and (2) primary
display field

New Item
New Item (n)

(value unique

across siblings)

Copy of value
Copy (n) of value

(value unique

across siblings)

value
value (n)

(value unique

across siblings)

If: (1) Text; (2) primary
display field; and (3) involved
in unique constraint

New Item
New Item (n)

(value unique

across records)

Copy of value
Copy (n) of value

(value unique

across records)

value
value (n)

(value unique

across records)

AutoID next (value) next (value) n/a

If: (1) involved in unique
constraint other than above;
(2) constraint does not
contain an AutoID or Text

primary display field; (3) this
is the first field in the field

ordering; and (4) no other
fields are NULL

NULL NULL value

All other cases NULL value value

134 MDM Console Reference Guide

NOTE ►► A hierarchy or taxonomy table with multiple display fields

will also encounter special behavior when you use the Add Sibling, Add

Child, and Rename commands in Hierarchy and Taxonomy modes.

DATA INTEGRITY ►► The basic rule of thumb is to populate the

primary display field and, if a record is being duplicated, to preserve as
many of the values of the original record as possible without violating

any of the uniqueness constraints.

NOTE ►► For Java API applications, MDM automatically clears the

value of any Unique Field of new records when the value violates
uniqueness constraints, unless the field is the primary display field or

an AutoID field.

Family Field

The Family Field is the main table lookup field that will be used as the
primary partition of main table records into families. You must specify
the Family Field as one of the properties of the Families table. In a
traditional family structure, this is usually the taxonomy lookup field,
although you can use any hierarchical lookup field.

NOTE ►► When you first create a new MDM repository, MDM
automatically: (1) creates the Families table; and (2) sets the Family

Field to the Category taxonomy lookup field of the main table. To add

the Families table manually, there must be a hierarchy or taxonomy
lookup field in the main table that can be used as the Family Field

(typically the Category field).

NOTE ►► Only the Families table has a Family Field.

 To specify the Family Field for the Families table:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. If it does not already exist, create the Families table (see “Adding

Tables”).

3. In the Tables pane, select the Families table.

4. In the Table Detail pane, double-click on the Family Field property and

select the Family Field from the drop-down list of main table hierarchy

and taxonomy lookup fields.

5. Press Enter or click on the up triangle to close the drop-down control.

6. To save the Family Field, right-click on the Table Detail pane and

choose Save from the context menu, or press Shift+Enter.

MDM Console Reference Guide 135

Alternative Display Fields

The Alternative Display Fields property lets you add values from lookup
table fields to an MDM publication without turning those fields into
regular Display Fields.

For a lookup table field to be eligible as an Alternative Display Field, a
main table lookup field must look in to its table. You can select multiple
Alternative Display Fields from among multiple lookup tables. However,
object table fields cannot be selected as Alternative Display Fields.

NOTE ►► Only the Families table has Alternative Display Fields.

 To specify Alternative Display Fields on the Families table:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. If it does not already exist, create the Families table (see “Adding

Tables”).

3. In the Tables pane, select the Families table.

4. In the Table Detail pane, click on the button in the Alternative

Display Fields property to open the Edit Alternative Display Fields

dialog, shown in Figure 34.

Figure 34. Edit Alternative Display Fields dialog

5. Right-click in the grid and choose Add Field from the context menu.

6. Click in the new field’s Name column to enter a name for the new

Alternative Display Field.

7. Click in the new field’s Path column and then click on the down-arrow

to select the field you want to add as an Alternative Display Field.

NOTE ►► Click the ‘+’ sign next to a lookup field to view the f ields in

its lookup table.

8. Press Enter or click on the up triangle to close the drop-down field list.

9. To delete an existing Alternative Display Field, right-click on the field

and choose Delete Field from the context menu.

10. Click OK to close the Edit Alternative Display Fields dialog.

11. To save the Alternative Display Fields, right-click on the Table Detail

pane and choose Save from the context menu, or press Shift+Enter.

136 MDM Console Reference Guide

ADDING TABLES

An MDM repository can include any number of main or subtables. You
can add and delete tables as required.

 To add a new table to an MDM repository:

1. In the Console Hierarchy tree, select the MDM repository to which you

want to add a table.

2. Right-click in the Tables pane and choose Add Table from the context

menu, or click the Add Table toolbar button (shown at left), or press

Ins, or choose Tables > Add from the main menu.

3. MDM adds a table named “New Table” at the end of the table list, and
places you into the Table Detail pane to specify the properties of the

new table.

4. Specify the applicable properties, as listed in Table 28.

5. To save the table, right-click on the Table Detail pane and choose Save

Table from the context menu, or press Shift+Enter.

NOTE ►► When you first create a table (other than an object or

special table), MDM automatically: (1) creates a Name field of type

Text; and (2) makes it the Display Field for the table.

DATA INTEGRITY ►► Two tables cannot have the same name or the

same code. If a table named “New Table” already exists, MDM
automatically names the new table “New Table (n)” (where ‘n’ is the

first available numeric value that will avoid a conflict).

DELETING TABLES

If you no longer expect to use a table to store information, you can
delete it from the list of tables.

CAUTION ►► Deleting a table is not reversible.

 To permanently delete a table from the current MDM repository:

1. In the Tables pane, right-click on the table to be deleted and choose

Delete from the context menu, or select the field and click the Delete

Field toolbar button (shown at left), or press Del, or choose Tables >

Delete from the main menu.

2. MDM prompts you to confirm that you really want to delete the table.

Click Yes to permanently delete the table from the MDM repository.

3. MDM deletes the table.

NOTE ►► You cannot delete the main table of an MDM repository.

MDM Console Reference Guide 137

Working with Fields

To view or modify fields on a specific table, select the table in the
Console Hierarchy tree. The fields for that table appear in the top-right
pane, which is titled Fields. Select a field from the Fields pane to display
its properties on the bottom-right pane, which is titled Field Detail.

FIELD PROPERTIES

Field properties that are common to all field types are always visible in
the Field Detail pane. Other, type-specific properties are visible in the
Field Detail pane only when their corresponding field type is selected in
the Type property.

Field properties can be editable, read-only, or disabled, depending on
the field type and, in some cases, the values set for other properties.
Also, some properties can only be set when a field is created.

Descriptions of all field properties are provided in Table 31.

Table 31. Field Properties

Property Description and Constraints

Common Properties

Position (Pos.)1,2 The display order of the field within the table ([n]).

Name1 The field name.

Code The unique code for the field.

Description The field description.

Type1

The field type.

▪ Becomes read-only after the field is created, except for

Text and Text Normalized types, which can

interchange afterwards.

Required

Enable this field to be marked and/or validated as a

required field (Yes/No)?

▪ See “Required Fields” for more information

Writeable Once

Does the field become read-only after the first save

(Yes/No)?

▪ Value changes to No and property becomes read-only if

Calculated property=Yes

Matrix This property is deprecated in MDM 7.1.

Multilingual Will the field store values in multiple languages (Yes/No)?

138 MDM Console Reference Guide

Property Description and Constraints

Keyword1

How the field will be added to the keyword index:

▪ None – Do not add this field to the keyword index.

▪ Stemmer – Use keyword stemming on this field.

▪ See “Keyword Fields” for more information

Display Field

(DF)1

Is the field a Display Field for the table (Yes/No)?

▪ [n] in the Fields pane indicates the table’s display field
order

▪ Can also be set as a table property

▪ See “Display Fields” for more information

Unique Field

(UF)1

Is the field a Unique Field for the table (Yes/No; [n] in

Fields pane)?

▪ Becomes read-only if Multi-Valued property is saved as

Yes
▪ [n] in the Fields pane indicates the table’s unique field

combos
▪ Can also be set as a table property

▪ See “Unique Fields” for more information

Sort Index
Add the field’s values to the table’s sort index (Yes/No)?

▪ See “Sort-Indexed Fields” for more information

Calculated

Is the field a calculation (Yes/No)?

▪ Value changes to No and property becomes read-only if

Write Only property=Yes

Calculation The calculation expression for a calculation field.

Type-Specific Properties

 Cache

Should the qualifier be cached (Yes/No)?

▪ Enabled when Qualifier property = Yes

▪ See “Caching Qualifiers” for more information

Decimal Places

The number of decimal places to display for the field’s

values.

▪ See “Decimals, Fractions, and Floating Point Precision”

for more information

Default to

Current Date

Use the current local date as the default date value

(Yes/No)?

Default to

Current Time

Use the current local time as the default time value

(Yes/No)?

Default Unit
Unit of measure for a Measurement field (from the list of

units corresponding to the selected Dimension).

Dimension
Dimension for a Measurement field (from the list of

dimensions).

MDM Console Reference Guide 139

Property Description and Constraints

False Value

String representing the False value for a Boolean field (e.g.

False).

▪ Multilingual in a multilingual repository

Default Value

The default value to use for a Boolean field:

▪ None – NULL

▪ True Value – The True Value property value

▪ False Value – The False Value property value

Image Variants
Which variants to generate for images in Lookup [Image]

fields.

Lookup Table

Name of the table which the field looks into to get its

values.

▪ Possible values include all lookup tables in the
repository of the type selected as the lookup field type

in the Type property

▪ [New Lookup Table] creates a new, empty lookup table

of the type selected as the lookup field type in the

Type property

▪ Becomes read-only after the field is created

Multi-Valued

Allow the field to store multiple values (Yes/No)?

▪ Becomes read-only after the field is created.

▪ If set to Yes, the Unique Field, Sort Index, and Use

Search Control properties become read-only after the

field is created

▪ Lookup [Qualified] fields are always multi-valued

New Lookup

Table Name

The name for the new lookup table.

▪ Enabled when Lookup Table property = [New Lookup
Table]

▪ Value becomes Lookup Table value after the field is

created.
▪ Property disappears when an existing lookup table is

selected as the Lookup Table value and after the field

is created

Qualifier
Is this field a qualifier (Yes/No)?

▪ Qualified tables only

Reverse

Navigation

Enable users to see the records which link to a main table

record through this lookup field.

▪ Lookup [Main] fields only

140 MDM Console Reference Guide

Property Description and Constraints

Search Tab

Should the field appear as a search tab for the table

(Yes/No)?

▪ Default is: (1) Yes for lookup fields, lookup qualifiers,

Boolean qualifiers, and tuples; and (2) No for Boolean

fields

Selected Fields

Fields to track for a Time Stamp or User Stamp field (field

list, default = [ALL]).

▪ See “Create Stamp, Time Stamp, and User Stamp

Fields” for more information

Show Fractions
Display values as fractions (Yes/No)?

▪ See “Show Fractions” for more information

Sort Type

The type of sort for a Text or Text Normalized field:

▪ Case Insensitive

▪ Case Sensitive
▪ Numeric

▪ See “Sort Types” for more information

Symbol
Currency symbol for a Currency field (any character

string).

True Value

String representing the True value for a Boolean field (e.g.

True).

▪ Multilingual in a multilingual repository

Tuple

Name of the tuple which the field looks into to get its

values.

▪ Possible values include all tuples in the repository

▪ Becomes read-only after the field is created

Value Selection

How the lookup field value is to be edited:

▪ Pick list

▪ Mini-search

Width
Maximum number of characters for a Text or Text

Normalized field.

1 Property also displayed in the Fields pane.
2 Property only displayed in the Fields pane.

Required Fields

When the Required field property value is set to Yes for a field, you can:

• Ensure that the field contains a value by adding the function
REQUIRED_FIELDS to a validation expression. When the validation
is performed, this function automatically checks whether required
fields have values. See “Validating Records” in the Data Manager
Reference Guide for more information.

MDM Console Reference Guide 141

• Display an asterisk (*) by the field name in the Data Manager to
indicate that the field must contain a value. See "Identifying Required
Fields" in the Data Manager Reference Guide for more information.

NOTE ►► Setting the Required property to Yes does not

automatically validate that the field contains a data value.

Normalized Fields

A normalized field is a special type of fixed-width text field in which
certain delimiter characters (i.e. all non-alphanumeric characters) are
ignored for the purposes of searching and sorting.

A normalized field (Type=Text Normalized) should be used instead of a
fixed-width text field when its contents will contain values that differ in
certain delimiter characters only, but should be considered equal for the
purpose of searching and sorting. For example, “pn-157” and p/n.157”
may be different ways to represent the same value. Ignoring the
delimiter characters (‘-‘, ‘/’, and ‘.’) causes these values to both be
“pn157” for searching purposes and to compare as equal.

NOTE ►► Keyword fields cannot be normalized.

Sort-Indexed Fields

The Sort Index field property makes a field sortable in the Records grid
of the MDM Data Manager and through the API. It accelerates free-form

search for the equals and starts with Text operators, and for the =, <,

<=, >, and >= numeric operators. It also greatly improves matching

speed on Equals matches in the Data Manager’s Matching mode.

However, MDM uses extra memory and processing to maintain the sort
index, which can slow down updates and imports significantly on larger
repositories. To improve system performance, if you do not need to sort
on a particular field, do not make it sortable.

NOTE ►► Turning off sort-indexing for fields in Lookup [Flat] tables

can improve MDM performance, especially when starting a repository.

NOTE ►► Sort-indexing is required for Equals matches in the Data

Manager’s Matching mode.

NOTE ►► Sort-indexing is not supported within the Tuple Editor.

NOTE ►► Some field types are not sortable. These will always have

the property set to None and the property will be disabled.

142 MDM Console Reference Guide

Sort Types

The Sort Type field property tells MDM how to sort values in text and
text-normalized fields. When sorting, MDM breaks each value into its
numeric, text, and symbolic parts. For example, the value “ABC-001” is

separated as “ABC” + ”-” + ”001” and then sorted according to the sort

type selected.

The various sort types, including examples of their behaviors, are
displayed in Table 32.

Table 32. Sort Type Options

Option Description Example

Case Sensitive

▪ Orders lowercase letters prior to uppercase

letters.

▪ Sorts numbers as text.

▪ Does not ignore leading zeros.

▪ Symbols (‘+’, ’-‘, ’.’, ‘D’, ‘E’) not numerically

significant.

▪ Display order: symbols, numbers, text.

.05 mm

.2 mm

002abc9

V

10-ctx

10-CTX

2ABC09D

F130cde

Case

Insensitive

▪ Ignores letter casing.

▪ Otherwise, same as Case Sensitive.

.05 mm

.2 mm

002abc9

V

10-CTX

10-ctx

2ABC09D

F130cde

Numeric

▪ Sorts embedded numbers as unsigned

integers.

▪ Leading zeros are ignored.

▪ Ignores letter casing.

▪ Symbols (‘+’, ’-‘, ’.’, ‘D’, ‘E’) not numerically

significant.

▪ Display order: symbols, text, numbers.

.2 mm

.05 mm

F130cde

2ABC09D

002abc9

V

10-CTX

10-ctx

NOTE ►► The Case Sensitive option is no longer allowed on text-

normalized fields.

MDM Console Reference Guide 143

Keyword Fields

The Keyword field property indicates whether a field’s contents are
included in the MDM repository’s built-in keyword search index. This
index is used to match words entered in an MDM application’s keyword
search parameter to records in the current table.

If the Inxight stemming engine is installed and configured in the mds.ini
file, MDM uses this stemming engine to search for keyword matches.
Stemming extends the search to plurals, suffixes, and prefixes of the
keyword and words that include the same stem as the keyword. If the
Inxight engine is not installed and configured, MDM uses the ngrams
algorithm for stemming, which is not as broad, but is faster than the
Inxight engine.

When a field’s Keyword property is set to None, the field’s values are
not added to the keyword index. When set to Stemmer, the field’s
values are added to the MDM repository’s built-in keyword search index.

Be aware that it is neither necessary nor recommended to keyword
every field on the table. Rather, keyword only those fields which use a
small set of unique words across all records (or small relative to the total
number of records). A Description field is an example of such a field;
even though the total number of words used across all records will be
large, the number of distinct words will likely be small. By contrast, you
should not keyword a Part Number field because it is likely to contain a
different value for every record.

Also, you should not keyword fields which contain information that is so
generic that a keyword search returns too many records to be useful.

NOTE ►► You can use the Keyword property to keyword a PDF

lookup field, which adds the contents of PDFs to the keyword index.

NOTE ►► Keyword-indexing is required for Token Equals matches in

the Data Manager’s Matching mode.

NOTE ►► To include lookup field values in a keyword search,
keyword-index the lookup field itself. You do not also have to keyword-

index fields in the looked-into table.

NOTE ►► To include values of a specific tuple member in a keyword
search, you must keyword-index: (1) the main table tuple field; (2) the

tuple member; and, if the tuple member is nested below other tuple
fields, (3) all tuple fields in the path between the main tuple field and

the tuple member.

NOTE ►► Keyword stemming is available on a language-specific

basis for English and other Western and Eastern languages. Please

contact SAP for more information.

144 MDM Console Reference Guide

NOTE ►► See “Keyword Search” in the Data Manager Reference

Guide for more information about searching keyword fields.

Caching Qualifiers

Qualifiers should almost always be cached (have their values stored in

memory) using the Cache field property for each qualifier field.

Caching a qualifier has several distinct advantages over not caching: (1)
it dramatically improves search performance; (2) it permits keyword

indexing to be set for the qualifier (using the Keyword field property) to
support keyword search of qualifier data; (3) it permits drilldown search
by qualifier lookup values even before you have selected a single
qualified table record in the qualified lookup field search tab; (4) it
permits free-form search by qualifiers (both lookup and non-lookup)
when Sort Index is enabled; and (5) it causes the set of qualified links
for each record to be filtered based on the qualifier search value (both
lookup and non-lookup).

TIP ►► The only reasons for not caching a qualifier is: memory is
limited, you do not need to search on lookup values until you have

already selected a qualified lookup record, and the number of qualified

links is huge (e.g. more than 50 million).

NOTE ►► Calculated qualifier fields and qualifiers should always be

cached.

Decimals, Fractions, and Floating Point Precision

MDM handles floating point precision for fields and attributes as follows:

• Decimal storage. Decimal values are saved to the Master Data
Server using the number of digits received from the source (MDM

application, API, etc.), up to a maximum of 7 significant digits. (Time

and Frequency attributes support 14 significant digits.)

• Fraction storage. Fractions are saved to MDM as the floating point
number closest to the actual value of the fraction (using the precision

of the item’s data type), regardless of the Show Fractions setting.

• Decimal display. MDM displays decimal values using the precision

specified in an item’s Decimal Places properties.

• Fraction display. MDM displays fraction values as either fractions or

decimals, as described in “Show Fractions” below.

• Decimal searches. Decimal values entered in an item’s free-form
search cell are limited to the number of decimal places specified in

the item’s Decimal Places property. MDM then matches all records
which have item values that round to this search value.

MDM Console Reference Guide 145

• Fraction searches. When a fraction is entered in an item’s free-form
search cell, MDM converts the fraction to the floating point number
closest to the actual value of the fraction (using the precision of the

item’s data type, not the Decimal Places property) and then matches
at this precision, without any rounding.

Examples of MDM behavior related to storing and searching for
fractions and decimal values are displayed in Table 33.

Table 33. Fraction and Floating Point Behavior

Action Value Entered Result1

Store 2.3 Stores “2.3” and displays “2.300000”

Store 2 1/3 Stores “2.333333” and displays “2.333333”

Store 2 1/2 Stores “2.5” and displays “2 1/2”

Store 123.45678
Stores “123.4567” and displays

“123.456700”

Search 2.3 Finds “2.295000” to “2.304999”

Search 2 1/3 Finds “2.333333”

1 Assuming field Type = Real, Show Fractions = Yes, and Decimal Places = 6

146 MDM Console Reference Guide

Show Fractions

When the Show Fractions property for a real or measurement field is set

to Yes, MDM applications display some values for that field as fractions
and the rest as decimals, regardless of the form in which the values
were entered into MDM. All other values are displayed as decimals.

Values which are displayed as fractions are listed in Table 34.

Table 34. Values Displayed as Fractions, By Field/Attribute Type

Field/Attribute Type Values Displayed As Fractions

Real
For absolute values from 0 to 999,999,
fractional powers of 2 from1/2 to 1/128

(including all numerator values, such as

3/4, 5/16, and 27/64).

Units of measure which

commonly use fractions

(such as inches, gallons, and

acres).

Cups [Volume] For absolute values between 0 and

999,999, fractional powers of 2 from1/2 to
1/128, the “odd” fractions 1/3, 2/3, 1/5, 2/5,

3/5, 4/5, 1/6, and 5/6, and the fractions
“1/x” where ‘x’ ranges from 7 to 100 in

increments of 1 (e.g. 1/7, 1/15, and 1/78);

from 100 to 1000 in increments of 50 (e.g.
1/150, 1/250, and 1/500); and from 1000 to

2000 in increments of 100 (e.g. 1/1100,

1/1200, and 1/1300).

Pints [Volume]

Quarts [Volume]

Horsepower [Power

(Apparent)]

NOTE ►► MDM always stores fractions as decimals (see “Decimals,

Fractions, and Floating Point Precision” above for more information).

Calculation Fields

You can indicate that a field should be a read-only calculation field

(highlighted in gray in MDM Data Manager) using the Calculated field

property. When you set the property to Yes, MDM enables the

Calculation field property, which allows you to define a calculation
expression for the field so that the value of the field is based on the
values of other fields and attributes.

When you double-click on the Calculation cell, MDM opens the
Calculation Expression dialog shown in Figure 35.

MDM Console Reference Guide 147

Figure 35. Calculation Expression dialog

You can define and edit the calculation expression associated with a
calculation field as described in this section.

 To edit a calculation expression:

1. In the Fields pane, select the field whose calculation you want to edit.

2. In the Properties pane, double-click on the Calculation cell to open the

Calculation Expression dialog shown in Figure 35 above.

3. Enter the calculation expression using the keyboard and the toolbar

buttons to enter values, measurements, field names, attribute names,

lookup values, attribute text values, operators, and functions.

4. Click OK to close the Calculation Expression dialog.

5. To save the calculation, right-click on the Properties pane and choose

Save Field from the context menu, or press Shift+Enter.

NOTE ►► See “Validating Records” in the MDM Data Manager
Reference Guide for more information about the Calculation

Expression dialog.

NOTE ►► You can define category-specific calculations as branches
of a single calculation, and MDM automatically executes the applicable

calculation based on the category for each record.

NOTE ►► You can define category-specific calculations as branches

of a single calculation, and MDM automatically executes the applicable

calculation based on the category for each record.

Create Stamp, Time Stamp, and User Stamp Fields

The Create Stamp, Time Stamp, and User Stamp field types provide a
basic “change tracking” capability. All three field types are read-only and
are automatically updated by MDM as follows:

• Create Stamp. Set with the date and time when a record is created.

• Time Stamp. Set with the date and time each time any of the fields
being tracked are updated.

• User Stamp. Set with the name of the user who makes the change

when any of the fields being tracked are updated.

148 MDM Console Reference Guide

A Create Stamp field applies to the entire record. By contrast, a Time
Stamp or User Stamp field tracks the fields specified using the dual-list

drop-down control for the Selected Fields property.

Figure 36. Selected Fields drop-down control

NOTE ►► The default when you select no fields is [All].

NOTE ►► The list of fields from which to select includes the following

virtual fields: (1) field [Attributes] in the main table, which you can use
to track changes to the attribute values of a taxonomy lookup field; and

(2) [Mask] in the Masks table, which you can use to track changes to

the set of records in the mask.

TIP ►► The time and user stamp fields record information for just the
most recent change, overwriting the information for previous changes.

You can track the entire history of changes along with before and after
values using the Change Tracking table (see “Change Tracking Table”

for more information on change tracking).

The changes to the various stamp fields that occur with various events
are summarized in Table 35.

MDM Console Reference Guide 149

Table 35. Record Changes and Stamp Fields

Event Create

Stamp
Time Stamp User

Stamp

Regular Record Operations

Record is created. Time of

creation

Time of

creation

User of

creation

Change to regular field Unchanged Time of

update

User of

update

Special touch1 of regular field

in Client
Unchanged Time of

update

User of

update

Change of regular field Unchanged Time of

update

User of

update

Create of qualified link Time of

creation2

Time of

creation

User of

creation

Multi-record edit of qualified

links

Time of

update3

Time of

update

User of

update

Change of qualifier field Unchanged Time of

update4

User of

update4

Checkout Record Operations

Record is checked out

(original)
Unchanged Unchanged Unchanged

Record is checked out

(checked out)
Unchanged Unchanged Unchanged

Changes made to checked

out record
(see above) (see above) (see above)

Checked out record checked

back in
Unchanged Unchanged Unchanged

1 Special touch means updating the field value and then changing it back to original value.
2 Stamp defined as: (1) regular field on qualified record tracks the creation of the qualified

record; or (2) as qualifier field on qualified record tracks the creation of the qualified link.
3 Current implementation deletes and recreates links on each update.
4 Stamp defined as: (1) regular field on main table record tracks all links; (2) regular field on

qualified record tracks the qualified record; or (3) as qualifier field on qualified record tracks

that link.
5 Record marked as changed even if update resulted in no changes to the record’s fields.

ADDING AND MODIFYING FIELDS

A normal MDM table can include any number of fields. You can add a
field to a table and modify the properties of existing fields as described
in this section. Since the different field types have different properties
that define them, the steps for adding and modifying a field differ slightly
depending on the type.

150 MDM Console Reference Guide

 To add a new field to a table:

1. In the Console Hierarchy tree, select the table to which you want to

add a field.

2. Right-click in the Fields pane and choose Add Field from the context

menu, or click the Add Field toolbar button (shown at left), or press Ins,

or choose Fields > Add from the main menu.

3. MDM adds a field named “New Field” at the end of the field list, and
places you into the Field Detail pane to specify the properties of the

new field.

4. Specify the applicable properties of the new field.

5. To save the field, right-click on the Field Detail pane and choose Save

Field from the context menu, or press Shift+Enter.

NOTE ►► When you first create a table (other than an object table),

MDM automatically: (1) creates a Name field of type Text; and (2)

makes it the Display Field for the table.

DATA INTEGRITY ►► Two fields cannot have the same name or the
same code. If a field named “New Field” already exists, MDM

automatically names the new field “New Field (n)” (where ‘n’ is the first

available numeric value that will avoid a conflict).

DATA INTEGRITY ►► When you create any kind of lookup field,
MDM automatically creates implicit primary key and foreign key

matching fields within each of the two tables (the table that contains
the lookup field and the lookup table itself), defining the many-to-one

“join” relationship and maintaining referential integrity behind the
scenes. The matching fields are hidden, while the value of the lookup

field is the value(s) of the display field(s) of the lookup table record.

DATA INTEGRITY ►► When you add a lookup field to a table before

you have added the target lookup table to the MDM repository, MDM
provides an opportunity to create a new lookup table of the

corresponding type as part of adding the new field. The drop-down list

for the Lookup Table property always includes an entry “[New type
Table]” (where “type” is the lookup table type), and if you select it,

MDM automatically creates a table of the corresponding type. If you
add an object lookup field (e.g. Lookup [Image]) and the corresponding

object table (e.g. Images) does not already exist, MDM automatically

creates the object table as part of adding the new field.

MDM Console Reference Guide 151

REORDERING FIELDS

It may be useful to change the position (i.e. the display order) of fields in
a table to facilitate record editing in MDM Data Manager. The position of
a field in a table is shown in the Pos. column of the Fields pane, as
shown in Figure 37.

Figure 37. Field position (display order)

 To change the display order of fields in a table:

1. In the Console Hierarchy tree, select the table whose fields you want to

reorder.

2. Right-click in the Fields grid and choose Reorder from the context

menu, or choose Fields > Reorder from the main menu.

3. MDM opens the Reorder Field Positions dialog, as shown in Figure 38.

Figure 38. Reorder Field Positions dialog

4. Select one or more fields and drag them to the desired positions in the

list

5. Click OK to close the dialog.

DELETING FIELDS

If you no longer expect to use a field, you can delete it.

CAUTION ►► Deleting a field is not reversible.

152 MDM Console Reference Guide

 To permanently delete a field from the current table:

1. In the Fields pane, right-click on the field to be deleted and choose

Delete from the context menu, or select the field and click the Delete

Field toolbar button (shown at left), or press Del, or choose Fields >

Delete from the main menu.

2. MDM prompts you to confirm that you really want to delete the field.

Click Yes to permanently delete the field from the table.

3. MDM deletes the field.

NOTE ►► If MDM cannot delete the field for any reason, it will display

an error message stating why the field could not be deleted.

MDM Console Reference Guide 153

Working with Tuples

When the selected node in the Console Hierarchy tree is the Tuples
node, the objects pane (top-right) is titled Tuples and the detail pane
(bottom-right) is titled Tuple Detail.

The Tuples pane contains a grid with a list of the tuples defined for the
MDM repository, where each tuple in the list corresponds to a child of
the Tuples node.

TUPLE PROPERTIES

The properties for each tuple are listed in Table 36, all of them directly
editable in the Tuples pane.

Table 36. Tuple Properties

Property Description

Name The tuple name.

Code The unique code for the tuple.

Description The tuple description.

Display Fields1
The tuple members whose values are used as the display
value of the tuple field.

1 Every tuple must have at least one display field.

TIP ►► There is no explicit command to modify tuple properties. To

modify a tuple’s properties, select it in the Tuples pane, move the focus

into the Tuple Detail pane, and edit the properties.

ADDING AND DELETING TUPLES

An MDM repository can include any number of tuples. You can add and
delete tuples in a repository as described in this section.

 To add a new tuple to an MDM repository:

1. In the Console Hierarchy tree, select the Tuple node.

2. Right-click in the Tuples pane and choose Add Tuple.

3. MDM adds a tuple named “New Tuple” at the end of the tuple list, and

places you into the Tuple Detail pane to specify the properties of the

new tuple.

4. Specify the applicable properties, as listed in Table 36.

5. To save the tuple, right-click on the Tuple Detail pane and choose Save

from the context menu, or press Shift+Enter.

NOTE ►► When you first create a tuple, MDM automatically: (1)

creates a Name member field of type Text; and (2) makes Name the

Display Field for the tuple.

154 MDM Console Reference Guide

DATA INTEGRITY ►► Two tuples cannot have the same name or the

same code. If a table named “New Tuple” already exists, MDM
automatically names the new tuple “New Table (n)” (where ‘n’ is the

first available numeric value that will avoid a conflict).

 To delete a tuple:

1. In the Console Hierarchy tree, select the Tuple node.

2. In the Tuples pane, right-click on the tuple you want to delete and

choose Delete Tuple.

3. MDM deletes the tuple.

CAUTION ►► Deleting a tuple is not reversible.

DATA INTEGRITY ►► MDM does not allow you to delete a tuple that

is in use elsewhere in the MDM repository.

WORKING WITH TUPLE MEMBERS

To view or modify a tuple’s members, select the tuple from the Console
hierarchy tree. The tuple’s members appear in the top-right pane, which
is titled Member Fields. Select a field from the Member Fields pane to
display its properties in the bottom-right pane, which is titled Member
Field Detail.

The properties displayed in the Member Field Detail pane vary based on
the member's type and are the same properties that appear for the field
type in the Field Details pane (see “Field Properties” for more
information).

Adding and Deleting Tuple Members

A tuple can contain any number of tuple members. You can add and
delete a tuple’s members as described in this section.

 To add a new member to a tuple:

1. In the Console Hierarchy tree, select the desired tuple.

2. Right-click in the Member Fields pane and choose Add Member Field

from the context menu, or click the Add Field toolbar button (shown at

left).

3. MDM adds a field named “New Field” at the end of the field list, and
places you into the Member Field Detail pane to specify the properties

of the new field.

NOTE ►► Not all field types are supported in tuple definitions (see

“Supported Field Types” for more information).

MDM Console Reference Guide 155

 To permanently delete a tuple member:

1. In the Console Hierarchy tree, select the desired tuple.

2. In the Member Fields pane, right-click on the field to be deleted and

choose Delete from the context menu, or select the field and click the

Delete Field toolbar button (shown at left).

3. MDM prompts you to confirm that you really want to delete the field.

Click Yes to permanently delete the field from the table.

4. MDM deletes the field.

CAUTION ►► Deleting a tuple member is not reversible.

NOTE ►► If MDM cannot delete the field for any reason, it will display

an error message stating why the field could not be deleted.

Reordering Tuple Members

It may be useful to change the position (i.e. the display order) of tuple
members. The position of a member in a tuple is shown in the Pos.
column of the Member Fields pane, as shown below.

Figure 39. Member position (display order)

 To change the display order of a tuple’s members:

1. In the Console Hierarchy tree, select the tuple whose members you

want to reorder.

2. Right-click in the Member Fields grid and choose Reorder from the

context menu, or choose Fields > Reorder from the main menu.

3. MDM opens the Reorder Field Positions dialog, as shown in Figure 38.

4. Select one or more fields and drag them to the desired positions in the

list

5. Click OK to close the dialog.

157

PART 6: REPOSITORY ADMINISTRATION

This part of the reference guide presents guidelines for maintaining the
integrity of your MDM repositories and using the various mechanisms
for backing them up and restoring them.

MDM Console Reference Guide 159

Repository Administration Operations

The operations for repository administration are described in the
following sections and summarized in Table 37.

Table 37. Repository Administration Operations

 Operation Description

 Appropriate Repository Takes control of a remotely running MDM repository.

 Update Repository Updates an outdated MDM repository.

 Verify Repository Checks and Repairs an MDM repository.

 Duplicate Repository Duplicates an MDM repository.

 Delete Repository Deletes an MDM repository.

 Create Slave Creates a slave MDM repository.

 Synchronize Slave Updates a slave MDM repository.

 Normalize Repository
Converts a master or slave to be a normal MDM

repository.

 Archive Repository Archives an MDM repository.

 Unarchive Repository Unarchive an MDM repository.

 Export Schema
Exports the selected MDM repository schema to an

XML file.

 Import Schema
Imports a schema and merges it into the selected

MDM repository.

NOTE ►► The repository operations available to a user for a given
MDM repository are determined by the user name used to connect to

that repository.

NOTE ►► Some administrative functions may also require the Master
Data Server password (if the Master Data Server is password-

protected).

160 MDM Console Reference Guide

Appropriating an MDM Repository

Although MDM repositories can be mounted on multiple Master Data
Servers simultaneously, each repository can only be started by one
Master Data Server at a time. Started repositories appear in the

Console with the state Running Remotely (see status icon shown on left)

on all other Master Data Servers on which they are mounted.

Once a repository is stopped by a Master Data Server, it becomes
available to all other Master Data Servers. However, if the Master Data
Server shuts down while the repository is still started, the repository will
remain unavailable even though it is no longer being accessed by that
Master Data Server.

You can use the Appropriate command to reset the repository state to
stopped, so that is accessible to and can be started or restarted by any
Master Data Server.

You should appropriate an MDM repository only if you are certain that
no other Master Data Server is using the repository. You can check this
by selecting the Master Data Server in the Console Hierarchy tree and
looking at the Status field in the Repositories pane in the main window,
which shows which other Master Data Server is running the repository.

CAUTION ►► This operation is potentially dangerous, as it takes
about a minute for the other Master Data Server to release its

connections to the repository. If you immediately perform an operation
on the repository after appropriating it (that is, within a minute or so),

there is a small chance of data corruption as both Master Data Servers
can simultaneously access the repository. To be safe, you may want to

wait a minute after appropriating an MDM repository prior to performing

the next operation. This is not an issue if you are appropriating a

repository on the same Master Data Server.

 To appropriate a remotely running MDM repository:

• In the Console Hierarchy tree, right-click on the MDM repository you

want to unlock and choose Appropriate Repository from the context

menu, or choose Repositories > Appropriate from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM
repositories, you can also right-click on the repository in the grid and

choose Appropriate from the context menu.

MDM Console Reference Guide 161

Updating an MDM Repository

An MDM repository becomes outdated when you install an updated
version of the MDM software and the updated software requires
changes to the underlying schema that MDM uses to store the
repository information within the SQL database.

When the new version of MDM requires schema changes in an existing
MDM repository, the repository status icon (shown at left) is a gray
square, indicating that the repository is outdated.

You can use the Update command to update the schema structure of an
outdated MDM repository to the current version of the MDM software.

NOTE ►► Not all MDM updates involve schema changes. To find out

whether the latest release of MDM requires an update to the MDM
repository – and if it does, how much time it will take – be sure to read

the release notes that are distributed with the new software.

NOTE ►► You cannot start an outdated MDM repository.

CAUTION ►► It is strongly recommended that you duplicate or

backup an outdated MDM repository prior to updating it, as described
in “Duplicating an MDM Repository”, and “Backing Up and Restoring a

Repository”.

When you update an MDM repository, MDM automatically generates a
report file, which you can view when the process is complete. (See
“Reports” for more information on report files and how to view them at a
later time.)

 To update an outdated MDM repository (gray square):

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to update and choose Update Repository from the context menu,

or select the tree node and choose Repositories > Update from the

main menu.

2. MDM prompts you to confirm that you really want to update the

repository. Click Yes to update the repository.

3. MDM updates the repository.

4. When the update process is complete, MDM displays a message

dialog indicating whether the update was successful. Click OK to close

the dialog.

NOTE ►► An MDM repository might not update successfully if the

underlying databases have been modified by an application other than

MDM.

162 MDM Console Reference Guide

Verifying an MDM Repository

Over time, the data and the internal structure within an MDM repository
can accumulate inconsistencies and various schema, referential
integrity, and other logical errors.

You can use the Verify commands to detect and correct these repository

errors. The Verify command has the options described in Table 38.

Table 38. Verify Commands

Option Description

Check

Finds and reports errors in the repository schema but does not

repair them.

▪ You can run Verify > Check on a mounted repository that is

started or stopped.

▪ Run Verify > Check to detect existing constraints for multi-value

referenced tables.

▪ If you check a started repository, it will be locked from being

modified during the operation; checks should be scheduled

with other user activities in mind.

▪ You should always run a Verify > Check after a Verify > Repair.

Some of the other commands automatically run a Verify >

Check before they execute.

Repair

Not only finds and reports but also repairs errors in the repository

schema.

▪ You can only Repair an MDM repository that is mounted and

stopped.

▪ The Repair option runs the risk of destroying data, as when

orphaned records are deleted. It is recommended that you first

run the Check option to reveal which data tables will be

affected by the repair.

▪ Sometimes, you may need to run Verify > Repair multiple times

until either no errors remain or there is no change from the

previous repair, as indicated by the number of errors fixed.

When you verify an MDM repository, MDM automatically generates a
report file, which you can view when the process is complete. (See
“Reports” for more information on report and how to view them at a later
time.)

In the Verify report, errors are denoted by the symbol “$$$” in the left
margin. The following types of errors are identified in the report:

• Fatal errors. These will either prevent the Master Data Server from
starting the MDM repository or cause it to crash. Examples include
missing critical tables or fields, and the use of an undefined lookup
record ID.

MDM Console Reference Guide 163

• Non-fatal errors. These may cause the Master Data Server to fail or
to run inefficiently. Examples include mismatched field types,
incorrect nullability, and incorrect or missing indices.

• Warnings. These are inconsistencies among database definitions
that will not necessarily affect Master Data Server operation. An
example is an unnecessary field or index.

NOTE ►► Most fatal errors can be fixed automatically by the Verify

command; however, some may require manual repair.

 To verify an MDM repository:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to verify and choose Verify Repository, or select the tree node

and choose Repositories > Verify from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Verify from the context menu.

2. Choose the Verify option from the cascading menu:

▪ Check

▪ Repair

DATA INTEGRITY ►► If you select the Check option, MDM marks the

repository as read-only for the duration of the check process, which

does not prevent other users from accessing the repository, but does

prevent them from modifying its contents.

3. If you select Repair, MDM prompts you to confirm that you really want

to repair the errors in the repository. Click Yes to repair the repository.

4. MDM verifies the repository.

5. When the verify process is complete, MDM displays a message dialog
indicating the number of errors found and also any warnings, as shown

in Figure 40.

Figure 40. Repository Verify Complete dialog

6. To view the report, click Yes. MDM opens the Report Detail dialog to

view the XML report.

NOTE ►► You can view any of the reports previously generated by
MDM by selecting the Reports table under the Admin node in the

Console Hierarchy. See “Reports” for more information.

164 MDM Console Reference Guide

Duplicating an MDM Repository

There are a variety of reasons for duplicating (i.e. copying) an MDM
repository:

• Backup. Duplicate an MDM repository as a backup, allowing you to
discard subsequent changes and revert to the point of duplication.

TIP ►► If you duplicate an MDM repository to the same DBMS
machine as the original, the repository is not secure against hardware

failure, only against user corruption. If your objective is to back up the
MDM repository, it is safer to duplicate a repository to a separate

DBMS machine.

• Training. Use the duplicate for training purposes or experimentation

by designers and other MDM repository maintenance personnel.

• Testing. Use the duplicate for testing purposes, to try out new ideas
without affecting or endangering the active, online repository.

• Repartitioning. You can create the duplicate with a different number
of partitions than the original.

• DBMS server transfer. You can create the duplicate under the
control of a different DBMS Server than the original, to move the
MDM repository from one DBMS Server to another as part of the
duplication.

• DBMS brand transfer. You can create the duplicate under the
control of a different DBMS brand than the original, to move the
MDM repository from one DBMS brand to another as part of the
duplication.

You can use the Duplicate command to duplicate an existing MDM
repository, including masked subsets, and schema-only duplicates that
contain no records.

NOTE ►► You can duplicate a mounted MDM repository that is either

started or stopped.

NOTE ►► If you duplicate an MDM repository while it is started, it will

be locked from being modified during the operation; therefore,

duplication should be scheduled with other user activities in mind.

TIP ►► Before duplicating an MDM repository, you should run the

Verify > Check command, then run Verify > Repair, and then run Verify

> Check again, to make sure the repository does not contain errors.

MDM Console Reference Guide 165

TIP ►► The structure of an MDM repository cannot be modified while

it is started. To minimize disruption to MDM client users while the
repository is stopped for modification: (1) duplicate the repository while

the original remains started; (2) mount and start the duplicate on a
different port; (3) make modifications to the duplicate; (4) stop both

repositories; and (5) start the duplicate on the same port the original

repository was using.

