
PUBLIC
SAP Data Services
Document Version: 4.2 Support Package 12 (14.2.12.0) – 2020-02-06

Text Data Processing Extraction Customization
Guide

©
 2

02
0

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Text Data Processing Extraction Customization Guide. 4

2 Introduction. 5
2.1 Who Should Read This Guide. 5
2.2 About This Guide. 5

3 Using Dictionaries. 6
3.1 Entity Structure in Dictionaries. 6

Generating Predictable (Standard) Variants. 7
Custom Variant Types. 8
Entity Subtypes. .8
Variant Types. 8
Wildcards in Entity Names. 9

3.2 Creating a Dictionary. .10
3.3 Extraction Dictionary Syntax. 10

Dictionary XSD. 10
Guidelines for Naming Entities. .14
Character Encoding in a Dictionary. 14
Dictionary Sample File. 15
Dictionary Source Format. 15

3.4 Preparing a Dictionary for Use. 19
Command-line Syntax for Compiling a Dictionary. 20

3.5 Customization of Sentiment Analysis Dictionaries. 22
Whitespace Language Sentiment Analysis Customization. 23
Nonwhitespace Language Sentiment Analysis Customization. 25

4 Using Extraction Rules. 28
4.1 About Customizing Extraction. 28
4.2 Understanding Extraction Rule Patterns. 29

CGUL Elements. .30
CGUL Conventions. .32

4.3 Including Files in a Rule File. 32
Using Predefined Character Classes. 33

4.4 Including a Lexicon in a Rule File. .33
4.5 CGUL Directives .35

Writing Directives. 35
Using the #define Directive. .36
Using the #subgroup Directive. 37

2 P U B L I C
Text Data Processing Extraction Customization Guide

Content

Using the #group Directive. 38

Using Prefixes in a #group Directive. 41

Using Items in a Group or Subgroup. 43

4.6 Tokens. .44

Building Tokens. 44

4.7 Expression Markers Supported in CGUL. 47

Paragraph Marker [P]. 48

Sentence Marker [SN] .48

Noun Phrase Marker [NP] . 49

Clause Marker [CL]. 49

Clause Container [CC] .49

Context Marker [OD]. 50

Entity Marker [TE]. 51

Unordered List Marker [UL]. 52

4.8 Writing Extraction Rules Using Context Markers. .52

4.9 Regular Expression Operators Supported in CGUL. 53

Standard Operators Valid in CGUL. .53

Iteration Operators Supported in CGUL. 59

Grouping and Containment Operators Supported in CGUL. 62

Operator Precedence Used in CGUL. 64

Special Characters. 65

4.10 Match Filters Supported in CGUL. 65

Longest Match Filter. 66

Shortest Match Filter (?). 66

List Filter (*). 67

4.11 Preparing Extraction Rules for Use. 68

5 CGUL Best Practices and Examples. 70

5.1 Best Practices for Rule Development. 70

5.2 Common Syntax Errors in Custom Rules. 73

5.3 Examples For Writing Extraction Rules. 73

Example: Writing a simple CGUL rule: Hello World. 74

Example: Extracting Names Starting with Z. 74

Example: Extracting Names of Persons and Awards they Won. 75

6 Testing Dictionaries and Extraction Rules. 77

Text Data Processing Extraction Customization Guide
Content P U B L I C 3

1 Text Data Processing Extraction
Customization Guide

Extraction processing analyzes unstructured text, in multiple languages and from any text data source, and
automatically identifies and extracts key entity types, including people, dates, places, organizations, or other
information, from the text. This guide is written for dictionary and extraction rule writers.

4 P U B L I C
Text Data Processing Extraction Customization Guide

Text Data Processing Extraction Customization Guide

2 Introduction

Welcome to the Extraction Customization Guide.

The SAP text analytics engine provides a suite of analyzers that enable developers to construct applications for
analyzing unstructured data. The analyzers let your application perform extraction and various forms of
natural-language processing on unstructured text.

Linguistic analysis includes natural-language processing (NLP) capabilities, such as segmentation, stemming,
and tagging, among other things.

Extraction processing analyzes unstructured text, in multiple languages and from any text data source, and
automatically identifies and extracts key entity types, including people, dates, places, organizations, or other
information, from the text. It enables the detection and extraction of activities, events and relationships
between entities and gives users a competitive edge with relevant information for their business needs.

2.1 Who Should Read This Guide

This guide is written for dictionary and extraction rule writers. Users of this guide should understand extraction
concepts and have familiarity with linguistic concepts and with regular expressions.

This documentation assumes the following:

● You are an application developer or consultant working on enhancing text analysis extraction.
● You understand your organization's text analysis extraction needs.

2.2 About This Guide

This guide contains the following information:

● Overview and conceptual information about dictionaries and extraction rules.
● How to create, compile, and use dictionaries and extraction rules.
● Examples of sample dictionaries and extraction rules.
● Best practices for writing extraction rules.

Text Data Processing Extraction Customization Guide
Introduction P U B L I C 5

3 Using Dictionaries

A dictionary in the context of the extraction process is a user-defined repository of entities. It can store
customized information about the entities your application must find. For example, it can store entities
composed of common words that have special meaning in your application's domain or it can store
alphanumeric sequences such as specialized vocabulary or part numbers. You can use a dictionary to store
name variations in a structured way that is accessible through the extraction process. A dictionary structure
can also help standardize references to an entity.

A dictionary whose name does not specify a language are language-independent. This means that you can use
the same dictionary to store all your entities and that the same patterns are matched in documents of different
languages.

You can use a dictionary for:

● name variation management, for example, recognizing Bimmer as a colloquial reference to the car make
BMW.

● disambiguation of unknown entities, for example, extracting DF-21D, DF 21D, DF21D, and df-21d as
alternative forms of the Dong Feng 21D rocket.

● control over entity recognition, for example, to force Text Analysis to extract Dong Feng 21D as an entity of
type WEAPON instead of extracting Dong Feng as a PERSON.

3.1 Entity Structure in Dictionaries

A dictionary contains a number of user-defined entity types, each of which contains any number of entities, of
standard and variant types.

For each entity, the dictionary distinguishes between a standard form name and variant names:

● Standard form name–The most complete or precise form for a given entity. For example, United States of
America might be the standard form name for that country. A standard form name can have one or more
variant names (also known as source form) embedded under it. You can also define an arbitrary string to a
standard form using the uid attribute.

● Variant name–Less standard or complete than a standard form name, and it can include abbreviations,
different spellings, nicknames, and so on. For example, United States, USA and US could be variant names
for the same country. In addition, you may define an arbitrary string to be associated with a variant via its
type attribute. For example, you might use the string ABBREV to mark variants that are an abbreviation of
the standard form.
The following figure shows a graphical representation of the dictionary hierarchy and structure of a
dictionary entry for United Parcel Service of America, Inc:

6 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

The real-world entity, indicated by the circle in the diagram, is associated with a standard form name and an
entity type ORGANIZATION and subtype COMMERCIAL. Under the standard form name are name variations, one
of which has its own type specified. The dictionary lookup lets you access the standard form and the variant
names given any of the related forms.

3.1.1 Generating Predictable (Standard) Variants

Standard variant generation, performed by the dictionary compiler, produces a variety of common synonyms.

The variants United Parcel Service and United Parcel Service of America, Inc. are common and predictable,
and other predictable variants can be generated by the dictionary compiler for later use in the extraction
process. The dictionary compiler, using its variant generation feature, can programmatically generate certain
predictable variants while compiling a dictionary.

Variant generation works off of a list of designators for entities in the entity type ORGANIZATION in English. For
instance, Corp. designates an organization. Variant generation in languages other than English covers the
standard company designators, such as AG in German and SA in French. The variant generation facility
provides the following functionality:

● Creates or expands abbreviations for specified designators. For example, if the standard form ends with
the abbreviation Inc., Inc. will be replaced with Incorporated in one of the generated variants, and if the
standard form ends with Incorporated, Incorporated will be replaced with Inc. in one of the generated
variants.

● Handles optional commas and periods, that is, the optional comma between a company name and the
designator (SAP Labs, Incorporated vs. SAP Labs Incorporated) and the optional period after an
abbreviated designator (SAP Labs Inc.vs. SAP Labs Inc).

● Makes optional such company designators as Inc, Corp., and Ltd, as long as the organization name has
more than one word in it.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 7

For example, variants for Microsoft Corporation can include:

● Microsoft Corporation
● Microsoft Corp.
● Microsoft Corp

Single word variant names such as the variant Microsoft for the standard form Microsoft Corporation are not
automatically generated, because they are easily misidentified. One-word variants must be entered into the
dictionary explicitly. If the standard form does not end with one of the recognized organization designators
such as Inc, Corp., Corporation, and so on, variants will not be generated, even if you specify that the entity
should use standard variant generation.

 Note
Standard variant generation is supported in Dutch, English, French, German, Italian, Portuguese, and
Spanish.

3.1.2 Custom Variant Types

Custom variant types let you create your own patterns for generating variants from a standard form.

You define custom variant types in a dictionary. You can specify which tokens from the standard form are
included in each variant and then insert different tokens into the variants.

For example, one specific type of variant name is an abbreviation, ABBREV. Other examples of variant types
that you could create are ACRONYM, NICKNAME, or PRODUCT-ID.

For another example, you can create a custom variant type that will, for any two-word entity whose second
word is forces (such as, Afghan forces), create variants where forces is replaced with troops, soldiers, Army,
and military (such as, Afghan troops, Afghan soldiers, Afghan Army, and Afghan military).

3.1.3 Entity Subtypes

Dictionaries support the use of entity subtypes to enable the distinction between different varieties of the same
entity type, for example, to distinguish leafy vegetables from starchy vegetables.

To define an entity subtype in a dictionary entry, add an @ delimited extension to the type (category) identifier,
as in VEG@STARCHY. Subtyping is only one-level deep, so TYPE@SUBTYPE@SUBTYPE is not valid.

3.1.4 Variant Types

One specific type of variant name is an abbreviation, ABBREV. Other examples of variant types that you could
create are ACRONYM, NICKNAME, or PRODUCT-ID.

8 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

3.1.5 Wildcards in Entity Names

Dictionary entries support entity names specified with wildcard pattern-matching elements. These are the
Kleene star (*) and question mark (?) characters, used to match against a portion of the input string. For
example, either "* University" or "? University" might be used as the name of an entity belonging to a
custom type UNIVERSITY.

These wildcard elements are restricted to match against only part of an input buffer: they are limited to the
scope of a sentence. This means that a pattern "Company *" will match to the end of the sentence.

 Note
Using wildcards in a dictionary may affect the speed of entity extraction. Performance decreases
proportionally with the number of wildcards in a dictionary. Use this functionality cautiously, keeping
potential performance degradations in mind.

3.1.5.1 Wildcard Definitions

The wildcard characters, * and ?, match zero or more tokens within a sentence or exactly one token within a
sentence, respectively.

A token is an independent piece of a linguistic expression, such as a word or a punctuation mark. The wildcards
match whole tokens only and not parts of tokens. For both wildcards, any tokens are eligible to be matching
elements, provided the literal (fixed) portion of the pattern is satisfied.

3.1.5.2 Wildcard Usage

You can use wildcard characters to specify a pattern, normally containing both literal and variable elements, as
the name of an entity. For instance, consider this input: I once attended Stanford University,
though I considered Carnegie Mellon University.

Consider an entity belonging to the category UNIVERSITY with the variant name "* University". The
pattern will match any sentence containing University, from the beginning of the sentence to the last
occurrence of University.

If the pattern were "? University", it would only match a single token preceding University occurring as or
as a part of a sentence. Then the entire string Stanford University would match as intended. However, for
Carnegie Mellon University, it is the substring Mellon University which would match: Carnegie would be
disregarded, since the question mark matches one token at most--and this is probably not the intended result.

If several patterns compete, the extraction process returns the match with the widest scope. Thus if a
competing pattern "* University" were available in the previous example, "I once attended Stanford
University, though I considered Carnegie Mellon University" would be returned, and Stanford University and
Mellon University would be ignored.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 9

Since * and ? are special characters, "escape" characters are required to treat the wildcards as literal
elements of fixed patterns. The back slash "\" is the escape character. Thus "*" represents the literal asterisk
as opposed to the Kleene star. A back slash can itself be made a literal by writing "\\".

 Note
Use wildcards when defining variant names of an entity instead of using them for defining a standard form
name of an entity.

3.2 Creating a Dictionary

Create an XML file and compile it.

To create a dictionary, follow these steps:

1. Create an XML file containing your content, formatted according to the dictionary syntax.
2. Run the dictionary compiler on that file.

 Note
For large dictionary source files, make sure the memory available to the compiler is at least five times
the size of the input file, in bytes.

Related Information

Dictionary XSD [page 10]
Preparing a Dictionary for Use [page 19]

3.3 Extraction Dictionary Syntax

3.3.1 Dictionary XSD

The syntax of a dictionary conforms to the following XML Schema Definition (XSD). When creating your custom
dictionary, format your content using the following syntax, making sure to specify the encoding if the file is not
UTF-8.

<?xml version="1.0" encoding="UTF-8"?> <!--
 *
 * Copyright (c) 2010-2011, 2014 SAP AG. All rights reserved.
 *
 * No part of this publication may be reproduced or transmitted in any form or
 * for any purpose without the express permission of SAP AG. The information

10 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

 * contained herein may be changed without prior notice.
-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:dd="http://www.sap.com/ta/4.0"
 targetNamespace="http://www.sap.com/ta/4.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xsd:element name="dictionary">
 <xsd:complexType>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element ref="dd:define-variant_generation" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="dd:entity_category" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="transient" type="xsd:boolean"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="entity_category">
 <xsd:complexType>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element ref="dd:entity_name"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="entity_name">
 <xsd:complexType>
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="dd:variant" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="dd:query_only" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="dd:variant_generation" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="standard_form" type="xsd:string" use="required"/>
 <xsd:attribute name="uid" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="variant">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="query_only">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="variant_generation">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 <xsd:attribute name="language" type="xsd:string" use="optional"
default="english"/>
 <xsd:attribute name="base_text" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="define-variant_generation">
 <xsd:complexType>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element ref="dd:pattern"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="pattern">
 <xsd:complexType>

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 11

 <xsd:sequence maxOccurs="unbounded">
 <xsd:element ref="dd:generate"/>
 </xsd:sequence>
 <xsd:attribute name="string" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="generate">
 <xsd:complexType>
 <xsd:attribute name="string" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The following table describes each element and attribute of the dictionary XSD.

Element Attributes and Description

dictionary This is the root tag, of which a dictionary may contain only one.

Contains one or more embedded entity_category elements.

xmlns The dictionary's name space. The value must be
"http://www.sap.com/ta/4.0".

entity_category The category (type) to which all embedded entities belong. Contains one or more embedded
entity_name elements.

name The name of the category, such as PEOPLE, COMPANY,
PHONE NUMBER, and so on. Note that the entity cate
gory name is case sensitive.

entity_name A named entity in the dictionary. Contains zero or more of the elements variant,
query_only and variant_generation.

standard_form The standard form of the entity_name. The standard
form is generally the longest or most common form of a
named entity.

The standard_form name must be unique within the
entity_category but not within the dictionary.

uid A user-defined ID for the standard form name. This is an
optional attribute useful to dictionary editors (it is not
used in text analysis).

variant A variant name for the entity. The variant name must be unique within the entity_name.

name [Required] The name of the variant.

type [Optional] The type of variant, the value of which may be
any arbitrary string. This attribute is useful only to diction
ary editors (it is not used in text analysis).

12 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

Element Attributes and Description

query_only A query_only variant. Query-only variants are not used during the text analysis process. A dic
tionary editor may mark a variant as query_only to keep it in the dictionary but prevent it from
being used during extraction.

name [Required] The name of the query-only variant.

type [Optional] The type of variant, generally is a subtype of
the larger entity_category.

variant_generation Specifies whether the dictionary should automatically generate predictable variants. By de
fault, the standard form name is used as the starting point for variant generation.

language [Optional] Specifies the language to use for standard var
iant generation, in lower case, for example, "english". If
this option is not specified in the dictionary, the language
specified with the compiler command is used, or it de
faults to English when there is no language specified in ei
ther the dictionary or the compiler command.

type [Required] Types supported are standard or the name of a
custom variant generation defined earlier in the diction
ary.

base_text [Optional] Specifies text other than the standard form
name to use as the starting point for the construction of
variants.

define-
variant_generation

Defines a custom variant generation pattern whose name can be specified in the type attrib
ute of variant_generation elements.

name Unique name of the custom variant generation pattern.

pattern A wildcard expression for matching standard_form or base_text values. May contain
one or more capture groups. A define-variant_generation element may contain
multiple pattern elements.

name The pattern's wildcard expression.

generate Associated with a pattern element, generate specifies how to construct a variant using
the pattern's wildcard expression. Contains one or more placeholders that correspond to cap
ture groups in the pattern.

name An expression containing placeholders and static tokens,
used to construct a variant form from a
standard_form or base_text.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 13

Related Information

Dictionary Source Format [page 15]

3.3.2 Guidelines for Naming Entities

Provides several guidelines for the format of standard form and variant names in a dictionary.

● Use only characters that are valid in the specified encoding.
● The symbols used for wildcard pattern matching, "?" and "*", must be escaped using a back slash

character ("\").
● Any other special characters, such as quotation marks, ampersands, and apostrophes, can be escaped

according to the XML specification.

The following table shows some such character entities (also used in HTML), along with the correct syntax:

Character Description Dictionary Entry

< Less than (<) sign <

> Greater than (>) sign >

& Ampersand (&) sign &

" Quotation marks (") "

' Apostrophe (') '

3.3.3 Character Encoding in a Dictionary

A dictionary supports most popular character encodings, including ASCII, UTF-8, UTF-16, ISO-8859-1, and so
on. If you are creating a dictionary to be used for more than one language, use an encoding that supports all
required languages, such as UTF-8. For information on encodings supported by the Xerces-C XML parser, see
http://xerces.apache.org/xerces-c/faq-parse-3.html#faq-16 .

The default input encoding assumed by a dictionary is UTF-8. Dictionary input files that are not in UTF-8 must
specify their character encoding in an XML directive, for example:

<?xml version="1.0" encoding="UTF-16"?>.

If no encoding specification exists, UTF-8 is assumed. For best results, always specify the encoding.

 Note
CP-1252 must be specified as windows-1252 in the XML header element. The encoding names should
follow the IANA-CHARSETS recommendation.

14 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

http://help.sap.com/disclaimer?site=http%3A%2F%2Fxerces.apache.org%2Fxerces-c%2Ffaq-parse-3.html%23faq-16

3.3.4 Dictionary Sample File

Here is a brief sample dictionary file.

<?xml version="1.0" encoding="windows-1252"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="ORGANIZATION@COMMERCIAL">
 <entity_name standard_form="United Parcel Service of America,
Incorporated">
 <variant name="United Parcel Service" />
 <variant name="U.P.S." type="ABBREV" />
 <variant name="UPS" />
 <variant_generation type="standard" language="english" />
 </entity_name>
 </entity_category>
</dictionary>

Related Information

Entity Structure in Dictionaries [page 6]

3.3.5 Dictionary Source Format

The dictionary source follows the XSD and can include entries for entity type, entity, entity subtype, variants
and variant type.