TIP ►► When you duplicate a repository from one DBMS instance to
another, MDS tries to instruct the two DBMS instances to perform a

whole-table copy. A whole-table copy is very efficient because the
target DBMS instance directly contacts the source DBMS instance and

pulls the entire table from it. In order for a whole-table copy to work,
however, the source and target DBMS instances must be "known" to

each other. For example, when duplicating from one Oracle instance to

another, the name of the source instance must be in the
tsanames.ora file used by the target Oracle instance. If a whole-

table copy cannot be performed, MDS falls back to row-by-row

duplication which can result in much slower duplication times.

NOTE ►► Duplicating a slave repository creates a new slave

repository that shares the same master as the original slave.

NOTE ►► Duplicating a master repository creates a normal

repository.

When you duplicate an MDM repository, MDM automatically generates
a report file, which you can view when the process is complete (See
“Reports” for more information on reports and how to view them at a
later time.)

 To duplicate an MDM repository:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to duplicate and choose Duplicate Repository from the context

menu, or select the tree node and choose Repositories > Duplicate

from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Duplicate from the context menu.

DATA INTEGRITY ►► MDM marks the repository as read-only for

the duration of the duplication process, which does not prevent other
users from accessing the repository, but does prevent them from

modifying its contents and possibly destroying the integrity of the

duplicate.

166 MDM Console Reference Guide

2. MDM opens a dialog asking whether you want to perform a Verify >

Check operation. Click Yes to verify the repository or click No to

proceed with the Duplicate operation without verifying the repository.

NOTE ►► If the check detects any inconsistencies in the repository,
MDM allows you to cancel the duplicate operation and first perform a

Verify > Repair. Click Yes to duplicate the repository without repairing

the errors, or click No to cancel the duplicate operation so that you can

repair the repository.

3. MDM opens the Duplicate MDM Repository dialog shown in Figure 41.

Figure 41. Duplicate MDM Repository dialog (1 of 2)

4. Select the DBMS Server for the duplicated MDM repository from the

drop-down list.

TIP ►► To reference a SQL Server named instance, append a

backslash (\) and the instance name after the machine name above.

TIP ►► To use Windows authentication, leave the Login empty
(requires the SQL Server Allow Windows Authentication

Mode parameter in the Master Data Server Settings file (mds.ini) to be

set to True).

TIP ►► To remove an entry from the drop-down list of DBMS Servers,

make it visible in the closed drop-down control and press Del.

TIP ►► The drop-down list of DBMS Servers includes only those

servers that you have previously added to the list and will usually
include for selection all the servers to which you might want to connect.

If the desired server is not in the list, click the “…” (browse) button to

open the Select DBMS Server dialog, and select from the list of DBMS
Servers known to MDM. If the desired DBMS Server is not in this list

either, then click the Add button in the Select DBMS Server dialog to

open the Add DBMS Server dialog, and select from the list of servers
(or type in a new name in the text entry control at the top of the dialog),

and choose the DBMS type from the drop-down list.

MDM Console Reference Guide 167

5. Enter the appropriate DBMS login (which must have system

administrator privileges) and password for the selected DBMS Server

and click Next.

6. If the Master Data Server is password-protected, MDM opens the

Connect to Master Data Server dialog shown in Figure 42 and prompts

you to enter your Master Data Server password. Type the password

and click OK.

Figure 42. Connect to Master Data Server dialog

NOTE ►► If you have already entered the Master Data Server
password during your current MDM Console session, you will not be

reprompted. However, if you unmount and then remount the Master

Data Server during the current session, you will be required to reenter

the password.

7. MDM disables the DBMS Server, Login, and Password fields and

enables the Repository Name field, as shown in Figure 43.

Figure 43. Duplicate MDM Repository dialog (2 of 2)

TIP ►► You can click the Options button to open the Repository
Options dialog to: (1) change the number of partitions given to the new

MDM repository from the default currently set for the Default Partitions

DBMS setting; and/or (2) create a subset or schema-only repository

(see “Setting ” for more information on repository options).

8. Enter the name for the new MDM repository.

9. Click Finish to duplicate the repository.

10. If the duplicate repository name already exists, MDM prompts you to

confirm that you really want to overwrite the existing repository. Click

Yes to overwrite the repository.

168 MDM Console Reference Guide

11. While the repository is being duplicated, MDM reports the progress in

the Status field for the repository in the Repositories pane. If the
repository is stopped, MDM also changes the repository status icon

(shown at left) to two blue dots.

12. When the duplicate process is complete, MDM displays a message
dialog indicating whether the duplicate was successful, as shown in

Figure 44.

Figure 44. Repository Duplicate Complete dialog

NOTE ►► The duplicate MDM repository is not mounted

automatically on the Master Data Server after it is created. See
“Mounting and Unmounting an MDM Repository” for more information

about mounting MDM repositories.

13. To view the report, click Yes. MDM opens the Report Detail dialog to

view the XML report.

NOTE ►► You can view any of the reports previously generated by
MDM by selecting the Reports table under the Admin node in the

Console Hierarchy. See “Reports” for more information.

MDM Console Reference Guide 169

Maintaining Master and Slave Repositories

MDM’s master/slave feature enables “pull-based” replication of MDM
repositories. Through this feature, you can create one or more read-only
copies of an existing MDM repository. Each copy can be on the same
Master Data Server as the original or on a completely different platform
in a completely different location.

The original, or master repository, keeps track of all of its subsequent
data and schema changes. Each copy, or slave repository, can update
itself with these changes by sending a synchronization request to the
master, which replies with the updates.

Master/slave repositories can provide a variety of benefits, including:

• Performance boosts. They reduce load and improve performance
by distributing read-access requests among multiple servers.

• Data availability. They ensure that repository data is available even

when the master repository is busy.

• Redundancy. They reduce the risk of repository downtime due to

server outages.

• Staging. They allow you to make incremental changes on a “staging”
repository and then release the changes only when you are ready.

• Efficient updating. They speed up data synchronization by sending

only repository updates, not entire repositories.

MASTER/SLAVE LANDSCAPES

There are two basic strategies for designing a master/slave landscape.
The first is to create a distributed, scale-out architecture. In this
landscape, the master repository is located on one physical server and
the slave repositories are mounted on separate servers. You can scale
out such an architecture infinitely. This architecture is useful for creating
regional data-access points and redundant repositories.

Benefits to a distributed landscape include:

• Local access to master data from anywhere in the world.

• Backup repositories available in case of server failures.

• Improved Master Data Server stability due to distributed loads.

NOTE ►► Slave repositories can run on different operating systems

and use different underlying databases than their master repository.

170 MDM Console Reference Guide

A distributed landscape is illustrated in Figure 45.

Figure 45. Master repository with distributed slave repositories

The second landscape strategy is to place both the master and slave
repositories on the same physical server. This is useful for creating a
staged production environment in which you make ongoing changes to
the master repository while ensuring a stable version of your master
data is always accessible.

Benefits to a single-server landscape include:

• Requires only a single machine and a single copy of MDM software.

• Allows you to “publish” master data updates on your schedule.

A single-server landscape is illustrated in Figure 46.

Figure 46. Master and slave repositories on a single Master Data Server

NOTE ►► Master/slave-related communications use the standard

MDS port 20005 and do not require a dedicated port. The Master Slave

Port setting in the mds.ini file is deprecated.

MDM Server A

Master/Staging
Repository

Slave/Production

 Repository

 MDM Server B

 MDM Server C

 MDM Server D

Slave
 Repository

MDM Server A

Master
Repository

Slave
 Repository

Slave
 Repository

MDM Console Reference Guide 171

MASTER/SLAVE LIMITATIONS

While a master/slave configuration offers a number of benefits, there
are several limitations worth noting:

• Cannot synchronize slaves after moving a master repository.

• Cannot synchronize changes from different versions of MDS.

• Cannot edit description and port properties on slave repositories.

• Syndication tracking information is not synchronized

Moving Master and Slave Repositories

When a slave repository is created, it is given the server location of its
master repository. The master repository, however, has no knowledge
of its slaves’ locations. For this reason, you can freely move slave
repositories to different servers, but moving a master repository is not
recommended. Once you move a master repository, its slave
repositories can no longer synchronize to it.

If you must move a master repository to a different Master Data Server,
it is best to normalize the master repository before the move (see
“Normalizing a Master or Slave Repository” for more information about
normalizing repositories). Then, once the repository is mounted on the
new server, create new slave repositories from it. The new slaves will
be able to synchronize to the master at its new location.

Synchronization Requires Identical MDS Versions

All slave repositories should be mounted on hosts running the same
version (build number) of MDS software as their master repository.
Changes made to a master repository running a different version of the
Master Data Server than a slave repository cannot be synchronized by
the slave.

When updating your Master Data Server software, it is therefore best to
synchronize slave repositories before beginning the update. If you are
unable to update master and slave repositories simultaneously, the
slave repository can continue to synchronize changes made on the
master until it receives changes made on a different version of Master
Data Server software than its own. At that point, the slave repository will
issue an error message indicating that the slave is operating on a
different version of the software than the master.

Syndication Tracking Information is not Synchronized

Slave synchronization does not transfer syndication timestamps from
the master repository. As a result, the slave repository, even if
normalized, will not suppress unchanged records in a syndication based
on syndications which occurred on the master repository.

172 MDM Console Reference Guide

IDENTIFYING MASTER AND SLAVE REPOSITORIES

In the Console Hierarchy tree, the type of an up-to-date, valid, and
connected MDM repository is identified by the color of the top of the
repository icon. In the Repositories pane, the type of each repository is

displayed as Normal, Master, Slave, or Publication Slave.

Master and slave repositories are identified by the icons and types
displayed in Table 39.

Table 39. Identifying Master and Slave Repositories in MDM Console

Icon Type

 Master

 Slave

 Publication slave

To see the name and expected host Master Data Server of a slave
repository’s master repository, use the CLIX command
repGetMasterInfo. A master repository has no knowledge of its

slave repositories.

PUBLICATION SLAVES

Publication slaves, like ordinary slave repositories, contain read-only
copies of their master repository’s master data. Unlike ordinary slave
repositories, publication slaves have the ability to store changes related
to publications and the publication-related portions of the repository.
This feature allows you to offload all publication work from the master
repository to one or more publication slave repositories.

By safely separating the distinct duties of master data maintenance from
those of publication design, you can improve performance for all MDM-
related tasks by preventing unnecessary competition for machine and
Master Data Server resources.

NOTE ►► You can also back up and restore the work performed on a

publication slave independently of the rest of the repository (see “MDM

Publication Model Archive and Unarchive”).

MDM Console Reference Guide 173

MASTER/SLAVE-RELATED OPERATIONS

Master/slave-related operations available from MDM Console are
described in Table 40.

Table 40. Master/Slave Console Operations

Operation Description

Create Slave Creates a slave based on the selected repository

Synchronize Slave Updates the selected slave repository

Normalize Repository Normalizes the selected master or slave repository

These operations are described in the following sections.

CREATING MASTER AND SLAVE REPOSITORIES

The Create Slave operation automatically turns a normal repository into
a master repository. While a master repository can have any number of
slaves, each slave repository can have only one master repository.

To issue a Create Slave command, the master repository must be
mounted but it does not have to be started. While MDM is creating the
slave, the master repository is made “read-only” to prevent other users
from modifying the repository and destroying the integrity of the slave.

Other options for adding slave repositories include the Duplicate and

Archive/Unarchive operations. Duplicating an existing slave repository
creates a new slave repository which contains the same information and
shares the same master as the existing slave. This option can be useful
if you have an existing slave and either do not have access to the
master repository or do not wish to interrupt the master repository with a

Create Slave operation. See “Duplicating an MDM Repository” for more

information about the Duplicate operation.

The archive/unarchive option is useful when you want to create,
distribute, and install multiple slaves across a broad range of different
systems. Simply create one slave, archive it, and then distribute the
archive file to the various target locations for unarchiving. See “MDM
Repository Archive and Unarchive” for more information about archiving
and unarchiving MDM repositories.

Because the Duplicate and Archive/Unarchive operations create slave
repositories from other slaves instead of the master, it is a good idea to
synchronize the original slave to the master repository before
undertaking either operation.

174 MDM Console Reference Guide

The benefits of the various slave-adding operations are summarized in
Table 41.

Table 41. Benefits of Various Slave-Adding Operations

Operation Benefit

Create Slave Creates a slave repository based on the master.

Duplicate Does not require access to the master repository.

Archive/Unarchive Distribution of slave repository to multiple locations.

NOTE ►► Duplicating and unarchiving operations result in new slave

repositories of the same type (regular or publication slave) as the

duplicated/archived slave repository.

CAUTION ►► Once the master/slave relationship is established, any

modifications to the underlying repository information should occur only

from using MDM client applications or APIs. Altering data through other

means can result in unpredictable and undesirable behavior.

TIP ►► When you create a slave repository on a different DBMS

instance than the one hosting the master, MDS tries to instruct the two
DBMS instances to perform a whole-table copy. A whole-table copy is

very efficient because the target DBMS instance directly contacts the

source DBMS instance and pulls the entire table from it. In order for a
whole-table copy to work, however, the source and target DBMS

instances must be "known" to each other. For example, when
duplicating from one Oracle instance to another, the name of the

source instance must be in the tsanames.ora file used by the target

Oracle instance. If a whole-table copy cannot be performed, MDS falls

back to row-by-row duplication which can result in much slower slave

creation times.

 To create a slave repository using the Create Slave operation:

1. In the Console Hierarchy tree, right-click on the MDM repository for

which you want to create a slave and choose Create Slave from the

context menu, or select the tree node and choose Repositories >

Create Slave from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Create Slave from the context menu.

2. MDM opens a dialog asking whether you want to perform a Verify >

Check operation. Click Yes to verify the repository or click No to

proceed with the Create Slave operation without verifying the

repository.

MDM Console Reference Guide 175

NOTE ►► If the check detects any inconsistencies in the repository,

MDM allows you to cancel the Create Slave operation and first perform

a Verify > Repair. Click Yes to proceed without repairing the errors, or

click No to cancel the Create Slave operation so that you can repair the

repository.

3. MDM opens the Create Slave Repository dialog shown in Figure 47.

Figure 47. Create Slave Repository dialog (1 of 2)

4. From the drop-down list in the DBMS server field, select the DBMS

Server on which you want to create the slave repository.

TIP ►► The drop-down list of DBMS Servers includes only those

servers that you have previously added to the list.

5. Enter the appropriate DBMS login (which must have system
administrator privileges) and password for the selected DBMS Server

and click Next.

TIP ►► To use Windows authentication, leave the Login empty
(requires the SQL Server Allow Windows Authentication

Mode parameter in the Master Data Server Settings file (mds.ini) to be

set to True).

6. MDM disables the DBMS Server, Login, and Password fields and

enables the Repository Name field, as shown in Figure 48.

Figure 48. Create Slave Repository dialog (2 of 2)

NOTE ►► Click the Options button to change the number of partitions
given to the slave repository or to create the slave as a publication

slave (see “Setting ” for more information).

176 MDM Console Reference Guide

7. Enter the name for the slave repository.

8. Click Finish to create the slave repository.

9. While the slave repository is being created, MDM reports the progress

of the slave creation in the Status field of the master repository in the
Repositories pane. If the master repository is stopped, MDM also

changes the repository status icon (shown at left) to two blue dots.

10. When the slave creation process is complete, MDM displays a
message dialog indicating whether the slave creation was successful,

as shown in Figure 49.

Figure 49. Create Slave Repository Complete dialog

11. To view the report now, click Yes. The report can also be viewed later

by selecting the Reports table under the Admin node in the Console

Hierarchy (See “Reports” for more information about viewing reports).

12. The slave repository can now be mounted on a Master Data Server

(see “Mounting and Unmounting an MDM Repository” for more

information about mounting repositories).

NOTE ►► The new slave repository is not automatically mounted.

CONFIGURING MASTER/SLAVE REPOSITORIES FOR SSL

If a master repository is mounted on an SSL-enabled Master Data
Server, the Master Data Servers on which its slave repositories are
mounted must be configured to communicate securely with the master
repository. See “SSL-Related Parameters for a Client MDS” for more
information.

SYNCHRONIZING A SLAVE REPOSITORY

Synchronizing a slave repository updates the slave with the latest data
and schema changes from its master repository.

You can synchronize a slave repository (including a publication slave

repository) at any time by issuing the Synchronize Slave command from
the slave repository.

You can also schedule synchronizations by running the CLIX command
repSynchronize from a batch file (see help.sap.com/nwmdm71 >

CLIX Reference for more information).

MDM Console Reference Guide 177

The master repository and the slave repository must both be mounted
on running Master Data Servers in order to synchronize, but neither
repository needs to be started.

Depending on the type of update required to synchronize the slave with
its master, MDM may automatically start or stop the slave repository
during the synchronization process. Repository data updates require the
slave repository to be started; repository schema updates require the
slave repository to be stopped. MDM returns the slave repository to its
previous state after the changes are applied.

MDM behavior in these circumstances is summarized in Table 42.

Table 42. MDM Behavior During Slave Synchronization

Slave State Change Required MDM Automatically…

Stopped Data Starts then stops the slave repository

Started Data Keeps the slave repository started

Stopped Schema Keeps the slave repository stopped

Started Schema Stops then restarts the slave repository

There are some limitations to synchronization. Synchronization cannot
occur when the master repository is running on a different version of
MDM software than the slave repository. Also, slave repositories cannot
synchronize to a master repository that has been moved to a different
server (see “Master/Slave Limitations” for more information).

A slave repository is, by default, unavailable to users while it is being
synchronized. To make a started slave repository available to users
while synchronization Is ongoing, you can define a wait period to apply
between master changes when launching the synchronization. If the
wait period is greater than 0, MDM will make the slave repository
available to users for the duration of the wait period after each master
change is applied to the slave repository.

When synchronizing records containing Create Stamps or Time
Stamps, the stamp times appear on the slave repository as the times
when the changes were applied to the slave repository – not when the
original changes were made on the master repository. Likewise, any
User Stamps on the slave repository are set to the user who issued the
synchronization command, not the user who made the original changes
on the master repository.

NOTE ►► For schema changes, User Stamps remain the same on

the slave repository as they appear on the master repository.

178 MDM Console Reference Guide

 To synchronize a slave repository:

1. In the Console Hierarchy tree, right-click on the slave repository you

want to synchronize and choose Synchronize Slave from the context

menu, or select the tree node and choose Repositories > Synchronize
Slave from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM
repositories, you can also right-click on the repository in the grid and

choose Synchronize Slave from the context menu.

2. If the slave repository is not out-of-synch with its master repository,

MDM opens a dialog notifying you that no synchronization is required.

Click OK to return to the Console.

3. If the slave repository is out-of synch with its master repository, MDM
opens a confirmation dialog providing you with details about the

synchronization. To specify a wait time between master changes, enter

the duration in the milliseconds field.

4. MDM displays the synchronization status on a progress bar. When the

synchronization is completed, click OK on the progress bar to return to

the Console.

BROKEN MASTER/SLAVE REPOSITORIES

If a master repository is unable to log a data or schema change made
on the repository, it becomes “broken” and stops logging all subsequent
changes made on the repository.

Slave repositories are able to synchronize with the master repository up
to the point that the logging stopped. After that, the slave repository
becomes “broken”, too, to indicate that no further synchronization with
the master repository can occur.

When either a master or a slave repository breaks, its repository icon in
the Console Hierarchy tree changes to reflect the new state, as
displayed in the following table.

Table 43. Identifying Broken Master and Slave Repositories

Icon Type

 Broken master repository

 Broken slave repository

 Broken publication slave repository

MDM Console Reference Guide 179

To “fix” a broken master repository, you must first normalize the
repository and then delete and recreate its slave repositories (see
“Normalizing a Master or Slave Repository” below for more information).

NOTE ►► By frequently archiving the publication model of a
publication slave, you can prevent against catastrophic work loss if

that publication slave breaks (see “MDM Publication Model Archive

and Unarchive” for more information).

NORMALIZING A MASTER OR SLAVE REPOSITORY

Normalizing a master or slave repository changes the repository’s type

from “Master” or “Slave” to “Normal”.

Normalizing a slave repository lets you directly edit the repository but
severs the ability to synchronize the repository’s contents with those of
its former master. Normalizing a slave repository has no effect on its
master repository, which will continue to log changes in anticipation of
synchronization requests.

Normalizing a master repository stops the repository from logging
synchronization changes and prevents all of its slave repositories from
synchronizing to it (an error message is returned by the Master Data
Server). Normalizing a master repository does not automatically
normalize its slave repositories, however, because in MDM, master
repositories have no awareness of their slaves.

Once you normalize a master repository, all of its slave repositories
become orphaned. That is, they remain read-only copies of their former
master repository but can no longer synchronize their contents to it.

Orphaned slave repositories can be left alone or normalized, but the
recommended practice after normalizing a master repository is to simply
delete all of its former slaves.

Once a master or slave repository is normalized, it loses all knowledge
of its former master/slave status. If you want to re-create a master/slave
scenario, you must start over by creating all-new slave repositories (see
“Creating Master and Slave Repositories” for more information about
creating slave repositories).

A repository must be stopped before it can be normalized.

 To normalize a master or slave repository:

1. In the Console Hierarchy tree, right-click on the repository you want to

normalize and choose Normalize Repository from the context menu, or

select the tree node and choose Repositories > Normalize from the

main menu.

2. MDM changes the repository’s Type property in the Repositories pane

to Normal and also changes the repository status icon (shown at left) in

the Console Hierarchy tree to indicate the repository is now normal.

180 MDM Console Reference Guide

Backing Up and Restoring a Repository

MDM Console offers several methods to backup an MDM repository so
that it can be recovered if you experience hardware failure or severe
MDM repository management error. Some of these methods simply
provide redundancy; while others allow offline storage. The available
methods for backing up an MDM repository are summarized in Table 44
and include:

• MDM Archive and Unarchive (see the next section for a full

discussion). You can use the MDM Console Archive command to
create a DBMS independent backup of the MDM repository that
completely encapsulates the repository. The archive file can be
copied to offline storage for safekeeping, and used to later restore

the repository using the Unarchive command, either on the same
DBMS machine or a different DBMS machine.

NOTE ►► MDM archive files are stored to and retrieved from the

directory specified by Archive Dir in the mds.ini file.

TIP ►► After restoring an MDM repository from an archive, it is

recommended that you use the Update Indices option of the Start

Repository command (see “Starting and Stopping an MDM Repository”

for more information).

• MDM Duplicate. You can use the MDM Console Duplicate

command to simply create a copy of the MDM repository in case the
original is corrupted. The repository can be duplicated to a different
drive on the same DBMS machine or onto a different DBMS machine
(see “Duplicating an MDM Repository" for more information).

NOTE ►► If you duplicate an MDM repository onto the same

machine, you must give the target repository a different name. For

increased safety, choose a different DBMS machine for the duplicate

repository.

• Native DBMS backup and restore. You can, of course, always use
the native backup and restore methods provided with your DBMS by
invoking the DBMS commands directly. This requires knowing the
names of the actual databases (or schemas), as discussed in
“Duplicating an MDM Repository".

NOTE ►► In addition to backing up each of the repository partitions,
you must also back up the single MDM database/schema that

maintains information on all the MDM repositories.

MDM Console Reference Guide 181

Table 44. Repository Backup and Restore Methods

Method DBMS Platforms Comments

Archive and Unarchive

▪ SQL Server

▪ Oracle

▪ DB2

▪ MaxDB

▪ SAP ASE

▪ SAP HANA (MDM-

SRM only)

▪ Backup saved on the

MDS host machine
rather than the DBMS

machine.

▪ Can cross DBMS

platforms.

▪ Number of repository
partitions can be

changed.

▪ Results can be written to

external media.

Duplicate

(to a different drive or

from one DBMS to

another)

▪ SQL Server

▪ Oracle

▪ DB2

▪ MaxDB

▪ SAP ASE

▪ SAP HANA (MDM-

SRM only)

▪ Can cross DBMS

platforms.

▪ Number of repository

partitions can be

changed.

▪ Results cannot be

conveniently written to

external media.

Native DBMS

Backup and Restore

(through DBMS)

▪ SQL Server

▪ Oracle

▪ DB2

▪ MaxDB

▪ SAP ASE

▪ SAP HANA (MDM-

SRM only)

▪ Backup stored on the

DBMS machine.

▪ Results can be written to

external media.

MDM REPOSITORY ARCHIVE AND UNARCHIVE

The MDM archiving mechanism allows you to back up your MDM
repository in a DBMS- and platform-independent format known as an
MDM archive.

You can use the Archive command to backup an MDM repository, and

later use the Unarchive command to restore it from the archive. While
you can certainly use the various backup methods provided by the
DBMS, an MDM archive offers the following benefits:

• Ease of use. Creating an MDM archive does not require specialized
DBMS knowledge and is done using a simple menu command
interface from MDM Console.

182 MDM Console Reference Guide

• Segmenting. You can automatically segment an MDM archive into
multiple files, each of a maximum file size, for easy offline storage on
various media types (including CD-ROM/RW, Zip, and Jazz), and
also to avoid the file-size limitations of some operating environments.

• DBMS version independence. The MDM archive is independent of
the version of the DBMS, and will always work with MDM even when
the underlying DBMS is upgraded to a new release.

• DBMS brand independence. An MDM archive can be unarchived to
any DBMS brand supported by MDM, for cross-brand compatibility.

• No repository down time. You can create an MDM archive even
while a started repository is being accessed by other MDM users.

• Redundancy. An MDM archive complements the backup methods

offered by the DBMS.

• Location. Each MDM archive is stored on the MDS machine rather

than on the DBMS machine.

NOTE ►► MDM archive files are stored in the directory specified by

the Archive Dir mds.ini parameter.

NOTE ►►You can restore an MDM repository that has been backed
up to an MDM archive either by: (1) overwriting an existing repository

with the archive file; or (2) creating a new repository from the archive

file.

NOTE ►► Archiving and unarchiving MDM repositories are password-
protected operations which require you to enter the Master Data

Server password, if you have not already done so during the current

MDM session (see “Master Data Server Security”).

NOTE ►► Archiving puts a "read-lock" on the repository during the

duration of the archive operation.

CAUTION ►► Unarchiving over a master repository “normalizes” the

master repository and orphans any slaves it may have, even if the
unarchived repository was a master repository itself (see “Normalizing

a Master or Slave Repository” for more information about normalized

repositories).

MDM Console Reference Guide 183

Archiving an MDM Repository

You can back up an MDM repository using the MDM archiving
mechanism as described in this section. Only mounted repositories can
be archived and the repository can either be started or stopped.

 To backup an MDM repository to an MDM archive:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to backup and choose Archive Repository.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Archive from the context menu.

DATA INTEGRITY ►► MDM marks the repository as read-only for
the duration of the archive process, which does not prevent other users

from accessing the repository, but does prevent them from modifying

its contents and possibly destroying the integrity of the archive.

2. MDM opens a dialog asking whether you want to perform a Verify >

Check operation. Click Yes to verify the repository or click No to

proceed with the Archive operation without verifying the repository.

NOTE ►► If the check detects any inconsistencies in the repository,

MDM allows you to cancel the Archive operation and first perform a

Verify > Repair. Click Yes to proceed without repairing the errors, or

click No to cancel the Archive operation so that you can repair the

repository.

3. MDM opens the Archive MDM Repository dialog shown in Figure 50
with a list of the existing archives, and prompts you to enter the name

for the new archive. Either: (1) select one of the names in the list; or (2)

type a new name into the edit control, and then click OK.

Figure 50. Archive MDM Repository dialog

184 MDM Console Reference Guide

NOTE ►► The Options button on the Archive MDM Repository dialog

lets you segment the archive into multiple files and/or restrict the type
of records included in the archive (see “Archive Options Dialog” for

more information).

4. If the archive filename already exists, MDM prompts you to confirm

that you really want to overwrite the existing archive file. Click Yes to

overwrite the archive.

5. MDM archives the repository to one or more archive files. While the

repository is being archived, MDM reports the progress of the archive

in the Status field for the repository in the Repositories pane. If the
repository is stopped, it also changes the repository status icon (shown

at left) to two blue dots.

6. When the archive process is complete, MDM displays a message

dialog indicating whether the archive was successful, as shown in

Figure 51.

Figure 51. Repository Archive Complete dialog

7. To view the report, click Yes. MDM opens the Report Detail dialog to

view the XML report.

NOTE ►► During an archive, MDM creates a temporary file in the
archive directory named <archive name>.a2a.rsv to reserve the

name of the archive file. This file is automatically deleted if the archive
succeeds or fails, but if MDS stops before the operation is completed,

the file must be manually deleted before another archive can be

created with the same name.

Archive Options Dialog

By default, the Archive Repository operation stores all of the archived
repository’s data in a single file of unlimited size. While this is suitable
and appropriate in most cases, MDM provides options for segmenting
the archive file into multiple files of a selected maximum size and also
for limiting the type of data included in the archive file. These options
can be set from the Archive Options Dialog, shown in Figure 52.

MDM Console Reference Guide 185

Figure 52. Archive Options dialog

The maximum file segment size you select should correspond to the
maximum size of your external media (if you intend to copy the files to
offline storage), or to the maximum file size of the operating system
(which is 2 gigabytes under Unix). The default value for this option is

Unlimited (single segment).

The remaining archive options determine the archive’s contents:

• Normal. The entire repository (default option).

• Schema only. Only the repository schema, not its records.

• Subset. Only a subset of repository records.

NOTE ►► The Exclude options withhold Images, Image Variants,
PDFs, Sounds, Videos, and Binary Objects table records and

thumbnails from the archive file and should only be used when these

items are not required upon unarchiving the repository.

NOTE ►► The Mask option archives only the subset of records

contained in the selected mask. This option is not supported on

repositories that include tuples.

186 MDM Console Reference Guide

Unarchiving an MDM Repository Over Another Repository

You can overwrite an existing MDM repository with an MDM archive as
described in this section.

NOTE ►► You can use this method to unarchive over an existing

MDM repository only if the repository is mounted and stopped.

 To unarchive an MDM repository over an existing repository:

1. In the Console Hierarchy tree, right-click on the MDM repository you

want to restore and choose Unarchive Repository.

TIP ►► If the top-right pane is currently displaying the list of MDM
repositories, you can also right-click on the repository you want to

overwrite in the grid and choose Unarchive from the context menu.

2. MDM opens the Unarchive MDM Repository dialog shown in Figure

53.

Figure 53. Unarchive MDM Repository dialog (repository node)

NOTE ►► The Unarchive MDM Repository dialog from an MDM
repository node is similar to the Create MDM Repository dialog, with

the Port field replaced by the Archive field, and the DBMS Server,

Login, Password, and Repository Name fields disabled.

3. Select the archive file from the drop-down list.

NOTE ►► MDM archive files are retrieved from the directory specified

by Archive Dir in the mds.ini file.

4. Click Finish to unarchive the repository.

5. MDM prompts you to confirm that you really want to overwrite the

existing repository. Click Yes to overwrite the repository.

6. MDM restores the repository from the archive file, overwriting the
existing repository. While the repository is being unarchived, MDM

changes the repository status icon (shown at left) to two gray dots,
and reports the progress of the unarchive in the Status field for the

existing repository in the Repositories pane.

7. When the unarchive process is complete, you have the option of

viewing a report of the unarchive.

MDM Console Reference Guide 187

NOTE ►► You can view any of the reports previously generated by

MDM by selecting the Reports table under the Admin node in the
Console Hierarchy. See “Reports” for more information on the Reports

table.

CAUTION ►► The unarchive process disconnects all users from the

repository that is being overwritten, including the user who issued the

Unarchive command. Users must then reconnect to the repository after
the unarchive operation is completed. This ensures all Console users

operate under the user and role permissions of the unarchived

repository, not those of the overwritten repository.

Archive Report

Whenever you create an MDM archive, the Master Data Server creates
a file that reports a variety of information about all the MDM archives

present in the Archive directory at that time. The file, named Archive

Summary.xml, contains information such as the time of day when the
archive was started, the Master Data Server version, schema version
and Verify status, all of which may be helpful for managing archive files.

Managing Archive Files

The Master Data Server creates MDM archives and expects all MDM
archives to reside in a single directory on the machine where it is
installed. It is up to you to manage this directory from the operating
system by moving, renaming, and deleting the archive files or file sets in
that directory.

TIP ►► You can change the archive directory by editing the mds.ini

file and changing the value for the key labeled Archive Dir. The Master
Data Server reads this value every time an MDM Console user

executes an Archive or Unarchive command, so you can change the

value without stopping and starting the Master Data Server.

When an archive is segmented into a set of files, all the segments must

be present in this directory to perform the Unarchive operation. The

initial file segment always has the filename extension .a2a (.a2p for
publication model archives). Thereafter, segment extensions are

numbered sequentially beginning with .a00, .a01, and so on.

Dealing with Outdated Archives

When you use the Unarchive command and then mount the MDM
repository that you just unarchived, it may be marked outdated, in which
case you must use the Update command to update it (see “Updating an
MDM Repository”).

188 MDM Console Reference Guide

NOTE ►► If for some reason, you do not wish to do to update the

unarchived MDM repository, you must instead revert to the earlier
version of the MDM software that was used to create the archive in the

first place. This can be determined by examining the archive report.

MDM PUBLICATION MODEL ARCHIVE AND UNARCHIVE

Recall that the MDM Archive and Unarchive operations enable you to
backup, restore, and distribute entire MDM repositories. Users working
only on publication-related tasks, however, may want to backup,
restore, and distribute their work on a more frequent basis and without
the overhead of including non-publication information.

To accomplish this, you can backup, restore, and distribute only the
parts of an MDM repository used by the MDM Publisher, MDM Layout
Server, and MDM Indexer to design and produce publications and
publication indexes. These parts are collectively referred to as the
repository’s publication model. Like repository archives, publication
model archives are platform- and DBMS-independent. Unlike repository
archives, publication model archives do not store master data. Instead,
a publication model archive contains the following repository
information:

• Family object layouts

• Publications, spreads, and presentation objects

• Templates and master pages

• Indexes

The publication model does not include the Family Hierarchy. As a
result, when archiving and unarchiving publication models, the Family
Hierarchies of the “source” and “target” repositories should be identical .
Otherwise, if you unarchive a publication model over a repository with a
different Family Hierarchy than that of the archived publication model,
only those families shared by both the archived publication model and
the target repository will be updated. MDM will not unarchive families
from the publication model archive that are not already present on the
target repository’s Family Hierarchy,

Similarly, MDM will not unarchive multilingual information for languages
that do not exist on the target repository.

Because publication models do not overwrite the target repository’s

schema, the Archive Publication Model and Unarchive Publication Model
commands differ from the normal Archive/Unarchive commands in the
following ways:

• You cannot create a new repository from a publication model

archive.

MDM Console Reference Guide 189

• You cannot unarchive a publication model onto a master repository.

• You cannot change repository options while archiving or unarchiving.

• The source and target repository schemas must be identical.

Otherwise, the procedures for archiving and unarchiving publication
models are exactly the same as those for archiving and unarchiving
MDM repositories (see “MDM Repository Archive and Unarchive” for
more information about these procedures).

190 MDM Console Reference Guide

Exporting and Importing Schemas

MDM Console allows you to export and import the schema of an MDM
repository, which can be useful in a variety of circumstances:

• Schema migration. Migrate a repository structure from one
repository to another without changing data in the exported or
imported repositories.

• Backup/restore. Backup a repository structure without backing up
the data of the repository, and then restore the repository structure
without changing any data.

• Automation. Provide an automated mechanism for migrating
schema changes from development, to test, and from test to
deployment versions of the same repository.

NOTE ►► When you use the schema export and import features of

MDM Console, only the structure will be exported and imported; data,

entries, and objects of the repository will not be transported.

Items included in schema exports and imports are listed in Table 45.

Table 45. Repository Items Included In Schema Exports/Imports

Item Included Notes

Repository Properties

Name

Description •

DBMS Server

Login

Port

Type

Languages •

Table Properties

Name •

Code •

Description •

Type •

Primary Display Field •

Display Fields •

Unique Fields •

Key Mapping •

Attribute Image Variants

MDM Console Reference Guide 191

Item Included Notes

Text Value Image
Variants

Alternative Display Fields

Field Properties

Name •

Code •

Description •

Type •

Required •

Writeable Once •

Matrix •

Multilingual •

Sort Index •

Keyword •

Display Field • Indirectly via the table’s Display Fields property

Unique Field • Indirectly via the table’s Unique Fields property

Calculated The Calculation property is included instead.

Calculation •
Calculations referencing non-included objects
(such as attributes) may not migrate properly.

Sort Type •

Search Tab •

True Value •

False Value •

Default Value •

Symbol •

Lookup Table •

Dimension • Custom measurements are not included.

Default Unit •

Decimal Places •

Show Fractions •

Multi-Valued •

Default to Current Time •

Default to Current Date •

Selected Fields •

Qualifier •

Cache •

Special Tables

192 MDM Console Reference Guide

Item Included Notes

Assignments • Branch values are not supported by schema
import/export.

Unique Code value required for each
assignment.

Families

Relationships •

Image Variants

Named Searches

Validations • Can include branch values and validation
groups.

Unique Code value required for each validation.

Expressions with lookup field values may
require a manual step.

Admin Tables

Roles •

Users

Connections

Change Tracking

Remote Systems •

Ports • Port properties not included:

▪ Status [Inbound]

▪ Format [Outbound]
▪ Columns

 [Outbound]
▪ Delimiter

 [Outbound]

▪ Processing Interval [Outbound]
▪ Next Syndication Date

 [Outbound]

▪ Next Syndication Time [Outbound]

Links •

XML Schemas •

Reports

EXPORTING AN MDM REPOSITORY SCHEMA

You can export an MDM repository schema using the MDM schema file
export mechanism as described in this section.

When you use the Export Schema command to export an MDM
repository schema, it creates an XML schema file that you can use to
create a new repository or import and merge into an existing repository.

MDM Console Reference Guide 193

 To export the schema of an MDM repository to an XML file:

1. In the Console Hierarchy tree, right-click on the MDM repository whose

schema you want to export and choose Transport > Export Repository
Schema from the context menu.

2. In the Save dialog, Click Save to export the schema.

NOTE ►► Schema files are stored in XML format in a user-defined

location using a user-defined filename. The file contains the schema

definition only; no table or field content.

IMPORTING AN MDM REPOSITORY SCHEMA

You can import an MDM repository schema using the MDM schema file
import mechanism as described in this section.

When you use the Import Schema command to import an XML schema
file, MDM: (1) automatically compares the repository against the
inbound schema: (2) displays a dialog that highlights and color-codes
the differences according to change operation (Add/Delete/Modify); and
(3) allows you to individually accept or reject each change.

NOTE ►► The resulting merged schema dominates the structure of

the repository after import, deleting existing tables and fields from the

repository, and creating tables and fields of the schema.

NOTE ►► MDM detects and allows you with property-level granularity
to individually accept or reject: (1) changes to repository, table and

field properties; (2) the addition of tables and fields; and (3) the

deletion of tables and fields.

Import Schema Dialog at a Glance

The Import Schema dialog, shown in Figure 54, consists of three panes:
(1) the Repository+Schema pane, which displays a hierarchy showing
the target repository schema combined with the inbound schema; (2)
the Items pane, which lists every item in the combined schema along
with the type of item, the change operation (if any) and whether to
accept or reject the schema change; and (3) the Details pane, which
lists the properties of the currently selected item (repository/table/field)
in the Items pane and whether to accept or reject the property-level
changes.

194 MDM Console Reference Guide

Figure 54. Import Schema dialog

NOTE ►► The schema comparison dialog is like a structured visual

diff that provides color-coded change-tracking for each of the schema

elements and the individual properties of each element.

TIP ►► The Items pane includes a column named Node that contains

the number of the corresponding tree node in the Repository+Schema
pane. You can sort by the Node column so that the items in the tree

and in the Items pane appear in the same sequence.

NOTE ►► You can Accept or Reject each individual change using the

radio buttons: (1) in the Merge column of the Items pane; and (2) in the
Merge column of the Details pane, including the ability to: (3) add

some but not all the fields of an added table; (4) delete some but not all
the fields of a deleted table; and (5) accept some but not all the

changes to the set of item properties (for property-level granularity).

Color Coding in the Import Schema Dialog

Import Schema dialog elements are color-coded in the three panes in
black, red, magenta, and green, and highlighted in bold, as summarized
in Table 46.

MDM Console Reference Guide 195

Table 46. Color Coding in the Import Schema Dialog

Pane Color Description

Repository
+Schema

Black No change to common item.

Black No changes to common item (but child nodes have changes).

Red Common item has modifications to its properties.

Magenta Item appears in repository but not in inbound schema.

Green Item appears in inbound schema but not in repository.

Items

Black Common item; no change to accept or reject.

Red Accept change to modify properties of common item.

Magenta Accept change to delete the repository-only item.

Green Accept change to add the inbound schema-only item.

Details

Merge Column

Red Accept change to modify property of common item.

Repository Column

Black Common property value.

Magenta Repository property value.

Schema Column

Black Common property value.

Green Inbound schema property value.

Merged Column

Black Merged common property value.

Magenta Merged property value from repository.

Green Merged property value from inbound schema.

Comments

The Import Schema dialog contains a Comments column in the Items
pane and a Comments field in the Details pane. Comments indicate one
of the following conditions is present for an item:

• Requires additional steps. The operation will not succeed without
manual steps.

• Has data dependencies. The operation may not succeed if data in

the target repository is missing or inconsistent.

• Potential loss of data. Data in the repository may be lost as a result

of accepting this change.

196 MDM Console Reference Guide

Importing the Schema

You can import the inbound schema as described in this section.

 To import an XML schema and merge it into an MDM repository:

1. In the Console Hierarchy tree, right-click on the MDM repository into
which you want to import the XML schema and choose Transport >

Import Repository Schema.

2. In the Open dialog, select the XML schema file to import and click

Open.

3. In the Import Schema dialog, use the radio buttons in the Merge

column of the Items pane to Accept or Reject changes for each of the

items highlighted in red, magenta, and green.

NOTE ►► MDM will accept the deletion of a table if you accept the
deletion of all of its fields, automatically adjusting the table setting as

necessary when you change the setting for one of its fields.

NOTE ►► MDM will reject the addition of a table if you reject the

addition of all of its fields, automatically adjusting the table setting as

necessary when you change the setting for one of its fields.

TIP ►► If some schema items are not matched automatically by MDM

or you do not agree with the item matching determined automatically
by MDM, you can manually set and/or override them as described in

the following section.

4. Use the radio buttons in the Merge column of the Details pane to

Accept or Reject individual changes for each of the item properties for

items highlighted in red.

NOTE ►► MDM will automatically adjust the item setting as

necessary when you change the setting for its individual properties.

5. Click OK to close the dialog. MDM merges the schema changes that

you accepted into the MDM repository.

6. Once the transport is completed, connect your MDM Console to the

target repository and accept the request to perform a Verify > Repair
operation on the target repository (see “Verifying an MDM Repository”

for more information).

NOTE ►► If you connect to the target directory from a different MDM

Console session, you will need to run the Verify > Repair operation

manually.

MDM Console Reference Guide 197

Manually Overriding Schema Reconciliation

When you use the Import Schema command, MDM attempts to
automatically match items from the inbound schema file with items in
the existing repository. Generally, it does a good job of identifying
matches using several criteria in order of precedence, as follows:

• Compatibility. Incompatible items will never be matched (e.g. a

hierarchy table will never be matched with a flat table).

• Code match. Items with the same Code will be matched.

• Name match. Items with the same Name will be matched.

• Empirical. Depending on their type, remaining items might be
matched if there are no better alternatives (e.g. two unmatched
languages that refer to the same language and country).

You can also use the Match and Unmatch context menu commands to
manually set matches and/or override matches determined
automatically by MDM, as described in this section.

NOTE ►► MDM makes no attempt to preserve internal identifiers. If

this is important, you should instead use the Archive/Unarchive or

Duplicate Repository commands.

NOTE ►► Manual matching can have side-effects (e.g. items shown
as modified may become identical; when tables are rematched, the

relationships are also rematched). For this reason, you should perform
manual matching in the following order: (1) languages; (2) tables; (3)

fields; and (4) relationships.

 To manually match an item to another item:

• In the Items pane, right-click on the item you want to manually match,

choose Match from the context menu, and then choose from the

cascading menu of potential matches.

NOTE ►► Match is enabled only if the selected item is currently

unmatched and has at least one compatible unmatched counterpart.

NOTE ►► To manually set or override a language match, select the

repository item in the Items pane (i.e. the root node in the Repository+
Schema pane) and then select and right-click on the language in the

Detail pane rather than the Items pane.

 To manually unmatch an item:

• In the Items pane, right-click on the item you want to unmatch and

choose Unmatch from the context menu to cause the single pair of

matched items to become two individual unmatched items.

198 MDM Console Reference Guide

MDM Transport Operations

MDM provides two sets of operations for transporting repository
schemas:

• Schema Migration. Includes Export and Import Schema commands.

• CTS+. Includes Export and Import Change File commands.

SCHEMA MIGRATION

Schema migration refers to the pre-existing Export Schema and Import

Schema commands in the MDM Console.

Commands

The Export Schema command creates an XML file of the current

(originating) repository’s entire schema.

The Import Schema command compares the current (target)
repository’s schema against the schema contained in the selected XML
file. From the Import Schema dialog, the user can see where the
current and import schemas differ and choose which of these

differences to apply. Note that the Import Schema command does not
replace the existing schema with the import schema. Rather, it allows
the user to merge the import schema with the current repository
schema.

Schema migration commands do not require that the originating and
target repositories share the same underlying schema structure.

Files

The Export Schema command creates a name.xml file in a file location

selected by the user. The Import Schema command opens a name.xml
file from a location selected by the user.

CTS+

CTS+ refers to the set of MDM Console commands created to work with
the SAP Change and Transport System.

Commands

The Create Transport Reference command creates an XML file of a
repository’s schema. This reference schema is identical to the XML file

created by the Export Schema command. Users should create the
reference file on the originating repository at a time when the originating
and target repositories have identical schemas.

NOTE ►► The Create Transport Reference command should only be

executed once. After the original reference file is created, MDM

assumes responsibility for creating future reference files.

MDM Console Reference Guide 199

The Export Change File command compares the repository’s current
schema against the schema contained in its latest reference file. From
the Export Changes dialog (similar in appearance to the Import Schema
dialog), the user can see where the current schema differs from the
reference schema and choose which of these differences to export.
The resulting changes file does not contain an entire schema but
instead contains only the changes selected from the Export Changes
dialog. Changes that are not selected for the current export remain
available for future exports.

During normal operation, the CTS+ system will pick up changes files
and apply them through the Java API command:

com.sap.mdm.repository.commands.ApplyTransportDeltaCommand

The Import Change File command opens whatever changes file is
selected by the user and automatically applies all of the schema

changes contained in the file to the current repository. Unlike the Import

Schema command, the user has no choice of which changes to apply. In

order to execute Import Change File commands, Console users need
access to the relevant Transport/Outbound directory.

The Transport Management System command opens a link to the

relevant SAP Transport Management System.

CTS+ commands require that originating and target repositories share
the same schema structure.

Files

Transport files are stored in the Master Data Server's transport
directories. The mds.ini parameter Transport Dir sets the location of

the root Transport directory. The Transport directory has two subfolders,
Outbound and Inbound.

The Create Transport Reference command creates a
RepositoryName_XXX_reference.xml file (where XXX represents a
sequentially incrementing number) in the Transport/Outbound directory.

The Export Changes command creates a new
RepositoryName_XXX_delta.xml file AND a new reference file in the
Transport/Outbound directory. The XXX value on the new files is
incremented by 1 from the XXX value on the last such files created for
the repository.

Each change file should have a matching reference file (e.g.
RepositoryName_005_delta.xml file should have a corresponding
RepositoryName_005_reference.xml file). However, the opposite need
not be true: a reference file will not have a matching changes file until

the “next” Export Changes command is executed.

200 MDM Console Reference Guide

NOTE ►► The CTS+ system assumes that changes files with lower

XXX values should be imported prior to those with larger XXX values.

NOTE ►► MDM will not delete or overwrite existing reference or

change files because MDM does not know when change files are

actually imported by the CTS+ system.

Errors

Error messages appear under the following circumstances:

▪ Export Changes command is issued but no corresponding

reference file is found.

▪ Import Changes command is issued but the current repository ‘s

schema is not compatible with the selected changes file

SCHEMA TRANSPORT VERSUS CTS+

Table 47 describes the basic behavioral differences between schema
migration and CTS+ related commands.

Table 47. Differences between Schema Transport and CTS+

Behavior Schema Migration CTS+

Entire schema transported? Yes No

User can choose changes to export? No Yes

User can choose changes to import? Yes No

Requires target repository to be based
on same schema as originating
repository?

No Yes

File location Determined by user Transport/Outbound

MDM Console Reference Guide 201

Managing Units of Measure

MDM includes a library that contains over 70 different physical
dimensions and over 750 different units of measure, along with
conversion ratios, synonyms for each unit, and so on. This library
features a compound data type for storing physical measurements that
combines a numeric value with a unit of measure. This allows you to
associate a physical dimension with a measurement field or numeric
attribute, and assign to every numeric value a unit of measure
applicable to that dimension.

In this library, MDM can convert between different units in a dimension,
for comparison and sorting of numeric values with different units. Unit
conversion also allows measurement search, which automatically
converts typed text values that represent measurements between
different physical units, so you can find equivalent measurement values
even when the value you type uses a different unit from the
measurement stored in the MDM repository. For example, the
measurement value “30 inches” stored in the repository can be found as
any of: 30”, 30 in, 2 ½ feet, 2-1/2 ‘, 2.5 ft, 2 feet 6 inches, 76.2
centimeters, 762 mm, or 0.762 meter.

You can create and manage additional user-defined physical
dimensions and units of measure for an MDM repository to augment the
system dimensions and units, and also change some of the properties
of system dimensions and units (such as the unit name, symbol, and
position). To ensure system integrity, some properties of system units
cannot be modified.

DATA INTEGRITY ►► Measurement fields and numeric attributes
are 4-byte real fields with the exception of the dimensions Time and

Frequency, which require the additional precision of 8-byte real fields.

MANAGING DIMENSIONS

You can manage the dimensions and units of a repository in the
Dimensions window.

To open the Dimensions window, in the Console Hierarchy tree, under

the Admin node, choose Dimensions.

CAUTION ►► You must stop the repository before you add or edit

dimensions.

202 MDM Console Reference Guide

Table 48. Dimension Properties

Property Description

Name The name of the dimension as it appears in MDM applications.

The value must be unique and cannot be left blank.

Convertible Specifies whether measurement values can be converted to the

dimension's universal unit.

The value of this property can be changed only for user

dimensions.

Type ▪ System – Built-in dimensions. You can rename system

dimensions, add and edit their units, and remove user-
defined units. You cannot delete system dimensions or their

system units.

▪ User-defined – You can add and delete user-defined

dimensions and their units, and edit all their properties.

▪ Modified System – System dimensions that have been
renamed, or whose units have been edited, or had new units

added.

 To add a dimension:

1. In the top Dimensions pane, from the context menu, choose Add

Dimension.

MDM creates a new dimension with a single new unit. The default

name “New Dimension (n)” appears in the Dimension Details pane and
the new unit appears with the default name "New Unit (n)" in the Units

pane.

2. Edit the default properties as required.

 To edit the properties of a dimension:

1. Select the dimension in the Dimensions pane.

2. In the Dimension Details pane, edit property values as required.

 For system dimensions you can edit only the dimension
name.

 If you previously changed the name of a system
dimension, you can restore the default name by selecting
the Reset checkbox.

3. To save changes, in the Dimension Details pane, from the context

menu, choose Save Changes, or press Shift+Enter.

NOTE ►► When you edit the name of a system dimension, the

Dimension Type changes to Modified System.

MDM Console Reference Guide 203

 To delete a user-defined dimension:

1. From the context menu of the dimension, choose Delete Dimension.

The dimension and all its defined units are removed from the

Dimensions pane and deleted from the MDM repository.

NOTE ►► You cannot delete a dimension that contains units that are

in use by a measurement field or attribute value.

MANAGING UNITS

You can add new units to a dimension and edit existing units.

Unit names and symbols must be unique within their dimension, and a
unit name cannot be a synonym of another unit name in its dimension.

When a dimension is defined as convertible, unit measurements can be
converted to a universal unit for comparison and sorting. All the units in
the dimension have defined conversion properties to convert any unit
measurement to the universal unit.

The relationship between the conversion properties corresponds to the
following conversion function:

Log10 (value + Pre-Offset) x Factor

The universal unit is defined with values 1, 0, and No for the Factor,
Pre-offset, and Use Logarithm properties respectively.

Unit properties are described in the following table.

Table 49. Basic Unit Properties

Property Description

Unit Name The name of the unit as it appears in MDM. The unit name must

be unique in its dimension and cannot be blank.

Unit

Symbol*

The characters that represent the unit measurement name when
the measurement value is displayed. Include a space before the

symbol if its position is after the numeric value. The unit symbol

must be unique in its dimension.

* This property is called "Suffix" in the MDM UoM Manager.

Position Position of the unit symbol – before or after the numeric value of

the measurement.

204 MDM Console Reference Guide

Property Description

Fraction

Type

Specifies whether values for the unit are displayed as fractions

when the Show Fractions option has been selected for the field

or attribute.

▪ None – Always displays values as an integer or decimal.

▪ Fractions of 2 – For absolute values between 0 and 999,999,

allows fractional display of fractional powers of 2 from ½ to
1/128 (including all numerator values, such as ¾, 5/16, and

27/64).

▪ All Fractions –For absolute values between 0 and 999,999,
allows fractional display of fractional powers of 2 (above), the

“odd” fractions 1/3, 2/3, 1/5, 2/5, 3/5, 4/5, 1/6, and 5/6, and the
fractions “1/x” where ‘x’ ranges from 7 to 100 in increments of

1 (e.g. 1/7, 1/15, and 1/78); from 100 to 1000 in increments of
50 (e.g. 1/150, 1/250, and 1/500); and from 1000 to 2000 in

increments of 100 (e.g. 1/1100, 1/1200, and 1/1300).

Factor The number by which to multiply a measurement value when

converting to the universal unit for purposes of comparison.

Pre-Offset The value to be added to the measurement value before

multiplying by the Factor.

Use

Logarithm

Specifies whether to take the log base 10 of the measurement

value plus the Pre-Offset before multiplying by the Factor.

In the following example of conversion properties, the universal unit is
Celsius.

Table 50. Sample Entries for a Pair of Units

Unit Factor Pre-Offset Use

Logarithm

Celsius 1 0 No

Fahrenheit 0.555555555555556 -32 No

 To add a unit to a dimension:

1. Select a dimension in the Dimensions pane. The dimension units

appear in the Units pane.

2. In the Units pane, from the context menu, choose Add.

MDM creates a new unit in the current dimension. The default name,

New Unit (n), is added to the list of units in the Units pane and the

default unit properties appear in the Unit Details pane.

NOTE ►► When you add a unit to a system dimension, the

Dimension Type changes to Modified System.

MDM Console Reference Guide 205

 To edit unit definitions:

1. Select a unit in the Units pane.

2. In the Unit Details pane, change the property value for each property

that you want to modify.

 When you modify a property of a system unit, the Reset
checkbox for the modified property becomes active, and
the related Dimension Type changes to Modified System.

 The conversion properties (Factor, Pre-offset, and Use
Logarithm) cannot be edited for system units or for units in

a dimension that is not convertible.

3. To save changes, in the Unit Details pane, from the context menu,

choose Save Changes, or press Shift+Enter

 To restore MDM system unit default values:

1. Select a system unit in the Units pane.

2. In the Unit Details pane, select the Reset checkbox for the properties

whose values you want to restore.

NOTE ►► You can restore default values only for modified system

units, not for user-defined units.

CAUTION ►► This process is irreversible.

 To duplicate a unit:

1. In the Units pane, from the context menu of the relevant unit, choose

Duplicate.

2. MDM creates a new unit in the current dimension with the default

name Copy of <unit> (n). The default unit properties are the same as

for the source unit.

3. You can now edit the unit definitions as for any user-defined unit.

 To rename a unit:

1. In the Units pane, select the required unit.

2. In the Unit Details pane, in the Unit Name field, edit the name as

required.

 To delete a user-defined unit:

1. In the Units pane, from the context menu of the relevant unit, choose

Delete.

206 MDM Console Reference Guide

The unit is removed from the Units pane and deleted from the MDM

repository.

NOTE ►► You cannot delete a unit that is in use by a measurement

field or attribute value.

 To view all unit details for a dimension:

1. In the Units pane, from the context menu, choose View Details.

The Units pane displays all the properties of all the units in the

dimension in view-only mode, as shown in Figure 55.

Figure 55. View Details pane

2. To return to editing mode, from the context menu, choose View Details

again.

291

PART 7: MDS ADMINISTRATION

This part of the reference guide contains information about MDM
options for configuring the Master Data Server and its underlying
DBMS.

MDM Console Reference Guide 209

Accessing Master Data Servers

An MDM Console can simultaneously access multiple Master Data
Servers, each of which can access multiple MDM repositories. Similarly,
multiple MDM Console instances can access the same Master Data
Server and make changes to the same MDM repository.

ACCESSING A MASTER DATA SERVER

When the selected node in the Console Hierarchy tree is the root node
(SAP MDM Servers), the top-right Objects pane is titled MDM Servers
and the bottom-right Object Detail pane is titled Server Detail.

The MDM Servers pane contains a grid with a list of mounted Master
Data Servers, where each Master Data Server in the list corresponds to
a child of the SAP Master Data Servers node.

To view a Master Data Server’s properties, select it from the MDM
Servers pane. The properties for each Master Data Server are listed in
Table 51; none of them are directly editable in the Server Detail pane.

Table 51. Master Data Server Properties

Property Description

Name The Master Data Server name.

SAP Instance The SAP instance number for the Master Data Server.

Version The version of the Master Data Server software.

Port The listening port for the Master Data Server

Status1

The Master Data Server status:

▪ Stopped

▪ Running
▪ Server Inaccessible2

▪ Communication Error2

▪ Start Server Failed2

▪ Invalid2

1 Not visible in the Server Detail pane.
2 To resolve these states, try unmounting and then remounting the Master Data Server.

In order to make a Master Data Server visible to and accessible by your
MDM Console session, you must first mount it. Once mounted, a Master
Data Server can have several different states, as shown in Table 52.

210 MDM Console Reference Guide

Table 52. Mounted Master Data Server States

Icon State

 The server is SSL-enabled. 1

 The server is stopped.

 The server is running.

The server is in one of the following states:2

▪ Server Inaccessible
▪ Communication Error

▪ Start Server Failed

▪ Invalid

1 The blank part of the lock changes to indicate state of the server (stopped, running, etc.).

2 To resolve these states, try unmounting and then remounting the Master Data Server.

Mounting and Unmounting the Master Data Server

 To mount a Master Data Server:

1. In the Console Hierarchy tree, right-click on the root node (SAP MDM

Servers) and choose Mount MDM Server.

2. In the Mount MDM Server dialog, select the Master Data Server you
want to mount. If the Master Data Server has not been mounted on

your MDM Console before, type the name or IP address of its host, or

click “…” (browse) to select it from a list.

NOTE ►► If the Master Data Server is configured to listen on non-

default ports, you must type in the port number after the Master Data
Server name, using the format ServerName:PortNumber (for

example, ServerXYZ:54321).

3. If the Master Data Server is SSL-enabled, click Secure Connection

and, if missing, enter the paths to the server’s SSL library and key files.

4. If the Master Data Server is not yet running, MDM adds a node for the

Master Data Server to the Console Hierarchy tree. The server status
icon displays a red square to indicate that the Master Data Server is

not yet running.

If the Master Data Server is already running, MDM silently performs a

Connect to Master Data Server as part of the mount operation and
adds a node for it to the Console Hierarchy tree, along with nodes for

any repositories that may already be mounted on the server. The
server status icon displays a green triangle to indicate that the Master

Data Server is already running.

NOTE ►► A password is not required to mount and connect a Master

Data Server to your MDM Console session, even if the Master Data

Server is itself is password-protected.

MDM Console Reference Guide 211

 To unmount a Master Data Server:

1. In the Console Hierarchy tree, right-click on the Master Data Server

you want to unmount and choose Unmount MDM Server from the

context menu, or select the tree node and choose MDM Servers >

Unmount MDM Server from the main menu.

2. MDM removes the Master Data Server node from the Console

Hierarchy tree.

NOTE ►► If you unmount a running Master Data Server without

stopping it, the server remains running with its MDM repositories
mounted and started even without the connection to your MDM

Console session.

NOTE ►► If you unmount a Master Data Server and then remount it

during the same MDM Console session, you will need to re-enter that
Master Data Server’s password in order to perform any server-level

operations.

STARTING AND STOPPING MASTER DATA SERVERS

Starting and stopping a Master Data Server are password-protected
operations which require SAP Web Service Authentication.

 To start a stopped Master Data Server (red square):

1. In the Console Hierarchy tree, right-click on a Master Data Server and

choose Start MDM Server from the context menu, or select the tree

node and choose MDM Servers > Start MDM Server from the main

menu.

TIP ►► If the top-right pane is currently displaying the list of Master

Data Servers, you can also right-click on the Master Data Server in the

grid and choose Start MDM Server from the context menu.

2. In the pop-up Web Service Authentication dialog, enter your OS user

name and password and click OK.

3. MDM changes the server status icon from the red square to a green

triangle to indicate that the Master Data Server is running.

NOTE ►► When you start a Master Data Server, MDM Console

checks the status of each of its mounted MDM repositories; this check

requires that the corresponding DBMS Servers be up and running.

212 MDM Console Reference Guide

 To stop a running Master Data Server (green triangle):

1. In the Console Hierarchy tree, right-click on the Master Data Server

and choose Stop MDM Server from the context menu, or select the tree

node and choose MDM Servers > Stop MDM Server from the main

menu, and then choose Immediate from the cascading menu.

2. In the pop-up SAP Instance Shutdown dialog, select a shutdown type

and click OK.

3. In the pop-up Web Service Authentication dialog, enter your OS user

name and password and click OK.

4. MDM stops the Master Data Server and changes the server status icon
from the green triangle to a red square to indicate that the server is

no longer running.

MDM Console Reference Guide 213

Monitoring Master Data Server Activity

You can identify performance bottlenecks on a Master Data Server by
monitoring server activities from MDM Console or CLIX.

NOTE ►► For information about CLIX commands for monitoring, see

help.sap.com/nwmdm71 > CLIX Reference.

NOTE ►► You can also use the performance tracing option available

to all MDM servers (see “Performance Tracing”).

THE MDM CONSOLE ACTIVITIES PANE

Clicking a Master Data Server's Activities node in the Console Hierarchy
tree opens the Activities pane.

The Activities pane contains a grid with a row for each activity currently
occurring on the Master Data Server. The fields in the grid contain
details about each activity.

Activity details are described in Table 53.

Table 53. Activity Details

Detail Description

ThreadID The thread ID of the activity.

Application Name The application from which the activity request was made.

User The user requesting the activity.

Host Name The name of the host computer on which the application is running.

Activity The MDM internal protocol and command name of the activity.

Repository The name of the repository on which the activity is being performed.

Start Time The GMT time at which the activity started.

Elapsed Time (ms) The number of milliseconds elapsed since the activity started.

Status Whether the activity is running or waiting for a lock.

Acquired Locks The locks acquired by the activity.

Waiting for Locks The locks which the activity is waiting to acquire so that it can begin.

The information displayed in the Activities pane is a one-time snapshot
reported by the Master Data Server. The title bar of the Activities pane
displays the Master Data Server time (in GMT) at which the information
in the Activities grid was provided.

The information in the Activities pane can be refreshed manually or
automatically by right-clicking in the Activities pane and selecting one of
the operations listed in the following table.

214 MDM Console Reference Guide

Table 54. Activity Pane Context-Menu Operations

Detail Description

Refresh Updates the information displayed in the Activities grid.

Auto-Refresh
Turns on or off continuous updating of the information displayed in
the Activities grid.

Selecting an activity in the Activities grid displays its information in the
Activity Detail tab. The tab contains the same information as the
Activities pane, plus additional information about the locks required for
the activity.

The lock information displayed in the Activity Detail tab is described
below.

Table 55. Lock Details Displayed in Activity Detail Tab

Detail Description

Server Data Lock
Whether the activity is waiting for, or has acquired, a Server Data
Lock, and whether the lock is exclusive or shared.

Repository Data
Lock

Whether the activity is waiting for, or has acquired, a Repository
Data Lock, and whether the lock is exclusive or shared.

Server Sync Lock
Whether the activity is waiting for, or has acquired, a Server Sync
Lock, and whether the lock is exclusive or shared.

Repository Sync
Lock

Whether the activity is waiting for, or has acquired, a Repository
Data Lock, and whether the lock is exclusive or shared.

Stopping an Activity

You can stop an existing activity.

 To stop an activity:

1. In the Activities pane, right-click the activity that you want to stop and

select Stop Activity from the context menu.

2. Enter your credentials for the repository.

MDM changes the status of the activity in the MDM Console to

Running (Stop Activity is pending) or Waiting

(Stop Activity is pending), then stops the activity.

NOTE ►► Currently this feature is available only for stopping bulk

import operations.

MDM Console Reference Guide 215

Optimizing MDS Performance

When updating records in a repository, the Master Data Server (MDS)
write-locks the repository in order to safeguard the integrity of the
repository's data. As a result of this lock, other users are unable to
access a repository while an update is in progress. For small updates,
the lockout period may not be noticeable. For "mass" updates involving
thousands of records, the potentially long lockout period required to
complete the operation may be impractical if other users require access
to the repository during the update. MDM's configurable slicing feature
helps optimize performance in these situations.

NOTE ►► See "MDS Configuration" for more information about the

mds.ini parameters described in this section.

WHAT IS SLICING?

To maintain safe and timely updates without sacrificing performance for
other users, a balance must be struck between the amount of time MDS
devotes to updating a repository and the time it allows for processing
requests from other clients while the operation is ongoing.

To optimize this balance, MDM uses the concepts of slicing and wait
time. Slicing divides the large set of records in a mass update operation
into smaller groups of records, called slices. Each slice is processed
independently by MDS as part of the larger operation. Wait time is the
time MDS sets aside after processing a slice to respond to requests
from other clients. During the wait time, MDS removes the write lock
from the repository. Once the wait time expires, MDS renews the write
lock as soon as it is available and begins processing the next slice of
records in the job. MDS continues alternating between processing slices
and waiting for other requests until all the entire update is completed.

NOTE ►► It is possible for MDS to receive a new request during an

operation's wait time which takes longer to complete than the wait time

specified. In such a case, the ongoing operation does not resume until
the new request releases its lock, either because it finishes or has

reached its own wait time.

Both the number of records to include in a slice and the length of the
wait time can be customized using default configuration parameters in

the mds.ini file.

216 MDM Console Reference Guide

Table 56. Default MDS Configuration Parameters for Slicing

Parameter Description

Default Slice Size
Number. The default number of records MDM

includes in a slice. Default is 500.

Default Slice Wait Time MS

Number. The default number of milliseconds
MDM waits between slices to receive other

requests. Default is 300.

Generally, the more records in a slice, the more memory is required on
the server hosting MDS and the longer the response time becomes for
client requests to MDS. Too few records in a slice, however, can make
the update process less efficient, as there is some overhead involved in
each slice.

Factors to consider when determining optimal slice size include:

• Available memory and processing power on the server hosting MDS

• Capabilities of the underlying DBMS

• The complexity of the target repository’s data model.

Likewise, when configuring wait time, the longer the wait time, the
longer the mass update will generally take to complete. The shorter the
wait time, the more likely it is that client requests are delayed while the
operation is in progress.

NOTE ►► For some operations, additional configuration is required to

enable slicing (see "Bulk and Non-Bulk Operation" below for more

information).

BULK AND NON-BULK OPERATIONS

MDM operations which qualify for slicing fall into two broad categories:
bulk and non-bulk, as described in Table 57.

MDM Console Reference Guide 217

Table 57. Bulk v.s Non-Bulk Operations

Operation Type Description

Bulk

Includes the following operations:

▪ Import*

▪ createRecords and modifyRecords API

commands

Non-bulk

Includes the following operations:

▪ Assignments and Validations

▪ Check in*, Check out*, and Rollback

▪ Delete

▪ Recalculate

▪ Record editing in Data Manager

* Checkouts and checkins resulting from an import operation are handled as bulk operations

Configuring Slicing for Bulk Operations

Bulk operations are always sliced. Optional parameters for customizing
slice sizes and wait times for bulk operations are described in Table 58.

Table 58. Optional MDS Configuration Parameters for Bulk Operations

Parameter Description

Bulk Operation Slice

Size

Number. The maximum number of records to

include in a bulk operation slice.

Bulk Operation Slice

Wait Time MS

Number. The number of milliseconds to wait in

between bulk operation slices.

If these parameters are not entered in mds.ini or have no values, the
default values described in Table 56 are used instead.

Configuring Slicing for Non-Bulk Operations

Unlike bulk operations, non-bulk operations are not sliced unless

configured to do so in mds.ini. The configuration parameters for
enabling slicing of non-bulk operations are described in Table 59.

218 MDM Console Reference Guide

Table 59. MDS Configuration Parameters for Enabling Non-Bulk Slicing

Parameter Description

Enable Slicing for Non-

Bulk Operations

True/False. Whether slicing is enabled for any

non-bulk operation.

▪ When set to False, all slicing of non-bulk

operations is disabled.

▪ When set to True, slicing of non-bulk

operations is enabled or disabled based
on the setting of each operation's Enable

Slicing parameter.

Enable Assignment

Slicing

True/False. Whether slicing is enabled for the

specified operation when Enable Slicing

for Non-Bulk Operations is set to True.

Enable Checkin Slicing

Enable Checkout Slicing

Enable Delete Records

Slicing

Enable Recalculate

Slicing

Enable Record Edit

Slicing

Enable Rollback Slicing

Enable Validation

Slicing

Enable Block Slicing

Enable Destroy Slicing

Enabling slicing for a non-bulk operation requires two parameters to be
set to True in mds.ini: the master Enable Slicing for Non-Bulk

Operations parameter and the operation-specific parameter.

To disable slicing for all non-bulk operations, set the master Enable

Slicing for Non-Bulk Operations parameter to False. This

disables non-bulk operation slicing regardless of the operation-specific
parameters.

Optional parameters for customizing the slice sizes and wait times for
specific non-bulk operations are described in Table 60.

MDM Console Reference Guide 219

Table 60. Optional MDS Configuration Parameters for Bulk Operations

Parameter Description

Assignment Slice Size

Number. The maximum number of records to

include in an operation slice. Default is 500.

Checkin Slice Size

Checkout Slice Size

Delete Records Slice

Size

Recalculate Slice Size

Record Edit Slice Size

Rollback Slice Size

Validation Slice Size

Block Slice Size

Destroy Slice Size

Assignment Slice Wait

Time MS

Number. The number of milliseconds to wait in
between assignment operation slices. Default is

300.

Checkin Slice Wait Time

MS

Checkout Slice Wait

Time MS

Delete Records Slice

Wait Time MS

Recalculate Slice Wait

Time MS

Record Edit Slice Wait

Time MS

Rollback Slice Wait

Time MS

Validation Slice Wait

Time MS

Block Slice Wait Time

MS

Destroy Slice Wait Time

MS

If these parameters are not entered in mds.ini or have no values, the
default values described in Table 56 are used instead.

220 MDM Console Reference Guide

NOTE ►► Restarting MDS is not required after changing any slicing-

related parameter in mds.ini.

SLICING AND FAILURE HANDLING

Slicing not only improves MDM responsiveness in multi-user
environments, it also minimizes the possibility of a single "bad" record
causing an entire update operation to fail. For example, if a mass record
edit gets divided into 10 slices, only the slice containing the "bad" record
will fail, and the remaining 9 slices will succeed. For more information,
see the Data Manager Reference Guide.

NOTE ►► MDM logs contain more information about the reason why

a slice or operation failed (see "Logs, Traces, and Reports" for more

information).

SLICING AND IMPORT

Slicing interacts with several import-related features to improve
performance.

MDIS Chunk Size

The MDIS parameter Chunk Size tells MDIS how many records from an
aggregated file set to process at a time. Once MDIS processes a chunk
of records, it immediately sends this chunk to MDS for import into the
repository. When MDS receives the chunk, the default (or bulk

operation, if present) slice settings control how many records from the
chunk it should process at a time (several slices may be required to
process an entire chunk) and the time to wait between each chunk slice.

You will want to experiment with both chunk and slice settings to
achieve optimal import performance for your environment.

NOTE ►►See "Optimizing MDIS Performance" for more information

about Chunk Size and MDIS.

Record Checkouts

If you have configured MDM to check out records automatically upon
import, MDS will check out all records in a slice as part of processing
that slice.

NOTE ►►Slicing and wait times for checkouts and checkins which

occur as part of an import are governed by bulk operation parameter

settings, not the non-bulk checkin and checkout parameters.

MDM Console Reference Guide 221

Workflows

If you are importing records into a workflow, the workflow is not
launched until all slices from an import package have been processed.

An import package refers to the complete set of records received:

• From Import Manager or an Import Records API function; or

• From a set of import files aggregated by MDIS.

NOTE ►►The number of files which MDIS aggregates into an import

package is controlled by a port’s File Aggregation Count property (see

“Ports Table” for more information).

Also, if a workflow job performs a sliceable operation (such as a check
in), it is possible for some record slices to succeed and others to fail. In
such cases, the records in the successful slices continue to the next
step and the records in the failed slices are split into a new job, which is
held at the current step in an error state. For more information, see the
Data Manager Reference Guide.

222 MDM Console Reference Guide

Optimizing MDM Client Performance

MDM provides the following ways to optimize performance for MDM
clients such as MDM Data Manager.

NOTIFICATION FILTERING

Import, workflow, and other operations which affect large groups of
records can cause MDS to send large numbers of notifications to MDM
clients informing them about the changes. MDM Data Manager
automatically filters notifications sent from MDS and only processes
those notifications which affect the set of records returned by the current
Data Manager search selections. This filtering improves overall Data
Manager responsiveness by eliminating the time Data Manager would
otherwise spend updating records that the user may not even see.

Additionally, Data Manager has a Retrieve notifications delay in seconds
configuration option. This option instructs Data Manager to wait a
specified number of seconds after receiving a notification before
retrieving the update from the Master Data Server. This can improve
Data Manager responsiveness by forcing it to waiting for updates to
"pool" on the server rather than process them as they are individually
reported.

OBJECT CACHE SIZE REGISTRY SETTING

Not all visible objects can be cached at the same time. If you see a
constant reloading of objects in MDM clients, this may be because the

Object Cache Size registry is set too low.

You can use the Object Cache Size parameter in the mds.ini file to
adjust the size of the object cache. If the value does not exist, the
default of 250 is used.

MDM Console Reference Guide 223

Logs, Traces, and Reports

LOGS

Log messages are intended for a non-technical audience and contain
information, warnings, and errors regarding system activity. Log
messages are always generated and messages of all severity levels are
always recorded.

Each MDM server (MDS, MDIS, MDSS, MDLS) creates and stores its

own set of log files in the usr\sap\<SAPSID>\<instance_name>\log
directory.

NOTE ►► The .ini file parameter Log Dir lets you customize the log

file directory location.

Log File Types

The types of log files MDM can generate are described in Table 61.

Table 61. MDM Log File Types

File Type Description

MDS_Audit Contains audit trail information for the Master Data Server.

[Server]_Log
Contains log and trace messages for the selected MDM

server.

Viewing Log Files

You can view log files for any MDM server from within MDM Console,
as described in this section.

 To view a server log file:

1. In the Console Hierarchy tree, select the Logs node that appears

below the desired MDM server (MDS, MDIS, MDSS, MDLS).

2. In the Logs pane, select the log file you want to view.

3. MDM displays the log contents in the Log Detail pane.

NOTE ►► Log file contents contain both log and trace messages.

 To filter the display of log and trace messages by severity level:

1. In the Log Detail pane, right-click and select Edit Filter… from the pop-

up context menu.

2. In the Log Filters dialog, select the severities of log and trace

messages to be filtered from display in the Log Detail pane.

3. MDM saves the settings to the local computer and displays only log

and trace messages of the selected severities in future log viewings.

224 MDM Console Reference Guide

Log Message Severities

Each log message is assigned a severity. The severity levels for MDM
log messages are described in Table 62.

Table 62. MDM Log Message Severities

Severity Description

Info Normal system activity which requires no follow-up activity.

Warning Further action is required to prevent a future problem.

Error Uncorrected problem occurred which caused a major operation to fail.

Fatal Failure occurred which caused the server to shut down.

Configuring Log Size and Rotation Parameters

By default, the maximum size of an MDM log file is 2 MB. Once a log file
reaches this threshold, a new log file is started. The optional .ini file
parameter MDM Log Watermark lets you customize the maximum log

file size to your own specifications.

NOTE ►► The minimum size for an MDM log file is 1 MB.

The number of log files an MDM server stores per type is set to 20 by
default. Once this limit is reached, MDM deletes the oldest log file of
that type from the log directory and starts a new file in its place. The
optional .ini file parameter Max Number of Log Files lets you

customize the maximum number of logs allowed to your own
specifications.

NOTE ►► MDM always creates at least one log file per log type.

Each of these .ini file parameters must be added to the relevant server’s
.ini file. See “Master Data Server Parameters” for more information
about these parameters.

NOTE ►► The MDS_Audit log is not affected by the Log

Watermark or Max Number of Log Files parameters. Their

maximum size is always 2 MB and, there is no limit to the number of

audit log files that can be created.

TRACES

Trace messages are intended for support engineers and contain
technical output related to internal MDM conditions. Unlike log
messages, you can choose to only record trace messages of certain
severity levels.

MDM Console Reference Guide 225

Trace messages are recorded to a server’s log file and can be viewed
from MDM Console (see “Viewing Log Files” for more information).

Trace Message Severities

Each trace message is assigned a severity level. The severity levels for
MDM trace messages are described below.

Table 63. MDM Trace Message Severities

Level Severity Description

0 Debug The most granular coding information.

1 Program Flow Routines and exceptions; corresponds to SAP’s “Path” level.

2 Info “Business logic” information not requiring knowledge of code.

3 Warning Abnormal condition detected which can affect operation results.

4 Error Error detected which prevents an operation from completing.

Filtering Logging of MDS-Related Trace Messages

MDM Console includes a special feature for filtering trace messages

reported from various MDS sub-components. In addition, the User Name

and User Trace Setting properties let you filter trace messages spawned
by a specified MDM user’s activities This feature can help SAP support
engineers identify and isolate problems on an MDM system.

For each sub-component or user, you can limit the trace messages
logged by selecting one of the 5 severity levels described in Table 62
above. MDM then withholds logging trace messages for that sub-
component or user if the trace message has a severity level below the
level selected.

 To filter logging of MDS-related traces:

1. In the Console Hierarchy, right-click on the MDS node and select Trace

Settings… from the pop-up context menu.

2. In the Trace Filter Settings dialog, select a custom severity level in the
“Value” column for a sub-component in the corresponding “Property”

column.

3. Click “OK” to dynamically change the severity level filters.

Filtering Logging of Auxiliary MDM Server Trace Messages

By default, only trace messages of severity level “3” and higher are
recorded to an auxiliary MDM server’s (MDIS, MDSS, MDLS) log file.
The.ini file parameter Tracing Level lets you customize the

minimum severity level recorded to meet your own requirements.

226 MDM Console Reference Guide

NOTE ►► The parameter Tracing Level was removed from

mds.ini in MDM 7.1 SP4, as tracing filters applied through MDM
Console and CLIX are saved automatically to mds.ini and reapplied at

MDS startup. The parameter is still used in mdis.ini, mdss.ini, and

mdls.ini, however.

PERFORMANCE TRACING

Performance traces are activity-centric logs which can help identify the
activity causing a bottleneck in a specific MDM server (MDS, MDIS,
MDLS, or MDSS).

When performance tracing is enabled, for every completed activity on
an MDM server, the following information will be provided at the time
when the activity is completed (only one log entry will be entered per
activity):

• Server Time (current timestamp)

• Thread ID

• User Name

• Protocol Name

• Command Name

• Locks Used (using the same notation as clix mdsMonitor)

• Elapsed Time ms (time since activity started, milliseconds)

• Wait Time ms (time activity spent waiting for required locks

milliseconds)

• Run Time ms (time activity spent after it acquired all locks,

milliseconds)

• Activity Start Time

• Connection (application which initiated the activity)

• Repository Name

• Remote Host (the host which initiated the Activity)

Performance traces are logged to a comma-separated file in the Logs
directory of the server which created them. These files are named:

<server name> _PerfTrace@U@<creation date
stamp>@<creation time stamp>.csv

where the server name is MDS, MDIS, MDLS or MDSS.

Turning Performance Tracing On or Off

 To turn performance tracing on/off for a specific server:

• From within Console, right-click on the server in the Console Hierarchy

tree and choose Performance Tracing to toggle tracing on or off.

MDM Console Reference Guide 227

• From CLIX, use the server-specific PerfTracing command (see

help.sap.com/nwmdm71 > CLIX Reference).

• From a server configuration file, set the Enable Performance

Tracing parameter to True (see below).

NOTE ►► Performance tracing is enabled or disabled for the entire

server only. It cannot be enabled for a specific repository.

Configuration File Parameters for Performance Tracing

You can turn performance tracing on or off and customize logging
behavior for a specific Master Data Server (MDS) or auxiliary server
(MDIS, MDSS, MDLS) from the server’s configuration file (mds.ini,
mdis.ini, mdss.ini, mdls.ini).

The parameters described below are valid for all server .ini files.

Table 64. Configuration File Parameters for Performance Tracing

Parameter Description

Enable Performance

Tracing

True/False. Turns performance tracing for the

server on (True) or off (False).

Performance Tracing

Watermark

Number. The maximum size (in bits) allowed for
a performance tracing log file. Default value is

8388608 (8 MB). Minimum value is 1048576

(1 MB).

Performance Tracing Max

Number Of Log Files

Number. The maximum number of performance

tracing log files to allow per server. Default

value is 1000000.

Performance Tracing

Filter Threshold

Milliseconds

Number. The minimum length of total time in
milliseconds (elapsed time) that an activity must

last before it is included in the performance

tracing log file. Default value is 1000.

NOTE ►► These parameters are only read at server startup.

228 MDM Console Reference Guide

REPORTS

Unlike logs and traces, reports are both repository-specific and activity-
specific. Each MDM repository stores its reports in the

usr\sap\<SAPSID>\<instance_name>\mdm\reports directory.

NOTE ►► The mds.ini file parameter Report Dir lets you

customize the report directory location.

Reports are named using the following format:

 [Report Type]@[DBMS Server]@[DBMS Type]@[Repository Name]

@U@[YYMMDD]@[HHMMSS].csv

A new report is created each time a qualifying operation is performed on
a repository, and each report’s contents are limited to messages
regarding that operation only.

Report Types

MDM report types refer to the specific repository operations that caused
the report to be created. MDM creates reports for the following
operations only:

• Archive

• Create Slave

• Duplicate

• Import

• Schema Migration

• Syndication

• Unarchive

• Update

• Verify Check

• Verify Repair

Upon completion of any MDM operation that generates a report file,
MDM prompts you to immediately view the report.

NOTE ►► For each operation specified in the list above, MDM stores

up to a maximum of 20 reports over all repositories (not per
repository). There is no maximum restriction for the size of a report.

These limits are non-configurable.

Viewing Reports

 To view a report:

1. In the Console Hierarchy tree, open the repository’s Admin branch and

select the Reports node.

2. In the Reports pane, select the report you want to view.

3. MDM displays the report contents in the Report Detail pane.

MDM Console Reference Guide 229

TIP ►► From the Reports pane header, you can set display

preferences such as the number of messages to show per page, which

columns to view/hide; and whether only errors are shown.