Example: Entity Type

This example dictionary defines the entity type (category) PART_NUMBER and a few entities of that type:

<?xml version="1.0" encoding="utf-8"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="PART_NUMBER">
 <entity_name standard_form="81-117"/>
 <entity_name standard_form="81-147"/>
 <entity_name standard_form="840-3-21"/>
 <entity_name standard_form="01-90-3433"/>
 <entity_name standard_form="01-90-8140"/>
 <entity_name standard_form="01-90-3432"/>
 </entity_category>
</dictionary>

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 15

Example: Entity

This example dictionary adds two new entities to the built-in (out-of-the-box) ORGANIZATION@COMMERCIAL
category and specifies some variant forms for each entry.

<?xml version="1.0" encoding="windows-1252"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="ORGANIZATION@COMMERCIAL">
 <entity_name standard_form="Seventh Generation Incorporated">
 <variant name="Seventh Generation"/>
 <variant name="SVNG"/>
 </entity_name>
 <entity_name standard_form="United Airlines, Incorporated">
 <variant name="United Airlines, Inc."/>
 <variant name="United Airlines"/>
 <variant name="United"/>
 </entity_name>
 </entity_category>
</dictionary>

You may include the optional uid attribute for an entity_name element. In the example above, you could
change the 4th line to

<entity_name standard_form="Seventh Generation Incorporated" uid="Company
024641309">

where Company 024641309 is an arbitrary string associated with this entity, such as a unique record identifier
into a database containing additional information about the entity. The uid attribute value is not used in the
extraction process or returned in results of text analysis.

Example: Entity Subtype

This example refines the Entity Type example, creating two subcategories of part numbers:

<?xml version="1.0" encoding="utf-8"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="PART_NUMBER@AUTOPSY_SAW">
 <entity_name standard_form="81-117"/>
 <entity_name standard_form="81-147"/>
 <entity_name standard_form="840-3-21"/>
 </entity_category>
 <entity_category name="PART_NUMBER@THERMOTIC_PUMP">
 <entity_name standard_form="01-90-3433"/>
 <entity_name standard_form="01-90-8140"/>
 <entity_name standard_form="01-90-3432"/>
 </entity_category> </dictionary>

16 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

Example: Variants and Variant Types

This example extends the dictionary from the preceding section, specifying variant forms of each part number.
The standard form represents the OEM part number, the variants include a distributor's inventory ID and the
name of the part:

<?xml version="1.0" encoding="utf-8"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="PART_NUMBER@AUTOPSY_SAW">
 <entity_name standard_form="81-117"/>
 <variant name="STB003"/>
 <variant name="front bearing"/>
 </entity_name>
 <entity_name standard_form="81-147"/>
 <variant name="STB004"/>
 <variant name="needle bearing"/>
 </entity_name>
 <entity_name standard_form="840-3-21"/>
 <variant name="STS018"/>
 <variant name="switch assembly"/>
 </entity_name>
 </entity_category>
 <entity_category name="PART_NUMBER@THERMOTIC_PUMP">
 <entity_name standard_form="01-90-3433"/>
 <variant name="GOV011"/>
 <variant name="suction valve (inlet)"/>
 </entity_name>
 <entity_name standard_form="01-90-8140"/>
 <variant name="GOV013"/>
 <variant name="aerovent rubber valve"/>
 </entity_name>
 <entity_name standard_form="01-90-3432"/>
 <variant name="GOV012"/>
 <variant name="pressure valve (outlet)"/>
 </entity_name>
 </entity_category>
</dictionary>

The optional type attribute of the variant element may be used to store additional information about a
variant. For example, the preceding example could use the type attribute to designate which variant is a
distributor's inventory ID and which is a part name:

 <entity_name standard_form="81-117"/> <variant name="STB003" type="Inventory ID"/>
 <variant name="front bearing" type="Part Name"/>
 </entity_name>
 <entity_name standard_form="81-147"/>
 <variant name="STB004" type="Inventory ID"/>
 <variant name="needle bearing" type="Part Name"/>
 </entity_name>
 . . .

The type attribute can be useful to dictionary editors for organizing dictionary content, but it is neither used
during text analysis nor returned in the results.

Example: Standard Variant Generation

To generate standard variant types, include a variant_generation tag in an entity's definition.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 17

The dictionary below specifies that the variants of the standard form Seventh Generation Inc should be
generated using the standard variant generation pattern for English.

<?xml version="1.0" encoding="windows-1252"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="ORGANIZATION@COMMERCIAL">
 <entity_name standard_form="Seventh Generation Inc">
 <variant_generation type="standard" language="english" />
 </entity_name>
 </entity_category> </dictionary>

The standard variant generation pattern is described in Generating Predictable (Standard) Variants [page 7].

In the language attribute, specify the language of the variant generation to apply; standard variant
generations are language dependent. Variant generation is supported in Dutch, English, French, German,
Italian, Portuguese, and Spanish. If the language attribute is not specified, the standard English pattern is used.

The optional base_text attribute of variant_generation specifies text different from the standard form to
be used when generating variants. In the example above, if you added base_text="7th Generation Inc"
to the variant_generation element, the variants would include 7th Generation Inc instead of Seventh
Generation Incorporated, 7th Generation Corp instead of Seventh Generation Corp, and so on. The
base_text value must end with one of the standard organizational designators or else variants will not be
generated.

Example: Custom Variant Generation

To generate custom variant types, define a name with the list of variant generations. In the following example,
the dictionary defines the custom variant type VariantPattern_Troops and specifies that the variants for
the entity Afghan forces and Afghani forces are to be generated using that variant type.

<?xml version="1.0" encoding="utf-8"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <define-variant_generation type="VariantPattern_Troops" >
 <pattern string="(?) forces" >
 <generate string="\1 troops" />
 <generate string="\1 soldiers" />
 <generate string="\1 Army" />
 <generate string="\1 military" />
 </pattern>
 </define-variant_generation>
<entity_category name="FORCES">
 <entity_name standard_form="Afghan forces">
 <!-- to generate variants for "Afghan forces" -->
 <variant_generation type="VariantPattern_Troops"/>
 <!-- to generate variants for "Afghani forces" -->
 <variant_generation type="VariantPattern_Troops" base_text="Afghani
forces" />
 </entity_name>
</entity_category> </dictionary>

The pattern above uses the ? wildcard character that matches a single token. Patterns can also contain the *
(Kleene star) wildcard character that matches zero or more tokens. Surrounding a wildcard with parentheses
creates a capture group, which makes patterns more useful by allowing them to perform string substitution via
placeholders.

18 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

In this example, (?) is the capture group and \1 is the placeholder. This pattern matches entity names whose
standard form is the word forces preceded by a single token. Thus, it matches Afghan forces but not South
Sudan forces or French forces royale.

As this pattern generates variant forms, it replaces \1 with the string matching the capture group. Thus, for the
standard form Afghan forces it generates the variants Afghan troops, Afghan soldiers, Afghan Army, and so
on.

If an entity's variant_generation type is a custom variant having no patterns that match the entity's
standard form (or the variant_generation includes the optional base_text attribute and no patterns
match the base_text value), no variants will be generated.

Patterns containing more than one capture group can have multiple placeholders in their generate tags.
Placeholders are numbered in accordance with the left-to-right order in the pattern of their corresponding
capture group. For example, if a pattern string contains (?) forces (?) and one of its generated strings
contains \1 troops \2, \1 will be replaced with the text matching the (?) to the left of forces and \2 will be
replaced with the match of (?) to the right. That is, the standard form French forces royale would have the
generated variant French troops royale.

Using this dictionary will result in the extraction all of the following strings as an entity of type FORCES:

Afghan forces, Afghan troops, Afghan soldiers, Afghan Army, Afghan military

Afghani forces, Afghani troops, Afghani soldiers, Afghani Army, Afghani military

Example: Wildcard Variant

In this dictionary, the entity has a variant whose name contains the Kleene star ("*") wildcard character:

<?xml version="1.0" encoding="windows-1252"?> <dictionary xmlns="http://www.sap.com/ta/4.0">
 <entity_category name="BANKS">
 <entity_name standard_form="American banks">
 <variant name="Bank of * America" />
 </entity_name>
 </entity_category>
 ...
</dictionary>

This wildcard entry means that entities like Bank of America, Bank of Central America, Bank of North and
South America, and so on will be matched as variants of American banks.

Variant names can also contain the ? wildcard character. If ? were used in this example instead of *, Bank of
Central America would still be a variant because it contains exactly 1 token between Bank of and America, but
not Bank of America (because there are 0 tokens between Bank of and America) or Bank of North and South
America (because there are 3 tokens between Bank of and America).

3.4 Preparing a Dictionary for Use

When your source file is complete, you must compile it before using it in the text extraction process.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 19

Create an XML file containing your content, formatted according to the dictionary syntax.

 Note
For large dictionary source files, make sure the memory available to the compiler is at least five times the
size of the input file, in bytes.

Related Information

Dictionary XSD [page 10]

3.4.1 Command-line Syntax for Compiling a Dictionary

The command line syntax to invoke the dictionary compiler is:

tf-ncc [options] <input filename>

where,

<options> are shown in the table below.

<input_file> specifies the dictionary source file to be compiled. This argument is mandatory.

Syntax Description

-d <language_module_directory>
Specifies the directory where the language modules are stored.

The default location for the language modules is the current work
ing directory

-o <output filename> The path and filename of the resulting compiled dictionary. If none
is supplied the file lxtf2.nc is created in the current directory.

If the dictionary should be used only when processing documents
in a specific language, the output filename must begin with the
name of that language. For example, if the dictionary is meant to be
used only with German documents, the compiled dictionary name
must start with "german", and if it is meant to be used only when
processing Japanese documents, the output filename must start
with "japanese". If the output file does not start with a language
name, it will be used regardless of the input document's language.

-v Indicates verbose. Shows progress messages.