230 MDM Console Reference Guide

MDS Configuration

You can customize MDS settings from within the mds.ini file, located in

the usr\sap\<SAPSID>\<instance_name>\config directory.

The mds.ini file is split into multiple parts: a top section for MDS and
separate sections for each MDM repository that has been started on
that Master Data Server.

The MDS section lists server-level configuration parameters which are
global and affect MDS behavior across all repositories.

Each repository section lists configuration parameters which are specific
to that repository only and override the settings in the MDM Server
section.

For each section, the mds.ini file includes a default set of standard
parameters. In addition to the standard parameters, you can enter
optional parameters directly into the various sections of the mds.ini file.

All parameters are case-sensitive and there should be no spaces before
or after the equal sign (=) which separates a parameter from its setting.
Not all settings must have values, however.

MASTER DATA SERVER PARAMETERS

The first section of the mds.ini file is the global MDS section. All global
MDS parameters appear under the following line:

[MDM Server]

The standard [MDM Server] parameters included with the mds.ini file

are described in Table 65.

Optional [MDM Server] parameters, which must be entered manually

in the mds.ini file, are described in Table 66.

NOTE ►► Enter optional parameters exactly as they appear in this

guide and leave no space before or after the equal sign (=).

NOTE ►► If a parameter has a default setting, it is noted in bold.

NOTE ►► Changes made to mds.ini are not logged by MDM. Access

to the file should be limited accordingly.

NOTE ►► Use either # or ; as comment characters at the beginning

of a new line. Use # as an inline comment character.

CAUTION ►► Do not modify the mds.ini file with an editor that locks
the file (such as Microsoft Word) while MDS is running, as this can

cause MDS to crash.

MDM Console Reference Guide 231

Table 65. Standard [MDM Server] Parameters

Name Description

MDS Ini Version
Number. The default and only valid value

is 1. Replaces XCS Ini Version.

Accelerator Dir
String. The directory path for the location

of the Master Data Server index files.

Log Dir

String. The directory path for the location

where MDM log files are stored and

retrieved.

Report Dir

String. The directory path for the location

where MDM report files are stored and

retrieved.

Archive Dir

String. The directory path for the location
where MDM archive files are stored and

retrieved.

Distribution Root Dir

String. The directory path for the root of
the fixed directory structure where files

associated with the Master Data Server’s

ports are stored and retrieved.

Transport Dir

String. The directory path for the location

where files associated with MDM transport

(CTS+) are stored.

Modifications Dir

String. The directory path for the location
where master change log files are stored

and retrieved.

Lexicon Dir

String. The directory path for the location
where lexicon information is stored and

retrieved.

String Resource Dir
String. The directory path for the location

of the MDM Server string files.

Stemmer Install Dir

String. The directory path for the Inxight

stemming engine installation directory. If

no directory is specified, MDM uses the
ngrams algorithm to create an internal

stem.

Wily Instrumentation
True/False. Whether Wily Instrumentation

monitoring is enabled.

Wily Instrumentation

Level Threshold

Number. Level of monitoring to perform.

The default value is 10.

Wily Repository Report

Status Interval

The interval, in seconds, for reporting the

status of mounted MDS repositories. The
default is 60 seconds. The reported

statuses are Stopped, Starting, Running,

Stopping.

232 MDM Console Reference Guide

Name Description

SLD Registration

True/False. Registers the Master Data

Server with the SAP System Landscape

Directory.

Trusted Connection

Authentication Mode

Specifies the type of authentication

required for trusted connections to the

Master Data Server (MDS). Options are

None, IP, SSL, or Both.

Listening Mode

Unencrypted/SSL/Both. Whether the

Master Data Server accepts unencrypted,

encrypted, or both types of connections.

Service Control Security

Enabled

For descriptions of these parameters, see

"SSL-Related Parameters for a Client
MDS".

SSL Enabled

SSL Lib Path

SSL Key Path

Logviewer Format Tracing

True/False. When set to True, MDM

generates MDS trace messages in both its
native and AGS/Log Viewer's List formats.

If False, MDM generates messages in its

native format only.

Enable Performance

Tracing

For descriptions of these parameters, see

“Configuration File Parameters for

Performance Tracing”.

Performance Tracing

Watermark

Performance Tracing Max

Number Of Log Files

Performance Tracing

Filter Threshold

Milliseconds

SAP RFC Gateways

String. Comma-delimited list of registered

gateways. Valid formats are
<GwHost>:<GwServ>, and

GWHOST=<GwHost> GWSERV=<GwServ>,

MDM Console Reference Guide 233

Name Description

Max Threads Per

Operation

Number or Auto. The maximum number

of threads that a single operation is
allowed to use. Default value is Auto,

which automatically limits the number of
threads an operation can use to the

number of logical cores on the Master

Data Server host (if the server has more
than two cores, the maximum number of

threads MDS will use per operation is

equal to “number of cores – 1”).

This parameter does not limit the total

number of threads used by MDS.

Replaces CPU Count.

Lock Account After

Failed Password Attempts

Number. The number of failed password

attempts to allow before locking the
related user account. "0" disables account

locking. The default value is 5.

Lock Account Duration

Number. The number of seconds to lock a
user account after the allowed number of

failed password attempts is surpassed.
Default value is 1800. “0” releases the

account immediately after locking.

Maximum value is 2147483647.

Minimum Password Length

Number. The minimum number of

characters of an MDM user password. The

default value is 6. This is the lowest

number that you can set as minimum.

If the minimum password length is set to a

value that is equal to or greater than the
maximum password length, the allowed

password length will be a fixed value that

is equal to the maximum password length.

For more information about using strong

passwords, see the MDM Security Guide.

Maximum Password Length

Number. The maximum number of

characters of an MDM user password.
You can set any value between 13 and

255.

Password Must Contain

Uppercase And Lowercase

Letters

True/False. If set to True, an MDM user

password must contain at least one
uppercase letter and one lowercase letter.

Use only for languages that use

uppercase and lowercase.

Password Must Contain At

Least One Digit

True/False. If set to True, an MDM user

password must contain at least one digit.

234 MDM Console Reference Guide

Name Description

Password Must Contain At

Least One Special

Character

True/False. If set to True, an MDM user

password must contain at least one
special character, which is any keyboard

symbol that is not a letter or character.

Password Cannot Contain

The User Name

True/False. If set to True, an MDM user's

password must not contain the user's user

name.

Number Of Previous

Passwords That Cannot Be

Reused

Number. The number of recent passwords

to be stored in the user's password
history. The user cannot reuse these

passwords. The default is 1, which means
only the current password is stored. The

maximum value allowed is 99. SAP

recommends a value of at least 3.

If you decrease the value of this
parameter, use the CLIX

repUserResetPassHistory command

to remove the extra passwords in the

history.

Password Expiration Days

Number. The number of days an MDM
user’s password is to remain valid, after

which it must be changed. "0" means
passwords never expire. The default value

is 90.

Password Expiration

Warning

Number. The number of days in advance

that an MDM user is to be warned their
password is about to expire. The default

value is 7.

Disable Read Access to

Repositories That

Require Restart

True/False. If set to True, MDM will deny
read access to repositories with the state

"Requires Restart".

Replaces Disable Read Access to

Corrupt Repositories.

MDS Scone

String. The encrypted password for MDM

Console access to this Master Data

Server. Removing it will remove the

password for the Master Data Server.

Log SQL Modifications

True/False. Logs every SQL modification

of the underlying databases. Should be
set to True only at SAP request since this

generates a huge amount of rolling log

info and slows the Master Data Server.

MDM Console Reference Guide 235

Name Description

Always Verify DBMS

Connection Before

Executing SQL Statements

True/False. Makes sure that the DBMS

connection is live after being retrieved
from the connection pool (and therefore

idle). If the connection has been lost, a
message is written to the Server Log and

the connection is restored.

Useful for the small minority of MDM

installations where the network connection
between the Master Data Server and the

DBMS is unreliable and frequently lost.
Improves reliability but marginally slows

the Master Data Server.

Replaces Extra DBConnection

Validation.

Maximum DBMS Bind Count

Number. The number of bind descriptors

to pre-allocate for queries to the DBMS.

Default is 512. If a greater value is
required, MDS will write a message to the

Master Data Server log (in which case,
increase the value in 50% increments until

the error message is resolved, up to the
limit of 4096). Not applicable to SQL

Server.

SQL Server DBA Username
String. DBMS system database name.

Default is MASTER.

Enable Change Stamp

Logging
True/False.

Max Notification Threads

Number. Default is 4. The maximum
number of threads MDS uses to send

queued notifications to MDM clients.

RELEASE\UseAssert

True/False. Causes errors to Assert,

which logs them to the Assertion*.xml.
Valid when the Master Data Server

executable is built in RELEASE mode.

Client Ping Timeout

Minutes

Number. Causes MDM Data Manager to

send a ping to the Master Data Server
after the specified number of minutes of

inactivity. Use to keep the socket
connection active on networks where

inactive sockets are killed by the system.
Default is 0 (no pings). See also

Inactive Client Timeout.

236 MDM Console Reference Guide

Name Description

Inactive Client Timeout

Minutes

Number. Minutes of inactivity to allow from

a client (MDM application, API, service,
etc.) before the Master Data Server starts

sending ping packets to the client. Used to
clean up dead connections on networks

which kill inactive sockets. If the

connection is alive, the pings succeed and
nothing else happens. If the connection is

dead, the ping attempts ultimately fail and
the network informs the Master Data

Server that the connection is dead.
Default is 0 (disabled). See also Client

Ping Timeout Minutes.

Value Retrieval

Threshold

Number. Limits the total number of data
field elements (main table records, text

attributes, and so on) that MDS will

attempt to send back for rich client and
MDLS operations that request multiple

records. The formula is number of records
* number of fields * number of languages.

If the result exceeds this threshold, MDS

returns a failure. Default is 0 (no limit).

Family Retrieval

Threshold

Number. Limits the total number of Family

data field elements that MDS will attempt
to send back for rich client and MDLS

operations that request multiple Family

data records. The formula is number of
records * number of fields * number of

languages. If the result exceeds this
threshold, MDS returns a failure. Default is

0 (no limit).

Protect Family Nodes

with Locked Data

True/False. When a family node is locked
in the Publisher, MDM will reject any

record modification which would result in

that family node being deleted.

Enable Client

Dictionaries

True/False. If the Inxight stemming engine

is installed, you can enable all client

dictionaries shipped with the Inxight
engine as a supplement to the

corresponding lexicon (simple union).

Client dictionaries are user-defined
lexicons that let you supplement entries in

Inxight’s lexicons to customize the

treatment of specific tokens. For more
information about integrating client

dictionaries, see the Inxight user

documentation.

MDM Console Reference Guide 237

Name Description

Restricted Url For

Client Export

String. The location in the file system

where you can save files; for example, for

exported files from Data Manager.

Default: Empty string, meaning there is no

restriction on where the files can be

saved.

Number Of Stemmers Per

Language

Number. To take advantage of multi-
threaded processing, MDM “pre-creates”

this number of stemming threads per
language. Value should be set to the

anticipated number of clients using the

stemming feature. Default is 2.

Index_Page_Margin Number. Default is 10.

Allow Console to

Retrieve Files

True/False. Allows MDM Console or CLIX

user to retrieve files from the Master Data

Server’s log and report directories.

Default Skip Unchanged

Records

True/False.

This is the global default setting for all
repositories. You can only change this

setting per repository through the Console.

For more information about this property,

see Modifying Repository Properties.

Default Bulk Import Silo

True/False.

Increases import performance by
optimizing SQL access methods. This is

the global default setting for all
repositories. You can change this setting

per repository only through the Console.

For more information, see the section

Modifying Repository Properties.

Default Safe Silo Mode

True/False.

This is the global default setting for all
repositories. If set to True when Default

Bulk Import Silo is set to True, the

database silo performs database

operations in a safer but slower way to
enable the import job to import

successfully.

You can change this setting per repository

only through the Console.

For more information, see the section,

Modifying Repository Properties.

238 MDM Console Reference Guide

Name Description

Enable Slicing for Non-

Bulk Operations

True/False.

When set to True, slicing is enabled based

on the setting of each operation's Enable
Slicing parameter. See “Configuring

Slicing for Non-Bulk Operations”.

TrexDllPath

String. The directory path for the location

of the TREX Client binary files. Must

restart repositories using Update Indices

to send existing PDFs to TREX.

Table 66. Optional [MDM Server] Parameters

Name Description

Allow Console to

Retrieve SysInfo

True/False. Allows CLIX user to retrieve the

contents of the mds.ini, Server*.csv, and

Assertion*.csv files.

Allow Modification of

mds.ini

True/False. Allows mds.ini parameters to be

modified by the “CLIX xs” command.

Autostart

True/False/Number.

When set to True, the Master Data Server

automatically loads all mounted repositories,

except in the following cases:

• The repository is outdated

• The repository is already running
elsewhere when the Master Data Server

starts

• The relevant repository section of the

mds.ini file includes the line
Autostart=False

When set with a positive number, MDM waits
for the specified number of seconds before

loading so that other processes, especially a

DBMS, can fully initialize.

To update indices when loading specific

repositories, add the line Autostart=Update

Indices in the relevant repository sections of

the mds.ini file.

Default Slice Wait

Time MS

Number. The default number of milliseconds

MDM waits between slices to receive other

requests. Default is 300.

Bulk Operation Slice

Size

Optional parameters for slicing for bulk

operations. For more information, see

"Configuring Slicing for Bulk Operations".
Bulk Operation Slice

Wait Time MS

MDM Console Reference Guide 239

Name Description

Assignment Slice Size

Optional parameters for slicing for non-bulk

operations. For more information, see

"Configuring Slicing for Non-Bulk Operations".

Assignment Slice Wait

Time MS

Checkin Slice Size

Checkin Slice Wait

Time MS

Checkout Slice Size

Checkout Slice Wait

Time MS

Delete Records Slice

Size

Delete Records Slice

Wait Time MS

Recalculate Slice

Size

Recalculate Slice

Wait Time MS

Record Edit Slice

Size

Record Edit Slice

Wait Time MS

Rollback Slice Size

Rollback Slice Wait

Time MS

Validation Slice Size

Validation Slice Wait

Time MS

Enable Checkin

Slicing

Enable Checkout

Slicing

Enable Assignment

Slicing

Enable Record Edit

Slicing

Enable Delete Records

Slicing

Enable Recalculate

Slicing

Enable Rollback

Slicing

240 MDM Console Reference Guide

Name Description

Enable Validation

Slicing

Matching

Transformation Phase

Slice Size

Number. The number of records in each slice

of the transformation operation in the matching

process. Default is 1200.

Matching

Transformation Phase

Slice Wait Time MS

Number. The time between each

transformation slice operation. It is
recommended to set this to 100 ms if there are

locking issues.

Default is 0, which means no slicing.

DBMS Reconnection

Attempts

How many times the Master Data Server

should attempt to reconnect to a DBMS
instance when an existing connection is lost.

The wait period between attempts is 3

seconds. Default is 10.

DEBUG\UseAssert

True/False. Causes errors to Assert, which

logs them to the Assertion*.xml. Valid when the

Master Data Server executable is built in

DEBUG mode.

Duplicate

Repositories By Rows

Only

True/False. Master Data Server does not

attempt to duplicate by the whole table method.

Should be set to True if you have a SQL Server
DBMS and the tempdb cannot grow large

enough to accommodate the largest table.

Enable Client

Dictionaries

True/False. Allow customized keyword-

stemming dictionaries.

Enable Keyword Search

Performance

Enhancement

True/False. Improves keyword search

performance up to 50% and reduces the
number of sub strings for keyword search types

that are displayed in the Search Selections tab

in the Data Manager (depending on the result

set).

Hosts Sharing

Modifications Dir

String. A comma-separated list of the

hostnames in a clustered environment which
can host the same Master Repository. All hosts

must have identical Modifications Dir

values.

IBMDB2 Best Block

Size

Number. Number of records the Master Data

Server attempts to insert/modify at a time.

Default is 256.

MDM Console Reference Guide 241

Name Description

IBMDB2 LUW Log LOBs

True/False. Whether MDM creates LOB table

columns with LOGGING on or off.

When set to True, BLOB and CLOB columns
are fully logged in the DBMS, allowing normal

roll forward recovery in the case of a DBMS

failure.

When set to False, LOB insertions and updates
are faster, but, in case of DBMS failure, you

may be dependent on your last MDM Archive

or DBMS backup.

LOB columns are limited to one gigabyte when

parameter is set to True and two gigabytes

when set to False.

If your repository does not use a lot of LOB
data (PDFs, Pictures, Text Large) you will have

little that risks data loss, and also little need for
performance improvement, so setting this value

to True is recommended.

Any repository created or unarchived prior to

MDM 7.102 will have NOT LOGGED on LOB
columns. To convert such a repository, you

must either duplicate the repository or

Archive/Unarchive it.

Parameter is not available for DB2 on zOS and

i5/OS. For these platforms, LOB columns will

always be LOGGED and limited to 1 gigabyte.

Ignore Mismatched

Images

True/False. Allows repositories to start when

Thumbnails or Originals tables do not match

main data tables. Use with caution. A mismatch
usually indicates you are using the wrong

Thumbnails or Originals partitions compared to

the Main partition.

Language Inheritance

Mode for Assignments

0, 1, or 2. "0" disables language inheritance

inside assignments; "1" limits language
inheritance to the primary inherited language;

and "2" extends inheritance to the secondary

inherited language.

Language Inheritance

Mode for Calculated

Fields

0, 1, or 2. "0" disables language inheritance for

calculated fields; "1" limits language

inheritance to the primary inherited language;
and "2" extends inheritance to the secondary

inherited language.

Language Inheritance

Mode for Validations

0, 1, or 2. "0" disables language inheritance
inside validations; "1" limits language

inheritance to the primary inherited language;

and "2" extends inheritance to the secondary

inherited language.

242 MDM Console Reference Guide

Name Description

LOG_REC_MATCH_PERF
0 or 1. Enables (1) or disables (0) performance

log for record matching

Logged-In Role

Maintenance

True/False. Allows role maintenance even
when one or more users who are assigned to

the role are logged on; otherwise, the

maintenance of that role is prohibited until all

the users assigned to that role log off.

Max Large Text Length

Number. Maximum bytes read for Text Large

fields during the starting of an MDM repository.
If you have Text Large fields that contain more

than this number of characters, you need to
increase the number to prevent data truncation.

Data truncation will cause the start to fail.
Default is 100000. (See also Number of

Rows Per Fetch.)

Max Number of Log

Files

Number. The maximum number of log files to

keep in the MDS \log dir. After this number is
reached, the oldest log file is deleted. (If set to

0, MDS still keeps one log file). Default value is

20.

MaxDB Best Block Size

Number. Number of records the Master Data
Server attempts to insert/modify into MaxDB at

a time. Default is 2048.

MaxDB Statement Cache

Size

The number of prepared statements to be
cached for the connection for re-use. Accepted

values are 0, Unlimited, or a positive number.

Default is 1000.

MaxDB\Dll

String. Name of the MaxDB Interface Library

(DLL, SO, or SL) for Master Data Server.

Default base name is libSQLDBC76_C. The

extension depends upon the operating system

(e.g. dll for Windows).

MDM Log Watermark

Number. The maximum size (in bytes) an MDM

log file can grow to before a new log file is

started. Value must be greater than 1048576 (1
MB). Default is 2097152 (2 MB). Replaces

ROLLING_LOG_HI.

Multi-threaded

Matching

True/False. Whether to enable multi-threading
for record matching tasks. Maximum number of

threads is governed by the Max Threads

Per Operation parameter.

Oracle Best Block

Size

Number. Number of records the Master Data

Server attempts to insert/modify at a time.

Default is 2048.

Oracle DBA Username
String. DBMS account (database) name having

system privileges. Default is SYSTEM.

MDM Console Reference Guide 243

Name Description

Oracle Tablespace

Files

Number. When an MDM repository is created,

determines how many files are used for each
repository partition. This allows the repository

to grow beyond the default file limit. This limit is
a function of block size times 4,194.303 which

for the default block size of 8KB is 32GB. Block

size is determined when the database is
created; if you expect to exceed that limit, set

this greater than one so that MDS will handle
the growth automatically, saving your DBA the

trouble of adding tablespace files later. Default

is 1.

Oracle\Dll

String. Name of the primary Oracle Call

Interface Library DLL for Master Data Server

running under Windows. Default is OCI.DLL.

Report Progress

Percentage

Number from 0 to 99. Writes a line to the report

file indicating progress each time the specified
percentage of a table has been processed, in

addition to the line indicating that processing
the table is complete. Useful for time-

consuming table operations. Default is 0 (does

not write intermediate progress lines).

See also “Report Progress Threshold”

parameter.

Report Progress

Threshold

Number. Minimum number of rows a table

must have before MDM will write lines to the

report file based on the setting of the “Report

Progress Percentage” parameter. For object
tables, MDM uses 1/50th of the specified

number as the threshold. Default is 1 (all tables

regardless of the number of rows in the table).

See also “Report Progress Percentage”

parameter.

Session Timeout

Minutes

Number. Causes MDM Console, CLIX, and

applications based on the new Java API to

expire after the specified number of minutes
elapses. Default is 1440 (24 hours). When set

to 0, sessions never time out.

Socket Read Timeout

ms

Number. The number of milliseconds MDS
waits for a Server or Repository “read” lock

before timing out.

For administrative/modeling operations, such

as those initiated by MDM Console or CLIX,
the default timeout (used if no value is set for

this parameter) is 2 seconds + 2 minutes. If a
value is set for this parameter, the timeout is 2

seconds + the value.

244 MDM Console Reference Guide

Name Description

For data access operations, such as those
initiated by MDM Data Manager, the default

timeout (used if no value is set for this
parameter) is 2 seconds + infinity. If a value is

set for this parameter, the timeout is 2 seconds

+ the value.

Socket Write Timeout

ms

Number. The number of milliseconds MDS

waits for a Server or Repository “write” lock

before timing out.

Timeout behavior is the same as described for

the Socket Read Timeout ms parameter.

SQL Server Allow

Windows

Authentication Mode

True/False. When the DBMS login field in an

MDM dialog is left empty, MDM will attempt to
connect to the specified SQL DBMS as the

Windows user running MDS. That Windows

username must have a sysadmin role and be
mapped to the A2i_xCat_DBs database on the

DBMS host machine in order for the

authentication to succeed.

SQL Server Best Block

Size

Number. Number of records the Master Data

Server attempts to insert/modify at a time.

Default is 256.

Transport Manager URL

String. The URL used to launch the Transport

Management System.

Examples:

www.sap.com

http://www.sap.com

Trusted SAP Systems

String. Comma-separated list of trusted SAP

System IDs with an optional colon-separated
partnerHostname. Format is

SystemID:partnerHost,

Example:

A66:pwdf4711, A66:pwdf0814, A99,BCD

Wildcards are not allowed.

Use Old Archiving

Method

True/False. Whether the pre-MDM 7.1 SP06

archiving method is used.

Value Retrieval

Violation Terminates

Session

True/False. If set to True, terminates the

session of a client whose record request

caused the Value Retrieval Threshold

parameter value to be exceeded.

MDM Console Reference Guide 245

Name Description

Verify Attribute

Linkage

Nocheck/Check/Relink/Delete. Determines

how Verify > Repair should handle attribute

values that correspond to unlinked attributes.
Nocheck does nothing. Check identifies orphan

attribute values. Relink identifies orphan
attribute values and relinks the corresponding

attributes. Delete identifies orphan attribute

values and deletes them.

TCP Keep Alive

Enabled

True/False. When set to True, the operating

system's TCP keep-alive option is enabled on

incoming connections. This causes the server
to periodically check whether the connection is

still alive. If the client does not respond within a
system-defined time interval, the connection is

closed.

Port Scan Delay

Number. The interval in seconds that MDS

scans inbound ports for incoming files. This
parameter is read when the repository is

started.

When this parameter is not set, the default is 1
second, which can produce a large number of

system calls when a repository with many ports

is started on the server.

Note: Increasing the scan interval reduces the

number of system calls but delays the

response time for processing automatic

imports.

The range of values that can be set for this

parameter is between 1 (minimum) and 300

(maximum) seconds.

For values below 1, the interval will be set to 1

second. For values above 300, the interval will

be set to 300 seconds.

IBMDB2 BLOB Length

Positive integer. The length of a IBM DB2
BLOB in bytes. The default length is

2147483647. This is two gigabytes minus one
byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

IBMDB2 CLOB Length

Positive integer. The length of a IBM DB2
CLOB in bytes. The default length is

2147483647. This is two gigabytes minus one

byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

246 MDM Console Reference Guide

Name Description

IBMDB2 LUW BLOB

Length

Positive integer. The length of a IBM DB2 for

Linux, Unix, and Windows BLOB in bytes. The
default length is 1073741824. This is one

gigabyte in bytes. The minimum length is 1.
The maximum length is 2147483647, which is

two gigabytes minus one byte in bytes.

IBMDB2 LUW BLOB Not

Logged Length

Positive integer. The length of a IBM DB2 for

Linux, Unix, and Windows BLOB that is not
logged in bytes. The default length is

2147483647. This is two gigabytes minus one
byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

IBMDB2 LUW CLOB

Length

Positive integer. The length of a IBM DB2 for
Linux, Unix, and Windows CLOB in bytes. The

default length is 1073741824. This is one

gigabyte in bytes. The minimum length is 1.
The maximum length is 2147483647, which is

two gigabytes minus one byte in bytes.

IBMDB2 LUW CLOB Not

Logged Length

Positive integer. The length of a IBM DB2 for
Linux, Unix, and Windows CLOB that is not

logged in bytes. The default length is
2147483647. This is two gigabytes minus one

byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

IBMDB2 ZOS BLOB

Length

Positive integer. The length of a IBM DB2 zOS

BLOB in bytes. The default length is

1073741824. This is one gigabyte in bytes. The
minimum length is 1. The maximum length is

2147483647, which is two gigabytes minus one

byte in bytes.

IBMDB2 ZOS CLOB

Length

Positive integer. The length of a IBM DB2 zOS

CLOB in bytes. The default length is
1073741824. This is one gigabyte in bytes. The

minimum length is 1. The maximum length is

2147483647, which is two gigabytes minus one

byte in bytes.

IBMDB2 5OS BLOB

Length

Positive integer. The length of a IBM DB2 5OS

BLOB in bytes. The default length is
2147483647. This is two gigabytes minus one

byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

IBMDB2 5OS CLOB

Length

Positive integer. The length of a IBM DB2 5OS

CLOB in bytes. The default length is

2147483647. This is two gigabytes minus one
byte in bytes. The minimum length is 1. The

maximum length is 2147483647.

MDM Console Reference Guide 247

MDM REPOSITORY PARAMETERS

Below the Master Data Server parameters in the mds.ini file are the
parameter sets for the individual repositories that have been started by
the Master Data Server. Each repository’s parameters appear under the
line:

[MDM Server\Databases\RepositoryInfo]

where RepositoryInfo is a concatenation of the repository name, the

DBMS identifier, and the DBMS type.

Repository sections appear in the mds.ini file in the order in which each

repository was first started.

The standard MDM repository parameters included with the mds.ini file
are described below.

Optional MDM repository parameters, which must be entered manually
in the mds.ini file, are described in Table 68.

NOTE ►► If an MDM repository parameter also appears as an MDM

Server parameter, the MDM repository parameter setting takes

precedence for that repository.

NOTE ►► For more information about entering configuration file

parameters, see “Master Data Server Parameters”.

Table 67. Standard Repository-Specific Parameters

Name Description

Port

Number. The MDS port number used by MDM

clients to communicate with the repository. Value
also set in MDM Console. There should be at

least 5 ports separating each repository started

on the Master Data Server.

Login
String. The login for the DBMS associated with

the repository.

Password+
String. The encrypted password for the DBMS

login.

Stemmer Language Not used in this version of MDM.

Stemmer Variant Not used in this version of MDM.

Max Large Text

Length

Number. Maximum bytes read for Text Large

fields during the starting of an MDM repository. If

you have Text Large fields that contain more
than this number of characters, you need to

increase the number to prevent data truncation.
Data truncation will cause the start to fail. Default

is 100000. (See also Number of Rows Per

Fetch.)

248 MDM Console Reference Guide

Name Description

Number of Rows Per

Fetch

Number. Number of rows to fetch per iteration

during the starting of an MDM repository. Our
tests have shown minimal increase in loading

performance by increasing this past 100,
however Memory limitation may require it to be

lower. The total memory required for loading a

table’s data will be the size of all fields times this
number. Note if you have Text Large fields, the

“Max Large Text Length” setting is used as the
field size. You may need to lower this value if

you have Text Large fields with long strings in
them. If the required memory is not available, the

Start will fail. Default is 100.

Max Initial MB to

Retain

Number. Megabytes of modification notification

packets that Master Data Server will hold in
memory while an API client is logging in.

Necessary since there is a brief period where an
API connection is marked active on the MDM

side, but the API Client is not yet ready to
receive the modification notifications. If this limit

is exceeded, subsequent notifications will be

dropped. Default is 4.

Max Send Failure

MB to Retain

Number. Megabytes of packet send data to any

connection that will be held if the entire packet

cannot be sent. Slow networks and busy clients
are sometimes not able to receive the entire

packet from the Master Data Server. In these
cases MDM will hold onto the data and attempt

to resend it every minute. If this limit is
exceeded, MDM will terminate the client

connection. Default is 4.

Workflow Detailed

Report

True/False. Writes detailed workflow information

into the server log. Used primarily for debugging.

Mail Server

The IP address or domain name of the mail

server which the MDM Workflow feature uses to

send notification emails.

Mail SMTP Timeout

Number. Number of seconds the SimpleMail
client waits for a response from the mail server

before aborting a mail task. The repository is

locked during this period. Default is 1.

MDM Console Reference Guide 249

Table 68. Optional Repository-Specific Parameters

Name Description

Autostart

True/False/Update Indices.

When set to True, the Master Data

Server automatically performs Load

Immediate for the mounted repository

unless Autostart is set to false under the

MDS section.

When set to False, the Master Data

Server does not load the repository even
when Autostart is set to true under the

MDS section.

When set to Update Indices, the Master

Data Server updates indices and loads
the repository unless Autostart is set to

false under the MDS section.

SSL-RELATED PARAMETERS FOR A CLIENT MDS

Parameters required to connect a Master Data Server as a client to an
SSL-enabled Master Data Server must be entered in the “client” mds.ini
file under the header:

[MDM Server\Remote Server\<MDSHOST>:portNumber]

where <MDSHOST> is the name of the target SSL-enabled MDS (on

which the master repository is mounted) and portNumber is the

secure listening port for that MDS (for example, myhost:59951).

NOTE ►► For landscapes with master/slave repositories, if a master

repository is mounted on an SSL-enabled Master Data Server, the

Master Data Servers on which its slave repositories are mounted must

be configured to connect securely as a client to the “master” MDS.

Table 69. SSL-Related Configuration Parameters for MDS-as-Client

Name Description

Service Control

Security Enabled

Options are True or False. Must always be

False on UNIX landscape.

SSL Enabled

Specifies if the server connects to MDS on an

unencrypted or SSL port. Options are True or

False.

For the server to establish a secure connection

to MDS, this parameter must be set to True.

If SSL is not enabled on the Master Data
Server, ensure that this parameter is set to
False

250 MDM Console Reference Guide

Name Description

SSL Lib Path

String. The directory path for the location
where the Master Data Server’s SSL
Library file is stored.

SSL Key Path

String. The directory path to the Master
Data Server’s SAPSSSL.PSE file and the
CLIENT.PSE file used for connecting to the

target MDS.

If SSL is not enabled on the Master Data
Server, ensure that this parameter is left
empty.

NOTE ►► If the installation was done without SSL, these parameters
do not appear in the mds.ini file. In this case, you must enter them

manually.

NOTE ►►For more information about configuring MDM servers for

SSL, see the MDM 7.1 Security Guide.

MDM Console Reference Guide 251

DBMS Settings

DBMS settings affect all Master Data Servers which access that DBMS
and all MDM repositories mounted on that Master Data Server. In
general, these settings allow you to configure parameters regarding the
DBMS Server’s use of the file system.

You can use the DBMS Settings command to open the DBMS Settings
dialog and change the settings for either: (1) any DBMS Server; or (2)
the DBMS Server associated with a particular MDM repository. The
dialog contains a grid that enables you to specify default values for each
setting.

The settings you can specify for a DBMS Server are listed in Table 70.

Table 70. DBMS Settings

Setting Description

Default Partitions

Specifies the default number of partitions to use
whenever you create a new MDM repository (1, 2,

or 4).

DataPath

Specifies the file system location where database
files will be created whenever you create a new

MDM repository or unarchive to a new repository

(not overwrite). It does not affect the location of

already existing MDM repositories.

▪ Applies to SQL Server and Oracle only

Log Path

Specifies the file system location where the SQL

Server transaction log file is created.

▪ Applies to SQL Server only

IndexPath

Specifies the file system location where database

index files will be created whenever you create a
new MDM repository or unarchive to a new

repository (not overwrite). It does not affect the
location of already existing MDM repositories. You

can increase Oracle’s performance by setting this
path to a different piece of hardware (drive spindle

and/or disk controller).

▪ Applies to Oracle only

NOTE ►► If any of the settings are unset or blank, the DBMS’s

default location is used.

NOTE ►► Modifying DBMS settings is a password-protected

operation which requires you to enter the password for the Master

Data Server, if you have not already done so during the current MDM

session (see “Master Data Server Security”).

252 MDM Console Reference Guide

NOTE ►► You can change the password of the MDM DBMS Server
account from the DBMS Settings dialog by clicking Change Password

(applies to Oracle only).

 To open the DBMS Settings dialog to view and edit DBMS Server
settings (DBMS Server associated with a particular MDM repository):

1. In the Console Hierarchy tree, right-click on the MDM repository and

choose DBMS Settings from the context menu, or choose Configuration

> DBMS Settings from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose DBMS Settings from the context menu.

2. MDM opens the DBMS Settings dialog.

3. Click in the Value column of the DBMS Server setting you want to

change. If the Value cell is a drop-down list, select the desired option.

If the Value cell is an edit field, double-click inside the field and replace

the existing value with a new value.

4. Click OK to save any new values and close the dialog.

 To open the DBMS Settings dialog to view and edit DBMS Server
settings (any DBMS Server):

1. In the Console Hierarchy tree, right-click on a Master Data Server and

choose DBMS Settings from the context menu, or choose Configuration

> DBMS Settings from the main menu.

TIP ►► If the top-right pane is currently displaying the list of Master

Data Servers, you can also right-click on the Master Data Server in the

grid and choose DBMS Settings from the context menu.

2. MDM opens the Select DBMS Server dialog shown in Figure 56.

Figure 56. Select DBMS Server dialog

3. Select the DBMS Server whose settings you want to change from the

drop-down list.

TIP ►► To remove an entry from the drop-down list of DBMS Servers,

make it visible in the closed drop-down control and press Del.

MDM Console Reference Guide 253

TIP ►► The drop-down list of DBMS Servers includes only those

servers that you have previously added to the list and will usually
include for selection all the servers to which you might want to connect.

If the desired server is not in the list, click the “…” (browse) button to

open the Select DBMS Server dialog, and select from the list of DBMS
Servers known to MDM. If the desired DBMS Server is not in this list

either, then click the Add button in the Select DBMS Server dialog to

open the Add DBMS Server dialog, and select from the list of servers
(or type in a new name in the text entry control at the top of the dialog),

and choose the DBMS type from the drop-down list.

4. Enter the appropriate DBMS login (which must have system

administrator privileges) and password for the selected DBMS Server

and click OK.

5. MDM opens the DBMS Settings dialog.

6. Click in the Value column for the DBMS Server setting you want to

change.

7. If the Value cell is a drop-down list, select the desired option. If the

Value cell is an edit field, double-click inside the field and replace the

existing value with a new value.

8. Click OK to save any new values and close the dialog.

DBMS INITIALIZATION

The first time you connect via MDM to a DBMS using the Add DBMS
Server dialog, MDM prompts you to enter the DBMS storage paths for
the data and index files with the initialization dialog shown in Figure 57.

Figure 57. DBMS initialization dialog

NOTE ►► The directory paths that you supply must already exist

before you click OK, or you will receive an error.

NOTE ►► The first time you connect via MDM to an Oracle DBMS,

MDM provides an opportunity to create a new Oracle account for MDM

access, as described in the next section.

254 MDM Console Reference Guide

MDM DBMS SERVER ACCOUNT

The first time you connect via MDM to an Oracle DBMS, MDM provides
an opportunity to create a new Oracle account for accessing and
managing MDM repositories.

Specifically, after you invoke the particular MDM command that
accesses the DBMS, MDM opens the MDM DBMS Server Account
dialog asking if you would like to create a new account, as shown in
Figure 58.

Figure 58. MDM DBMS Server Account dialog

To create a new account, click Yes. MDM then prompts you with the
Create DBMS Server Account dialog for creating the new account, as
shown in Figure 59.

Figure 59. Create DBMS Server Account dialog

NOTE ►► When you invoke the particular MDM command itself to

connect for the first time, MDM requires that you supply a login and
password. Here you should provide the standard Oracle SYSTEM

account, or an alternative account with equivalent privileges.

NOTE ►► If you choose not to create a new account, you will be
expected to use the standard Oracle SYSTEM account (or the

alternative with equivalent privileges) to access and manage your

MDM repositories.

NOTE ►► You can change the password of the MDM DBMS account

by clicking Change Password in the DBMS settings dialog.

MDM Console Reference Guide 255

MULTIPLE DBMS INSTANCES

When your DBMS (such as Oracle) allows you to run multiple instances
(i.e. separate run-time executables), and you have installed such
multiple instances, you must take care to tell MDM to store the DBMS
files in separate file system locations for each instance.

NOTE ►► The initialization dialog shown in Figure 57 comes up any

time MDM connects to a multi-instance DBMS for the first time.

NOTE ►► When you access the first instance via MDM, you can

accept the default paths. When you then access the second instance,

be sure to enter a Data File Path and Index File Path that are different

from the corresponding paths you specified for the first instance.

NOTE ►► Within a single instance, the Data File Path and the Index

File Paths can be the same.

DBMS SERVERS LIST

The Master Data Server keeps all DBMS Server information in a file

named MDM_list.ini, which is stored in the directory where the Master
Data Server executable is located. This file is maintained by interaction
with the MDM Console when you create or mount an MDM repository,
though it sometimes may be necessary to edit it manually.

The file includes a list of server machine names and their database
server types. The following example is provided as a prototype if you
need to edit it manually:

[DBMS Server List\Server_1]

Server=DEMO2

Database Server Type=ORACLE

[DBMS Server List\Server_2]

Server=ZHENG

Database Server Type=ORACLE

[DBMS Server List\Server_3]

Server=ZHENG

Database Server Type=SQL_SERVER

The number in the DBMS Server List\Server_x section headings must be
sequential beginning with 1 with no repeated or skipped numbers. Each
section includes the following two entries that define a specific DBMS
Server:

Server=<machine name>

Database Server Type=<Type>

256 MDM Console Reference Guide

 To add a DBMS Server entry to the MDM_list.ini file through MDM
Console:

1. In the Console Hierarchy tree, right-click on a Master Data Server and

choose Create Repository or Mount Repository from the context menu,

or select the tree node and choose Repositories > Create Repository or

Repositories > Mount Repository from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM
repositories, you can also right-click on a repository in the grid and

choose Mount or Unmount from the context menu.

2. MDM opens the applicable Create MDM Repository or Mount MDM

Repository dialog like the one shown in Figure 60.

Figure 60. Mount MDM Repository dialog

3. Click the “…” (browse) button to open the Select DBMS Server dialog

shown in dialog. The dialog displays the current list of DBMS Servers.

4. Click the Add button to open the Add DBMS Server dialog. The dialog

displays the current list of machine names in the same domain.

NOTE ►► Many network sites use TCP/IP only as their network

protocol. Since the mechanism for listing machines within the domain
is based on Microsoft’s NetBEUI protocol, you will have to manually

edit the MDM_list.ini file if you are not using that protocol.

5. Select a DBMS server from the list or type in a new name in the text

entry control at the top of the dialog box.

• For SQL Servers, type in the actual SQL Server name

• For Oracle or DB2 servers, type in the DB ALIAS name

• For SAP HANA and SAP ASE, type the <server

name:port> (for example, for Sybase, myserv:5000, for

HANA, <server name>:3<instance number>15)

6. Select the DBMS Type from the drop-down list.

7. Click OK.

MDM Console Reference Guide 257

8. MDM adds an entry for the new DBMS host machine to the

MDM_list.ini file and the DBMS Server is now available for mounting or

creating repositories.

 To remove a DBMS Server entry from the MDM_list.ini file through
MDM Console:

1. In the Console Hierarchy tree, right-click on a Master Data Server and

choose Create Repository or Mount Repository from the context menu,

or select the tree node and choose Repositories > Create Repository or

Repositories > Mount Repository from the main menu.

TIP ►► If the top-right pane is currently displaying the list of MDM

repositories, you can also right-click on the repository in the grid and

choose Mount or Unmount from the context menu.

2. MDM opens the applicable Create MDM Repository or Mount MDM

Repository dialog like the one shown in Figure 60 above.

3. Click the “…” (browse) button to open the Select DBMS Server dialog.

The dialog displays the current list of DBMS servers.

4. Select the DBMS Server you want to Remove from the list and click

the Remove button.

5. MDM removes the entry for the DBMS Server from the MDM_list.ini file
and from the list of DBMS Servers available for mounting and creating

repositories.

259

PART 8: MDIS ADMINISTRATION

This part of the reference guide contains a description of the MDM
Import Server. The Import Server is a separate MDM application that
uses import maps created within the MDM Import Manager to
automatically load source data files into a repository.

MDM Console Reference Guide 261

The Master Data Import Server

The MDM Import Server (MDIS) automates the task of importing source
data into MDM repositories. It is designed to reduce the processing
complexity, resource requirements, and opportunity for user error
common to data import tasks.

Driving these benefits are the following MDIS features:

• Port-driven. Simply place an import file in a repository’s inbound
port and MDIS processes it automatically.

• Map-based. Each import file is processed according to the pre-

defined import map associated with the inbound port.

• Streaming-enabled. Automatic streaming of text and XML files

reduces resource consumption and results in faster imports.

• File-aggregating. Processing files in batches can improve efficiency
and speed total import times.

• Exception-handling. If MDIS encounters an error in a record or file
it sets it aside, logs an exception, and continues processing.

MDIS VS. THE IMPORT MANAGER

Both MDIS and the MDM Import Manager can import data from a
source file into an MDM repository. However, each has unique
capabilities that distinguish it from the other. When each is used to its
advantage, the result is an import strategy which provides the most
efficient importing of data possible.

The strength of the Import Manager is its connection to the source data,
which enables its interactive map-making capabilities. When the Import
Manager connects to a source it preloads the entire source file, giving it
knowledge of every field and every value in the source data. This “total
awareness” is crucial for preparing a complete import map. To help
ensure a map is complete, the Import Manager’s Import Status tab
alerts users to any discrepancies between source data values and the
current map. The user can fix these problems interactively within the
Import Manager and save the corrected map before any data is imported.

Preloading an entire source file comes at a price, however. It consumes
memory on the computer running the Import Manager and very large
source files may exhaust the computer’s available memory.

By contrast, MDIS’s strengths are its scalability and automation.

For scalability, instead of preloading the entire source file into the host
machine’s memory as the Import Manager does, MDIS processes
records in a stream by loading a record at a time into memory.

262 MDM Console Reference Guide

This streaming technique enables MDIS to process much larger source
files than the Import Manager, as the demand for memory on the host
machine is not affected by the size of the import file.

In addition to file size, file quantity poses a second scalability challenge.
For example, a real-time transactional environment may produce a
staggering number of files, each containing only one or two records. To
import these files individually through Import Manager would be
extremely inefficient. MDIS tackles this problem with a file aggregation
feature that processes files systematically in batches rather than as
individual files, resulting in faster, more efficient import of data.

As it relates to automation, MDIS requires no user intervention to import
files to an MDM repository. Instead, it relies on maps created previously
within the Import Manager. Once an import file is placed in the
appropriate folder, its data is imported automatically into the MDM
repository using the rules of the pre-defined import map. Once a file is
processed, MDIS waits for the next file to import. This process
continues 24 hours a day, seven days a week, until either MDIS or
Master Data Server are stopped.

The trade-off for this scalability and automation is that if discrepancies
between the source data and the import map arise, MDIS cannot “fix”
these problems by itself. Instead, the “problem cases” can be fixed
manually at a later time using the interactive capabilities of the Import
Manager. Unlike the Import Manager, however, MDIS can set aside
problem records or files and continue importing.

These conceptual and operational differences between the Import
Manager and MDIS are summarized in Table 71.

Table 71. Conceptual Differences Between Import Manager and MDIS

Item Import Manager MDIS

Source file location Anywhere Automatic inbound port

Import process Interactive Automatic

Import map state Editable Read-only

Object loaded in memory Entire import file Individual records

Streaming import support No Yes

File aggregation support No Yes

Maximum import file size Limited (50,000 records) Unlimited

Status location Import Status Tab MDM Console/Report file

Error correction prior to import Yes No

Exception handling during import No Yes

MDM Console Reference Guide 263

WHAT IS STREAMING?

Streaming means processing an import file “one record at a time”
instead of processing all records in the file at once. In fact, for efficiency,
MDIS handles import records in chunks (where a chunk consists of a
pre-configured number of records). For all practical purposes, however,
MDIS is only “aware” of one record at a time.

NOTE ►► See “Memory Configuration” for more information about

chunk size and processing options.

By employing this streaming technique, MDIS can scale to process any
size import file.

Currently, MDIS supports streaming import on text and simple XML files
only (see “Simple vs. Complex XML” for more information).

Source files which cannot be streamed are processed as a whole, using
the same non-streaming technique as the Import Manager. As with the
Import Manager, the performance ramifications of non-streaming
imports depend on the size of the import file and the configuration of the
machine running MDIS.

PORTS AND MDIS

MDIS is a port-based service. It works exclusively on import files placed
in inbound ports on MDM repositories.

Port Requirements

In order for MDIS to process import files from a particular port, the port
must meet the requirements specified on Table 72.

Table 72. Port Requirements for MDIS Processing

Property Value

Type Inbound

Processing Automatic

Also, the import map assigned to a port must match the port’s format
(e.g. do not assign an import map designed for delimited text files to a
port formatted for XML files).

You can configure a port in the Ports table of the MDM Console (see
“Ports Table” in the MDM Console Reference Guide for more
information).

264 MDM Console Reference Guide

Import File Location

MDIS imports files from the Ready folder of a repository’s inbound port.
The Ready folder is part of the following fixed directory structure,
located beneath the Master Data Server’s distribution root directory:

 root/DBMSinstance_DBMStype/RepositoryName/Inbound/

 RemoteSystem/PortName/Ready

where:

• root is the distribution root directory (set in mds.ini).

• DBMSinstance is the network identifier used to specify the DBMS
instance name and DBMStype is the four-character identifier for the
DBMS type (i.e. MSQL, ORCL, IDB2).

• RepositoryName, RemoteSystem, and PortName are the values
entered in the Code property for each item in the MDM Console.

Import files placed into a port’s Ready folder must be compatible with
the port’s import map. Because a port has only one import map
associated with it, you may have to create multiple ports on a repository
to account for various import file types and business cases.

NOTE ►► The name of the import map assigned to a port is

displayed on the Port Detail pane of the MDM Console.

When MDIS finishes an import, it moves the import file from the Ready
folder to the Archive folder. The exception to this case is if MDIS
encounters a structural error in the import file. In this case, the source
file is moved to the StructuralX folder (see “Error Handling” for more
information about structural errors).

Port Processing

MDIS runs constantly, scanning a repository’s automatic inbound ports
in the sequence defined in the Ports table of the MDM Console (see
“Editing the Sequence of Inbound Ports” for more information). When it
finds an import file in a port's Ready folder, it automatically imports the
file using the port’s associated import map.

If there are multiple files waiting in a port, MDIS imports the files in a
first in, first out order, meaning the oldest file in the port is imported first,
then the next oldest, and so on. MDIS imports all of the files that were
waiting in the port before it imports files from any other port (see also,
“File Aggregation”).

If files are added to ports which have already been processed during the
current scanning sequence (or if files are added to a port which is
currently being imported from), MDIS receives a notification for each
new “add” and will re-scan the affected ports at the end of the current
sequence, in the order in which the notification was received.

MDM Console Reference Guide 265

After all the ports in the sequence have been scanned, MDIS waits the
number of seconds defined in the Interval configuration parameter

before restarting the sequence (see “Global mdis.ini parameters” for
more information about the Interval parameter).

Under certain circumstances, MDIS will not process any import files from
an inbound port. These circumstances include the following:

• Port is set up for manual processing instead of automatic.

• Port is blocked due to a structural exception (see "Port Blocking" for

more information).

• Port is connected to an Import Manager or other MDIS.

File Aggregation

In certain scenarios, it may be more efficient for MDIS to import files
from a port in batches rather than as individual files. For example, if you
are generating large numbers of small import files (containing one or
two records each), MDIS can import these files faster by processing
them collectively than it could by processing each file separately.

NOTE ►► Files which contain large numbers of records are most
efficiently processed as individual files. Ports likely to receive such files

should not be set up for aggregation.

The File Aggregation Count property, located on the MDM Console's
Port Detail pane, instructs MDIS to import files in batches of the number
specified by the property. If the number of files in a folder is ever less
than the specified count, MDIS imports the files as their own batch
without waiting for more files to be added.

MDIS handles exceptions found in aggregated files in the same manner
it handles exceptions found in non-aggregated files (see “Error
Handling” for more information).

In cases where a structural exception is found among aggregated files:

• Files already processed are moved to the Archive folder;

• The offending file is moved to the StructuralX folder;

• All files not yet processed remain in the Ready folder;

• The batch count is restarted with the remaining files;

• MDIS may block the port

Port Status

A port’s status is displayed on the Port Detail pane of the MDM Console.
There are four possible values for a port’s status:

• Empty. No import files are waiting in the port’s Ready folder.

• Has Data. Import files are waiting in the port’s Ready folder.

266 MDM Console Reference Guide

• Has Exception. Files exist in the port’s ValueX or ImportX folders.

• Blocked. Files exist in the port’s StructuralX folder.

See “Exception Handling” for more information on the Has Exception

and Blocked states.

FILE FORMATS COMPATIBLE WITH MDIS

MDIS can process text (delimited or fixed width) and XML source files.
In all cases, the format of the import file must match the format defined for
the port to which it is added.

NOTE ►► To import XML files, MDIS requires the associated XML

schema file to be named in the port’s Detail pane in MDM Console.

NOTE ►► To import data from Access or Excel source files, you must
use Import Manager instead of MDIS, or else convert the files to XML

or text (delimited or fixed width) formats.

NOTE ►► MDIS does not import records directly from import files but

first transforms them into virtual extended records and imports the
transformed versions instead (see “Virtual Extended Records” for more

information).

Text Formats

MDIS supports the following text formats: ASCII, UTF8, UTF16.

In delimited text files, all records must terminate with either a line-feed
(LF) or carriage-return/line feed (CR/LF), depending on which platform
MDIS is running. On Windows platforms, records must terminate with
CR/LF; on Unix, records must terminate with LF.

When a text file is placed in a port for importing, the file’s delimiter or
column widths must match the delimiter/column width values defined for
the port in the MDM Console (see “Ports Table” in the MDM Console
Reference Guide for more information).

NOTE ►► To avoid problems with column name matching, using 7-bit

ASCII for all column header names is strongly recommended.

MDM Console Reference Guide 267

Simple vs. Complex XML

For processing purposes, most XML files are simple or complex. Simple
XML files contain no joins between XML segments, as shown in Figure 61.

Figure 61. A simple XML file

In Figure 61, the elements <Part No>, <Manufacturer>, and

<Description> are contained entirely in the segment <Product>.

By contrast, complex XML files contain joins between independent
segments of XML, as illustrated in Figure 62.

Figure 62. A complex XML file

In Figure 62, the value of the element <MAN_ID> in the segment

<Product> is populated by a join to the element <MAN_ID> in a
separate segment, <Manufacturer>.

MDIS can process complex XML files on 32-bit Windows platforms only.
In addition, complex XML files are not candidates for streaming import.

SOLUTIONS FOR OTHER XML FORMATS

While MDIS can, in most cases, import XML files directly into an MDM
repository, some XML formats require additional preparation before
MDIS can process them efficiently.

268 MDM Console Reference Guide

XML Files That Split Information Between Header and Body

Some XML formats (BMEcat XML, for example) split record information
between the header and body segments of the XML file, as illustrated in
Figure 63.

Figure 63. An XML file with information split among segments

Figure 63 shows an XML file containing a header and two product
records. Each record is contained within its own <CATALOG_ITEM>
element. However, the header, <SUPPLIER>, contains additional
information which applies to both records contained in the file.

Because record information is split between the <CATALOG_ITEM>
and <SUPPLIER> segments, MDIS cannot use streaming import to
process the XML file. Instead, it must consume the entire file into
memory, as it would a complex XML file. Since there is no common
element between these segments, MDIS must also figure out the
necessary joins and apply them virtually (see “Records” for more
information). As with complex XML files, MDIS can only perform such
processing on Windows 32 platforms. Depending on the size of the
import file, this effort may be prohibitively expensive in terms of time and
processing power.

The most obvious solution to this problem is to re-configure your source
file’s XML schema to unite the separated data into a single XML
segment. If this is not feasible, alternative solutions include:

• Pre-processing the source file using XSLT; or

• Replicating unique header information in remote systems.

Using XSLT, you can generate XML files which unite the separated data
into a single XML segment. However, this solution requires mapping
and transformation procedures which occur outside of MDM.

MDM Console Reference Guide 269

Another solution is replicate the header information of your XML files in
separate remote systems and then map only the body contents of your
XML files to fields in the repository. This solution is worth considering if
you use the information in an XML file’s header to uniquely identify the
information contained in the XML file’s body. The XML fragment shown
in Figure 63 is an example of such a file, as the <SupplierID> value tells
MDM which supplier the <Catalog_Item> information belongs to within
the repository.

Using the XML fragment shown in Figure 63 as an example, executing
this solution requires the following steps:

1. Create a new remote system for each unique header
(<SupplierID>) value in your system.

2. Create a map for each new remote system, in which you map only
the record (<CATALOG_ITEM>) fields and then hardcode the
header (<SupplierID>) value corresponding to that remote system.

3. Create a new port for each remote system/map combination.

4. Route each new import file to the port corresponding to the header
(<SupplierID>) value contained in the file.

Both of these solutions are supported by middleware (such as SAP’s XI)
and both result in XML files which qualify for streaming import on all
supported platforms.

SAP R/3 MATMAS XML Files

Users trying to import MATMAS XML files into an MDM repository may
face performance issues when the XML file contains multiple materials.

To solve these issues, the original Material message can be split into
five separate XML files, one file for the main import of material
information and one file for each of the four qualified lookup fields of the
repository. Maps, .XSD files, and ports for handling these additional files
are included in the new Materials template repository.

See “Setting Up Material Message Split” in the MDM 5.5 SP06 IT
Scenario Configuration Guide for more information about this solution.

VIRTUAL EXTENDED RECORDS

In most cases, MDIS does not import records directly from source files.
Instead, it imports a transformed version of the original record called the
virtual extended record. This transformation is part of the overall
process through which source data is imported into an MDM repository.

270 MDM Console Reference Guide

MDIS processes import files in three stages:

• Structural Transformation Stage. Source tables are converted to a

single virtual table following the rules of the import map.

• Value Transformation Stage. Source values on the virtual table are
converted according to the rules of the import map.

• Import Stage. Transformed virtual records are imported into the
MDM repository.

This process is illustrated in Figure 64.

Figure 64. The three stages of the import process

During the structural transformation stage, MDIS “flattens” all source
tables in the import file into one virtual extended table.

For text files, there is a 1:1 ratio of source table records to virtual
extended table records (although the number of fields per record
increases on the virtual extended table).

For XML files, there can be a 1:many ratio of original records to virtual
extended records, depending on the way record data is contained in the
XML schema.

NOTE ►► MDIS is able to import some XML files directly into MDM

without flattening them first. Whether an XML file is flattened into virtual
extended records as described in this section, or imported directly from

the source file, depends on the way the record data is contained in the

XML schema.

During the structural transformation stage, MDIS applies any field
transformation operations (cloning, splitting, pivoting, etc.) specified on
the import map.

If there are discrepancies between the structure of the tables in the
import file and the structure in the import map (e.g. missing fields),
MDIS will be unable to proceed. If this occurs, MDIS logs a structural
error and moves the source file to a separate folder for manual
processing in the Import Manager (see “Error Handling” for more
information).

Source Tables Virtual Extended Table

2.5 X A 102

3.0 D 101

1.5 Z Y 100

Virtual Extended Records MDM Repository

Structural
Transformation

Value
Transformation

Import

MDM Console Reference Guide 271

In the value transformation stage, all transformations (e.g. value
mappings, conversions) occur on the records of the virtual extended
table, not on the original source records. If MDIS encounters a problem
at this stage, it sets aside the virtual extended record containing the
error for later manual processing in the Import Manager.

Once all transformations are complete, the virtual extended records are
sent from MDIS to the Master Data Server for import into the MDM
repository. If any exceptions occur during this import stage, the
“problem” virtual extended record is set aside for later manual
processing in the Import Manager.

272 MDM Console Reference Guide

Using MDIS

MDIS works with the Master Data Server to import data automatically
into existing MDM repositories.

Before you begin using MDIS, you need to be sure that both MDIS and
the Master Data Server are running and that the target MDM
repositories are started and running.

MDIS CHECKLIST

MDIS is designed for automation. Under normal circumstances, no user
intervention is required to import data from a source file into an MDM
repository. In order to reach this state of automation, you must first
complete the following steps:

1. Use Import Manager to create an import map for the source file.

2. Use MDM Console to create and configure an automatic inbound
port on the target MDM repository, and to enter the user name and
password for MDIS to use when connecting to the target repository.

3. Make sure that MDIS has been started and that the target
repository is started and running.

Once these preliminary steps are complete, the import process consists
of the following steps:

1. Put the source file(s) to import into the port’s Ready folder.

2. MDIS picks up the source file and processes it, along with any
other files in the folder, according to the MDIS Chunk Size and port
File Aggregation Count settings.

NOTE ►► The port is locked during MDIS processing.

3. MDIS sends processed chunks to the Master Data Server for
importing.

4. From each chunk, the Master Data Server imports the number of
records defined for the Master Data Server’s Import Slice
configuration parameter.

NOTE ►► The Master Data Server is locked during record import.

5. MDIS finishes processing the import job on the current port and
waits for the next import job to appear on a port.

6. If any exceptions were found, you can use the Import Manager to
fix them (see “Exception Handling” for more information).

MDM Console Reference Guide 273

MONITORING IMPORT STATUS FROM THE MDM CONSOLE

MDIS logs the progress and results of each import job it undertakes.
These log entries detail each step of the import process and can be
monitored from the repository’s Reports table in the MDM Console.

Selecting an Import report in the Reports table displays the report in the
Report Detail pane, shown in Figure 65.

Figure 65. Import Report on MDM Console

NOTE ►► The Verbose parameter in the MDIS configuration file

controls how much troubleshooting information is included in the
Import log (see “Enabling Tracing and Audit Trails in the Import Log”

for more information).

274 MDM Console Reference Guide

Exception Handling

In an ideal world, all import files would be free of errors. In the real
world, however, inconsistencies in file structures and data values can
and do occur. Rather than halt the import process entirely when such
errors are encountered, MDIS includes a smart exception-handling
mechanism which enables it to set aside “problem cases” and continue
importing records and files. These problem cases can then be reviewed
manually in the Import Manager.

WHAT HAPPENS WHEN EXCEPTIONS OCCUR?

When MDIS encounters an exception, it handles the exception
according to its type.

Structural Exceptions

Structural exceptions prevent MDIS from processing any import records
in an import file. When a structural exception is found, MDIS moves the

offending import file from the port’s Ready folder to the port’s StructuralX
folder. No importing occurs and the port is blocked until the problem is
resolved (see “Port Blocking” for more information).

Value and Import Exceptions

Value and import exceptions prevent MDIS from importing a specific
record. When such exceptions are encountered, an exception file for the

offending records is copied to the ValueX or ImportX folder, respectively.
MDIS then continues processing the import file and all other, non-
exceptional records are imported as normal.

NOTE ►► MDIS only logs the first exception it encounters in a record.

Port Blocking

Any port containing a structural exception is blocked by default from any
further import activity. Blocked ports are skipped by MDIS and their

names are grayed out in the Port list on the Import Manager’s Connect

to Source dialog. When the structural exception is fixed, the Import
Manager unblocks the port and processing resumes as normal (see
“How Do You Fix Exceptions?” for more information).

To turn off automatic port blocking, set the port's Block on Structural
Exceptions property to No in the Port Detail pane on the MDM Console.

NOTE ►► Turning off automatic port blocking is strongly discouraged
because the underlying cause of the structural exception may impact

all import files processed from the port, in which case the exception will

have to be fixed on multiple import files instead of just one.

MDM Console Reference Guide 275

EXCEPTION FOLDERS

Exception files are placed in folders according to their type (ImportX,
StructuralX, or ValueX). All exception folders belong to the fixed port
directory structure illustrated in Figure 66.

Figure 66. The Exception folder directory structure

A log file in the parent Exception folder points to exception files set
aside during a particular import. The StructuralX folder contains the
original source files placed in the port’s Ready folder. The ImportX and
ValueX folders contain the original source records in which an import or
value exception was found.

HOW DO YOU “FIX” EXCEPTIONS?

Exceptions must be fixed manually in the Import Manager before the
offending file or record can be imported.

 To fix an exception found by MDIS:

1. Open the Import Manager and connect to the MDM repository

containing the port where the exception was found.

2. When the Connect to Source dialog appears, choose the source type

Port and select the appropriate remote system from the drop-down list.

3. In the Port drop-down list, select PortName [Exception] where

PortName is the name of the port containing the exception.

4. The Import Manager loads the first exception file waiting on the port. If

it is a structural exception, the original import file opens. If it is a value
or import exception, the original source record containing the exception

opens.

5. Fix the exception according to the Action Items section of the Import

Status tab and save the corrected map.

6. To fix any other exceptions waiting on the port, choose File > Get Next

Source File from the main menu.

276 MDM Console Reference Guide

MDIS Configuration

You can customize MDIS settings from the mdis.ini file, which is located

in the usr\sap\<SAPSID>\<instance_name>\config directory.

The mdis.ini file is split into multiple parts: a top [GLOBAL] section and
then a separate section for each MDM repository that has been started
on the associated Master Data Server.

The [GLOBAL] section lists configuration parameters which are global
and affect MDIS behavior across all repositories.

Each repository section lists configuration parameters which are specific
to that repository only and override the settings in the [GLOBAL]
section.

For each section, the mdis.ini file includes a default set of standard
parameters. In addition to the standard parameters, you can enter
optional parameters directly into the mdis.ini file.

All parameters are case-sensitive and there should be no spaces before
or after the equal sign (=) which separates a parameter from its setting.
Not all settings must have values, however.

GLOBAL MDIS.INI PARAMETERS

The first section of the mdis.ini file is the [GLOBAL] section. All
parameters for this section appear under the following line:

[[GLOBAL]]

The standard and optional [GLOBAL] parameters for the mdis.ini file are
described in Table 73.

NOTE ►► By default, many of the settings are not populated until

MDIS is started for the first time.

NOTE ►► For more information about entering configuration file

parameters, see “Master Data Server Parameters”.

MDM Console Reference Guide 277

Table 73. Global MDIS Configuration Parameters

Name Description

Version String. The MDM Service Pack version.

Server
String. The name or IP address of the Master Data
Server on which the target repositories reside.

Interval
Integer. The number of seconds MDIS waits after
scanning ports before restarting scanning.

Verbose1

Hexadecimal. A troubleshooting parameter used to
create tracing and audit trails for an import task in
the Master Data Server log. Default is 0x0000.

▪ Verbose OFF: 0x0000
▪ Verbose ON: 0xFFFF

▪ FI Verbose: 0x0001
▪ XML Verbose: 0x0002

▪ MAP Verbose: 0x0004
▪ THRD Verbose: 0x0008

▪ PARSER Verbose: 0x0010
▪ STRUCTX Verbose: 0x0020

▪ VALUEX Verbose: 0x0040
▪ IMPORTX Verbose: 0x0080

▪ CHUNK Verbose: 0x0100
▪ VxR Verbose: 0x0200

MapScanTopToBottom Not used in this version of MDM.

String Resource Dir

For descriptions of these parameters, see their
MDS equivalents in Table 65 and Table 66.

Log Dir

Wily Instrumentation

Wily Instrumentation Level

Threshold

SLD Registration

Listening Mode

SSL Lib Path

SSL Key Path

LogViewer Format Loggging

LogViewer Format Tracing

Max Number of Log Files2

MDM Log Watermark2

Enable Performance Tracing

For descriptions of these parameters, see
“Configuration File Parameters for Performance
Tracing” .

Performance Tracing

Watermark

Performance Tracing Max

Number Of Log Files

Filter Threshold Msec

278 MDM Console Reference Guide

Name Description

Tracing Level

Number. The default “minimum” level of trace
messages to be logged by MDS components. Valid

values are 0 (debug), 1 (flow), 2 (info), 3 (warning),
4 (error). May be overidden by values set in the
MDM Console’s Trace Settings dialog. The default

value is 3.

1 See Troubleshooting section for detailed setting descriptions.
2 Optional parameter. User must enter entire parameter manually into the mdis.ini file.

REPOSITORY-SPECIFIC MDIS.INI PARAMETERS

Below the [GLOBAL] parameters in the mdis.ini file are the repository-
specific parameters. Parameters for a specific repository do not appear
in the mdis.ini file until MDIS starts an import to that repository. Then,
the repository’s parameters appear under the line:

[MDM Server\Databases\RepositoryInfo]

where RepositoryInfo is a concatenation of the repository name, the

DBMS identifier, and the DBMS type. Repository sections appear in the

mdis.ini file in the order in which each repository was first started.

NOTE ►► By default, many of the settings are not populated until

MDIS is started for the first time.

NOTE ►► For more information about entering configuration file

parameters, see “Master Data Server Parameters”.

Table 74. Repository-Specific MDIS Configuration Parameters

Name Description

Login

String. The login used by MDIS to access the MDM
repository. Value copied from the corresponding
property in MDM Console

PasswordE

String. An encrypted version of the password used by
MDIS to access the MDM repository. Value is encrypted
from the Password property value entered in MDM

Console. Do not modify this parameter manually.

Chunk Size
Number. How many records to process at a time during
streaming import. Default is 5000.

No. of Chunks Processed

In Parallel

Number. The number of chunks processed
simultaneously during streaming import. Default is 40.

Force Flattening1

True/False. In most cases, record flattening slows down
import performance, so MDIS automatically analyzes
files to determine whether flattening should occur. For
certain repository types, however, it may be better to

override the automatic determination and always f latten.

Inter-Chunk Delay MS1

Integer. The number of milliseconds MDIS waits
between processing chunks of records to allow other
clients access to MDS.

1 Optional parameter. User must enter entire parameter manually into the mdis.ini file.

MDM Console Reference Guide 279

SSL-RELATED MDIS.INI PARAMETERS

MDIS can be configured to accept and send encrypted communications
via SSL (for more information about setting up SSL for MDM, see the
MDM 7.1 Security Guide).

The following parameters are required for accepting incoming encrypted
connections, and must appear in the mdis.ini file under the line:

[GLOBAL]

Table 75. MDIS Configuration Parameters for Inbound SSL Connections

Name Description

Listening Mode
Unencrypted/SSL/Both. Whether the server accepts
unencrypted, encrypted, or both types of connections.

SSL Lib Path
String. The directory path for the location where the
server’s sapcrypto.dll file is stored.

SSL Key Path
String. The directory path for the location where the
server’s SAPSSL.PSE file is stored.

Parameters required to connect MDIS to an SSL-enabled Master Data
Server must appear in the mdis.ini file under the line:

[MDM Server\Remote Server\<MDSHOST>:portNumber]

where <MDSHOST> is the name of the machine on which the MDS is

installed and portNumber is the listening port for the specified MDS

(for example, myhost:59951).

NOTE ►► The <MDSHOST>:portNumber value in the Remote

Server heading must exactly match the Server value located under

the [GLOBAL] heading in the auxiliary server’s.ini file.

Table 76. MDIS Configuration Parameters for Outbound SSL Connections

Name Description

Service Control Security

Enabled

Options are True or False. Must always be False on

UNIX landscape.

SSL Enabled Specifies if the server connects to MDS on an

unencrypted or SSL port. Options are True or False.

For the server to establish a secure connection to MDS,
this parameter must be set to True.

SSL Lib Path The path to the auxiliary server‘s SSL Library file.

SSL Key Path The path to the auxiliary server‘s CLIENT.PSE file

NOTE ►► For more information about entering configuration file

parameters, see “Master Data Server Parameters”.

NOTE ►► Parameters may have to be entered manually.

280 MDM Console Reference Guide

If SSL is not enabled on the Master Data Server, ensure that SSL

Enabled is set to False and that the SSL Key Path is empty.

CONFIGURING MDIS FROM MDM CONSOLE

You can configure some repository-specific MDIS parameters from the
MDIS-specific Repository Detail pane. Properties displayed on the
Repository pane are described below.

Table 77. MDIS-Specific Repository Properties

Name Description

Name The name of the MDM repository.

DBMS Server The name of the DBMS Server on which the repository is stored.

DBMS Type The brand of DBMS on which the repository is stored.

User The user name MDIS uses to access the MDM repository.

Password The password MDIS uses to access the MDM repository.

NOTE ►► Password values entered in MDM Console are encrypted

and the encrypted version of the password is stored in the PasswordE

parameter in mdis.ini. When you save the new value, MDM updates

the encrypted password in mdis.ini automatically. MDIS uses the new

password value the next time it tries to connect to the repository.

 To edit MDIS-specific repository properties from MDM Console:

1. In the Console Hierarchy tree, expand the Auxiliary Servers branch

and select the MDIS node.

2. In the Repositories pane, select the repository you want to edit.

3. In the Repository Detail pane, edit the properties.

4. To save the changes, press Shift+Enter.

NOTE ►► Read-only properties are grayed-out.

MDM Console Reference Guide 281

OPTIMIZING MDIS PERFORMANCE

The Chunk Size and No. of Chunks Processed In Parallel parameters in

mdis.ini help optimize MDIS performance and reduce import times.

The Chunk Size parameter defines the number of virtual extended
records to include in a chunk. Typically, the smaller the chunk size the
better, as smaller chunks can be processed faster within MDIS and also
require less wait time in transactions between MDIS and the Master
Data Server. However, setting the chunk size too low can reduce overall
performance because there is a fixed overhead per chunk.

The No. of Chunks Processed in Parallel parameter optimizes the way
chunks are processed within MDIS. Rather than wait for one chunk to
pass through all three processing stages before starting work on the
next chunk, MDIS instead moves chunks from stage to stage as each
chunk is processed (see “Virtual Extended Records” for more
information the processing stages within MDIS). This parameter
determines how many chunks MDIS can manage simultaneously,
counting one chunk per stage plus chunks queued between stages.

Recommend settings for these parameters are summarized in Table 78.

Table 78. Recommended Settings for Optimal MDIS Performance

Parameter Recommended Value

Chunk Size

50,000

▪ Tweak this value slowly, as the larger the chunk

size, the more memory is consumed by
MDIS.

No. of Chunks
Processed In Parallel

5 -10

▪ Optimal setting depends on the available

memory and processing power of the
machine running MDIS.

▪ Minimum requirements = 4 GB available memory
and dual-core processor. Increase value from

5 to 10 in proportion to actual system
specifications.

Other tips for optimizing MDIS performance include:

• Using file aggregation when importing large numbers of small files.

• Installing MDIS separately from the Import Manager or MDS.

• Not running any other import, syndication, archive, or data editing
operations while a mass import is occurring, as each of these
operations locks use of the repository from all other operations.

NOTE ►► Using file aggregation to import files containing more than

just a few records each can actually decrease overall performance due

to the memory required to process large numbers of records.

282 MDM Console Reference Guide

Troubleshooting

This section offers suggestions for solving problems which may be
experienced when importing data using MDIS. Be sure to consult it
before contacting SAP technical support.

IMPORT FILES ARE NOT BEING PROCESSED BY MDIS

If you notice that source files are not being imported into an MDM
repository, the problem likely stems from one or more of the following
causes:

• Server or repository status

• Port problems

• MDIS configuration errors

• Source file problems

Checking Server and Repository Status

Before doing anything else, check the following:

• Are both the Master Data Server and MDIS started?

• Is the target MDM repository started?

You can check the status of the Master Data Server (MDS), MDIS, and
the target repository from MDM Console. If the servers are not running
or the repository is not started, no imports can occur.

Checking for Port Problems

If the servers and repository are started and running, check the port’s
Detail pane in MDM Console:

• Is the port type Inbound?

• Is the port’s Processing property set to Automatic?

• What is the port’s status?

MDIS works exclusively on inbound, automatic ports. If the port is set up
for outbound or manual processing, MDIS will not process files
contained in the port.

If a port’s status is Empty, then no import file is present in the port’s
Ready folder (See “Import File Location” for the proper file location).

If the port’s status is Blocked, it means that MDIS attempted to import a
file from the port’s Ready folder and encountered a structural exception
(see “Port Blocking” for more information). You must fix this exception
before MDIS will process any additional files from the port.

MDM Console Reference Guide 283

Checking MDIS Configuration Settings

If the previous steps do not fix the problem, it could be that MDIS cannot

connect to the MDM repository with the User and Password values

provided for it on MDM Console.

MDIS must be able to connect to an MDM repository in order to send

imported records to it. The User and Password values MDIS uses to
connect to each repository on a Master Data Server are set in the
Repository Detail pane, which can be found by selecting the MDIS node
located below the Auxiliary Servers node in the Console Hierarchy tree.
If MDM cannot match these credentials to a valid user for the repository,
MDIS will not be able to import files to that repository.

You can check for credential errors by opening the MDIS log file, which

is located in the Logs subdirectory of the MDIS installation directory. If
the user and password combination are incorrect, an “invalid logon
credentials” error will appear in the MDIS log. An “invalid logon
credentials” log entry is shown in Figure 67 below.

Figure 67. An invalid login credentials entry in the MDIS log file

Checking for Source File Problems (Structural Exceptions)

If everything seems to be configured correctly, it is possible that a
problem with a source file resulted in a structural exception that is
blocking the port.

Common causes of structural exceptions include (but are not limited to):

• Mismatch between source file format and port format

• Source XML file requires pre-processing

• Attempted import of incomplete source file

A port’s format is shown in the MDM Console’s Port Detail pane. Any
import file in the port’s Ready folder which does not match the port
format will cause a structural exception on that port when MDIS
attempts to import the file.

In some cases, an XML file may require pre-processing before MDIS
can import it (see “File Formats Compatible With MDIS” and “Solutions
for Other XML Formats” for more information).

284 MDM Console Reference Guide

Checking for Source File Problems (Incomplete Files)

Be careful when transferring large files to a port’s Ready folder, as
MDIS may attempt to import the file before the transfer is complete,
which can lead to the following consequences:

• If the file has zero length, MDIS moves it to the Archive folder and
adds a warning to the MDIS log. MDIS then continues importing from
the port.

• If the file has white space only or is otherwise incomplete, MDIS
treats it as having a structural exception and stops importing files
from that port.

To prevent this from occurring, try:

• Copying import files first to a temporary folder on the server running
MDIS, and then moving the local copy to the Ready folder. This can
dramatically reduce transfer time to the Ready folder, limiting the
possibility of MDIS importing an incomplete file.

• Using a temporary extension (.tmp or .xml_) for incomplete files in
the Ready folder. MDIS will not attempt to import files with these
extensions. Then, rename the files with their normal extensions after
the transfer is complete.

PORT HAS EXCEPTIONS

MDIS includes a smart exception-handling mechanism which enables it
to set aside “problem cases” when importing records and files (see
“Exception Handling” for more information). When such a problem case

is discovered, the status of the port is updated to “Blocked” or “Has

Exceptions” in the MDM Console, depending on the severity of the
problem.

To learn how to fix exceptions reported on a port, see “How Do You
“Fix” Exceptions?”.

SOURCE FIELDS OR VALUES NOT BEING IMPORTED

Some import files may contain fields and data values that were not
present in the source file used to create the import map.

Any new or unmapped fields found in an import table will be ignored by
MDIS. To import data from these fields, add the fields to the import map
by connecting the Import Manager to the new source file and mapping
the new source fields to destination fields.

New values found in previously mapped fields are handled according to

the settings of the Default MDIS Handling configuration options in the
port’s associated import map (Se the Import Manager Reference Guide
for more information).

MDM Console Reference Guide 285

Generally, if you suspect that fields and/or values are not being
imported, it is a good idea to open the source file in the Import Manager
using the port’s assigned map. Then, go to the Import Status tab and

look at the Action Items section. If it says anything other than, “Ready to
Import “, follow the instructions given in order to make the map
compatible with the data in the source file.

SOURCE FILE IS TOO LARGE TO OPEN IN IMPORT MANAGER

Import maps must be created in the Import Manager before an import
file can be processed by MDIS. However, it is possible that a source file
can be too large to be opened in the Import Manager. In this case,
create a new source file using a sample (5% - 10%) of the original file
records. Connect the Import Manager to this smaller file and use it to
create the import map for the larger file.

Once the map is complete, use MDIS to import the original (large) file.

ENABLING TRACING AND AUDIT TRAILS IN THE IMPORT LOG

The Verbose parameter in the mdis.ini file controls how much
information is included in the Import log (see “MDIS Configuration” for

more information about the mdis.ini file).

Settings for the Verbose parameter in are described in Table 79.

Table 79. Verbose Parameter Settings

Setting Hexadecimal Description

Verbose OFF 0x0000 Turns off all verbose settings

Verbose ON 0xFFFF Turns on all verbose settings

FI Verbose 0x0001 Adds verbose field information

XML Verbose 0x0002 Adds verbose XML processing information

MAP Verbose 0x0004 Adds verbose field mapping information

THRD Verbose 0x0008 Turns on STRUCTX, VALUEX, and IMPORTX settings

PARSER Verbose 0x0010 Adds XML/text parser audit trail

STRUCTX Verbose 0x0020 Adds structural exception thread audit trail

VALUEX Verbose 0x0040 Adds value exception thread audit trail

IMPORTX Verbose 0x0080 Adds import exception thread audit trail

CHUNK Verbose 0x0100 Adds chunk processing audit trail

VxR Verbose 0x0020 Adds virtual extended record audit trail

287

PART 9: MDSS ADMINISTRATION

This part of the reference guide contains a description of the Master
Data Syndication Server. The Syndication Server is a separate MDM
application which enables you to automate the syndication process
using syndication maps created in Syndicator.

MDM Console Reference Guide 289

The Master Data Syndication Server

The Master Data Syndication Server (MDSS) automates the task of
syndicating master data from MDM repositories. It is designed to reduce
the processing complexity, resource requirements, and opportunity for
user error common to data export tasks, while at the same time
ensuring that the most up-to-date versions of your master data are
available to systems throughout your organization.

In addition, significant deployment and scalability benefits can also be
gained by offloading syndications from the computer running Syndicator
to a machine running MDSS.

Driving these benefits are the following key features of MDSS:

• Port-driven. Simply create an outbound repository port and MDSS
keeps it populated with the freshest master data.

• Map-based. Each syndication is performed according to the pre-
defined syndication map associated with the outbound port.

• Scheduling-enabled. Syndication to each port can occur at the

frequency that works best for you.

MDSS VS. SYNDICATOR

Both MDSS and Syndicator can syndicate records from an MDM
repository. However, each has unique capabilities that distinguish it
from the other.

The strength of Syndicator is its interactive map-making capabilities.
Through its connection to the source MDM repository, you have full
awareness of the tables, records, fields, and attributes available for
syndication. You can then use Syndicator to customize repository data
for syndication to specific remote systems and save this customization
to maps for later re-use. Syndicator can also syndicate records “on-
demand” to any outbound port on a repository or to any location on your
file system.

The strength of MDSS, by contrast, is automation. MDSS requires no
user intervention to syndicate records from an MDM repository. Instead,
it relies on maps created previously with Syndicator to syndicate records
to outbound MDM ports. Syndications are executed 24 hours a day,
seven days a week, until either MDSS or MDS are stopped.
Alternatively, syndications to ports can be scheduled to occur at desired
frequencies.

These conceptual differences between Syndicator and MDSS are
summarized in Table 80.

290 MDM Console Reference Guide

Table 80. Conceptual Differences Between Syndicator and MDSS

Concept Syndicator MDSS

Mapmaking Yes No

Syndication execution Manual Automatic

Syndication frequency On-demand Continuous or scheduled

Syndication file location Anywhere Outbound MDM port

PORTS AND MDSS

MDSS can generate syndication files automatically to outbound ports on
MDM repositories.

To set up automatic syndications to a port, the port must meet the
requirements specified on Table 81.

Table 81. Port Requirements for Automated MDSS Processing

Property Value

Type Outbound

Processing Type Automatic1

Map Name of the syndication map to use with the port

1 For automated Workflow and Java API syndications, set to Manual.

Syndication File Location

When MDSS completes a syndication to a port, it places the syndication
file in the port’s Ready folder. The Ready folder is part of the following
fixed directory structure, located beneath the Master Data Server’s
distribution root directory:

root/DBMSinstance_DBMStype/RepositoryName/Outbound/

 RemoteSystem/PortName/Ready

where:

• root is the distribution root directory (set in mds.ini).

• DBMSinstance is the network identifier used to specify the DBMS
instance name and DBMStype is the four-character identifier for the
DBMS type (i.e. MSQL, ORCL, IDB2).

• RepositoryName, RemoteSystem, and PortName are the values

entered in the Code property for each item in MDM Console.

Because a port can have only one syndication map associated with it,
you must create multiple ports on a repository in order for MDSS to
syndicate from multiple syndication maps.

MDM Console Reference Guide 291

Multi-Threaded Port Processing

MDSS has been redesigned in MDM 7.1 to improve performance by
reducing port-processing delays. MDSS now assigns up to three port-
processing tasks to every remote system on a Master Data Server.
Each task is dedicated to a specific type of port on the remote system,
as described below and summarized in Table 82.

Table 82. Ports Processed by Each MDSS Task Type

Task Type Port Processing Type Port Processing Interval

Automated Automatic Continuous

Scheduled Automatic Hourly; Daily; or Weekly

Manual Manual N/A

NOTE ►► MDSS does not assign a task to a remote system if there

are no corresponding ports for that task type on that remote system.

The Automated task syndicates only to Automatic|Continuous ports. It
works in a continuous loop by syndicating to each continuous port on a
remote system, on a repository-by-repository basis. After it finishes
syndicating to all of a repository’s ports, the Automated task waits the
number of seconds specified in that repository’s MDSS Auto

Syndication Task Delay property before continuing.

The Scheduled task syndicates only to Automatic ports with Hourly;

Daily; or Weekly values in their Port Processing Interval properties.
Instead of looping, it “sleeps” until a syndication time is due for a port.

NOTE ►► A port’s processing interval and next syndication date and

time are configured on the Port Detail pane of MDM Console (see

“Scheduling Syndications to a Port” for more information).

The Manual task syndicates only to Manual ports which have
syndication job requests from a Workflow or API waiting on them. It
works in a continuous loop, scanning each Manual port on a remote
system for syndication requests to fulfill. Like the Automated task, it
works on a repository-by-repository basis. After it finishes syndicating all
of a repository’s manual jobs, the Manual task waits the number of
seconds specified in that repository’s MDSS Manual Syndication

Task Delay property before continuing.