20 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

Syntax Description

-l <language>
Specifies the default language for standard variant generation. If no
language is specified in the tag or on the command line,
<english> will be used.

 Note
Encoding must be specified by a <?xml encoding=X> di
rective at the top of the source file or it is assumed to be
utf-8.

-config_file <filename>
Specifies the dictionary configuration file.

The default configuration file's name is tf.nc-config. Its de
fault location is the directory specified in the -d option. If the -d
option is not specified, the default location is the current working
directory.

-case_sensitive Generates case-sensitive variants.

 Note
If you include this option, then for each entity in your dictionary
that can appear capitalized in multiple ways, you must create a
variant capitalized each way the entity can be capitalized.

-case_insensitive Generates case-insensitive variants.

 Note
Use caution when compiling a dictionary in case-insensitive
mode as spurious entries may result. For instance, if either of
the proper nouns May or Apple were listed in a case-insensi
tive dictionary, then the verb may and the fruit apple would be
matched.

-version Displays the compiler version.

-h, -help, --help Prints a help message.

 Note
If you want to add dictionary entries, remove dictionary entries, or remove standard form names from a
dictionary, you must modify your source file accordingly and recompile.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 21

Related Information

Dictionary XSD [page 10]

3.5 Customization of Sentiment Analysis Dictionaries

Sentiment Analysis is customizable via a “thesaurus” dictionary. Users are able to add or remove sentiment
keywords as well as change the category of a keyword (for example, from WeakNegative to MinorProblem).

These keywords are in turn called by rules that are syntactically aware. Depending on the domain your
application is aimed at, sentiment keywords can be added to improve recall or removed to avoid over-
generation.

Customizable Sentiment Analysis is available in the following languages:

● English
● Chinese (Simplified)
● Chinese (Traditional)
● French
● German
● Italian
● Portuguese
● Russian
● Spanish

Each language module has its own Sentiment Analysis “thesaurus” dictionary. If your application is needed in
various languages for the same domain, each dictionary will need to be edited to match your needs.

Related Information

Sentiment Analysis Fact Extraction

22 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

https://help.sap.com/viewer/e2931f1772a14ef497eb3e5d5a3b1ebf/4.2.12/en-US/57b57d666d6d1014b3fc9283b0e91070.html

3.5.1 Whitespace Language Sentiment Analysis
Customization

The customizable dictionary is in XML format. Sentiment keywords are grouped in entity categories by
sentiment type (weak positive, strong positive, weak negative, and so on) and part-of-speech tag.

Format of Customizable Dictionary

The following shows an excerpt of the formatting and keyword grouping for the Major Problem category for the
English dictionary:

 <?xml version="1.0" encoding="UTF-8" ?>
<dictionary xmlns="http://www.sap.com/ta/4.0">
<entity_category name="MAP@Adj">
<entity_name standard_form="abusive" />
<entity_name standard_form="blurriest" />
<entity_name standard_form="botched" />
<entity_name standard_form="brainless" />
<entity_name standard_form="broken" />
<entity_name standard_form="buggiest" />
<entity_name standard_form="bulkiest" />
</entity_category>
<entity_category name="MAP@Adv">
<entity_name standard_form="botchedly" />
<entity_name standard_form="chaotically" />
<entity_name standard_form="corruptedly" />
<entity_name standard_form="defectively" />
<entity_name standard_form="destructively" />
</entity_category>
<entity_category name="MAP@Noun">
<entity_name standard_form="a real hard time" />
<entity_name standard_form="a really hard time" />
<entity_name standard_form="attrition" />
<entity_name standard_form="attritions" />
<entity_name standard_form="chaos" />
</entity_category>
<entity_category name="MAP@Verb">
<entity_name standard_form="abort" />
<entity_name standard_form="aborted" />
<entity_name standard_form="aborting" />
<entity_name standard_form="aborts" />
<entity_name standard_form="botch" />
<entity_name standard_form="botched" />
<entity_name standard_form="botches" />
<entity_name standard_form="botching" />
<entity_name standard_form="broken" />
</entity_category>
</dictionary>

The names of the entity categories in the dictionary generally follow the pattern “Output Value” + “@” + “part of
speech”:

Category Meaning

MAP@Adj MajorProblem adjectives

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 23

Category Meaning

MAP@Adv MajorProblem adverbs

MAP@Noun MajorProblem nouns

MAP@Verb MajorProblem verbs

This table shows the acronyms used for the major categories of output values. Although not shown, each
output value is further categorized based on part of speech (MIP@Adj, SPS@Adv, WNS@Noun, and so on):

Acronym Meaning

MIP MinorProblem

WPS WeakPositiveSentiment

SPS StrongPositiveSentiment

WNS WeakNegativeSentiment

SNS StrongNegativeSentiment

NES NeutralSentiment

COR ContactRequest

GER GeneralRequest

In addition to the above acronyms for the thesaurus entity categories, the following are used by some
languages:

Acronym Meaning

WPP for keywords extracted as weak positive sentiment unless negated in which case they are extracted as minor
problem (and not weak negative sentiment), such as “easy”, ergonomic”, “robust”

MIPn for keywords extracted as minor problem only when negated, such as “hygienic”, “utility”. No extraction other
wise.

WNSn for keywords extracted as weak negative sentiment only when negated, such as “purpose”, “sense”, “value”.
No extraction otherwise.

SNSc for keywords extracted as strong negative sentiment when in context (i.e., together) with other unequivocal
sentiment keywords, such as “amarissimo”, “durissimo”. No extraction otherwise. In Italian only.

SPSc for keywords extracted as strong positive sentiment when in context (i.e., together) with other unequivocal
sentiment keywords, such as “dolcissimo”,”fortissimo”. No extraction otherwise. In Italian only.

WNSc for keywords extracted as weak negative sentiment when in context (i.e., together) with other unequivocal
sentiment keywords, such as “amaro”,”duro”. No extraction otherwise. In Italian only.

24 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

Acronym Meaning

WPSc for keywords extracted as weak positive sentiment when in context (i.e., together) with other unequivocal
sentiment keywords, such as “dolce”,”forte”. No extraction otherwise. In Italian only.

TKN for multiword tokens that are not keywords, such as “a buon fine”, “a mio parere”. It is typically used for fixed
expressions: declaring them as TKN reduces the possibility of them being wrongly analyzed as topics.

Modifying and Activating the Dictionary

Entries can be added, removed or changed under each entity category.

● To add new keywords: add the entry under the desired output value and part of speech.
● To remove keywords: either delete or comment out the keyword you don’t want.
● To change the output value of keywords: use cut-and-paste to move keywords to the desired entity

category.

When you have finished editing the sentiment keyword dictionary, you must save it and compile it..

 Note
It is very important that new or modified keywords are assigned the correct part of speech. Entries from the
dictionary get compiled and picked up by the Sentiment Analysis rules. If a new keyword is not added to the
correct part of speech category, you may not get the desired behavior.

It is also important not to change the names of the entity categories as the rules expect these names in
order to work properly.

We recommend making a copy of the delivered sentiment keyword dictionary and editing it, never altering
the original.

3.5.2 Nonwhitespace Language Sentiment Analysis
Customization

Because of the nonwhitespace nature of Chinese, customization is done slightly differently for simplified and
traditional Chinese.

Format of Customizable Dictionary

Five categories can be customized is simplified and traditional Chinese:

● CustomTopic
● CustomPositive
● CustomNegative

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 25

● CustomNeutral
● CustomProblem

The following shows the contents of the simplified Chinese dictionary as an example:

 <?xml version="1.0" encoding="UTF-8" ?>
<dictionary>
 <entity_category name="CustomTopic">
 <entity_name standard_form="物流">
 <variant name="快递"/>
 <variant name="邮递"/>
 </entity_name>
 <entity_name standard_form="洗发产品">
 <variant name="洗发水"/>
 <variant name="洗发露"/>
 <variant name="洗发膏"/>
 <variant name="潘婷洗发膏"/>
 <variant name="海飞丝"/>
 </entity_name>
 </entity_category>
 <entity_category name="CustomPositive">
 <entity_name standard_form="一直用">
 <variant name="一直使用"/>
 <variant name="一直在用"/>
 </entity_name>
 <entity_name standard_form="高档">
 <variant name="高端"/>
 </entity_name>
 </entity_category>
 <entity_category name="CustomNegative">
 <entity_name standard_form="低档">
 <variant name="低级"/>
 </entity_name>
 </entity_category>
 <entity_category name="CustomNeutral">
 <entity_name standard_form="中档">
 </entity_name>
 </entity_category>
 <entity_category name="CustomProblem">
 <entity_name standard_form="干燥">
 <variant name="干裂"/>
 <variant name="干枯"/>
 </entity_name>
 </entity_category>
</dictionary>

Modifying and Activating the Dictionary

Entries can be added under each entity category, with their standard forms and variant forms. Entity names
and/or their various forms in the sample dictionary can either be commented out or replaced, as necessary.

When you have finished editing the sentiment keyword dictionary, you must save it and compile it..

 Note
It is important to follow the syntax when adding entries.

It is also important not to change the names of the entity categories as the rules expect these names in
order to work properly.

26 P U B L I C
Text Data Processing Extraction Customization Guide

Using Dictionaries

We recommend making a copy of the delivered sentiment keyword dictionary and editing it, never altering
the original.

Text Data Processing Extraction Customization Guide
Using Dictionaries P U B L I C 27

4 Using Extraction Rules

Extraction rules (also referred to as CGUL rules) are written in a pattern-based language that enables you to
perform pattern matching using character or token-based regular expressions combined with linguistic
attributes to define custom entity types.

You can create extraction rules to:

● Extract complex facts based on relations between entities and predicates (verbs or adjectives).
● Extract entities from new styles and formats of written communication.
● Associate entities such as times, dates, and locations, with other entities (entity-to-entity relations).
● Identify entities in unusual or industry-specific language. For example, use of the word crash in computer

software versus insurance statistics.
● Capture facts expressed in new, popular vernacular. For example, recognizing sick, epic, and fly as slang

terms meaning good.

4.1 About Customizing Extraction

The software provides tools you can use to customize extraction by defining extraction rules that are specific to
your needs.

To create extraction rules, you write patterns using regular expressions and linguistic attributes that define
categories for the entities, relations, and events you need extracted. These patterns are written in CGUL
(Custom Grouper User Language), a token-based pattern matching language. These patterns form rules that
are compiled by the rule compiler (tf-cgc). The rule compiler checks CGUL syntax and logs any syntax errors.

Extraction rules are processed in the same way as pre-defined entities. It is possible to define entity types that
overlap with pre-defined entities.

Once your rules are created, saved into a text file, and compiled into a binary (.fsm) file, you can test them
using the Entity Extraction transform in the Designer.

The following diagram describes a basic workflow for testing extraction rules:

28 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Related Information

Preparing Extraction Rules for Use [page 68]

4.2 Understanding Extraction Rule Patterns

Using CGUL, you define extraction rules using character or token-based regular expressions combined with
linguistic attributes.The extraction process does not extract patterns that span across paragraphs. Therefore,
patterns expressed in CGUL represent patterns contained in one paragraph; not patterns that start in one
paragraph and end in the next.

Tokens are at the core of the CGUL language. The tokens used in the rules correspond with the tokens
generated by the linguistic analysis. Tokens express a linguistic expression, such as a word or punctuation,
combined with its linguistic attributes. In CGUL, this is represented by the use of literal strings or regular
expressions, or both, along with the linguistic attributes: part-of-speech (POS) and STEM.

STEM is a base form – a word or standard form that represents a set of morphologically related words. This set
may be based on inflections or derivational morphology.

The linguistic attributes supported vary depending on the language you use.

For information about the supported languages and about the linguistic attributes each language supports,
refer to the Text Data Processing Language Reference Guide.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 29

4.2.1 CGUL Elements

Provides an overview of the elements of CGUL rules.

CGUL rules are composed of the elements described in the following table. Each element is described in more
detail within its own section.

Element Description

CGUL Directives These directives define character classes (#define), subgroups (#subgroup),
and facts (#group). For more information, see CGUL Directives [page 35].

Tokens Tokens can include words in their literal form (cars) or regular expressions (car.*),
their stem (car), their part-of-speech (Nn), or any of these elements combined:

Tokens are delimited by angle brackets (< >) .

<car.*, POS:Nn>

<STEM:fly, POS:V>

For more information, see Tokens [page 44].

Operators The following operators are used in building character patterns, tokens, and enti
ties.

Iteration Operators These include the following quantifier op
erators:

+, *, ?, { m}, {n,m}.For more informa
tion, see Iteration Operators Supported in
CGUL [page 59].

Standard Operators These include the following:

● Character wildcard (.)

● Alternation (|)

● Escape character (\)

● Character and string negation (^ and
~)

● Subtraction (-)

● Character Classifier (\p<{value}>)

For more information, see, Standard Oper
ators Valid in CGUL [page 53].

30 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Element Description

Grouping and Containment Opera
tors

These include the following operators:

[range] , (item), {expression},
where

● [range] defines a range of charac
ters

● (item) groups an expression to
gether to form an item that is treated
as a unit

● {expression} groups an expres
sion together to form a single rule, en
abling the rule writer to wrap expres
sions into multiple lines

For more information, see Grouping and
Containment Operators Supported in
CGUL [page 62].

Expression Markers These include the following markers:

[SN]– Sentence

[NP]–Noun phrase

[CL] and [CC]–Clause and clause con
tainer

[OD]–Context

[TE]–Entity

[P]–Paragraph

For more information, see Expression
Markers Supported in CGUL [page 47].

Match Filters The following match filters can be used to
specify whether a CGUL preceding token
expression matches the longest or short
est pattern that applies. Match filters in
clude:

● Longest match
● Shortest match
● List (returns all matches)

For more information, see Match Filters
Supported in CGUL [page 65].

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 31

Element Description

Include Directive #include directives are used to include other CGUL source files and .pdc files.
You must include CGUL source files and .pdc files before you use the extraction
rules or predefined classes that are contained in the files you include.

For more information, see Including Files in a Rule File [page 32].

Lexicon Directive #lexicon directives are used to include the contents of a lexicon file that con
tains a list of single words, delimited by new lines.

For more information, see Including a Lexicon in a Rule File [page 33].

Comments Comments are marked by an initial exclamation point (!). When the compiler en
counters a ! it ignores the text that follows it on the same line.

4.2.2 CGUL Conventions

Spells out the syntax conventions for CGU rules.

CGUL rules must follow the following conventions:

● Rules are case-sensitive by default. However, you can make rules or part of rules case insensitive by using
character classifiers.

● A blank space is required after #define, #subgroup, #group, #include, #lexicon, and between
multiple key-value pairs. Otherwise, blank spaces are rejected unless preceded by the escape character.

● Names of CGUL directives (defined by #define, #subgroup, or #group) must be in alphanumeric ASCII
characters with underscores allowed.

● You must define item names before using them in other statements.

Related Information

Character Classifier (\p) [page 57]

4.3 Including Files in a Rule File

Discusses the syntax for rule sets.

You can reference CGUL source files and .pdc files within your rules file. All #include and #lexicon
directives should precede all other types of lines in the file. The keyword symbol -- # -- must be the first
nonspace character on the line.

The syntax for the included files is checked and separate error messages are issued if necessary.

32 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

 Note
The names defined in included files cannot be redefined.

Syntax

#include <filename> #include "<filename>"

where <filename> is the name of the CGUL rules file. .

You can use an absolute or relative path for the file name, but it is recommended that you use an absolute path.

 Note
The absolute path is required if:

● The input file and the included file reside in different directories.
● The input file is not stored in the directory that holds the compiler executable.
● The file is not in the current directory of the input file.

4.3.1 Using Predefined Character Classes

The extraction process provides predefined character and token classes for each language supported by the
system.
Both character classes and token classes are stored in the <language>.pdc files.

To use these classes, use the #include statement to include the .pdc file in your rule file.

4.4 Including a Lexicon in a Rule File

You can include a lexicon within your rules file. All #lexicon directives should be placed along with all
#include directives at the top of the file.

The keyword symbol -- # -- must be the first nonspace character on the line

The lexicon file consists of single words separated by new lines. The compiler interprets the contents of a
lexicon as a #define directive with a rule that consists of a bracketed alternation of the items listed in the file.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 33

Syntax

#lexicon <name> "<filename>"

where

name is the CGUL name of the lexicon.

filename is the name of the file that contains the lexicon.

Example

#lexicon FRUITLIST "myfruits.txt" ... #group FRUIT: <STEM:%(FRUITLIST)

Description

In this example, the lexicon is compiled as a #define directive named FRUITLIST and is contained in a file
called myfruits.txt (see Including a Lexicon in a Rule File in the Data Services Designer Guide). Later in the
rule file the lexicon is used in the FRUIT group. If myfruits.txt contains the following list:

apple orange
banana
peach
strawberry

The compiler interprets the group as follows:

#group FRUIT: <STEM:apple|orange|banana|peach|strawberry>

 Note
A lexicon cannot contain entries with multiple words. In the preceding example, if wild cherry was
included in the list, it would not be matched correctly.

If multi-word entries need to be added, a combination of #lexicon and #subgroup directives can be used:

 #lexicon FRUITLIST "myfruits.txt"
#subgroup FRUITLIST2: (<wild> <STEM:cherry|strawberry>)|(<white> <STEM:peach>) #group FRUIT: <STEM:%(FRUITLIST)>|%(FRUITLIST2)

34 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

4.5 CGUL Directives

CGUL directives define character classes (#define), tokens or group of tokens (#subgroup), and entity,
event, and relation types (#group).

The custom entities, events, and relations defined by the #group directive appear in the extraction output. The
default scope for each of these directives is the sentence.

The relationship between items defined by CGUL directives is as follows:

● Character classes defined using the #define directive can be used within #group or #subgroup
● Tokens defined using the #subgroup directive can be used within #group or #subgroup
● Custom entity, event, and relation types defined using the #group directive can be used within #group or

#subgroup

Related Information

CGUL Conventions [page 32]
Writing Directives [page 35]
Using the #define Directive [page 36]
Using the #subgroup Directive [page 37]
Using the #group Directive [page 38]
Using Items in a Group or Subgroup [page 43]

4.5.1 Writing Directives

Directives can be contained in one input line or can span more than one.

You can write directives in one line, such as:

#subgroup menu: (<mashed><potatoes>)|(<Peking><Duck>)|<tiramisu>

or, you can span a directive over multiple lines, such as:

#subgroup menu: {
(<mashed><potatoes>)|
(<Peking><Duck>)|
<tiramisu>
}

To write a directive over multiple lines, enclose the directive in curly braces{}.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 35

4.5.2 Using the #define Directive

The #define directive is used to denote character expressions.

At this level, tokens cannot be defined. These directives represent user-defined character classes. You can also
use predefined character classes.

Syntax

#define name: <expression>

where,

name– is the name you assign to the character class.

colon (:)– must follow the name.

expression– is the literal character or regular expression that represents the character class.

Example

#define ALPHA: [A-Za-z] #define URLBEGIN: (www\.|http\:)
#define VERBMARK: (ed|ing)
#define COLOR: (red|blue|white)

Description

ALPHA represents all uppercase and lowercase alphabetic characters.

URLBEGIN represents either www. or http: for the beginning of a URL address

VERBMARK represents either ed or ing in verb endings

COLOR represents red, blue, or white

 Note
A #define directive cannot contain entries with multiple words. In the preceding example, if navy blue
was included in the list, it would not be matched correctly.