NOTE ►► If more than one syndication request is waiting on a port,

MDSS fulfills all requests on that port before it resumes scanning.

NOTE ►► See “MDSS Configuration” for more information about the

Auto Syndication Task Delay and Manual Syndication Task

Delay properties.

292 MDM Console Reference Guide

Using MDSS

MDSS can be installed on any machine on a network. It works with the
Master Data Server to syndicate data automatically from existing MDM
repositories. If MDSS and its associated Master Data Server are
installed on the same machine, no further customization needs to be
done. If the Master Data Server is located on a separate machine from
MDSS, you will need to specify the Master Data Server in the MDSS

settings file, mdss.ini (see “MDSS Configuration” for more information).

Before you begin using MDSS, you need to be sure that both it and the
Master Data Server are running and that the source MDM repository is
started and running. Directions for these tasks can be found in the MDM
Console Reference Guide.

MDSS CHECKLIST

MDSS is designed for automation. Under normal circumstances, no
user intervention is required to syndicate data from an MDM repository.
In order to reach this state of automation, you must first complete the
following steps:

1. Use Syndicator to create a syndication map.

2. Use MDM Console to create an outbound port on the source MDM
repository.

3. Associate the syndication map with the port.

4. For automatic ports, set the port’s processing interval and next
syndication date/time, as appropriate.

Once these preliminary steps are complete, the syndication process
consists of the following steps:

1. MDSS finds the outbound port during its scans of MDS ports.

2. If the port is automatic, MDSS checks the port’s processing interval
and, if applicable, its next scheduled syndication date/time. If a
syndication is due, MDSS executes the syndication according to
the syndication map associated with the port.

 If the port is manual, MDSS checks to see if there is a Workflow or
Java API request for syndication waiting on the port. If there is,
MDSS executes the syndication according to the syndication map
associated with the port.

3. MDSS puts the completed syndication file into the port’s Ready
folder, schedules the next syndication date and time (if applicable),
and searches for the next outbound port.

4. Import the syndication file into your target remote system as usual.

MDM Console Reference Guide 293

SCHEDULING SYNDICATIONS TO A PORT

Using an automatic port’s Processing Interval, Next Syndication Date,

and Next Syndication Time properties, you can schedule syndications to
the port on a weekly, daily, hourly, or continuous basis as described in
this section.

 To schedule syndications to a port:

1. On MDM Console, select an outbound port from a repository’s Ports

table.

2. In the Port Detail pane, make sure that the port’s Processing property

is set to Automatic

3. Select a value from the Processing Interval drop-down list.

4. If you selected a value other than Continuous, enter values for the

Next Syndication Date and Next Syndication Time properties, as

shown in Figure 68.

Figure 68. Scheduling the port’s next syndication date and time

5. Press Shift+Enter to save the port changes.

6. Each time MDSS scans the port, it checks whether a syndication is

due. If the port’s Processing Interval property is set to Continuous or if
its Next Syndication Date and Next Syndication Time properties have

passed, a syndication is executed. If not, MDSS continues scanning.

7. After an hourly, daily, or weekly syndication is completed, MDM

automatically updates the Next Syndication Date and Next Syndication

Time values to the next hour/day/week, as applicable.

NOTE ►► If a scheduled syndication does not occur at the time
specified on the Port Detail pane, it will be executed as soon as MDSS

scans the “late” port. See “Scheduled Syndications Are Not Executed

On Time” for more information.

294 MDM Console Reference Guide

MONITORING SYNDICATION STATUS FROM MDM CONSOLE

The progress and results of all syndications processed by MDSS can be

monitored from MDM Console by selecting an Export report from a
repository’s Reports table. The report is displayed in MDM Console’s
Report Detail pane, as shown in Figure 69 below.

Figure 69. Report Detail pane on MDM Console

MDM Console Reference Guide 295

MDSS Configuration

You can customize MDSS settings from the mdss.ini file, which is

located in the usr\sap\<SAPSID>\<instance_name>\config directory.

The mdss.ini file is split into multiple parts: a top [GLOBAL] section and
then a separate section for each MDM repository that has been started
on the associated Master Data Server.

The [GLOBAL] section lists configuration parameters which are global
and affect MDSS behavior across all repositories.

Each repository section lists configuration parameters which are specific
to that repository only and override the settings in the [GLOBAL]
section.

For each section, the mdss.ini file includes a default set of standard
parameters. In addition to the standard parameters, you can enter
optional parameters directly into the mdis.ini file.

All parameters are case-sensitive and there should be no spaces before
or after the equal sign (=) which separates a parameter from its setting.
Not all settings must have values, however.

The standard and custom parameters available for MDSS are described
in the following sections.

NOTE ►► By default, many of the settings are not populated until

MDSS is started for the first time.

NOTE ►► For more information about entering configuration file

parameters, see “Master Data Server Parameters”.

GLOBAL MDSS.INI PARAMETERS

The first section of the mdss.ini file is the [GLOBAL] section. All
parameters for this section appear under the following line:

[[GLOBAL]]

The standard and optional [GLOBAL] parameters for the mdss.ini file
are described in Table 83.

296 MDM Console Reference Guide

Table 83. Global MDSS Configuration Parameters

Name Description

MDM Server Name
String. The name of the associated Master Data
Server.

String Resource Dir

For descriptions of these parameters, see their
MDS equivalents in Table 65 and Table 66.

Log Dir

Default Interface Language

Code

Default Interface

Country Code

SLD Registration

Wily Instrumentation

SSL Lib Path

SSL Key Path

Wily Instrumentation Level

Threshold

LogViewer Format Loggging

LogViewer Format Tracing

Max Number of Log Files1

MDM Log Watermark1

Tracing Level

Number. The default “minimum” level of trace
messages to be logged by MDS components. Valid

values are 0 (debug), 1 (flow), 2 (info), 3 (warning),
4 (error). May be overridden by values set in the
MDM Console’s Trace Settings dialog. The default

value is 3.

Auto Syndication

Task Enabled
True/False. Whether MDSS's automatic
syndication task is enabled for all repositories.

Auto Syndication

Task Delay (seconds)

Integer. The number of seconds MDSS’s automatic
syndication task waits after syndicating to all ports

associated with a repository. Value copied from the
corresponding property in MDM Console.

Listening Mode
See “SSL-Related mdis.ini Parameters” for more
information about these and other SSL-related
mdss.ini parameters.

SSL Lib Path

SSL Key Path

Enable Performance Tracing

For descriptions of these parameters, see
“Configuration File Parameters for Performance
Tracing”.

Performance Tracing

Watermark

Performance Tracing Max

Number Of Log Files

Filter Threshold Msec

Max Failed Syndication

Reports Per Port
The number of failed syndication reports per port to
store in the MDSS Log folder. 0 =no limit.

1 Optional parameter. User must enter entire parameter manually into the mdis.ini file.

MDM Console Reference Guide 297

REPOSITORY-SPECIFIC MDSS.INI PARAMETERS

Below the [GLOBAL] parameters in the mdss.ini file are the repository-
specific parameters. Parameters for a specific repository do not appear
in the mdss.ini file until that repository is started on the Master Data
Server. Then, the repository’s parameters appear under the line:

[MDM Server\Databases\RepositoryInfo]

where RepositoryInfo is a concatenation of the repository name, the

DBMS identifier, and the DBMS type.

NOTE ►► Repository sections appear in the mdss.ini file in the order

in which each repository was first started.

Table 84. Repository-Specific MDSS Configuration Parameters

Name Description

User

String. The login used by MDSS to access the MDM
repository. Value copied from the corresponding property
in MDM Console.

PasswordE

String. An encrypted version of the password used by
MDSS to access the MDM repository. Value encrypted

from the corresponding property in MDM Console.

Auto Syndication

Task Delay (seconds)

Integer. The number of seconds MDSS’s automatic
syndication task waits after syndicating to all ports

associated with the repository. Value copied from the
corresponding property in MDM Console.

Manual Syndication

Task Delay (seconds)

Integer. The number of seconds MDSS’s manual
syndication task waits after syndicating all requests from
ports associated with the repository. Value copied from

the corresponding property in MDM Console.

SSL-RELATED MDSS.INI PARAMETERS

For information about configuring MDSS for SSL, see “SSL-Related
mdis.ini Parameters”, as the same information applies to all MDM
auxiliary servers.

CONFIGURING MDSS FROM MDM CONSOLE

Configuration of some MDSS parameters can be performed from the
MDSS-specific Repository Detail pane in MDM Console.

298 MDM Console Reference Guide

 Figure 70. The MDSS-specific Report Detail pane

Properties displayed on the Repository pane are described in Table 85.

Table 85. MDSS-Specific Repository Properties

Name Description

Name The name of the MDM repository.

DBMS Server
The name of the DBMS Server on which the repository is
stored.

DBMS Type The brand of DBMS on which the repository is stored.

User The user name MDSS uses to access the MDM repository.

Password The password MDSS uses to access the MDM repository.

Auto Syndication

Task Delay (seconds)

Integer. The number of seconds MDSS’s manual
syndication task waits after syndicating all requests from

ports associated with the repository. Default is 0.

Manual Syndication
Task Delay (seconds)

Integer. The number of seconds MDSS’s manual
syndication task waits after syndicating all requests from
ports associated with the repository. Default is 0.

 To edit MDSS-specific repository properties from MDM Console:

1. In the Console Hierarchy tree, expand the Auxiliary Servers branch

and select the MDSS node.

2. In the Repositories pane, select the repository whose properties you

want to edit.

3. In the Repository Detail pane, edit the properties.

4. To save the changes, press Shift+Enter.

NOTE ►► Read-only properties are grayed-out.

MDM Console Reference Guide 299

NOTE ►► MDM encrypts the password value for storage in mdss.ini.

NOTE ►► To reset a property to its default value, tick the Inherited

checkbox for that property and press Shift+Enter.

 To edit default repository property values from MDM Console:

1. In the Console Hierarchy tree, select the Auxiliary Servers node.

2. In the MDM Auxiliary Servers pane, select the MDSS row.

3. In the MDM Auxiliary Server Detail pane, edit the default property

values.

4. To save the changes, press Shift+Enter.

NOTE ►► Default values are inherited by all repositories with the

Inherited checkbox ticked for that property in the MDSS-specific

Repository Detail pane.

NOTE ►► To reset a property to its “factory default” value (0), tick the

Inherited checkbox for that property and press Shift+Enter.

300 MDM Console Reference Guide

Troubleshooting

This section offers suggestions for solving problems which may be
experienced when using MDSS. Be sure to consult it before contacting
SAP technical support.

SYNDICATIONS ARE NOT BEING EXECUTED BY MDSS

If you notice that MDSS is not executing syndications to a port, the
problem likely stems from one or more of the following causes:

• Server or repository status

• Port settings

• Map properties or search selections

• MDSS configuration errors

Verifying Server and Repository Status

Before doing anything else, check the following on MDM Console:

• Are both the Master Data Server and MDSS started?

• Is the source MDM repository started?

If the servers are not running or the repository is not started, no
syndications can occur.

Checking Port Settings

If the servers and repository are started and running, check the port’s
Detail pane in MDM Console:

• Is the port type Outbound?

• Is the port’s Processing property set correctly?

• Has the port’s next scheduled syndication date and time not yet
occurred?

• Is the port being processed by a Syndicator user or other MDSS?

MDSS scans repositories for outbound ports. Once MDSS finds an
outbound, automatic port, it checks the port’s Processing Interval
property to see if the specified interval has expired (see “Scheduling
Syndications to a Port” for more information). If this interval has not
expired, MDSS will not syndicate to the port.

When scanning outbound, manual ports, MDSS will not syndicate
records to it unless there is a waiting Workflow job or Java API request.

MDM Console Reference Guide 301

Finally, if an MDSS task scans a port that is already being processed by
a Syndicator user or other MDSS, it will wait for this processing to end
before performing any syndications to that port – or any subsequent port
in the task’s scanning sequence. This can cause delays if a particularly
big syndication job is underway.

Checking Map Properties and Search Selections

A map’s properties and/or search selections may effectively suppress all
records in a repository from being syndicated. When this occurs, then
no syndication file will be generated. To see if this is the case, open the
map in Syndicator.

If every record in the Records pane is grayed out, then currently there
are no unchanged records in the repository. To syndicate these records
anyway, you must disable the map’s Suppress Unchanged Records
map property.

If some records in the Records pane are not grayed out, then see if the
Suppress Records Without Key map property is enabled. Records
suppressed because they lack a remote key do not appear grayed out
in the Records pane. You must instead view a record’s key mappings to
see if any keys are present for the map’s remote system.

If no records appear in the Records pane, then currently there are not
any records in the repository which match the map’s search selections.

One alternate consideration when checking a map is the size of its
resulting syndication file. If a map generates a syndication file which is
so big that MDSS cannot send it over the network, then naturally it will
never appear in the port’s Ready folder (see “Syndication File Is Too Big
For MDSS” for more information).

Checking MDSS Credentials

If the previous steps have not solved the problem, verify the following
MDSS credentials are correct in the MDSS node located below the
Auxiliary Servers node in the Console Hierarchy tree:

• User

• Password

The User and Password values entered for a repository are the login
credentials MDSS uses to connect to that repository. If MDSS cannot
connect to a repository, make sure that these values are valid.

302 MDM Console Reference Guide

NOTE ►► Password values entered in MDM Console are encrypted

and the encrypted version of the password is stored in the PasswordE

parameter in mdss.ini. Do not modify the PasswordE parameter

directly. Instead, enter a new password value in MDM Console. When
you save the new value, MDM updates the encrypted password in

mdss.ini automatically. MDSS the uses the new password value the

next time it tries to connect to the specified repository.

SCHEDULED SYNDICATIONS ARE NOT EXECUTED ON TIME

If you notice that scheduled syndications are not being executed on
time, first review “Syndications Are Not Being Executed By MDSS”
above.

If none of the issues listed were factors at the time of a scheduled
syndication, it is likely that other, local factors are impeding MDSS from
completing your syndications on a timely basis. Because MDSS
processes ports sequentially, factors which may affect syndication
timeliness include:

• Number of ports and repositories on the Master Data Server.
There may simply not be enough time for MDSS to scan every port
and execute every scheduled syndications in the time specified by a
port’s processing interval.

• Size of repository/number of records being syndicated. Because

MDM processes ports sequentially, a large syndication to one port
may delay syndications to all subsequent ports.

• Heavy workload on the Master Data Server. Other MDM

operations such as data importing and editing can delay syndication
tasks.

• Preset delay between scans. Verify the Auto Syndication Task

Delay setting in mdss.ini is not causing unnecessary delays

between scans.

It may be necessary to adjust your scheduling strategy to accommodate
these factors.

UNCHANGED RECORDS ARE NOT BEING SUPPRESSED

In order to suppress unchanged records, the map’s Suppress
Unchanged Records property must be enabled (checked) and the

current table’s Key Mapping property must be set to Yes on MDM
Console.

Remember also that Syndicator tracks record changes by the map’s
remote system. If you syndicate records to one remote system, the
records will be considered unchanged on all other remote systems.

MDM Console Reference Guide 303

“CHANGED” RECORDS ARE NOT BEING SYNDICATED

MDM tracks record syndications on the remote system level, not by port
or map. As such, the first time a changed record is syndicated to a
remote system, MDM considers that record to be “unchanged” for all
future syndications to that remote system. For this reason, if you have
multiple ports or maps which syndicate to the same remote system, only
the first syndication will include the changed records.

SYNDICATION FILE IS TOO BIG FOR MDSS

The size of a syndication file depends on several factors, including:

• The number of output records generated from the syndication map

• The number of fields mapped

• The number of split fields mapped

• The quantity of data in each field mapped

Recall that extra records may be added to a syndication file for each
remote key value or qualified link belonging to a repository record,
meaning the number of output records in the file can be much greater
than the number of repository records selected for syndication.
Additionally, the number of mapped fields and the quantity of data in
each field can add considerable size, based on your repository data.

For these reasons, a syndication file may become too big for MDSS to
send over a network to its proper port folder. Or the file may simply take
a long time to process, preventing MDSS from syndicating data to other
ports on a timely basis. Both problems can be particularly severe when
you are syndicating data from a repository for the first time.

The remedy for this problem is to run the large syndication job once
manually from within Syndicator. Then, enable the Suppress
Unchanged Records option on the map’s Map Properties tab. This
should result in much smaller syndication files being generated in the
future, which MDSS is well-suited to process.

RECORD DATA CHANGES DURING SYNDICATION

If records selected for syndication are updated in the MDM repository
while a syndication is in progress, records in the syndication file contain
either the “old” or “new” data depending on when the record is
processed in relation to the data change. If the record is processed
before the data change, the syndication file contains the old data. If the
record is processed after the data change, the record contains the
changed data. If the record is being processed during the data change,
the record may contain both old and new data, depending on how much
of the record was syndicated before the data change occurred.

NOTE ►► Deleting fields during a syndication may cause the

syndication to terminate with an error.

305

PART 10: MDM SYSTEM ADMINISTRATION

This part of the reference guide contains an overview of MDM security
and administration features.

306 MDM Console Reference Guide

MDM Security Overview

MDM supports a multi-level security model that features granular, role-
based access not only to functions and data from within MDM client
applications but also to the administrative functions of MDM Console
itself.

Specifically, MDM Console complements the password-protection of the
Master Data Server with role-based access to MDM repository functions
and objects, as follows:

• Server level. You can password-protect a Master Data Server to

require that users must first supply a valid password before
performing server-level MDM Console functions that require
authentication.

• Repository level. Administrative users must first connect to an MDM
repository by supplying a valid username/password before
performing any repository-level MDM Console function upon it.

In fact, the authentication scheme of MDM Console effectively features
four levels of authentication, two at the Master Data Server level, and
independently, two at the repository level, as summarized in Table 86.

Table 86. MDM Console Four-Level Authentication Scheme

Authenticated Permitted MDM Console Functions

Server-level authentication (password / all or nothing)

No Master Data Server-level functions that do not require authentication.

Yes All Master Data Server-level functions.

Repository-level authentication (role-based / granular)

No None.

Yes MDM repository-level functions for which privileges granted by role(s).

NOTE ►► The MDM Console authentication scheme allows you to

view and access mounted repositories without requiring server-level
authentication, and independently, for each repository, requires role-

based repository-level authentication for granular access to each of the

repository-level MDM Console functions.

MDM Console Reference Guide 307

MASTER DATA SERVER SECURITY

MDM Console features a password authentication feature that controls
access to Master Data Servers and to the administrative MDM Console
functions related to each Master Data Server.

Password-protecting a Master Data Server is an optional but
recommended strategy for securing access to Master Data Server
operations.

The Master Data Server operations which require a Master Data Server
password are listed in Table 87.

Table 87. Password-Protected Master Data Server Operations

Operation Description

Mount Repository Mounts the selected MDM repository.

Create Repository Creates a new repository on the Master Data Server.

Duplicate Repository Adds a duplicate repository to the Master Data Server.

Delete Repository Deletes a repository from the Master Data Server.

Create Slave Creates a slave repository on the Master Data Server.

Archive Repository Archives a repository on the Master Data Server.

Unarchive Repository Unarchives a repository on the Master Data Server.

DBMS Settings
Edits DBMS settings for a repository or Master Data
Server.

Log file access Viewing or deleting Master Data Server log files

NOTE ►► Unless you password-protect a Master Data Server, these

administrative functions are available to anyone who mounts the

Master Data Server within MDM Console.

NOTE ►► The MDM Console functions that are available before

connecting at the server level to a password-protected Master Data
Server are those that allow you to view and connect to already-

mounted MDM repositories.

NOTE ►► A Master Data Server password is only required once

during an MDM Console session, unless the user unmounts the Master
Data Server which clears password authentication for security

purposes.

308 MDM Console Reference Guide

 To enable password protection for an unprotected Master Data

Server, or to change your existing Master Data Server password:

1. In the Console Hierarchy tree, right-click on the Master Data Server

whose password you want to set or reset and choose Change

Password from the context menu, or select the tree node and choose

MDM Servers > Change Password from the main menu.

TIP ►► If the top-right pane is currently displaying the list of Master
Data Servers, you can also right-click on the Master Data Server in the

grid and choose Change Password from the context menu.

2. MDM opens the Change Password for MDM Server dialog shown in

Figure 71 and prompts you to enter the old password (if one exists)
and the new password. Type the old password, type the new

password, type the new password again for confirmation, and click OK.

Figure 71. Change Password for MDM Server dialog

3. MDM sets (or resets) the password for the Master Data Server.

MDM REPOSITORY SECURITY

MDM supports a flexible multidimensional security scheme that provides
granular control over which users can access an MDM repository, which
functions they can perform, and which tables, fields, and records they
can access.

The MDM security scheme includes:

• Users. A user represents an entity that can connect to and access
the MDM repository. Each user has a user name and password, and
is assigned one or more roles that collectively specify the complete
set of privileges for that particular user.

• Roles. Each role specifies a set of privileges that define access
settings to each of the MDM repository’s tables, fields, lookup record
values, and records, and permissions to perform each of the
repository functions. The same role can be assigned to more than
one user.

• Privileges. For each repository function, you can either prevent or
allow the role to perform the function, and for each table and field,
you can grant the role full read/write access or read-only access.

MDM Console Reference Guide 309

NOTE ►► In MDM Data Manager, fields, dialog boxes, and context

menus for which the user has read-only access are disabled by
default, and appear grayed out. You can turn off this feature by

changing the value of the Repository Property parameter, Disable
Read-Only fields in Data Manager. See Modifying Repository

Properties.

• Constraints. For the Masks table and some lookup tables (those
referenced by at least one single-valued lookup field and no multi-
valued lookup fields), you can specify the set of masks or lookup
values that should be visible and accessible for the role.

Precisely defining each role – and then assigning one or more roles to
each user – provides very fine control over who can access an MDM
repository and how they can access it.

You define repository security in MDM Console in the following
administrative tables, which are located under a repository’s Admin
node in the Console Hierarchy tree:

• Roles. Each role in the Roles table defines a set of functional
permissions, access privileges, and record constraints that can be
assigned to MDM user names.

• Users. Defines the MDM user names that can access the MDM

repository and manages their role assignments.

NOTE ►► Within a SQL-based DBMS, you can use views to precisely

control field- and record-level access by various users. However, views
are cumbersome to manage, and more importantly, degrade system

response, often creating severe performance bottlenecks.

310 MDM Console Reference Guide

MDM User and Role Management

Recall that MDM’s multi-level security model supports granular, role-
based repository access to functions and data from within MDM client
applications. This multi-level security model extends to administrative
functions within MDM Console itself.

The MDM Console security scheme includes:

• Users. Repository administrators must connect to an MDM
repository with an MDM user name and password before any
administrative tasks can be performed in MDM Console.

• Roles. The roles assigned to an administrator’s MDM user name
determine which administrative functions are permitted or restricted
for that administrator in MDM Console.

• Privileges. Administrative, Schema, and Change Tracking functional
groups on the Roles table enable granular control over access to all
MDM Console functions.

With these features, you can precisely define limited administrative roles
for each of your administrators or administrative tasks. You can then

assign these targeted roles to users instead of the Admin role, which
retains full access to all MDM privileges.

USERS TABLE

The Users table stores the MDM user names that can access the MDM
repository. When selected from the Console Hierarchy tree (it is a child of
the Admin node), the Users table’s records appear in the top-right pane.

All MDM repositories are created with a user named Admin already

added to the Users table. The Admin user name: (1) cannot be modified
or deleted; (2) has the initial password, sapmdm; and (3) is assigned the

Admin role.

Each new record that you add to the table defines a new user name and
its associated role(s).

To add, modify, or delete users, you need permissions for the
corresponding function:

• Add User or Role Object

• Modify User or Role Object

• Remove User or Role Object

The predefined properties for user name records are listed in Table 88;
all the properties are directly editable in the User Detail pane.

MDM Console Reference Guide 311

Table 88. User Properties

Property Description

Name
The name that is used to connect to the repository. You

can specify a name of up to 30 characters.

Full Name The full name of the user.

Description A description of the user.

Password

The user password (displayed as “********”). The minimum

password length allowed is specified in the Minimal

Password Length mds.ini parameter (default is 5

characters).

User Must

Change

Password

Whether the user must change their password the first time

they log into MDM.

Password Never

Expires

Whether the user will be required to change their password
after the number of days specified in the Password

Expiration Days mds.ini parameter (default expiration

is 90 days). The Admin user's password never expires.

Roles The list of roles assigned to the user.

E-mail Address The email address of the user (for workflow notifications).

Reset Account

Lock

Whether to reset the number of failed password attempts

for this user to 0. User accounts are locked after the
number of failed password attempts specified in the Lock
Account After Failed Password Attempts

mds.ini parameter. Selecting Yes unlocks a locked user

account.

Account Unlock

Time

The time at which the account will be unlocked. The length

of time an account is locked is specified by the Lock

Account Duration mds.ini parameter

Failed Password

Attempts

The read-only number of failed password attempts made

by this user. To reset this number to 0, use the Reset

Account Lock property.

NOTE ►► Users can change their passwords in MDM client

applications by choosing Configuration > Change Password.

312 MDM Console Reference Guide

EXPORTING REPOSITORY USERS

You can export data of users of a specific repository. For each user, the
values of the following fields are exported:

• User ID

• Name

• Full Name

• Description

• User must change password

• Password never expires

• Roles

• E-Mail Addresses

• Account locked

• Account unlock time

• Password last change

NOTE ►► User passwords are not exported.

The exported file is saved as a CSV file. By default, MDM exports user
information from the repository in ANSI encoding, which can also be
opened in Microsoft Excel. If there are foreign characters in the CSV
file, it will be saved in UTF8 encoding.

By default, in the exported file, multiple values in a single field are
separated by a semi-colon (;), and a comma (,) is used as a field
separator. You can change these separators in the Repository
Properties table. For more information, see Modifying Repository
Properties.

The column titles in the output file are identical to the field titles in MDM
Console. If MDM exports in a non-English language (by using the
language selector) the foreign language title will be used.

Prerequisites

• User data is exported only from a repository that is mounted

and connected.

• This operation requires execute rights for the function
Export/Import Repository Users and Roles.

 To export user data from a specific repository:

1. In the Console Hierarchy tree, right-click the required MDM repository

and from the context menu, choose Manage User and Roles > Export
Repository Users. This command is also available from the

Repositories menu.

2. In the Save As dialog box, change the default output file name, if

required, and click Save.

MDM Console Reference Guide 313

3. After the export completes, you can open the export file in Microsoft

Excel.

IMPORTING REPOSITORY USERS

You can import data of users to a specific repository. For each user, the
values of the following fields are imported:

• Name

• Full Name

• Description

• User must change password

• Password never expires

• Roles

• E-Mail Addresses

For each user, you can also specify whether to perform the following
operations:

• Reset Account Lock

• Delete User

Import File Structure

• The import file should be a CSV file with ANSI or UTF-8
encoding.

• The first line in the import file contains the column titles.

• Each line represents a single user.

• The Name column must contain a value. All other columns are
optional.

• You can use a file with data that was previously exported, but

non-relevant data is ignored; for example, last password
change.

• User names should not include a comma (,).

• None of the columns should include double quotes (“).

• Email addresses must contain an “@” symbol.

• Columns for properties that take only “Yes” or “No” values
must not contain any other values.

NOTE: The import process can fail for users with data errors.

NOTE: You can work with ANSI files in Microsoft Excel file and save them

with a .csv extension.
If the file is in UTF-8 encoding, Microsoft Excel saves it in UNICODE mode

and converts all column delimiters to tab delimited.

In order for MDM to import the modified file:

1. Open the file in Microsoft Notepad.

2. Find and replace all tab delimiters to column delimiter characters.
3. Save the file in UTF8 format with a .csv extension.

314 MDM Console Reference Guide

Import Process

• User names that do not match any existing user names are

added as new users. Columns with no values are given default
values. For example, if there are no values for Roles, MDM
creates the user with the Default role.

• New users are created automatically with “User Must Change
Password” set to True, regardless of the value in the import
file.

• User names that match existing user names are imported and
overwrite the existing user information. MDM modifies only the
properties that have values in the import file.

• If the value for “Delete User” is “Yes”, the user with the
matching user name is deleted from the repository. Any other
parameters for the user in the import file are ignored.

• If the import file includes roles that do not exist in the target
repository for a user, the user will be imported and the import
report will include a message about the non-existing roles.

Prerequisites

• User data is imported only to a repository that is mounted and

connected.

• This operation requires execute rights for the function
Export/Import Repository Users and Roles.

 To import user data to a specific repository:

1. In the Console Hierarchy tree, right-click the required MDM repository

and from the context menu, choose Manage User and Roles > Import
Repository Users. This command is also available from the

Repositories menu.

2. In the dialog box, select the import file, and click Open.

3. In the Temporary Passwords for New Users dialog box, click Generate

Passwords to create a temporary password for each new user.
Alternatively, you can enter passwords manually. All new users must

have a password before the import process can start.

4. Click OK. The import process starts.

After the import completes, a report is displayed showing information about

the import operation and the status of each imported user.

ROLES TABLE

The Roles table stores roles that can be assigned to users on the Users
table. By default, roles are applicable for all MDM servers and clients.
You can restrict role applicability for MDM Windows clients and MDM
servers only or for MDM web and API clients only.

MDM Console Reference Guide 315

When selected in the Console Hierarchy tree (it is a child of the Admin
node), the Roles table’s records appear in the top-right pane.

The predefined properties for Roles table records are listed in Table 89;
all the properties are directly editable on the Role Detail tab.

To add, modify, or delete roles, you need permissions for the
corresponding function:

• Add User or Role Object

• Modify User or Role Object

• Remove User or Role Object

Table 89. Role Properties

Property Description

Name The role name

Description A description of the role

Users The list of users associated with the role

Applicable For

Security option to limit role applicability. The options relate

to the client from which the user is connecting to MDS:

▪ All (default) – The role is applicable to all clients from

which the user connects to MDS

▪ MDM Win clients/MDM servers
▪ MDM web/API clients

Note: MDM Win clients/MDM servers category includes

the following MDM clients:

▪ Regular MDM clients: Data Manager, Syndicator, Import

Manager, Console, Image Manager, Workflow Plugins,

Indexer, Publisher, CLIX
▪ Regular MDM servers: MDM Server, Syndication server,

Import server, Layout server

▪ Print API

MDM web/API clients category includes all others, such as,

Java API, enrichment controller, iViews, .NET API, ABAP

API, Web Dynpro, and so on.

Note: If the user attempts to connect using a client for
which none of the user's roles are applicable, the user will

not be able to connect to MDS and will receive an error

message.

Additional tabs in the Role Detail pane define a role’s functional
privileges, table and field access rights, and record constraints.

316 MDM Console Reference Guide

All MDM repositories are created with two roles already added to the

Roles table: Admin and Default. The Admin role: (1) cannot be deleted;
(2) allows unrestricted access to MDM functions, tables and fields, and

records; (3) is assigned to the Admin user; and (4) is applicable for all

MDM clients and servers. Although you can assign the Admin role to as

many users as you like, you cannot modify the Admin role’s access
rights.

The Default role: (1) cannot be deleted; (2) initially allows unrestricted
access to MDM functions, tables and fields, and records; and (3) is
assigned to all new users added to the Users table. You can modify the

Default role’s access rights at any time. The Default role is applicable
for all MDM clients and servers.

Each new record that you add to the Roles table defines a new role and
lets you assign the role to selected users.

NOTE ►►The Logged-In Role Maintenance setting in the Master Data
Server settings file controls whether you can edit roles while users

assigned that role are connected to an MDM repository.

Functional Privileges

The functional privileges for a role are displayed in a hierarchy in the
Name column in a grid within the Functions tab, as shown in Figure 72.
Each of the functions is associated with a leaf node in the hierarchy,
which are organized into groups using the internal nodes.

For each function, you can specify either of the following access
settings by selecting from the radio button grid control in the Access
column:

• Execute – the function can be executed by the role

• None – the function cannot be executed by the role

Figure 72. Functions tab for the Roles table

MDM Console Reference Guide 317

Using this tab, you can customize permissions for various MDM
functions for the role selected in the Roles table.

NOTE ►► The setting of the Functions (default) node determines the

default privilege for new functions that are added to updated versions

of the MDM software.

NOTE ►► The functional privileges assigned to a role in the

Functions tab are constrained by the access privileges assigned to the
role in the Tables and Fields tab (see “Table and Field Privileges” for

more information).

TIP ►► You can change the access privileges of all functions

simultaneously by changing the setting of the Functions (default) node.

The groups and functions displayed in the Name column are listed in
Table 90; access privileges for each function are directly editable in the
Functions pane.

Table 90. Groups and Functions

Group Function

Records

▪ Add records

▪ Modify records

▪ Modify checked out records

▪ Delete records

▪ Merge records

▪ Merge checked out records
▪ Protect records

▪ Unprotect records

▪ Check out records

▪ Check out new records

▪ Check in owned records
▪ Roll back owned records

▪ Check in non-owned records

▪ Roll back non-owned records

▪ Modify join permissions for non-owned records

Images
▪ Modify image print size

▪ Crop and rotate images

Hierarchies

▪ Move nodes within hierarchy

▪ Hide children

▪ Create aliases

318 MDM Console Reference Guide

Group Function

Taxonomies

▪ Add attributes

▪ Delete attributes

▪ Modify attribute properties

▪ Add or delete text values of text attributes

▪ Modify text values of text attributes
▪ Convert attribute type

▪ Split attribute

▪ Merge attributes

▪ Set attribute priority

▪ Modify linked attributes

▪ Reassign attribute ratings
▪ Add matching sets

▪ Delete matching sets

▪ Modify matching sets

▪ Partition

▪ Consolidate children

Families

▪ Synchronize family hierarchy

▪ Modify family data

▪ Modify family partitioning

Layouts1

▪ Modify layout

▪ Rename layout columns

▪ Modify global clone property item pool

▪ Modify root level properties of family tree

Publications1

▪ Create publications

▪ Delete publications

▪ Rename publications
▪ Add publication nodes

▪ Add section nodes

▪ Add internal nodes

▪ Add presentation nodes

▪ Delete publication nodes
▪ Delete section nodes

▪ Delete internal nodes

▪ Delete presentation nodes

▪ Move publication nodes

▪ Rename publication nodes

▪ Split section nodes
▪ Combine section nodes

▪ Modify calculated layout snapshots

▪ Modify section properties

▪ Modify presentation content

▪ Add spreads

▪ Delete spreads
▪ Modify spreads

▪ Shuffle pages in section

▪ Add pages

▪ Delete pages

MDM Console Reference Guide 319

Group Function

▪ Move pages

▪ Add presentations
▪ Delete presentations

▪ Move presentations

▪ Recover presentation items

▪ Add items to snapshot

▪ Delete presentation items

▪ Relocate presentation items
▪ Flow presentations in section

▪ Apply templates

▪ Purge disconnected items from snapshot

▪ Modify publication layout

▪ Modify publication family data
▪ Modify publication records

▪ Modify publication format

▪ Modify branch node recursive MDLS jobs

▪ Modify Publisher document workspace

▪ Modify global publication bookmarks

Publisher Object

Checkouts1

▪ Checkout Publisher objects

▪ Assign Publisher object checkouts

▪ Override Publisher object checkouts

Indexes2

▪ Create indexes

▪ Delete indexes

▪ Rename indexes

▪ Modify index source
▪ Modify index key definitions

▪ Modify index entry redefines

▪ Modify index properties

▪ Modify index styles

▪ Modify index page setup
▪ Add index source

▪ Delete index source

320 MDM Console Reference Guide

Group Function

MDM Data Manager

▪ Modify multiple records

▪ Delete multiple records

▪ Add to mask

▪ Remove from mask

▪ Replace in mask
▪ Modify mask

▪ Import from Excel

▪ Export to text

▪ Export to Excel

▪ Export to Access

▪ Save original to disk
▪ Modify families

▪ Modify layouts

▪ Modify publications

▪ Modify indexes

▪ Save Named Search

▪ Copy from Compare Records dialog

Consolidation and

Distribution

▪ Add import maps

▪ Modify import maps
▪ Delete import maps

▪ Add syndication maps

▪ Modify syndication maps

▪ Delete syndication maps

▪ Edit record key mappings

▪ Import records via Web Dynpro

Administration

▪ Modify repository description

▪ Modify repository languages

▪ Modify repository port2

▪ Modify repository properties
▪ Synchronize slave

▪ Normalize repository

▪ Share repository

▪ Appropriate repository

▪ Compact repository

▪ Repair repository
▪ Truncate change log

▪ Refresh calculated fields

▪ Refresh cache of LDAP server data

▪ Start repository

▪ Stop repository

▪ Configure user dimensions
▪ Stop activity

▪ End connection

MDM Console Reference Guide 321

Group Function

Schema1

▪ Import schema

▪ Export schema

▪ Add table4

▪ Modify table

▪ Remove table

▪ Add field5

▪ Modify field

▪ Remove field

▪ Add schema object

▪ Modify schema object

▪ Remove schema object

▪ Generate or delete Database Views

▪ Export/Import Repository Users and Roles

▪ Add User or Role Object

▪ Modify User or Role Object

▪ Remove User or Role Object

Change Tracking ▪ Set change tracking

Relationships

▪ Add relationships

▪ Delete relationships

▪ Modify Relationships

Matching

▪ Add matching strategies, rules, transformations, and

fields

▪ Modify matching strategies, rules, transformations,

and fields

▪ Delete matching strategies, rules, transformations,

and fields

▪ Execute matches

Workflows ▪ Add records to job

Data Protection

and Privacy

▪ Data Privacy Specialist

▪ External Auditor

1 Functions also require Read/Write privileges on the Publications node in the Tables and
Fields tab.
2 Functions also require Read/Write privileges on the Indexes node in the Tables and Fields

tab.
3 Whether the role can modify the TCP/IP port(s) which the repository uses to connect to
clients.
4Add Table function also requires Read/Write privileges on the Tables and Fields node in the
Tables and Fields tab.
5Add Field function also requires Read/Write privileges on the relevant table node in the
Tables and Fields tab.

322 MDM Console Reference Guide

Table and Field Privileges for a Role

The table and field privileges for a role are displayed in a hierarchy in
the Tables and Fields tab.

• Each normal table in the repository is represented in the hierarchy by
an internal node. Tuples in the table are represented by subnodes.
Tuple members and all other fields in the table are represented by
leaf nodes.

• Each special table and object in the repository is represented by a
single leaf node.

For each node, you can customize access privileges by specifying one
of the following access settings in the Access column:

• Read/Write

• Read-Only

When a table or field is created, it inherits the Read/Write access setting
from its parent node. If a node's access setting is not changed explicitly,
that node continues to inherit the access setting of its parent node.
Inherited settings are displayed in italics as shown in the following
examples.

In Figure 73, the Products table and its fields inherit the Read/Write
access setting from the root Tables and Fields node.

Figure 73. Inherited access settings from root node

MDM Console Reference Guide 323

In Figure 74, the new tuple member, Postcode, inherited the access
setting from its parent tuple, Address. When the Address tuple access
setting was changed to Read-Only, the Postcode tuple member
inherited the Read-Only setting.

Figure 74. Inherited access settings from tuple node

The operations allowed with Read/Write access depend on the type of
node selected, as described in Table 91.

NOTE ►► To perform operations allowed by Read/Write permission
for a table, field, tuple, or object, a role must also be defined with the

corresponding functional privileges.

Table 91. Access Setting Descriptions by Node Type

Node Access Settings for a Role Determine Whether Users Can …

Root

Add new tables.

If the Root node and all subsequent nodes are set to Read-Only, the role
is denied all functional privileges in the repository.

Normal Table

▪ Add and reorder fields in the table.

▪ Add and delete records in the table.

Field

▪ Modify field values.

▪ Delete the field from the table.

Tuple Field

Add and delete tuple records.
The access settings for tuples do not affect any schema-level operations
on tuples.

Tuple
Member

Modify tuple member values.
The access settings for tuple members do not affect any schema-level

operations on tuple members.

Special Table
Perform record-level operations on the table.

Expressions1
Modify MDM expressions in the expressions editor.

Data Groups
Modify the MDM data group hierarchy.

324 MDM Console Reference Guide

Node Access Settings for a Role Determine Whether Users Can …

Publications
Modify MDM publications.

Indexes
Modify MDM publication indexes.

1 Affects calculated fields, assignments, and validations.

 To set table and field privileges:

1. In the Console Hierarchy tree, under the required repository, choose

Admin > Roles.

2. Select the role for which you want to set privileges.

3. In the Tables and Fields tab, configure access settings, as required.

▪ When you change the access setting of the root node, MDM asks

you whether you want to apply the same changes to all tables,
fields, and objects in the hierarchy, as shown in Figure 75. If you

choose No, only the root node’s access setting changes.

▪ When you change the access setting of a normal table node,
MDM asks you whether you want to apply the same changes to

all fields in the table. If you choose No, only the table node’s

access setting changes.

▪ When you change the access setting of a tuple node, MDM asks

you whether you want to apply the same changes to all the tuple's

members. If you choose No, only the tuple node’s access setting

changes.

Figure 75. Confirm Table and Field Access Setting dialog box

NOTE ►► When you change the access setting of a main table (for
example, Products) or taxonomy table (for example, Categories), MDM

prompts you to confirm that you want to apply the same change to the

Families table, as shown in Figure 76. If you choose No, the access

rights will not change for the selected table or the Families table.

Figure 76. Confirm Families Access Setting dialog box

MDM Console Reference Guide 325

Record Constraints

The record constraints for a role are controlled from the Constraints
column of the grid within the Tables and Fields tab, shown in Figure 74
above.

Record constraints are selections of masks, named searches, and/or
lookup table records that allow you to create virtual subset repositories
on a per role basis. Only records that fall within the constrained record
set will ever be visible or known to the role.

To specify a constraint, you select the masks, named searches, and/or
lookup values that correspond to the records you want to make visible
and accessible to the role. In this regard, specifying constraints is like
specifying search selections that are always in effect.

Selecting constraints on the Masks table limits the visible record set to
records included in the selected mask(s). Any additional named search
or lookup table constraints are applied to the records in the selected
masks, limiting further which records are visible to the role.