If multi-word entries are needed, #subgroup or #group directives are more useful:

 #define COLOR: (red|blue|white)
#subgroup COLORS: <navy|sky|light|dark><blue> #group MYCOLORS: <%(COLOR)>|%(COLORS)

36 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Related Information

Using Predefined Character Classes [page 33]

4.5.3 Using the #subgroup Directive

The #subgroup directive is used to define a group of one or more tokens. Unlike with #group directives,
patterns matching a subgroup do not appear in the extraction output. Their purpose is to cover sub-patterns
used within groups or other subgroups.

Subgroups make #group directives more readable. Using subgroups to define a group expression enables you
to break down patterns into smaller, more precisely defined, manageable chunks, thus giving you more
granular control of the patterns used for extraction.

In #subgroup and #group statements alike, all tokens are automatically expanded to their full format:
<literal, stem, POS>

 Note
A rule file can contain one or more subgroups. Also, you can embed a subgroup within another subgroup,
or use it within a group.

Syntax

#subgroup name:<expression>

where,

name– is the name you are assigning the token

colon (:)– must follow the name

<expression>– is the expression that constitutes the one or more tokens, surrounded by angle brackets <>,
if the expression includes an item name, the item's syntax would be: %(item)

Example

#subgroup Beer: <Stella>|<Jupiler>|<Rochefort> #subgroup BeerMod: %(Beer) (<Blonde>|<Trappist>)
#group BestBeer: %(BeerMod) (<Premium>|<Special>)

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 37

Description

The Beer subgroup represents specific brands of beer (Stella, Jupiler, Rochert). The BeerMod subgroup
embeds Beer, thus it represents any of the beer brands defined by Beer, followed by the type of beer (Blonde
or Trappist). The BestBeer group represents the brand and type of beer defined by BeerMod, followed by the
beer's grade (Premium or Special). To embed an item that is already defined by any other CGUL directive, you
must use the following syntax: %(<item>), otherwise the item name is not recognized.

Using the following input...

Beers in the market this Christmas include Rochefort Trappist Special and Stella Blonde Special.

...the sample rule would have these two matches:

● Rochefort Trappist Special
● Stella Blonde Special

4.5.4 Using the #group Directive

The #group directive is used to define custom facts and entity types. The expression that defines custom facts
and entity types consists of one or more tokens. Items that are used to define a custom entity type must be
defined as a token. Custom facts and entity types appear in the extraction output.

The #group directive supports the use of entity subtypes to enable the distinction between different varieties
of the same entity type. For example, to distinguish leafy vegetables from starchy vegetables. To define a
subtype in a #group directive add a @ delimited extension to the group name, as in #group VEG@STARCHY:
<potatoes|carrots|turnips>.

 Note
A rule file can contain one or more groups. Also, you can embed a group within another group.

 Note
You can use multiple key-value pairs in a group, including for paragraph and scope.

There is no "longer match win" rule for #group directive. If the same rule file contains the following #group
directives:

#group A: <A> #group AB: %(A) #group ABC: %(AB) <C>

and the input is "A B C", all 3 will match resulting in the following output:

- A - A B - A B C

38 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Syntax

#group <name>: <expression> #group <name@subtype>: <expression> #group <name>(scope="<value>"): <expression> #group <name>(paragraph="<value>"): <expression> #group <name>(key="<value>"): <expression> #group <name>(key="<value>" key="<value>" key="<value>"): <expression> #group <DROP_name> : <expression> #group <AA_name>: <expression> #group <ZZ_name>: <expression>

The following table describes parameters available for the #group directive.

Parameter Description Example

name The name you assign to the extracted
fact or entity

#group Positive:
<expression>

"Positive" is the name of the extracted
fact.

Two types of prefixes can be added to
#group names each which different re
sults:

● DROP_: Use the "DROP_" prefix for
expressions you do not want to ex
tract.

#group
DROP_Positive: <If>
<expression>

In this example, any sentence
starting with if will be “dropped”
and removed from the results.

● AA_ or ZZ_: These prefixes are
used to prioritize matches of same
length. "AA_" has the highest prior
ity, "ZZ_" the lowest. No prefix is
the normal priority.

#group AA_Positive:
<STEM:love> <>*
<POS:Nn>

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 39

Parameter Description Example

expression The expression that constitutes the
entity type; the expression must be
preceded by a colon (:)

#group BallSports:
<baseball> | <football> |
<soccer>

#group Sports: <cycling> |
<boxing> | %(BallSports)

or

#group BodyParts: <head> |
<foot> | <eye>

#group Symptoms: %
(BodyParts) (<ache>|
<pain>)

In this example, the BallSports
group represents sports played with a
ball (baseball, football, soccer), while
the Sports group represents cycling,
boxing, or any of the sports defined by
BallSports.

scope=

"<value> "

An optional key-value pair that speci
fies the scope of the input to be inter
preted by the pattern matcher. The
value is either sentence or paragraph.
When this key is not specified, the
scope defaults to sentence.

#group JJP
(scope="paragraph"):
<Jack> <>* <Jill>

Will match Jack followed by Jill
anywhere within the same paragraph

#group JJS
(scope="sentence"): <Jack>
<>* <Jill>

and

#group JJ: <Jack> <>*
<Jill>

Will match Jack followed by Jill
anywhere within the same sentence.

40 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Parameter Description Example

paragraph=

"<value> "

An optional key-value pair that speci
fies which paragraphs to process. In
this case, value represents a range of
integers, plus the special symbol L to
represent the last paragraph of the
input.

#group A
(paragraph="[1]"): ...

#group C
(paragraph="[1-4]"): ...

#group D (paragraph="[1-3,
6, 9]"): ...

#group E (paragraph="[4-
L]"): ...

In this example, each group processes
the input as follows:

● Group A processes the first para
graph only

● Group C processes paragraphs 1
through 4

● Group D processes paragraphs 1
through 3, paragraph 6, and para
graph 9

● Group E processes the fourth
through the last paragraph

<key>=

"<value> "

An optional key-value pair that repre
sents any kind of user-defined key-
value pair. In this case, <value> rep
resents a user-defined value to be re
turned with each match on the group
rule.

#group Y
(sendto="mjagger@acme.com"
): ...

#group Z
(alert="Orange"): ...

In this example, each group returns the
<value> in the key-value pair with each
match on the group rule.

4.5.5 Using Prefixes in a #group Directive

Two types of prefixes can be added to the names of #group: DROP and Priority indicators: AA_ or ZZ_

DROP Prefix

The rule writer can specify a version of an entity that should be dropped if it wins overlap resolution. This
feature has been provided because it can sometimes be simpler and more efficient to overextract and then

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 41

discard certain entities. The idea is to first overextract an entity by using a rule that is too general, but then to
also provide an additional rule to discard an undesired version of the entity in a final pass.

Usage: To indicate a droppable entity, give its name a DROP_ prefix, as in DROP_Sentiment.

Behavior:

● CGUL entity overlap resolution will include DROP_name when comparing name entities.
● If the extraction span (offset and length) is not the same, then normal-style overlap resolution is done as if

the prefix was not present.
● Otherwise (same span), droppable entities win over non-droppable entities (assuming no priority

difference - see next section).
● After overlap resolution, if the winning entity has the DROP_name prefix, then the entity is discarded.

 Example
 ! DROP_ feature allows droppable version of entity to win overlap resolution
and then itself be dropped.
! Input: "I don't want a catalog"
! 2 matches: MyRequest = "want a catalog", DROP_MyRequest = "n't want a
catalog"
! 0 result in display: neither of the matches, since the longest
DROP_MyRequest wins and is then dropped
#group MyRequest: [OD GeneralRequest]<STEM:want>[/OD] [OD Topic][NP]<>*[/NP][/
OD] #group DROP_MyRequest: <STEM:not> <>*

AA and ZZ Prefix

The rule writer can also specify a simple priority system for different versions of an entity. Like droppable
entities above, this feature can lead to simpler and more efficient rules. This priority is only used to resolve ties,
i.e. extractions with the same span (offset and length).

 Note
If both DROP_name and priority indicators (AA_ and ZZ_) are used, DROP_name must come before priority,
for exxample. DROP_AA_Sentiment. In this case, priority has precedence over DROP_name.

Usage: Use an AA_ prefix to indicate higher than normal priority or ZZ_ for lower than normal priority.

Behavior:

● CGUL entity overlap resolution will include AA_name and ZZ_name when comparing name entities.
● If the extraction span (offset and length) is not the same, then normal-style overlap resolution is done as if

the prefix was not present.
● Otherwise (same span), if the priority is different, then AA_name wins over name (or ZZ_name) and name

wins over ZZ_name.
● Otherwise (same span and priority), droppable entities win over non-droppable entities.
● The priority prefixes are stripped from the final results.

42 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

 Example
 ! AA_/ZZ_ feature specifies priority for entity overlap resolution when
location and length are same.
! Input: "not only nice"
! 2 matches: Test (from Test) = "not only nice" and Test (from AA_Test) =
"not only nice"
! 1 result in display: Test (from AA_Test) = "not only nice"
#group Test: <not> <POS:Adv> <nice> #group AA_Test(priority="AA"): <not> <only> <nice>

4.5.6 Using Items in a Group or Subgroup

You can use an item defined by any <ph translate="no" xml:lang="en-US">CGUL</ph> directive in a group or
subgroup.

Syntax

You must precede the item name with the % operator and surround it with parenthesis. Also, the item must be
defined as a token, or be part of a larger expression that is defined as a token.