Selecting constraints on the Named Searches table limits the visible
record set to only those records that match the search parameters of
the selected named search(es). Any additional lookup table constraints
will further limit which records are visible to the role.

NOTE ►► Multiple mask selections are considered “OR”
combinations, meaning records only have to appear in one selected

mask to be visible, not all selected masks.

NOTE ►► Multiple named search selections are treated as “OR”

combinations, meaning records matching the search parameters in any

selected named search will be visible to the role.

NOTE ►► Whether a record is visible or hidden on a role’s Masks or

Named Searches table does not affect which records are visible to that

role on other tables.

NOTE ►► MDM does not enforce mask or named search constraints
when the Masks or Named Searches table is the current table. This

allows users to create their own masks and named searches and to
access them afterwards. However, it also exposes the role-

constraining masks and named searches to the user. To prevent users
from accessing specific mask or named search records, add a lookup

field to your Masks and Named Searches table and constrain its
lookup values to hide or display mask and named search records

accordingly.

326 MDM Console Reference Guide

Selecting constraints on a lookup table limits the visible record set to
only those records that have the selected values in their lookup fields or
in their lookup hierarchy. Lookup table constraints limit: (1) the set of
visible main table records; (2) the set of visible subtable records; (2) the
set of visible lookup table values in the Record Detail tab; and (3) the
set of visible lookup values in the search tabs.

For example, if a main table, Products, has a field that looks into the
Manufacturers table, and the Manufacturers table has a field that looks
into the States table, selecting a constraint on the States table will: (1)
hide all records on the States table except the record corresponding to
the selected value; (2) hide all records on the Manufacturers table
except records with lookup field values matching the selected State
value; and (3) hide all records on the Products table except records with
lookup field values matching the remaining manufacturers on the
Manufacturers table. No other state or manufacturer lookup values will
appear in the Record Detail tab or in the Search Parameters pane.

NOTE ►► You can only set constraints on tables that are referenced

by single-value lookup or tuple fields. Do not set constraints on a table

that is used for multi-value references.

NOTE ►► Multiple lookup constraints are considered “AND”
combinations, meaning only records that remain after all lookup

constraints have been applied will be visible.

Finally, constrained record sets are dynamic. Records which fall into a
constrained record set become visible and accessible (or invisible and
inaccessible) to a role automatically as they are added, deleted, or
modified in the repository.

NOTE ►► It is possible for a user to add or modify a record and then
have this record disappear instantly from view, if: (1) the user’s role is

constrained by named searches and the newly added or modified
record is outside the search parameters of the constraining searches;

or (2) the user’s role is constrained by masks (new records are not

visible to users constrained by masks). To prevent these scenarios
from occurring, roles constrained to masks should not have add record

privileges and roles constrained to named searches should not have

add record or modify record privileges.

For each table for which you can assign constraints, the value in the
Constraints column is as follows:

• [ALL] – table not constrained

• [n] – table has ‘n’ constraints selected

NOTE ►► You cannot manually create the [0] case (i.e. ‘n’ equals 0),

which can occur if all selected constraints are replaced or deleted.

MDM Console Reference Guide 327

When you select constraints for a table, the values that you select
become the unconstrained (visible) values and the values that you do
not select become the constrained (hidden) values. When you add
constraints for a table, the set of selected (unconstrained) values always
implicitly includes the NULL value.

 To select constraints for a table:

1. In the Tables and Fields tab, double-click on the cell in the Constraints

column corresponding to the table you want to constrain.

2. MDM opens a dual-list drop-down control for multiple-item selection.
Select or deselect mask, named search, or lookup record values from

the drop-down list or hierarchy, as follows:

▪ To add Available value(s) to the Selected values list, highlight

them and click the Add button.

▪ To remove values from the Selected values list, highlight them

and click the Remove button.

▪ To add all values to the Selected values list, click All.

▪ To remove all values from the Selected values list, click None.

NOTE ►► Available values appear as a list for flat lookup tables and

Named Searches and as a hierarchy for the Masks table and hierarchy

lookup tables.

3. Press Enter or click on the up triangle to close the drop-down control.

4. To save the new constraints, right-click on the Tables and Fields tab

and choose Save Role from the context menu, or press Shift+Enter.

NOTE ►► Logged-in users are not affected by constraint changes

until they log out and log back in.

Performing MDM Operations

The access settings in the Functions tab control the rights to execute a
given function (the functions roughly correspond to menu options in
MDM Data Manager). Similarly, the access settings in the Tables and
Fields tab control rights to each of the tables and fields. This includes
the main table, lookup tables, object tables (Images, Text Blocks, PDFs,
etc), the Masks table, the Families table, and publications.

To perform an operation, you must have both functional access (the
ability to perform the given function), object access (the ability to
read/write the object(s) on which the operation is being performed), and
record access (pursuant to the record constraints). For example, to add

an image to an MDM repository, you must have the Add Records
functional access, and Write access to the Images table. Having only
one of those rights is insufficient.

328 MDM Console Reference Guide

NOTE ►► When a user belongs to multiple roles, MDM separately

calculates the rights for each role (based on the functional privileges,
the object privileges, and the record constraints), and then combines

the rights of those roles with an OR.

EXPORTING REPOSITORY ROLES

You can export the roles of a specific repository. For each role, the
following information is exported:

• Name

• Description

• Applicable For

• Users

• Function Name

• Function Access

• Tables and Fields - Node Type

• Tables and Fields - Node Name

• Tables and Fields - Sub Node Name

• Tables and Fields - Tuple Path

• Tables and Fields – Access

Export File Structure

• The exported file is saved as a CSV file. By default, MDM
exports role information from the repository in ANSI encoding,
which can also be opened in Microsoft Excel. If there are
foreign characters in the CSV file, it is saved with UTF-8
encoding.

• Each role in the exported file consists of more than one line.

The first line for a role contains the property titles and the next
line contains the values. Some of the properties such as Users
and Function Name are multi-valued and might consist of more
than one column.

• The column titles in the output file are identical to the field titles
in MDM Console. If MDM exports in a non-English language
(by using the language selector) the foreign language title will
be used

• By default, in the exported file, multiple values in a single field
are separated by a semi-colon (;), and a comma (,) is used as
a field separator. You can change these separators in the
Repository Properties table. For more information, see
Modifying Repository Properties.

MDM Console Reference Guide 329

Export Process

• Constraints on records that can be viewed are not exported.

• MDM exports only properties with non-default values. For
example:

o If none of the users were assigned to the role then the
“Users” property is not exported.

o If a role has the default access rights in the Tables
and Fields tab for one of the tables, values for fields
that inherit from the default are not exported. These
values are displayed in MDM Console in italics.

• The Tables and Fields information is as a single group. If there

is one non-default value, all the following lines are exported to
the export file.

o Tables and Fields - Node Type
o Tables and Fields - Node Name
o Tables and Fields - Sub Node Name
o Tables and Fields - Tuple Path
o Tables and Fields – Access

• Function name and Function Access properties: MDM exports
only the function names that do not inherit their value from the
default value. The entries in functions of roles that inherit their
values from the default are displayed in MDM Console in
italics.

Prerequisites

• Roles are exported only from a repository that is mounted and

connected.

• This operation requires execute rights for the function
Export/Import Repository Users and Roles.

 To export roles from a specific repository:

1. In the Console Hierarchy tree, right-click the required MDM repository
and from the context menu, choose Manage User and Roles > Export

Repository Roles. This command is also available from the

Repositories menu.

2. In the Save As dialog box, change the default output file name, if

required, and click Save.

3. After the export completes, you can open the export file in Microsoft

Excel.

330 MDM Console Reference Guide

IMPORTING REPOSITORY ROLES

You can import role information to a specific repository. The import file
should include only those role properties that you want to change.

Import File Structure

• The import file should be a CSV file with ANSI or UTF-8

encoding.

• The Name column must contain a value as it is used as the
unique key for the role.

• The following role properties can be included, but are optional:

• Description

• Applicable For

• Users

• Function Name

• Function Access

• Tables and Fields - Node Type

• Tables and Fields - Node Name

• Tables and Fields - Sub Node Name

• Tables and Fields - Tuple Path

• Tables and Fields – Access

• If you include a column title, there must be a corresponding
value.

• Role names should not include a comma (,).

• None of the columns should include double quotes (“).

Import Process

• Role names that do not match any existing roles in the

repository are added as new roles.

• A line with a first column other than the approved ones will be
ignored.

• A line with a valid property name must have a valid value. For
example, columns for properties that take only “Yes” or “No”
values must not contain any other values.

• If the import file includes values for the Users property that do
not exist in the target repository for a role, the role will be
imported and the import report will include a message about
the non-existing users.

• Imported table and field access rights for an existing role are

merged with existing data, and do not replace it.
o ‘Tables and Fields - Node Type’ always has values

and refers to the type of MDM object such as “Table”,

“Field”, “Relationships”, “Data Table, and so on.

o ‘Tables and Fields - Node Name’ is the name of the

table/Tuple and is not mandatory for all types.

MDM Console Reference Guide 331

o ‘Tables and Fields - Sub Node Name’ only has values

if it refers to a field, a relationship, tuple fields, or an

image variant.

o ‘Tables and Fields - Tuple Path’ only has values if it

refers to a tuple field.

o ‘Tables and Fields – Access’ always has Read/Write

or Read-Only values.

• Imported execution rights for an existing role are merged with
existing data, and does not replace it.

• Other imported information, such as users, replaces existing
values.

Prerequisites

• Roles are imported only to a repository that is mounted and
connected.

• This operation requires execute rights for the function

Export/Import Repository Users and Roles.

 To import roles to a specific repository:

1. In the Console Hierarchy tree, right-click the required MDM repository
and from the context menu, choose Manage User and Roles > Import

Repository Roles. This command is also available from the

Repositories menu.

2. In the dialog box, select the import file, and click Open.

After the import completes, a report is displayed.

LDAP SUPPORT

You can use LDAP (Lightweight Directory Access Protocol) within the
MDM system to control, configure and distribute user privileges, rights,
and access from a single location.

For detailed information about support for LDAP (Lightweight Directory
Access Protocol) within the MDM system, including setting LDAP cache,
see help.sap.com/nwmdm71 > MDM Security Guide > LDAP

Support.

LDAP contact information and other parameters relevant to MDM are
maintained in the secure mds.ini file in a separate section named:

[MDM LDAP]

If the [MDM LDAP] section is absent, LDAP use is disabled. This

section includes the following parameters:

332 MDM Console Reference Guide

Parameter Description

LDAP in Use

Whether MDM should use LDAP. Options are True

or False.

You must stop MDS before changing this parameter,
in mds.ini and then restart MDS.

You must run a Verify > Repair operation on all
repositories mounted on a Master Data Server after
changing the server’s LDAP in Use parameter.

Server

Server Port

LDAP system address (usually a DNS name). The
LDAP Server specification can be either a hostname

or an IP address to which MDM attempts to bind;
optional Server Port defaults to 389.

Admin DN

Admin

Password

The full distinguished name (DN) and password of an
Admin that can search for the user’s full DN.

For backward compatibility with previous releases
MDM will construct a missing Admin DN from the
following settings: Admin Identifier, Admin Name and
Base DN.

MDM does not need to be an administrative user to
browse the directory. Just leave both Admin DN and
Admin Password blank if directory setting allows
anonymous binding.

Base DN

The node from which MDM starts to search in the
LDAP server, for example, o=sap,c=US. This node

includes users, groups, and more.

Users Base

DN

To optimize the search, define the subnode under the
Base DN from which to start the search for user

information.

Note: If you define both Users Base DN and

Groups Base DN, MDM ignores the Base DN

setting. If only one of them is defined, MDM uses
Base DN for the other.

Groups Base

DN

To optimize the search, define the subnode under the
Base DN from which to start the search for group

information.

Note: If you define both Users Base DN and

Groups Base DN, MDM ignores the Base DN

setting. If only one of them is defined, MDM uses
Base DN for the other.

MDM Console Reference Guide 333

Parameter Description

User

Identifier

The name of the LDAP ID field that will match the
value that the user provides as the Username at
logon, such as cn or uid.

MDM Roles

Attribute

The name of the LDAP attribute that contains the
group assignments, such as memberOf.

MDM Email

Attribute

The name of the LDAP attribute that contains the
email addresses that are assigned to users, and is
required for workflow. Usually this name is mail.

Fallback in

Use

When set to True, if the LDAP server is not available

or the user does not exist in the LDAP server, MDM
will attempt to find user information in the repository.
This parameter is relevant only for the login phase
and should be used carefully. When using this
parameter our recommendation is to set only one
user in the repository, which should be read-only
since company security should be based on LDAP
alone (if Use LDAP=True).

The default is False.

Group

Identifier

The name of the LDAP attribute that identifies groups,
such as cn or samAccountName. This field is

mandatory for group mapping algorithms. For more
information, see help.sap.com/nwmdm71 > MDM

Security Guide.

Member

Attribute

The name of the LDAP attribute that lists all members
of an LDAP group, such as member. This field is

optional. It is used, for example, with LDAP server
IBM Tivoli. For more information, see
help.sap.com/nwmdm71 > MDM Security

Guide.

Page Size

The number of records sent by the LDAP server per
page. Default is 1000.

This value does not need to be changed unless LDAP
performance is problematic and you need to retrieve
much more than 1000 records per search from the
LDAP server.

User Filter

Optional. Use this parameter to improve performance
by limiting the user search results to LDAP user
records only.

For example, if you set:

334 MDM Console Reference Guide

Parameter Description

User

Filter=&(objectClass=person)(Uid=*)

the additional condition objectClass=person

limits the result set on the LDAP server side to user
records only.

This applies to all different search algorithms for users
and groups.

Group Filter

Optional. Use this parameter to improve performance
by limiting the group search results to LDAP group
entries only.

For example, if you set:

Group Filter=groupOfNames=*

the following search is executed:

ldapsearch ... baseDN

(&(groupOfNames=*)(groupIdentifier=MDM
RoleName))

"Group Identifier" is the name of the LDAP ID

field that matches the MDM role name, such as cn

or samAccountName.

The additional condition limits the result set on the
LDAP server side to specific role records only.

This applies to all different search algorithms for users
and groups.

Secure

Connection

to Active

Directory

Specifies whether the MDS connects securely to the
Microsoft Active Directory LDAP server. Possible
values are True or False.

Note: You can configure a secure connection from
MDS to the Active Directory only when MDS is
installed on a Windows platform.

User

ObjectType

DN

(Optional) Use this parameter to specify that the user
identifier attribute relates to a user. This optimizes the
search operation in the LDAP server and limits the
search to users only.

For example:

• Active Directory: User ObjectType
DN=objectClass=user

• Open LDAP: User ObjectType
DN=objectClass=inetOrgPerson

MDM Console Reference Guide 335

Parameter Description

Group

ObjectType

DN

(Optional) Use this parameter to specify that the
group identifier attribute relates to an LDAP group.
This optimizes the search operation in the LDAP
server and limits the search to LDAP groups only.

For example:

• Active Directory: Group ObjectType
DN=objectClass=group

Enable Case

Sensitive

Login

(Optional) From MDM 7.1 SP11, you can use this
option to cancel the case-sensitive limitation for login
to MDM using LDAP.

Note: This limitation was added in MDM 7.1 SP08 and
cannot be cancelled in releases SP08 through SP10.

TRUSTED CONNECTIONS

MDM offers a Trusted Connection mechanism for authentication of
client connections to MDS. See help.sap.com/nwmdm71 > MDM
Security Guide > Authentication of Trusted

Connections for more information.

336 MDM Console Reference Guide

Additional MDM Tables

Additional MDM tables are described in the following sections.

CONNECTIONS TABLE

The Connections table is an MDM system table accessible as a child of
the Admin node of the Console Hierarchy tree. Each MDM client
application that is currently connected to the selected repository
appears as a record in the table, along with the connection time and
time since last access, allowing you to monitor connection activity.

Table 92. Connection Properties

Property Description

Name The user name.

Host Name The system on which the MDM client is running.

Application Name The MDM application (e.g. Data Manager, API).

Connection Time The date and time the connection was established.

Last Activity Time The date and time the connection was last accessed.

You can end a repository connection from the following MDM web
clients by selecting the application row in the table and choosing End
Connection from the context sensitive menu:

• SAP MDM Java API and any related Java API session manager:
o SAP MDM Java API>Session Manager>Event Dispatcher

• SAP MDM .NET API and any related .NET API session manager

• SAP MDM WD Framework and related WD configurators:
o SAP MDM WD Configurator>Session Manager>Event

Dispatcher
o SAP MDM WD Configurator>Metadata Manager>Event

Dispatcher

• SAP MDM iViews Runtime and SAP MDM iViews Runtime >Blob
Cache

• SAP MDM COM API

NOTE ►► You can also view and end connections using the CLIX

commands repGetConnections and repEndConnection (see

help.sap.com/nwmdm71 > CLIX Reference for more information).

MDM Console Reference Guide 337

WORKFLOWS TABLE

The Workflows table is a special table that contains workflow records.
Like the records of an object table, the records of the Workflows table
have a predefined and fixed set of fields. Each workflow record defines
a sequence of steps for a group of one or more records. You can view
and edit workflow records in MDM Data Manager.

The properties for each workflow are listed in Table 93; none of the
properties are editable in the Field Detail pane.

Table 93. Workflow Properties

Property Description

Name The workflow name.

Code The workflow code.

Description A description of the workflow.

Table The table to which the workflow applies.

Workflow The Visio workflow object.

Owner The user who owns the workflow.

Administrators The users assigned as workflow administrators.

Active Whether the workflow is active (Yes/No).

Trigger Actions

The actions that trigger the workflow:

▪ Manual

▪ Record Add
▪ Record Import

▪ Record Update

Autolaunch

Whether or not to automatically launch the workflow job:

▪ None
▪ Immediate

▪ Threshold

 Max Records

The maximum number of records that can be added to the

workflow before it is launched automatically.

▪ Autolaunch=Threshold

▪ 0 means do not autolaunch based on record count

 Max Time

The maximum amount of time that the workflow can remain

unlaunched before it is launched automatically.

▪ Autolaunch=Threshold

▪ 0 means do not autolaunch based on unlaunched time

338 MDM Console Reference Guide

Property Description

Action on

Complete

Whether or not to archive or delete the workflow job after it

is completed:

▪ None

▪ Archive

▪ Delete

Created The date the workflow was created.

Created By The user who created the workflow.

Modified The date of last modification.

Modified By The user who last modified the workflow.

CHANGE TRACKING TABLE

The Change Tracking table is a system table with a predefined set of
fields and records that are not directly visible in MDM Console. Each
change record is created automatically by MDM when the value of any
field that you are tracking is changed, providing an audit log of changes
within the system.

NOTE ►► For each change, MDM records the date, the time, the

user who made the change, the old value, and the new value.

NOTE ►► You can disable tracking of checked-out records, including

roll back operations, in the repository properties. For more information,

see Modifying Repository Properties.

This section describes how to configure change tracking from within
MDM Console. Viewing the change records themselves requires the
separate Change Tracker application. For more information about the
Change Tracker and the information it displays, see the Change Tracker
Application Guide.

The change tracking settings for a repository's tables and fields are
displayed in the Change Tracking Detail pane. In the pane grid, each
normal table is represented by an internal node, and each of its actual
or virtual fields by a leaf node. For each field, you can specify whether
to track the following types of changes:

• Track Adds – track new field value when a record is added

• Track Modifies – track old and new values when the field is modified

• Track Deletes – track old field value when a record is deleted

Each node type is described in Table 94.

MDM Console Reference Guide 339

Table 94. Nodes in the Change Tracking Hierarchy

Name Table Type Description

Tables and Fields NA

Default setting for tables added to the

repository.

▪ Changes to this default setting can be

applied to all table and field nodes.

Table name All

Default setting for fields added to the table.

▪ Changes to this default setting can be

applied to all field nodes on the table.

Field name All Tracks the specific field.

Field Name
[Attributes]

Main Tracks all attributes on main table records.

[Attributes] Taxonomy
Tracks attribute records on the taxonomy

table.

[Parent] Hierarchy

Tracks when child nodes are added,

deleted, or modified within any parent node.

1

[Child] Hierarchy

Tracks when a child node’s parent changes

and whether the change was due to an add,

delete, or modify (move) operation.

[Compound

Operation]
Hierarchy

Tracks record adds, deletes, and

modifications resulting from the following

operations:

Partition Category

Consolidate Children

Merge Into

1 Tracked modify operations include renaming and re-ordering the position of

child nodes.

NOTE ►► You can only change the settings for the Change Tracking

table for an MDM repository that is mounted and stopped.

CAUTION ►► Enabling change tracking can dramatically degrade

MDM system performance when records are modified.

340 MDM Console Reference Guide

LINKS TABLE

The Links table is an MDM system table with a predefined set of fields,
and records that appear in the top-right Links pane of MDM Console.
Each record that you add in MDM Console defines a particular URL
whose syntax may include placeholders for one or more parameters.

Each URL can be used as the target of an embedded browser in the
Web tab of the MDM Data Manager, and can specify either a Web site
or a custom application. When you select a record in MDM Data
Manager, the Web tab then displays the target web page with any
record-specific values automatically passed through in the URL. This
provides a completely flexible mechanism for linking records in MDM to
the outside world, and passing MDM record or attribute data as
parameters within the URL.

NOTE ►► When you first create a new MDM repository, MDM
automatically creates the Links table (as a child of the Admin node of

the Console Hierarchy tree).

The properties for each link are listed in Table 107; all of the properties
are directly editable in the Link Detail pane.

Table 95. Link Properties

Property Description

Name The link name that appears in MDM Data Manager.

Type

Whether the link applies to records in Record or Hierarchy

mode, or to attributes in Taxonomy mode:

▪ Records – Record and Hierarchy modes
▪ Attributes – Taxonomy mode

URL The target URL (including any parameter placeholders).

NOTE ►► Each URL you add to the Links table is automatically

added to the drop-down list for the applicable configuration option in

MDM Data Manager. Specifically, those of: (1) Type Records appear
for the Web Pane URL for Selected Records option; and (2) Type

Attributes appear for the Web Pane URL for Selected Attributes option.

NOTE ►► The URL property has a special syntax for identifying

placeholders for passing parameters to the Web site or custom

application, as described in the next section.

MDM Console Reference Guide 341

URL Syntax

Each URL you define in MDM Console becomes the target of an
embedded browser in the Web tab of MDM Data Manager.

In addition, the URL has a special syntax for passing parameters to the
Web site or custom application. This syntax allows you to embed and
pass MDM table and field values of selected records or attributes for
interpretation by the target URL.

The URL syntax supports the parameters described in Table 96.

Table 96. URL Parameters

Parameter Replaced with…

Record / Hierarchy / Taxonomy modes…

<t> Current table id.

Record / Hierarchy modes only

<r>
Semi-colon delimited list of selected record ids, prepended with a
count.

<rp>
Semi-colon delimited list of selected permanent record ids, prepended
with a count.

<f:field code> URL-encoded values of the specified field.

<fn:field code> Unencoded values of the specified field.

Taxonomy mode only

<c> The category id.

<a>
Semi-colon delimited list of selected attribute ids, prepended with a
count

NOTE ►► All of the parameters above can be interpreted by a

custom application; however, only the <f:field code> and

<fn:field code> parameters are likely to be meaningful to the URL of a

typical Web site.

TIP ►► Use <fn:field code> for fields whose values are entire URLs.
If a URL value is not entered with proper encoding, however, it may

not display correctly in the Web tab or custom application.

For example, you could automatically send record data as query
parameters to Google by defining the following URL record in the Links
table:

• Name: MDM Google

• Type: Records

• URL: http://www.google.com/search?hl=en&q=<f:field code>

342 MDM Console Reference Guide

NOTE ►► In the URL above, “field code” is the id of the field of the

current table whose value(s) for the selected record(s) you want to

send to Google.

Then, from within MDM Data Manager, use the Configuration > Options

command to set the value for the Web Pane URL for Selected Records

option to MDM Google, make the Web tab the active tab, and watch

what happens when you click through each of the records.

XML SCHEMAS TABLE

The XML Schemas table is an MDM system table with a predefined set
of fields, and records that appear in the top-right XML Schemas pane of
MDM Console. Each record that you add in MDM Console identifies a
particular XML schema (.XSD) file that can be stored within the MDM
repository for use in importing and syndicating master data to and from
that repository.

The properties for each XML schema are listed in Table 97; both of the
properties are directly editable in the XML Schema Detail pane.

Table 97. XML Schema Properties

Property Description

Name The XML schema name

Filename The name of the XML schema file

URI The URI for the XML schema file

Table 98. XML Schemas Table Operations

Property Description

Add XML Schema Adds an XML schema file to the repository

Delete XML Schema Deletes the XML schema from the repository

Export XML Schema…
Exports the XML schema as an .XSD file on the

local file system

NOTE ►► The XML Schemas table is used to populate the list of

XML Schemas available to MDM Import Manager and MDM

Syndicator.

343

PART 11: MULTILINGUAL SUPPORT

This part of the reference guide contains a general overview of
multilingual support within the MDM system and a specific description of
the multilingual features of the MDM client applications. Multilingual
support allows you to store multiple languages of information side-by-
side within a single MDM repository.

MDM Console Reference Guide 345

Introduction

MDM multilingual support fully addresses all of the requirements for
multiple languages side-by-side within a single MDM repository.

It starts with an end-to-end Unicode implementation that supports both
Western and Eastern languages, reflects a data model with multiple
language layers that avoids data duplication while ensuring data
integrity, and features an innovative user interface that offers flexibility
and efficiency during the entry, editing, browsing, and publishing of
multilingual data.

Moreover, MDM multilingual support not only accommodates multiple
languages, but also all the myriad other dimensions of regionalization,
as follows:

• Multiple languages. Each MDM repository can store regional

information for one or more languages, including country-specific
versions of the same language (e.g. English [US] and English [UK]).

• Multiple regions. You can also create named regions for multiple
instance layers of the same language, for parallel support of regional
dialects, expressions, and slang.

• Multiple cultures. Even non-text data often has regional
requirements, such as when an image contains a human subject
whose ethnicity must accommodate the target audience.

• Multiple regulations. Some requirements have nothing to do with
language or culture, but rather with regulatory requirements, such as
the restriction in France on showing a photo of a hypodermic needle.

Thus, regardless of the specific requirement, MDM multilingual support
makes it possible to efficiently store all of the dimensions of audience-
specific information within a single MDM repository.

MULTI-BYTE UNICODE IMPLEMENTATION

Multilingual support adheres to and is implemented using the latest
Unicode 4.0 standard, which provides full multi-byte encoding, supports
the equivalent of code pages and double-byte languages within a single
unified architecture, and continues all the way through and to the
underlying DBMS with which MDM interfaces.

An individual MDM repository can store data for an effectively unlimited
number of languages, chosen from a list of languages and locales
recognized by the system (e.g. English [US] and English [UK]), including
both western European and Eastern languages. Each language
selection defines not only the language name, but also the underlying
character set applicable to that language, the ability to properly display
and perform data entry within the foreign character set, and other
language-specific details (such as sort order).

346 MDM Console Reference Guide

NOTE ►► Language selection does not trigger language-specific

stemming, decimal or thousands separator, or spell-check dictionary.

MULTI-LAYERED DATA MODEL

Once a repository has been defined as multilingual, MDM implements a
“multi-layered” data model to store the multilingual information.
Specifically, for each multilingual field, the single instance of each
record contains a distinct data bucket for each language, and values
can be entered for any or all of the defined languages at any time.

And because each individual record embodies all of the multilingual
information for the record, a lookup value (such as a category) or an
object (such as a text block) must be linked to and associated with a
master data record just once for all languages rather than once for each
language, avoiding unnecessary effort and potential for error.

LANGUAGE-CENTRIC VIEWS

Each user of the MDM system sees a “language-centric” view of the
repository data and metadata. For example, one user can be entering
and editing data in French while a second user is searching and
browsing the repository in Japanese.

At the same time, within the language-centric view, a multilingual
Language Detail tab within MDM Data Manager provides for multilingual
data entry and a side-by-side comparison of the multilingual data.

Finally, the inheritance scheme displays and color-codes data from
other language layers for missing data in the current language, with an
inheritance ordering for each language during data entry, editing, and
browsing, and an inheritance threshold for published catalogs.

MULTILINGUAL REPOSITORY METADATA

Within the multi-layered data model, not only the data but also all of the
MDM repository metadata can be stored in multiple languages, for a
consistent user experience in each language.

Language-specific metadata includes:

• Table names

• Field names

• Category names

• Attribute names

• Attribute text values

NOTE ►► The MDM repository name itself is non-lingual.

MDM Console Reference Guide 347

MULTILINGUAL REPOSITORY DATA

Within a multilingual MDM repository, data can be stored in multiple
languages for the applicable data types, as follows:

• Numeric fields. Naturally, numeric fields do not require a distinct
value for each language and are always non-lingual. Meanwhile,
MDM measurements are also non-lingual because they leverage
MDM’s built-in library of dimensions and units.

• Text fields. A text field can be flagged as non-lingual, so that a

single value is stored and used for all languages (such as for a part
number field), or as multilingual, so that you can store a distinct value
for each language (such as for a product name field).

• Object fields. Images, text blocks, and PDFs are automatically
multilingual. While the need for multilingual text blocks and PDFs is
obvious, perhaps not as obvious is the need for multilingual images,
which may feature text that must appear in multiple languages, or a
human subject of varying ethnicities.

NOTE ►► Boolean fields are non-lingual. However, the underlying

True and False text values, like many lookup table display fields, are

automatically multilingual.

MULTILINGUAL PUBLISHING

The MDM APIs and the library of MDM portlets/iViews both support
multilingual Web publishing by providing language-specific access to
multilingual repository data, for completely flexible presentation layers in
a multilingual environment.

MULTILINGUAL GUI SOFTWARE

Finally, the MDM Win32 tools themselves are multilingual and can be
made available with all GUI elements translated into a target language
using the MDM Language Selector tool.

NOTE ►► See “Part 8: UI Language Selection” for more information

about how to set the MDM user interface language.

REPOSITORY LANGUAGES AND LANGUAGE NAMES

MDM currently supports nearly 100 languages that are built into the
system. Each language consists of: (1) a generic language name; and
(2) a two-letter country code enclosed in square brackets ([]).

MULTILINGUAL DATA AND METADATA ELEMENTS

The metadata and data elements of an MDM repository that provide
multilingual support are summarized in Table 99.

348 MDM Console Reference Guide

Table 99. Multilingual Metadata and Data

Element Multilingual Non-Lingual

Repository metadata ▪ Table name

▪ Field name

▪ Repository name

Repository data Optionally multilingual

▪ Text

▪ Text Large

Always multilingual

▪ Boolean1

▪ Images

▪ Text Blocks

▪ Copy Blocks

▪ Text HTMLs

▪ PDFs

▪ All other data types

Taxonomy metadata ▪ Name

▪ Alias

▪ Definition

▪ Image

▪ Text Value

▪ Text Value Image

▪ Text Value Description

▪ All other properties

1 Boolean fields are non-lingual, but the underlying True and False values are multilingual.

NOTE ►► Multilingual fields can contain a value for each of the
repository languages, while non-lingual fields contain only a single

value that is not associated with any language.

MDM Console Reference Guide 349

Multilingual Basics

Basic multilingual concepts are explained in the following sections.

LANGUAGE LAYERS

When you define an MDM repository as multilingual, MDM stores the
multilingual data and metadata in multiple language layers, one for each
language. A single language repository has a single layer; a multiple
language repository has multiple layers.

The best way to understand language layers is to start by considering a
typical unstructured approach to storing multiple languages for a field by
creating multiple instances of the same field, as shown in Figure 77.

Part Number Product Color (Eng) Color (Fre) Color (Ger)

113 T-Shirt Red Rouge Rot

114 T-Shirt Green Vert Grün

115 T-Shirt Blue Bleu Blau

Figure 77. A typical table with three Color fields for three languages

The table above contains three Color fields side-by-side, one for each
language (English, French, and German), and can be successfully used
to store the multilingual color data within the table.

Unfortunately, the system would know nothing of the relationship among
the fields, so it cannot offer the user a language-centric view of the data,
and the user has no way of knowing that the fields are related (except
that the field names above have been tagged with the corresponding
language). Finally, all the field names themselves exist only in English.

Now consider the MDM approach that uses multiple language layers to
represent the multiple languages, as shown in Figure 78.

Figure 78. An MDM table with three language layers

Multiple layers efficiently organize and structure both multilingual data
and metadata, with a single Color field above containing multiple data
buckets rather than multiple Color fields that are completely unrelated,
and multiple language-specific field names for all of the fields.

 German

 French

English

350 MDM Console Reference Guide

LANGUAGE INHERITANCE

To support convenient user access to multilingual data, MDM client
applications provide a language-centric view of data within a multilingual
repository, meaning that data is presented from the point of view of a
particular language layer at a time. This single language is called the
current language, and you select it when you first connect to a
multilingual repository with an MDM client application.

NOTE ►► By contrast, you do not choose a language when you first

connect to MDM Console or to an MDM repository within MDM
Console. Instead, each repository has a current language, which is the

is the first in the repository-specific language ordering, also known as

the primary language.

NOTE ►► The language-centric view determines not only which

language of data is displayed, but also which language of metadata is

displayed, including table names, field names, and attribute names.

Now consider a multilingual field that is missing data in the current
language. In a single-language repository, the value is shown as empty
or NULL. However, MDM uses an innovative inheritance scheme to
display – and color-code – data from other language layers for data
values that are missing in the current language.

The actual value shown depends on the language inheritance defined
for the current language. The language inheritance identifies the priority
sequence of language layers from which to find a non-NULL value to
display when the current language layer is NULL.

NOTE ►► Language inheritance is a type of layer transparency that
allows individual data values to “show through” from other language

layers when the current layer is missing data.

Language inheritance is set for each language, and is defined by the
administrator as the ordering of all the other languages of the repository,
split into: (1) primary inheritance (for languages whose values are close
enough to the current language to be acceptable for publishing); and (2)
secondary inheritance (for languages whose values are too different
from the current language to be acceptable for publishing, but are
perhaps useful during data entry and/or translation).

NOTE ►► Whereas inheritance of both metadata and data within

MDM client applications is based on the language-specific ordering for
the language you choose when you first connect to the repository,

inheritance of metadata within MDM Console is based on the primary
language and the repository-specific language ordering defined for

each MDM repository (see “Modifying the Repository Languages” for

more information on repository-specific language ordering).

MDM Console Reference Guide 351

Thus, for the MDM client applications, there is the current language and
two levels of inheritance, color-coded as follows:

• Black. The value is from the current language.

• Green. The value is from a primary inherited language.

• Red. The value is from a secondary inherited language.

NOTE ►► The grids, lists, and trees in the MDM client applications all

use the three-color coding scheme. By contrast, MDM Console uses a
two-color scheme with only a single level of inheritance, with table and

field names inherited from language layers other than the primary

language for each repository displayed in green.

NOTE ►► MDM client applications display: (1) actual values from the
current language; (2) primary inherited values; and (3) secondary

inherited values. By contrast, a published catalog (e.g. an electronic
Web catalog or a printed catalog) is likely to display only: (4) actual

values; and (5) primary inherited values; but (6) hide secondary
inherited values, which are displayed in the MDM client applications

only for context during data entry and/or to assist in translation.

Consider a repository with three language layers: (1) English [US]; (2)
English [UK]; and (3) German [DE]. Both English values are typically the
same, so you can set the value for one version of English and allow the
other to inherit it. However, you do not want the English languages to
inherit German or vice versa. In this case, inheritance for each language
would be as shown in Table 100.

Table 100. Language Inheritance Example for Three Languages

Language Primary Inheritance Secondary Inheritance

English [US] English [UK] German [DE]

English [UK] English [US] German [DE]

German [DE] <none> English [US]; English [UK]

Given the above inheritance, a record with the Size field set to “Small”
for English [US] and to NULL for both English [UK] and German [DE]
would display and color-code the value from each language-centric view
as shown in Table 101.

Table 101. Language-Centric Display Example for Three Languages

Language Actual Value Inherits From Display Value

English [US] Small <actual value> Small

English [UK] NULL English [US] Small

German [DE] NULL English [US] Small

352 MDM Console Reference Guide

The terminology and behavior around inheritance in MDM Console and
in MDM client applications are summarized in Table 102.

Table 102. Inheritance: MDM Console vs. MDM Client Applications

Inheritance Item MDM Console MDM Client Applications

Language ordering Repository-specific Language-specific

Actual values Primary language Current language

Levels of inheritance One Two (primary and secondary)

Type of inherited values Metadata only Metadata and data

Color coding Black / Green Black / Green / Red

An example of inheritance in MDM Data Manager is shown in Figure 79.

Figure 79. Inheritance in MDM Data Manager

NOTE ►► MDM Data Manager displays the current language in the

title bar after the MDM repository name. If the language has not been
renamed, the language displays as “language [co]” (where “language”

is the language name and “co” is the country name). (See “Changing
the Display Name of a Repository Language” for more information on

how to rename a language.)

MDM Console Reference Guide 353

INHERITANCE LEVELS

From a technical standpoint, the value shown for a field is dependent on
which language inheritance level is selected in the particular MDM
application.

The three inheritance levels and the applications that use them are
summarized in Table 103

Table 103. Language Inheritance Levels

Level Description Sorted Results MDM Modules

Actual
Use only the current
language layer.

Sorted by any non-
empty actual value

<none>

Actual or
Primary

Use current language
layer, or if empty, the first

non-empty primary
inherited language layer.

Sorted by any non-
empty actual or primary
inherited values

(secondary inherited
values treated as
empty).

▪ Java API

Actual or
Any

Use current or primary
language layers, or if
empty, the first non-
empty secondary

inherited language layer.

Sorted by any non-
empty value, actual or
inherited.

▪ Data Manager

▪ Import Manager

▪ Syndicator

354 MDM Console Reference Guide

Quick Reference

Multilingual features are sprinkled across MDM, including MDM Console
and MDM client applications, as summarized in Table 104.

Table 104. Multilingual Quick Reference

Location Description

MDM Console

Console Hierarchy tree

Metadata is color-coded to indicate that a value is either
actual or inherited from a language layer other than the

primary language.

Language property /
Repository Detail pane

Add, rename, and delete languages, and modify the
repository-specific language ordering using the dual-list
drop-down control.

Language-specific
subproperties /

Repository Detail pane

Modify the language-specific language inheritance using
the dual-list drop-down control for each language.

Name property /
Table Detail pane

Specify the multilingual names for a table using the
multilingual drop-down edit control that replaces the
simple edit control.

Name property /
Field Detail pane

Specify the multilingual names for a field using the
multilingual drop-down edit control that replaces the
simple edit control.

Multilingual property /
Field Detail pane

Specify whether the field is multilingual; enabled only for

the applicable field types; disabled and set to Yes for
object field types.

True Value / False Value /
Field Detail pane (Booleans)

Specify the multilingual True / False values using the
multilingual drop-down edit control that replaces the
simple edit control.

Decimal Places / Show
Fractions /
Field Detail pane
(Measurements)

Specify the multilingual values using the multilingual
drop-down control that replaces the simple drop-down
control.

MDM Client Applications

Grids, Lists and Tabs

Metadata and data are color-coded to indicate that a
value is either actual or inherited from a primary or

secondary language layer.

Title bar
Displays the current language after the MDM repository
name as “language [co]” (if it has not been renamed).

Language field /
Connect to Repository dialog

Specify the current language for the current MDM client
session using the drop-down list of repository languages.

MDM Data Manager

Data grid /
Record Detail tab

View and edit actual and inherited data using the color
coding in the Record Detail tab.

Multilingual data grid /
Language Detail tab

View and edit multilingual data using a tab that displays a
row for each multilingual data element and column for

each language.

MDM Console Reference Guide 355

Location Description

Show Inherited Values option
/
Configuration Options dialog

Specify whether to display inherited values in the
Language Detail tab using the Show Inherited Language
Values option.

Language Layer operator /
Free-Form Search tab

Search for missing multilingual data using the language

layer operator, which has a operands for each type of
inheritance.

Language field /
Add Object dialogs

Import objects into the specified language layer when
creating new object records using the drop-down list of

repository languages.

Object lookup field /
Language Detail tab

Import objects into the applicable language layer of
existing object records using the object lookup field
context menu command.

Merge records data grid /
Merge Records dialog

Merge object records for different language layers and
Copy/Paste objects between language layers when

merging object records.

Languages checkbox and tab
/
Record mode Export dialog

Export multilingual record data into multiple columns

using the Record mode Export commands.

Record mode Import dialog
Import multilingual record data from multiple columns

using the Record mode Import command.

Languages checkbox and tab
/
Taxonomy mode Export

dialog

Export multilingual attribute data into multiple columns

using the Taxonomy mode Export command.

Taxonomy mode Import
dialog

Import multilingual attribute data from multiple columns

using the Taxonomy mode Import command.

MDM Import Manager

Destination Fields grid /
Map Fields/Values tab

Map between language-specific source fields and each
language layer of a non-lookup MDM multilingual field.

Language column /
Destination Fields grid / Map

Fields/Values tab

Identify the applicable language layer for expanded
instances of multilingual Text and Text Large fields.

Expand Multilingual Fields
option /
Configuration Options dialog

Specify whether to expand multilingual text fields into
multiple fields in the Destination Fields grid of the Map
Fields/Value tab.

Value Mapping Map button /
Map Fields/Values tab

Specify whether to populate missing values in the current
language layer using the pop-up menu.

356 MDM Console Reference Guide

Multilingual Operations

The following sections describe MDM Console operations for changing
the multilingual characteristics of an MDM repository. There are no
explicit commands for any of these operations. Rather, the multilingual
properties of a repository are modified in the various detail panes, as
summarized in Table 105.

Table 105. Multilingual Console Operations

Operation Description

Languages property /

Repository Detail pane
Modifies the set of repository languages.

Languages property /

Repository Detail pane

Modifies the display name of a language

defined for a repository,

Languages property /

Repository Detail pane

Modifies the repository-specific language

ordering for a repository.

Language-specific subproperty /

Repository Detail pane

Modifies the language-specific language

inheritance for a language.

Name property /

Table Detail pane
Defines multilingual names for a table.

Name property /

Field Detail pane
Defines multilingual names for a field.

Multilingual property /

Field Detail pane
Defines a field as multilingual.

NOTE ►► The following sections describe only the multilingual

aspects of the MDM Console operations listed in the table above. For a
complete description of the operations themselves, see the applicable

section in this guide.

NOTE ►► When you first create an MDM repository, it contains just a

single language by default (English [US]).

NOTE ►► Table names and field names are the metadata values that
are multilingual in a multilingual repository schema. By contrast, the

MDM repository name itself is always non-lingual.

TIP ►► After the repository has been created, you can modify the set

of languages and the multilingual properties for the repository, for each
table, and for each field, by selecting the object in the applicable object

pane and moving the focus in the corresponding object detail pane.

MDM Console Reference Guide 357

MODIFYING THE REPOSITORY LANGUAGES

An MDM repository can include any number of languages.

The Languages property in the Repository Detail pane, shown in Figure
80, displays the current repository languages in the repository-specific
language ordering as a list of languages separated by vertical bars (|).

Figure 80. Languages property

When you create an MDM repository, by default, it contains a single
language (English [US]).

You can:

▪ Add repository languages

NOTE ►► Languages should be added only when needed; using a

large number of languages might affect performance.

▪ Remove repository languages

▪ Change the repository-specific language ordering

▪ Change the display names of languages that are used in the

repository

NOTE ►► By default, the name of each language is the language
name / country combination (i.e. “language [co]”). (See “Changing the

Display Name of a Repository Language,” for information about

renaming a language.)

 To modify the languages in a repository:

1. In the Console Hierarchy tree, select the applicable Master Data

Server.

2. In the Repositories pane, select the required repository.

3. In the Repository Detail pane, double-click the Languages property.

MDM opens a dual-list drop-down control for multiple-item selection, as

shown in Figure 81. The Available Languages list displays the list of

supported languages by the repository. The Selected Languages list

displays the languages that are used in the repository.

358 MDM Console Reference Guide

Figure 81. Repository language modification

4. Modify repository languages as follows:

▪ To add repository languages, highlight them in the Available

Languages list and click the Add button.

▪ To change the display name of a repository language, highlight it

in the Selected Languages list and click the Edit button.

▪ To change the repository-specific language ordering, drag-and-

drop languages in the Selected Languages list.

▪ To remove repository languages, highlight them in the Selected

Languages list and click the Delete button.

5. Press Enter or click on the up triangle to close the drop-down control.

6. MDM prompts you to confirm the changes. Click Yes to confirm.

MDM modifies the repository languages.

NOTE ►► The first language in the repository-specific language

ordering is the primary language for the repository.

NOTE ►► When you add a new language to the repository, MDM
automatically: (1) adds the new language to the end of the secondary

inheritance for all other languages; (2) places all other languages in the
secondary inheritance for the new language; (3) adds values in the

new language for: (a) those tables whose names are fixed (e.g. the
Images and Families tables); (b) those tables and fields with a default

name that has not been changed (e.g. the Products and Categories

tables, and the Name field in each table); and (c) those Boolean values

whose default has not been changed (i.e. True and False).

NOTE ►► When you change the repository-specific language

ordering, MDM immediately refreshes the Console Hierarchy with
applicable table names based on the new primary language and/or

inheritance that is based on the new language ordering.

NOTE ►► You cannot delete the last language of a repository.

MDM Console Reference Guide 359

NOTE ►► You can press F2 to rename a language in the Selected
Languages list at any time. MDM highlights the language name for

editing. Type the display name for the language and press Enter.

DATA INTEGRITY ►► You can add multiple instances of the same
language to the same repository, but two languages cannot have the

same name. If you add a language that already exists and has not
been renamed, MDM automatically appends “(n)” to the name of the

language (where ‘n’ is the first available numeric value that will avoid a

conflict).

CAUTION ►► Deleting a language is not reversible.

CHANGING THE DISPLAY NAME OF A REPOSITORY LANGUAGE

Recall that the default name for each language is the language name
followed by the two-letter country code in square brackets ([]). For
example, the default name for United States English is English [US].

You can change the display name of a repository language as
described in this section.

 To change the display name for one or more repository languages:

1. In the Console Hierarchy tree, select the applicable Master Data

Server.

2. In the Repositories pane, select the repository whose repository

language(s) you want to rename.

3. In the Repository Detail pane, double-click on the Languages property.

MDM opens a dual-list drop-down control for multiple-item selection

(shown in Figure 81 above).

4. Select the language to rename in the Selected Languages list and click

on the Edit button, or press F2.

5. MDM highlights the language name for editing. Type the new display

name for the language and press Enter.

6. When you are finished renaming languages, press Enter or click on the

up triangle to close the drop-down control.

7. MDM prompts you to confirm the changes. Click Yes to confirm the

modification.

MDM saves the new display name for the language(s).

TIP ►► You can restore the default display name for a language by

selecting it for editing, clearing the value, and pressing Enter.

360 MDM Console Reference Guide

MODIFYING LANGUAGE-SPECIFIC LANGUAGE INHERITANCE

Each language has its own language-specific language inheritance.
Directly beneath the Languages property in the Repository Detail pane,
in the order the languages are defined for the repository, a subproperty
for each language shown in Figure 80 above displays the language
inheritance for that language as a list of the other languages separated
by vertical bars (|), with a ### separating the sets of primary and
secondary inheritance languages.

NOTE ►► The language-specific subproperties appear beneath the

Languages property only for a multilingual repository.

By editing each of the language-specific subproperties as described in
this section, you can modify the language-specific language inheritance
for each language.

 To modify the language-specific language inheritance:

1. In the Console Hierarchy tree, select the applicable Master Data

Server.

2. In the Repositories pane, select the repository whose language-

specific language inheritance you want to modify.

3. In the Repository Detail pane, double-click on the language-specific

subproperty of the Languages property.

4. MDM opens a dual-list drop-down control, as shown in Figure 82.

Figure 82. Language inheritance modification

5. Select or deselect languages from the drop-down list, as follows:

▪ To move languages from primary to secondary inheritance,

highlight them in the Secondary Inheritance list and click the “>”

button.

▪ To move languages from secondary to primary inheritance,

highlight them in the Primary Inheritance list and click the “<”

button.

▪ To move all languages to the Secondary Inheritance list, click the

“>>” button.

MDM Console Reference Guide 361

▪ To move all languages to the Primary Inheritance list, click the

“<<” button.

▪ To reorder the language inheritance within the list of primary or

secondary languages, drag-and-drop them in the applicable list.

6. Press Enter or click on the up triangle to close the drop-down control.

7. To save the new language inheritance, right-click on the Repository

Detail pane and choose Save Repository from the context menu, or

press Shift+Enter.

DEFINING MULTILINGUAL TABLE NAMES

The Name property in the Table Detail pane displays the multilingual
table names for each language in the repository-specific language
ordering as a list of names separated by vertical bars (|).

In a multilingual repository, MDM replaces the simple edit control for the
Name property with the multilingual drop-down edit control. You can use
this control to edit the multilingual table names as described below.

 To edit the multilingual table names:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. In the Tables pane, select the table you want to modify.

3. In the Table Detail pane, double-click on the Name property.

4. MDM opens a multilingual drop-down edit control with a row for each

language, as shown in Figure 83.

Figure 83. Multilingual table name modification

5. Edit the table name for each language by tabbing from row to row,

double-clicking or hitting Enter in the Value cell, and editing the name.

6. When you are finished editing the multilingual table names, press

Ctrl+Enter or click on the up triangle to close the drop-down control.

7. To save the new multilingual table names, right-click on the Table

Detail pane and choose Save Table from the context menu, or press

Shift+Enter.

362 MDM Console Reference Guide

DEFINING MULTILINGUAL FIELD NAMES

The Name property in the Field Detail pane displays the multilingual
field names for each language in the repository-specific language
ordering as a list of names separated by vertical bars (|).

In a multilingual repository, MDM replaces the simple edit control for the
Name property with the multilingual drop-down edit control. You can use
this control to edit the multilingual field names as described in this
section.

 To edit the multilingual field names:

1. In the Console Hierarchy tree, select the applicable table within an

MDM repository.

2. In the Fields pane, select the field whose multilingual names you want

to modify.

3. In the Field Detail pane, double-click on the Name property.

4. MDM opens a multilingual drop-down edit control with a row for each

language, as shown in Figure 84.

Figure 84. Multilingual field name modification

5. Edit the field name for each language by tabbing from row to row,

double-clicking or hitting Enter in the Value cell, and editing the name.

6. When you are finished editing the multilingual field names, press

Ctrl+Enter or click on the up triangle to close the drop-down control.

7. To save the new multilingual field names, right-click on the Field Detail

pane and choose Save Field from the context menu, or press

Shift+Enter.

MDM Console Reference Guide 363

DEFINING MULTILINGUAL FIELDS

Recall that only certain data types can be defined as multilingual, while
objects (i.e. images, text blocks, and PDFs) are always multilingual. You
can define the applicable data types as multilingual as defined in this
section.

 To define a field as multilingual:

• In the Field Detail pane, set the Multilingual property to Yes.

NOTE ►► The Text and Text Large data types can be optionally

defined as multilingual. The object data types are always multilingual.

NOTE ►► Boolean fields are non-lingual. However, the underlying
True and False text values, like many lookup table display fields, are

automatically multilingual. MDM replaces the simple edit control for the
True Value and False Value properties with the multi lingual drop-down

edit control.

NOTE ►► Measurement fields are non-lingual. However, the Decimal
Places and Show Fractions properties are automatically multilingual.

MDM replaces the simple drop-down control for these properties with
the multilingual drop-down control.

364 MDM Console Reference Guide

MDM Language Selector Tool

MDM multilingual support includes the ability to use the MDM Win32
tools with all GUI elements appearing in any supported language.

You can individually set the language for each Windows user on each
client workstation using the MDM Language Selector tool, as described
in this section.

NOTE ►► The MDM Language Selector tool is completely separate

from MDM Console.

 To start the MDM Language Selector tool from either the Desktop or

the Start menu and set the language for the current Windows user:

1. Login to Windows as the user whose UI language you want to set.

2. From the Desktop, double-click the MDM Language Selector icon

(shown at left) or from the Start menu, choose Programs > SAP MDM >

SAP MDM Language Selector.

3. MDM opens the Set User Language Dialog shown in Figure 85.

Figure 85. Set User Interface Language dialog

4. Choose the user interface language from the list of languages and

press OK to close the dialog. MDM sets the language for the user.

NOTE ►► MDM stores the user interface language setting in the
Windows registry of the client workstation on which you set the

language for the current user.

365

PART 12: REMOTE SYSTEMS AND MDM

This part of the reference guide contains a general overview of remote
systems and MDM, and a specific description of the related features
within MDM Console, including remote systems, key mapping, and
ports, which allow MDM to synchronize data between itself and other
systems.

MDM Console Reference Guide 367

Remote Systems and MDM

MDM has special features that enable it to synchronize data between
itself and other systems, as described in the following sections.

WHAT IS A REMOTE SYSTEM?

Any logical system that can supply data to or receive data from MDM is
known as a remote system.

MDM can import data from remote systems and create/update master
data objects using that data. Master data objects include main table
records, subtable records / lookup values, and text attribute text values.

When data is changed in a remote system, the changes can be
imported into MDM. Using previously created structural and key
mappings, in conjunction with dynamically reconfigurable
transformations and mappings, the data is applied to the master data
objects. All changes to master data objects are tracked.

At any time, master data objects can then be distributed to all known
remote systems through a process known as syndication. This involves
determining which master data objects need to be distributed and
converting them into a form that the remote system can understand.

NOTE ►► The remote system concept supports a number of features
related to consolidation and distribution by bundling all sorts of useful

information related to a particular outside system, including key

mapping, import maps, syndication maps, and various timestamps.

KEY MAPPING

A remote system’s objects are mapped to master data objects within
MDM using key mapping. A key mapping maintains the relationship
between the remote system’s identifier (or key) for an object and the
corresponding master data object in MDM.

A key in MDM is a remote system-specific and object-type-specific
unique identifier. Different remote systems can have their own separate
collection of keys. Within a remote system, each type or collection of
objects can have its own separate collection of keys as well. Key
mappings are subject to the requirement that two different objects of the
same type from the same remote system cannot have the same key.

Remote system objects of a particular type can map only to MDM
objects of a particular type. A key can map to only one MDM object.
However, an MDM object may map to multiple keys from the same
client system. When an MDM object maps to multiple keys, one of the
keys is marked as the default key. The default key is the one that is
used when syndicating a reference to the mapped MDM object.

368 MDM Console Reference Guide

For example, for a particular remote system, the two color objects Light
Red and Dark Red both map to the MDM object Red. An MDM product
object Shirt has a Color attribute set to Red. When this Shirt object is
syndicated back to the remote system, the default key is used to choose
the value to syndicate from the two objects Light Red and Dark Red.

MDM objects that can be mapped to remote system keys include user-
defined table records, attribute definitions, and text attribute text values.
Key mapping must be enabled on each collection of objects for MDM to
maintain the keys.

REMOTE SYSTEMS TABLE

The Remote Systems table is a system table under the Admin node in
the Console Hierarchy in MDM Console. It contains information about all
the remote systems known to MDM. You can manually add, modify, and
delete remote systems for an MDM repository by editing the remote
system records of the Remote Systems table.

The two key properties of a remote system are:

• Name. This is the display name of the remote system that you can
choose. The name must be unique for all remote systems for an
MDM repository.

• Type. This determines whether the remote system can supply data
for import, receive data from syndication, or both.

NOTE ►► Every MDM repository contains a default remote system

named MDM of type Inbound/Outbound that cannot be edited or
deleted. This remote system is used for changes originating from all

MDM client applications except the MDM Import Manager and for ad

hoc port-based Import Manager imports and Syndicator exports.

NOTE ►► See “Remote Systems Table” for more information on the

Remote Systems table.

NOTE ►► The MDM Import Manager requires that you identify a

remote system as the source of imported data. You can select the
built-in remote system named MDM or any user-defined remote

system of type Inbound or Inbound/Outbound. Key mappings for the

selected remote system will be updated where applicable.

NOTE ►► The MDM Syndicator requires that you identify a remote
system as the target of syndicated data. You can select any remote

system defined with type Outbound or Inbound/Outbound. Key

mappings from the selected remote system will be used where

applicable.

MDM Console Reference Guide 369

[REMOTE SYSTEM] AND [REMOTE KEY] FIELDS

MDM uses the remote systems you define in the Remote Systems table
to store and maintain key mapping information for each record or text
attribute. It does this using a virtual “key mapping” field that you never
see in MDM Console or any of the MDM client applications.

This virtual key mapping field is very much like a qualified lookup field
into a virtual key mapping qualified lookup table. Each record of the
virtual lookup table consists of just two fields:

• [Remote System]. A single-valued Text field that contains the

name of the remote system. This is a normal field.

• [Remote Key]. A single-valued Text field that contains a key value
for the corresponding remote system. This is a qualifier field.

In effect, each Remote Systems table record becomes a record of the
key mapping qualified lookup table, and each actual key mapping
becomes a link of the key mapping qualified lookup field, one per

[Remote System] / [Remote Key] value pair, as illustrated in Figure 86.

SKU Name Lookup [Key Mapping]

213 Widget MDM; 112

 CRM; 103

 R/3; 55-77

Figure 86. Key Mapping information stored in virtual lookup field

The [Remote System] and [Remote Key] fields are normally not visible
in the MDM client applications; however, they do appear in several
places in each application:

• MDM Data Manager. Both fields: (1) appear in the File > Export
dialogs in Record mode for exporting value pairs; (2) are recognized

by the File > Import dialog in Record mode for importing value pairs;

and (3) appear in the Edit Key Mappings dialogs in both Record
mode and Taxonomy mode, for viewing and editing value pairs.

• MDM Import Manager. You choose a [Remote System] when you
enter the MDM Import Manager (or you choose one indirectly by

selecting a map), and [Remote Key] appears in the Destination
Hierarchy tree, the list of Destination Fields in the Map Fields/Values
tab, and the Value Matching lists in the Match Records tab.

• MDM Syndicator. You choose a [Remote System] when you enter
the MDM Syndicator (or you choose one indirectly by selecting a

map), and [Remote Key] appears in the list of source fields for
syndication. You can also edit key mappings for individual records
from within the Syndicator.

370 MDM Console Reference Guide

REMOTE SYSTEM SEMANTICS

Remote systems conform to the following semantics:

• A remote key represents an identifier (key) of an MDM object within a
remote system. The remote system that issues the key is known as a
remote system.

• A remote system may issue multiple unique keys to represent the
same object but may not issue the same key to two different objects.
Keys issued by different remote systems do not have to be unique.

• Main table records, subtable records, and text attributes may be

flagged to store remote keys (Key Mapping=Yes) in MDM Console

(for tables) or in Taxonomy Mode (for text attributes).

• No two records within a table and no two text attribute text values

within a text attribute domain may have the same remote key for the
same remote system.

NOTE ►► To enforce this uniqueness constraint, if MDM is asked to

associate a remote key that already exists with a different record or
text attribute text value, it will remove the key from the original record

or text value before making the new association.

MDM Console Reference Guide 371

Ports and MDM

MDM ports are an integral part of sending and receiving data from
remote systems.

WHAT IS A PORT?

With remote systems as a foundation, an MDM port encapsulates all of
the configuration and logistical information associated with inbound and
outbound processing of data from these remote systems.

In so doing, it simplifies the process of: (1) delivery and consolidation of
raw data from remote systems into MDM using the MDM Import
Manager; and (2) extraction and distribution of data from MDM to
remote systems using the MDM Syndicator.

In each case, the port represents the logical point of contact between
MDM and the outside world (e.g. XI or a user of the MDM Import
Manager). Within the MDM Import Manager and MDM Syndicator, it
represents the physical staging location of data and a logical handle by
which to identify all of the encapsulated information.

NOTE ►► Along with simplifying the user interaction, ports also lay
the foundation for future automation of the consolidation and

distribution processes within MDM.

PORT BENEFITS

Ports are designed to eliminate inbound and outbound processing
complexity and the opportunity for user error by eliminating the need for
users to make the following decisions:

Inbound (MDM Import Manager)

• Select the remote system that originated the data.

• Identify the location where source data files are waiting to be loaded.

• Select a source data file.

• Select the applicable MDM Import Manager map.

Outbound (MDM Syndicator)

• Select the remote system that will receive the data.

• Select the applicable MDM Syndicator map.

• Identify the location where data files should be placed for delivery.

372 MDM Console Reference Guide

As manual selections, any of the decisions above can result in an error,
which could lead to incorrect or incomplete processing. By eliminating
these manual selections, ports reduce the likelihood of errors.

PORTS AND THE FILE SYSTEM

The files associated with ports are stored in a shared file system
location with a fixed directory structure beneath a configurable root. The
root must be accessible to both MDM and its location is specified in the

mds.ini file. The fixed directory structure beneath the root is as follows:

Inbound (MDM Import Manager)

root/DBMSinstance_DBMStype/RepositoryName/Inbound/

 ClientSystem/PortName/Ready

root/DBMSinstance_DBMStype/RepositoryName/Inbound/

 ClientSystem/PortName/Archive

root/DBMSinstance_DBMStype/RepositoryName/Inbound/

 ClientSystem/PortName/Status

Outbound (MDM Syndicator)

root/DBMSinstance_DBMStype/RepositoryName/Outbound/

 ClientSystem/PortName/Ready

root/DBMSinstance_DBMStype/RepositoryName/Outbound/

 ClientSystem/PortName/Archive

root/DBMSinstance_DBMStype/RepositoryName/Outbound/

 ClientSystem/PortName/Status

where:

• root is the configurable root.

• RepositoryName, ClientSystem, and PortName are the actual names
configured in MDM Console (and invalid file name characters are
replaced by the percent symbol (%)).

• DBMSinstance is the network identifier used to specify the DBMS

instance name and DBMStype is the four-character identifier for the
DBMS type (i.e. MSQL, ORCL, IDB2).

PORTS TABLE

The Ports table is an MDM system table with a predefined set of fields,
and records that appear in the top-right Ports pane of the MDM
Console. Each record that you add in MDM Console defines a particular
port for inbound and outbound processing of MDM data.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates the Ports table (as a child of the Admin node of

the Console Hierarchy tree).

MDM Console Reference Guide 373

Table 107. Port Properties

Property Description

Sequence1
The customizable order in which MDIS processes the
automatic inbound ports. The default sequence is the
order in which the ports were created.

Name The port name.

Code The port code.

Type

Whether the port can supply or receive data:

▪ Inbound – can only supply for import

▪ Outbound – can only receive from syndication

▪ Becomes read-only the first time the port is saved

Remote System

The applicable remote system.

▪ Drop-down list of remote systems

▪ Limited to remote systems of same type as the port

Map

The applicable map.

▪ Drop-down list of maps for the chosen Remote System

▪ Limited to import maps for Inbound ports; and

syndication maps for Outbound ports

Format1

The format of the source data for Inbound ports:

▪ Fixed Text – fixed width ASCII text files
▪ Delimited Text – delimited ASCII text files

▪ Access – Access files
▪ Excel – Excel files

▪ XML Schema – XML Schema

 Columns1

The width of fields in the source table.

▪ Entered as semi-colon delimited list (e.g. 4;7;9)

▪ Use a colon to separate differing header field widths

from data field widths (e.g. 25;50;10:4;7;9)

▪ Format=Fixed Text only

 Delimiter1

The delimiter character.

▪ Typed character or “\t” for Tab

▪ Format=Delimited Text only

 XML Schema1

The applicable XML schema.

▪ Drop-down list of XML schemas

▪ Format=XML Schema only

Processing Type

The type of processing:

▪ Manual – files processed manually

▪ Automated – files auto-processed by service

374 MDM Console Reference Guide

Property Description

 Processing Interval2

The frequency of automated syndications to the port:

▪ Continuous

▪ Hourly
▪ Daily

▪ Weekly

▪ Format=Automatic only

 Next Syndication Date2
The next earliest syndication date to the port.

▪ Processing Interval=Hourly, Daily or Weekly only

 Next Syndication Time2
The next earliest syndication time to the port.

▪ Processing Interval=Hourly, Daily or Weekly only

File Aggregation Count1
The number of import files to aggregate for batch
processing.

Block on Structural
Exceptions1

Whether the port is blocked after a structural exception is
found in an import file.

Status1

The read-only status of the port:

▪ Empty – port is ready; nothing waiting

▪ Has Data – file waiting

▪ Has Exceptions – file and/or exceptions waiting
▪ Blocked – port is blocked

Active Whether the port is enabled.

1 Available on inbound ports only.
2 Available on outbound ports only.

Editing the Sequence of Inbound Ports

 To edit the order in which MDIS processes automatic inbound ports:

1. Right-click on the Ports table and choose Sequence.

2. In the Port Sequence dialog, drag ports up and down the list to achieve
the desired sequence (ports are processed in order from the top of the

list) and click OK.

The Sequence column displays the new sequence.

MDM Console Reference Guide 375

Remote System Operations

The following sections describe MDM Console operations for managing
the remote systems, key mapping, and ports of an MDM repository, as
summarized in Table 108.

Table 108. Remote System Console Operations

Operation Description

Remote Systems table /

Console Hierarchy tree

Manages the set of known remote systems for the

MDM repository.

Key Mapping property /

Table Detail pane

Specifies whether MDM should maintain key

mappings for the table.

Attribute Definition Key
Mapping property /

Table Detail pane

Specifies whether MDM should maintain key

mappings for attribute definitions.

Ports table /

Console Hierarchy tree
Manages the set of ports for the MDM repository.

REMOTE SYSTEMS TABLE

Each record that you add in MDM Console defines a particular remote
system that can supply data to or receive data from MDM.

NOTE ►► When you first create a new MDM repository, MDM

automatically creates a remote system named MDM of type

Inbound/Outbound that cannot be edited or deleted.

 To manage the remote systems for an MDM repository:

1. In the Console Hierarchy tree, open the Admin node of the applicable

MDM repository and select Remote Systems.

2. In the Remote Systems and Remote System Detail panes, add,

modify, or delete remote system records.

CAUTION ►► Be careful when deleting a remote system, which will
remove all key mappings and change tracking for that remote system.

Adding back the remote system later will not restore the key mappings

and will require them to be created again. It will also cause the first
syndication to export all records rather than just the records that have

changed since the previous syndication.

The properties for each remote system are listed in Table 109; all of the
properties are directly editable in the Client Detail pane.

376 MDM Console Reference Guide

Table 109. Remote System Properties

Property Description

Name The remote system name within MDM.

Code The remote system code.

Type

Whether the remote system can supply or receive data:

▪ Inbound – can only supply for import
▪ Outbound – can only receive from syndication
▪ Inbound/Outbound – can both supply and receive data

Suppression Mode

When unchanged records are suppressed from syndication:

▪ Remote System – after first syndication to the remote system

▪ Port – after syndication to each port on the
 remote system

Changing the suppression mode clears all previous syndication

timestamps in the repository, meaning no records will be
suppressed from syndication until they have been re-syndicated

under the new suppression mode.

Key Generation

Key generation for new records on the remote system:

▪ None – new records will not have keys

▪ Range – generate keys in the specified range
▪ Qualified Range – generate keys on a per-value basis

 From
The starting value for Range key generation (integer).

▪ Key Generation=Range only

 To
The ending value for Range key generation (integer).

▪ Key Generation=Range only

 Lookup Table

The lookup field for Qualified Range key generation.

▪ Drop-down list of single-valued lookup fields

▪ Key Generation=Qualified Range only

 Qualified Range

From and to values for each lookup table value.

▪ Entered using Qualified Range Key Generation dialog

▪ Displayed as “[NULL]=[10:20]; Cars=[30:40]; …”

▪ Key Generation=Qualified Range only

Used for Exchange

of Personal Data
Used for the exchange of personal data.

Key Generation

When a master data object is distributed by MDM to a remote system,
and the master data object does not already exist in that remote system,
MDM must generate a key that maps the master data object to its
matching record in the remote system.

The Key Generation property of the Remote Systems table allows the
MDM administrator to specify how keys should be generated.

MDM Console Reference Guide 377

Key generation for new records can be specified as follows:

• None. New records will not have keys.

• Range. MDM automatically generates keys based on values you
specify for the From and To properties.

• Qualified Range. MDM automatically generates keys for the
specified single-valued lookup field based on values you specify
using the Range property.

NOTE ►► Keys are generated at time of syndication.

NOTE ►► The maximum length for generated keys is 18 digits.

NOTE ►► To change the range of existing key values, first set Key

Generation to None to wipe out existing key values and then set it back

to Range and enter the new From and To range values.

You can specify Qualified Range values by selecting the single-valued
lookup field from the drop-down list and specifying From and To range
values for each lookup table value, as described below.

 To specify Qualified Range values for a remote system:

1. In the Clients pane, select the remote system for which you want to

specify the qualified range key generation values.

2. In the Remote System Detail pane, double-click on the cell
corresponding to the Key Generation property and select Qualified

Range from the drop-down list of values.

3. In the Remote System Detail pane, double-click on the cell
corresponding to the Qualified Range property to open the Qualified

Range Key Generation dialog.

4. Specify a non-overlapped range of from and to values for every single

lookup value and then click OK to close the dialog.

5. Press Shift+Enter to save the changes for the remote system.

SPECIFYING KEY MAPPING FOR A TABLE

You can use the Key Mapping table property to specify whether MDM
should maintain key mappings for the records of a table, as described in
this section.

 To specify key mapping for a table:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. In the Tables pane, select the table for which you want to specify key

mapping.

378 MDM Console Reference Guide

3. In the Table Detail pane, double-click on the Key Mapping property and

choose whether to maintain key mapping:

▪ Yes – enable key mapping

▪ No – disable key mapping

4. Press Enter or click on the up triangle to close the drop-down control.

5. MDM enables or disables key mapping for the selected table.

CAUTION ►► Be careful when turning off key mapping for a table,

which will remove all key mappings for the records of the table. Turning
key mapping back on later will not restore the key mappings and will

require them to be created again.

SPECIFYING KEY MAPPING FOR ATTRIBUTE DEFINITIONS

You can use the Key Mapping table property to specify whether MDM
should maintain key mappings for attribute definitions, as described in
this section.

 To specify key mapping for attribute definitions:

1. In the Console Hierarchy tree, select the applicable MDM repository.

2. In the Tables pane, select the taxonomy table.

3. In the Table Detail pane, double-click on the Attribute Definition Key

Mapping property and choose whether to maintain key mapping:

▪ Yes – enable key mapping

▪ No – disable key mapping

4. Press Enter or click on the up triangle to close the drop-down control.

5. MDM enables or disables key mapping for attribute definitions.

CAUTION ►► Be careful when turning off key mapping, which will
remove all attribute definition key mappings. Turning key mapping

back on later will not restore the key mappings and will require them to

be created again.

379

PART 13: MDM UOM MANAGER

This part of the reference guide contains a description of the MDM UOM
Manager (Unit of Measure Manager). The MDM UOM Manager is a
separate MDM application that allows you to create and manage a list of
user-defined physical dimensions and units of measure for an MDM
repository (which augment the built-in dimensions and units) and also to
override some of the elements that comprise the definition of built-in
dimensions and units (such as the unit suffix and fraction display).

From MDM 7.1 SP09, we recommend that you manage dimensions and
units of measurement from the MDM Console interface. For more
information, see Managing Units of Measure.

MDM Console Reference Guide 381

Introduction

MDM currently includes built-in support for over 70 different physical
dimensions and over 750 different units of measure, along with
conversion ratios, synonyms for each unit, and so on.

Using this built-in library of dimensions and units, MDM features a
compound data type for storing physical measurements that combines a
numeric value with a unit of measure. This allows you to associate a
physical dimension with a measurement field or numeric attribute, and
then to assign to every numeric value a unit of measure chosen from
the list of units applicable to that dimension.

MDM’s built-in library then allows MDM to convert between different
units, for proper comparison and sorting of numeric values with different
units within a list. It also enables measurement search, which
automatically converts typed text values that represent measurements
between different physical units, so you can find equivalent
measurement values even when the value you type has a different unit
from how it is stored in the MDM repository. For example, the
measurement value “30 inches” stored in the repository can be found as
any of: 30”, 30 in, 2 ½ feet, 2-1/2 ‘, 2.5 ft, 2 feet 6 inches, 76.2
centimeters, 762 mm, or 0.762 meter.

The MDM UOM Manager (Unit of Measure Manager) allows you to
create and manage a list of user-defined physical dimensions and units
of measure for an MDM repository (which augment the built-in
dimensions and units). It also allows you to override some of the
elements that comprise the definition of built-in dimensions and units
(such as the unit suffix and fraction display). Finally, to ensure system
integrity, others components of the definition of built-in units cannot be
modified.

NOTE ►► The MDM UOM Manager is completely separate from

MDM Console.

382 MDM Console Reference Guide

Getting Started

Before you begin, the MDM UOM Manager needs to connect to an
MDM repository. When you launch the MDM UOM Manager, the
Connect to MDM Repository dialog opens and prompts you to supply
repository connection information, as described in this section.

 To start the MDM UOM Manager from either the Desktop or the Start
menu and connect to an MDM repository:

1. From the Desktop, double-click the MDM UOM Manager icon (shown

at left) or from the Start menu, choose Programs > SAP MDM > SAP

MDM UOM Manager.

2. When the Connect to MDM Repository dialog appears, fill in the

appropriate connection information.

3. Click OK. After a few seconds, the MDM UOM Manager main window

comes up with the resizable tri-pane screen shown in Figure 87.

Figure 87. UOM Manager main screen

NOTE ►► The contents of the two right panes depend upon your

selection in the left pane.

NOTE ►► The Connect to MDM Repository dialog retains the logon

information entered for the previous connection. The next time you run

the application, you need only click OK to connect.

MDM Console Reference Guide 383

The left pane is the Dimensions Hierarchy pane, which displays a
hierarchical tree containing two roots: (1) System Dimensions; and (2)
User Dimensions. When you select a particular node in the tree, the
MDM UOM Manager behaves as follows:

• Either root. When you select either root in the tree, the two right
panes are the Dimensions and Dimension Detail panes, which allow
you to work on the definition of a dimension.

• Any dimension. When you select any dimension in the tree
underneath either root, the two right panes are the Units and Unit
Detail panes, which allow you to work on the units of the dimension.

NOTE ►► Regardless of the selection in the left pane, the upper-right

pane is always a read-only grid whose cells are organized into sortable
columns, while the bottom-right pane displays editable information for

the current selection in the upper-right pane.

TIP ►► You may connect to another MDM repository without exiting

the MDM UOM Manager. From the main menu, choose File >

Reconnect to open the Connect to MDM Repository dialog and connect

to a different repository.

NOTE ►► All main menu commands referred to in this document

have equivalent right-click menu functionality.

NOTE ►► To save modifications, click Shift-Enter, or click on another

location outside the detail pane.

NOTE ►► All modifications, except for restoring MDM system units,

are instantly displayed on the MDM UOM Manager screen. However,
to refresh the view in MDM Data Manager, you must first stop and

restart the MDM repository.

384 MDM Console Reference Guide

Find Functionality

Find functionality is available from any location within the application
and is custom-tailored for use in the MDM UOM Manager. To open the

Find dialog shown in Figure 88, click the Find toolbar button (shown at

left), or from the main menu, choose Edit > Find.

Figure 88. Find dialog

After you type in a search string, the application matches results for
names of dimensions as well as names and suffixes of units. In addition,
you can search for synonyms, the additional names by which the
system recognizes a unit. Use this option to determine whether a
synonym already exists in the system, since unit names identical to
existing synonyms are not allowed.

NOTE ►► To search for a synonym double click the Search in field to open

the drop-down control, and select Unit. You must select only Exact in the Find

option box and Synonym in the Unit Search box.

To continue searching for the next sequential result that matches the

current string, click the Find Next toolbar button (shown at left), or from

the main menu, choose Edit > Find Next.

MDM Console Reference Guide 385

Working with Dimensions

Dimensions are divided into two types:

• System dimensions. These are the dimensions that are
permanently built into every MDM repository along with their system-
defined units. Modification of these dimensions is therefore limited:
you can edit the dimension name, add and edit units, and remove
user-defined units, but you cannot add or remove a dimension to or
from this list, or remove system-defined units.

• User-defined dimensions. These are the new dimensions that you
can add to augment the list of system dimensions for an MDM
repository. You are free to define all of the properties of each user-
defined dimension, as well as its list of units, and the properties of
each of its units.

Each dimension has the properties shown in Table 110.

Table 110. Dimension Properties

Property Description Value

Name The name of the dimension as it
appears in MDM applications.

Typed alphanumeric.

Convertible Whether values are converted
among the dimension’s units.

Yes/No (enabled only for user
dimensions).

You can manage the system and user-defined dimensions as described
in this section.

 To add a dimension to the User Dimensions root:

1. Select the User Dimension root in the Dimensions Hierarchy pane.

2. Click the Add toolbar button (shown at left), or from the main menu,

choose Dimension > Add Dimension.

3. MDM creates a new dimension with a single new unit. The default
name “New Dimension (n)” is added under the User Dimensions root in

the Dimensions Hierarchy pane.

NOTE ►► To open the list of units, click on the new dimension under

the User Dimensions root.

386 MDM Console Reference Guide

 To edit the properties of a dimension:

1. Select the dimension in the Dimensions pane.

2. In the Dimension Detail pane, edit the properties whose values you

wish to change.

NOTE ►► System dimensions with modified names (or to which units

have been added) are highlighted in bold in the Dimensions Hierarchy

tree.

TIP ►► You can use the Esc key before saving modifications to text

fields to revert to the previously saved text.

 To remove a user-defined dimension from the Dimensions Hierarchy:

1. Select a dimension.

2. Click the Remove toolbar button (shown at left), or from the main

menu, choose Dimension > Remove Dimension.

3. The dimension and all its defined units are deleted from the MDM

repository.

NOTE ►► You will be unable to remove a dimension that contains

units that are in use by a measurement field or attribute value.

MDM Console Reference Guide 387

Working with Units

Each unit has the properties shown in Table 111.

Table 111. Unit Properties

Property Description Value

Name The name of the unit as it
appears in MDM applications.

Typed alphanumeric (all values are
permitted except “None”)

Suffix The characters that are appended
to a numeric value when the
measurement value is displayed.

Typed alphanumeric (include the
space before the suffix if it is to
appear after the numeric value).

Fraction
Type

Whether values for the unit are
displayed as fractions when the

Show Fractions option has been
selected for the field or attribute.

Drop-down choice:

▪ No Fractions. Always displays
values as integer or decimal.

▪ Fractions of 2. For absolute values
between 0 and 999,999, allows
fractional display of fractional

powers of 2 from ½ to 1/128
(including all numerator values,

such as ¾, 5/16, and 27/64).

▪ All Fractions. For absolute values
between 0 and 999,999, allows
fractional display of fractional

powers of 2 (above), the “odd”
fractions 1/3, 2/3, 1/5, 2/5, 3/5,
4/5, 1/6, and 5/6, and the

fractions “1/x” where ‘x’ ranges
from 7 to 100 in increments of

1 (e.g. 1/7, 1/15, and 1/78);
from 100 to 1000 in increments
of 50 (e.g. 1/150, 1/250, and

1/500); and from 1000 to 2000
in increments of 100 (e.g.
1/1100, 1/1200, and 1/1300).

Position Whether the suffix will be
displayed before or after the
numeric value.

Drop-down choice:

▪ After Numeric Value. Displays the
suffix after the numeric value.

▪ Before Numeric Value. Displays
the suffix before the numeric

value.

Factor The number by which to multiply
a measurement value when
converting to the universal unit for
purposes of comparison.

Numeric.

Pre-Offset The value to be added to the
measurement value before
multiplying by the Factor.

Numeric.

Use Log Whether to take the log base 10
of the measurement value plus

the Pre-Offset before multiplying
by the Factor.

Boolean.

388 MDM Console Reference Guide

You can manage the units for a dimension as described in this section.

 To add a unit:

1. Select a dimension in the Dimensions Hierarchy pane so that the two

right panes become the Units and Unit Detail panes as shown below.

Figure 89. Units and Unit Detail panes

2. Click the Add toolbar button (shown at left), or from the main menu,

choose Unit > Add Unit.

3. MDM creates a new unit for the current dimension. The default name

“New Unit (n)” is added to the list of units in the Units pane.

 To edit unit definitions:

1. Select a unit in the Units pane, and edit its properties in the Unit Detail

pane.

NOTE ►► Unit Name cannot be identical to any existing synonym,

across all dimensions.

NOTE ►► Unit Name and Unit Suffix are unique within a dimension,
but can be duplicated among dimensions. A blank value is the only

instance where a duplicate value is allowed for more than one suffix.

2. Double-click the Fraction Type field to open the drop-down control, and

select one of the options to define the fractions setting.

MDM Console Reference Guide 389

3. Double-click the Position field to open the drop-down control, and

select one of the options to define the Suffix position in relationship to

the numeric value.

NOTE ►► The relationship between the remaining fields (Factor, Pre-
Offset and Use Log) corresponds to the following function that converts

values to a normalized value for purposes of comparison:

Log10 (value + Pre-Offset) x Factor

These fields are available if the dimension that contains the unit has

been defined as being convertible. Before you begin, define a base
universal value and define all other units in relation to this value, as

shown in below.

4. Double-click the Factor field, and enter a factor.

5. Double-click the Pre-Offset field, and enter a pre-offset.

6. Double-click the Use Log field to open the drop-down control, and

choose Yes from the list to use the log base.

Table 112. Sample Entries for a Pair of Units

Unit Factor Pre-Offset Use Log

Celsius 1 0 No

Fahrenheit 0.555555555555556 -32 No

 To restore MDM system unit default values:

1. Select a unit in the Units pane.

2. From the main menu, choose Unit > Restore MDM System Unit. All
default values for the current unit are restored; the changes are

viewable only after the MDM repository is restarted.

NOTE ►► Only modified system units that appear in red type may be

restored. Units appearing in bold type are user-defined, and are

therefore not restorable.

CAUTION ►► This process is irreversible and any changes you have

made will be irretrievable.

391

PART 14: DATA PROTECTION AND
PRIVACY

This part of the reference guide contains a general overview of Data
Protection and Privacy (DP&P) within MDM Console.

392 MDM Console Reference Guide

Introduction

MDM Console fully addresses the requirements for the protection of
personal data and privacy.

It allows you to maintain personal master data in order to comply with
legal requirements regarding the use, retention, and destruction of
personal data for information that is maintained in the system.

This includes the blocking of stored personal data after the residence
period by limiting the access, and the deletion of personal data
(including personally identifiable information) and the destruction of
stored personal data after the retention period.

NOTE ►► Use CLIX to perform Console operations from the

command line (see help.sap.com/nwmdm71 > MDM CLIX

Commands for more information).

DATA BLOCKING AND DESTRUCTION

Personal data blocking indication (End of Purpose and End of
Retention) is supported in main tables via the property Personal Data.

Roles

Two roles, Data Privacy Specialist and External Auditor, are required to
maintain personal data indication, block and unblock, or destroy
personal data records.

• Block data – Calculates the block status using the block indicator

and End of Purpose from all relevant systems. This will update

the default ‘MDM’ system with the blocking indication.

• Unblock data – Unblocks records using Data Manager or APIs.

• Destroy data – Deletes all blocked main records where the End

of Retention date has been reached. Note that records that are

referenced from checked out or protected records from other

main tables will be destroyed unless the referenced records are

checked in or unprotected.

These operations are triggered by authorized users:

 To block and destroy personal data:

1. Choose DPP > Block Data or Destroy Data and select the Main Table

from the drop-down list.

MDM Console Reference Guide 393

Main Table Properties

The Personal Data property is located in the Table Detail in the main
tables only.

Remote systems will be added to the Personal Data Indication field in
Data Manager only if Key Mappings is set to Yes, and the remote
system is selected for exchanging personal data between MDM and the
remote system.