%(<item_name>)

Example

#define LOWER: [a-z] #define UPPER: [A-Z]
#subgroup INITCAP: <%(UPPER)%(LOWER)+>
#group MRPERSON: <Mr\.> %(INITCAP)

In this example, the items UPPER and LOWER are part of a larger expression that is defined as a token within the
subgroup INITCAP. INITCAP is then used within a group, MRPERSON. INITCAP need not be declared a token
within MRPERSON because it is already defined as a token in the #subgroup statement.

To use the item as a token you must surround it with angle brackets (<>) . However, once you define a token,
you cannot surround the token name with angle brackets again. For example, the following #group statement
is wrong, because INITCAP was already enclosed by <> in the #subgroup statement. In this case, an error
message is issued:

#subgroup INITCAP: <%(UPPER)%(LOWER)+> #group MRPERSON: <Mr\.> <%(INITCAP)>

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 43

4.6 Tokens

Tokens (also referred as syntactic units) are at the core of CGUL. They express an atomic linguistic expression,
such as a word or punctuation, combined with its linguistic attributes: part-of-speech (POS) and STEM. CGUL
uses tokens to represent the linguistic expressions to be matched.

4.6.1 Building Tokens

You can specify tokens that express a broad variety of patterns to help you define custom entity, event, and
relation types and extract related entities. To build tokens, you use any of three optional fields: string, STEM,
and POS (part-of-speech) tags. The string and STEM fields can use all valid CGUL operators to define
patterns, while the POS field only accepts alternation and string negation.

Syntax

<<string>, STEM:<stem>, POS:"<pos_tag>"> <string, STEM:<stem>, POS:<pos_tag>>

where

<string> can be a word, or a regular expression that represents a word pattern.

<stem> can be a word stem, or a regular expression that represents a stem pattern.

<pos_tag> is a part-of-speech tag.

The part-of-speech tag can be expressed within or without quotation marks. The behavior is as follows:

● "<pos_tag>" (within quotation marks)– The POS value matches exactly. For example <POS:"Adj">
matches only Adj, and <POS: "Adj"|"Punct"> matches Adj or Punct.

● Each part-of-speech value requiring an exact match must be surrounded by quotes. Hence an expression
such as <POS:"Adj|Punct"> is syntactically invalid.

● <pos_tag> (no quotation marks)– The POS value includes the umbrella part-of-speech and all its
expansions. for example <POS:Adj> matches Adj, and Adj-Sg, Adj-Pl, and so on.

Tokens conform to the following syntactic rules:

● Tokens must be delimited by angle brackets <>

#subgroup BADDOG2: bulldog

This is literally a character sequence and the string is not expanded with a STEM and a POS, therefore, it
does not match the token bulldog. The proper notation is:

#subgroup DOG2: <bulldog>

● Tokens are composed of three optional fields: Literal, STEM, and POS

44 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

For example,

<activat.+, STEM:activat.+, POS:V>

● The fields within the token are optional and are delimited by commas.

 Note
Fields that are not defined are expanded to the following defaults: .+ for literal, ANYSTEM for STEM, and
ANYPOS for POS. Hence, they are assumed to be any possible value for that specific field.

For example,

<STEM:be, POS:V>

means any token that has a stem be and is a verb
● STEM and POS must be written in all uppercase, followed by a colon (:), and separated by a comma.
● POS can be any part-of-speech tag. For the complete list of available part-of-speech tags in each language,

please refer to the Language Reference Guide.
● Blank spaces are ignored either within or between tokens, thus <POS:V> and <POS: V> are the same, and

<apple><tree> and <apple> <tree> are the same.
● Items that are already defined as tokens cannot be surrounded by angle brackets (<>) when used as part

of another definition.
For example, the following #group statement is incorrect, and generates an error because <COLOR> is
already defined as a token.

#subgroup COLOR: <(red|white|blue)>

#group FLAG_COLORS: <%(COLOR)>

The correct statement would be:

#subgroup COLOR: <(red|white|blue)>

#group FLAG_COLORS: %(COLOR)

● You can refer to any token or a sequence of tokens by using the empty or placeholder token with the
appropriate regular expression operator:
○ <> for any token
○ <>* for a series of zero or more tokens
○ <>? for zero or one token
○ <>+ for a series of one or more tokens

● A sequence of related tokens, like "German Shepherd" needs each of its elements enclosed by token
delimiters.
For example, the following subgroup returns German Shepherd

#subgroup DOG: <German><Shepherd>

Whereas the following subgroup returns an error

#subgroup DOG: <German Shepherd>

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 45

● Character classifiers do not operate in tokens that contain STEM or POS expressions, unless the classifier is
assigned to the STEM value. However, operations on POS values are invalid.

Examples

<car>

means: "car STEM:<anystem> POS:<anypos>"
matches: all instances of car

<ground, STEM: grind>

means: "ground STEM:grind POS:<anypos>"
matches: The ground was full of stones. We took some and ground them to pieces.
Only the second instance of the word ground matches the stem definition.

<STEM: ground|grind>

means: ".+ STEM:ground|grind POS: <anypos>"
matches: The ground was full of stones. We took some and ground them to pieces.
Both instances of the word ground matches the stem definition.

<POS: V>

means: ".+ STEM:<anystem> POS:V"
matches: all verbs found in the input

<POS: Adj|Nn>

means: ".+ STEM:<anystem> POS:Adj|Nn"
matches: all adjectives and nouns found in the input

<activat.+>

means: "activat.+ STEM:<anystem> POS:<anypos>"
matches: activation, activate, activator, activating, activated, and so on.

<STEM: cri.*>

means: ".+ STEM: cri.+ POS:<anypos>"
matches: crime, crimes, criminal
Note that it does not match: cries and cried because their stem is cry.

<cri.*> matches crime, crimes, criminal as well as cries and cried.

<STEM: run, POS:V>

means: ".+ STEM: run POS:V"
matches: all inflectional forms of the verb run such as run, runs, running, ran, but not the noun run as in a
5-mile run.

Consult your Language Reference Guide, the Stemming and Part-of-Speech tagging topics.

46 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

4.7 Expression Markers Supported in CGUL

CGUL supports the expression markers as described in the following table.

 Note
All markers are matched following the shortest match principle. Also, all markers must be paired, with the
exception of [P].

Some expression markers, such as [OD] (Output Delimiter) and [TE] (Entity Marker), can use key-value pairs
to specify attributes. When using key-value pairs, the following rules apply:

● Key-value pairs must include the value within double quotes (key="value", attribute="value1|
value2|value3")

● Multiple key-value pairs are delimited by blank spaces only (key1="value" key2="value1|value2"
key3="value3|value4")

Operator Description

Paragraph marker

([P] [/P])

Specifies the beginning and end of a paragraph.

Sentence marker

([SN] [/SN])

Specifies the beginning and end of a sentence.

Noun Phrase marker

([NP] expr [/NP])

Specifies the exact range of an expression expr that is
a noun phrase.

Clause marker

([CL] expr [/CL])

Specifies the exact range of the expression expr that is
a clause

Clause container

([CC] expr [/CC])

Matches the entire clause provided that the expression
expr is matched somewhere inside that clause.

Context (output) marker

(exL [OD name="<value>"] exp [/OD] exR)

Specifies the pattern to be output by the extraction
process. (Output Delimiter)

 Note
If the expression between the output delimiters al
lows zero tokens to match and the output is an
empty string, the empty output is not displayed.

Entity marker

([TE name="<value>"] expr [/TE])

Specifies the exact range of the expression expr to be
an entity type or list of entity types.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 47

Operator Description

Unordered list marker

([UL] expr1, expr2 , ..., exprN [/UL])

Matches a set of expressions (expr1, expr2, and so
on.) regardless of the order in which they match.

Related Information

Paragraph Marker [P] [page 48]
Sentence Marker [SN] [page 48]
Noun Phrase Marker [NP] [page 49]
Clause Marker [CL] [page 49]
Clause Container [CC] [page 49]
Context Marker [OD] [page 50]
Entity Marker [TE] [page 51]
Unordered List Marker [UL] [page 52]

4.7.1 Paragraph Marker [P]

Use the paragraph marker [P] [/P] to mark the beginning and end of a paragraph. These markers do not
have to be paired.

In the following example, the expression matches any paragraph that begins with <In sum>.

[P]<In><sum><>+[/P]

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is in #define directives
● It is found inside SN, CL, CC, NP, or TE markers

4.7.2 Sentence Marker [SN]

Use the sentence marker [SN] [/SN] to mark the beginning and end of a sentence.

In the following example, the expression matches any sentence that has a form of conclusion as its first or
second token:

#group CONCLUDE: [SN] < >? <STEM:conclusion> < >* [/SN]

This marker is invalid when:

48 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is in #define directives
● It is inside CL, CC, NP, or TE markers
● It is not used in pairs

4.7.3 Noun Phrase Marker [NP]

Use the noun phrase marker [NP] expr [/NP] to specify the exact range of an expression that is a noun
phrase, following the shortest match principle.

In the following example, the expression matches noun phrases that contain any form of the word weapon.

#group WEAPONS: [NP] < >* <STEM:weapon> [/NP]

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is in#define statements
● It is inside other NP or TE markers
● It is not used in pairs

4.7.4 Clause Marker [CL]

Use the clause marker [CL] expr [/CL] to specify the exact range of an expression that is a clause,
following the shortest match principle. The clause marker currently supports the following languages: English,
Arabic, Dutch, Farsi, French, German, Italian, Korean, Simplified Chinese and Spanish.

In the following example, any clause that starts with in conclusion is matched.

#group SUMMARY: [CL] <in> <conclusion> < >* [/CL]

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is found in #define statements
● It is inside other CL, CC, NP, or TE markers
● It is not used in pairs

4.7.5 Clause Container [CC]

The clause container marker [CC] expr [/CC] matches the entire clause provided that the expression expr
is matched somewhere within that clause. The clause container marker currently supports the following
languages: English, Arabic, Dutch, Farsi, French, German, Italian, Korean, Simplified Chinese and Spanish.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 49

In the following example, any clause that contains forms of euro and dollar is matched.

#group CURRENCY: [CC] <STEM:euro> < >* <STEM:dollar> [/CC]

Using [CL] to specify that an expression can appear anywhere in a clause achieves the same result as using
the clause container [CC] operator, in other words:

[CC] expr [/CC]

achieves the same results as:

[CL] < >* expr < >* [/CL]

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is found in #define statements
● It is inside other CL, CC, NP, or TE markers
● It is not used in pairs

4.7.6 Context Marker [OD]

Use the context marker OD (Output Delimiter) in exL [OD funct=" <value> "] exp [/OD] exR to
specify which part of the matched string is shown in the resulting output..

In this case, exL (that is, left), exp, and exR (that is, right) are all matched as well as exp (between the [OD]
markers). Both spans are displayed in the output, with the OD exp getting its own label.

In the following example, any proper nouns preceded by either Sir , Mr , or Mister are matched. The resulting
patterns shown in the output are both the whole span and the OD span, that is, "Mister Brown/Name" and
"Brown".

 #group Name: <Sir|Mr|Mister> [OD] <POS: Prop> [/OD]

Optionally, you can add a label to the output, as shown in the following examples. The extraction process picks
this label up as the entity name for the string that is output. The resulting patterns shown in the output are
both the whole span and the OD span with label "LastName", that is, "Mister Brown/Name" and "Brown/
LastName".

 #group Name: <Sir|Mr|Mister> [OD LastName] <POS: Prop> [/OD]
#group Name: <Sir|Mr|Mister> [OD name="LastName"] <POS: Prop> [/OD]

 Note
If the expression between the OD markers allows zero tokens to match and the output is an empty string,
the empty output is not displayed.

You can use multiple context markers to match discontinuous patterns.

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>

50 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

● It is found in #define statements
● It is inside unordered lists [UL] and unordered contiguous lists [UC]
● It is inside other context markers[OD]
● It is not used in pairs

Related Information

Writing Extraction Rules Using Context Markers [page 52]

4.7.7 Entity Marker [TE]

Use the entity marker [TE <name>] exp [/TE] to specify the exact range of an expression that is a pre-
defined entity or a custom-defined entity from a dictionary of type <name>.

In the following examples, the expressions match any entity of type PERSON with Bush as its last element.

#group President: [TE PERSON] < >* <Bush> [/TE] #group President: [TE name="PERSON"] < >* <Bush> [/TE]

You can also specify lists of entities, as follows:

[TE PERSON|ORGANIZATION@COMMERCIAL] [TE name="PERSON|ORGANIZATION@COMMERCIAL"]

Finally, you can specify subtyped category names, as follows

#group X: [TE VEHICLE@LAND] <>+ [/TE] #group Y: [TE VEHICLE] <>+ [/TE]

Where Group X matches only the subtyped entities, and Group Y matches all VEHICLE entities, regardless of
their subtyping.

This marker is invalid when:

● It is inside the range operator [], item iterator {}, and token brackets <>
● It is found in #define statements
● A specified value is not an existing entity
● It is not used in pairs

Entities defined in user dictionaries can be referenced through [TE] markers.

For example, a user-defined dictionary contains the entity category TOYS:

<?xml version="1.0" encoding="windows-1252" ?> <dictionary>
<entity_category name="TOYS">
 <entity_name standard_form="Lego" />
 <entity_name standard_form="PlayMobil" />
</entity_category>
</dictionary>
#group Play: <STEM:play> <>* [TE TOYS] <>+ [/TE]

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 51

4.7.8 Unordered List Marker [UL]

Use the unordered list marker [UL]expr1, expr2, ..., exprN [/UL] to match a set of comma delimited
expressions regardless of the order in which they match.

 Note
This marker impacts processing time, use sparingly.

The following example matches Shakespeare, Faulkner and Hemingway if found in any order. Nesting the
unordered list within a clause container [CC] operator limits the occurrence of these tokens to within a clause.

#group AUTHORS: [CC][UL] <Shakespeare>, <Faulkner>, <Hemingway> [/UL] [/CC]

The unordered list marker can be thought of as a container much like the clause container marker [CC] rather
than a marker like the [CL] marker. The elements that it matches do not have to be contiguous.

For example, the above rule also matches Faulkner, Amis, Shakespeare, Wolfe, Bukovsky and our old
friend Hemingway .

This marker is invalid when:

● It is inside range delimiter [], item iterator {}, and token brackets <>
● It is found in #define statements
● It is inside other unordered list[UL] markers
● It is not used in pairs
● It is used more than once in a single rule

4.8 Writing Extraction Rules Using Context Markers

You can create more complex rules that allow for discontinuous pattern matching by using multiple sets of
context markers ([OD] [/OD]) in the same rule.

Example

If you run the following rule:

#group PERSON_BIRTH: [OD Name] [TE PERSON] < >+ [/TE] [/OD] < >* <STEM:be><born>
< >* [OD Date_Birth][TE DATE|YEAR] < >+[/TE][/OD]

against the following input text:

Max Kauffman was born in Breslau on the 11th of December, 1882.

52 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

The output is as follows:

PERSON_BIRTH: "Max Kauffmann was born in Breslau on the 11th of December, 1882" Name: Max Kauffman Date_Birth: 11th of December, 1882

You do not have to provide a name ([OD Name]) for the different fields in your rule, as follows:

#group PERSON_BIRTH: [OD] [TE PERSON] < >+ [/TE] [/OD] < >* <STEM:be><born> < >*
[OD][TE DATE] < >+[/TE][/OD]

In this case, extraction processing supplies a default name for the subentry categories, as follows:

PERSON_BIRTH: "Max Kauffmann was born in Breslau on the 11th of December, 1882" PERSON_BIRTH-1: Max Kauffman PERSON_BIRTH-2: 11th of December, 1882

However we do recommend that you use your own names for the fields to make your rule more meaningful.
The internal structure of the entities found by these rules is similar to those of the extraction processing built-in
entities and subentities.

4.9 Regular Expression Operators Supported in CGUL

This section describes all regular expression operators that are valid in CGUL. They are grouped into the
following categories:

● standard operators
● iteration operators
● grouping and containment operators
● operator precedence

4.9.1 Standard Operators Valid in CGUL

The standard operators are the wildcard, alternation. escape, character negation, string negation, subtraction,
character classifier.

Standard regular expression operators valid in CGUL are described in the following table.

Operator Symbol Description

Character wildcard . Matches any single character.

Alternation | Acts as a Boolean OR, which allows the combination of two or more ex
pressions or alternatives in a single expression.

Escape \ Escapes special characters so they are treated as literal values.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 53

Operator Symbol Description

Character negation ^ Specifies a negated character (the character following the caret ^ sym
bol).

String negation ~ Specifies a negated string (the string, inside parenthesis, following the ~
symbol).

Subtraction - Specifies the subtraction of one expression from the results of another.

Character Classifier \p Specifies the character in the character class specified by {value}.
Currently, two classes are supported:

● \p{ci}–matches the expression with the input string regardless of
case (case insensitive)

● \p{di}–matches the expression with zero or more of the diacritics
specified in the expression (diacritic insensitive)

Related Information

Character Wildcard (.) [page 54]
Alternation (|) [page 55]
Escape (\) [page 55]
Character Negation(^) [page 56]
String Negation(~) [page 56]
Subtraction (-) [page 57]
Character Classifier (\p) [page 57]

4.9.1.1 Character Wildcard (.)

The character wildcard (.) operator matches any single character.

In the following example, the expression matches the single character in between the literal characters:

#subgroup QAEDA: <Qa.da>

This matches Qaeda and Qaida, as well as combinations such as Qasda, Qavda, and so on.

 Note
This operator is invalid inside item iterator {} and range operator [] brackets.

54 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

4.9.1.2 Alternation (|)

The alternation operator (|) acts as a Boolean OR in regular expressions, allowing the combination of two or
more items or alternatives. If any of the alternatives is matched, then the alternation group is treated as a
match. Items to be alternated should be between parenthesis.

In the following example, the expression matches any one of the specified characters, in this case, a, b, c, or d.

a|b|c|d

In the following example, the expression matches working and worked.

<work(ing|ed)>

In the following example, there is more than one token on one side of the alternation. In this case, you should
use parenthesis to group the expression that contains multiple tokens.

<elm>|(<(ap|ma)ple><tree>)

This matches elm, apple tree, and maple tree.

If alternation involves two separate tokens, each token must be within angle brackets <>. For example,

<hit, STEM: hit> |<attack.*, POS:V>

is correct.

 Note
The | operator is invalid at the beginning of an expression, and within item iterator {} and range operator
[] brackets. The | operator must have two operands.

4.9.1.3 Escape (\)

The escape (\) operator escapes special characters that need to be treated as literal characters.

The following symbols must be escaped to be used literally:

\ : ! ? () . - [] { } | * < > + % ~ , ^ @

In the following example, the \ operator escapes the following symbols so they can be treated as literal
characters: < > /

#group Title: (<\<> <title> <\>>) | (<\<> <\/> <title> <\>>)

This matches <title> and </title>.

 Note
Only valid when preceding a special character.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 55

4.9.1.4 Character Negation(^)

The character negation operator (^) specifies which character to negate. This causes a match to all characters
except the negated one. The negated character follows the caret ^ symbol.

In the following example, the expression matches bbb, bcb, bdb, and so on, but not bab.

b^ab

In the following example, the expression matches bdb, beb, bfb, and so on, but not bab, bbb, or bcb

b^(a|b|c)b

 Note
Care should be taken when using character negations. For instance, alternating negations will invalidate the
entire expression:

(^a|^b)

The above example will apply to all tokens that are not a as well as all tokens that are not b: in other words, all
tokens.

 Note
Character classifiers do not operate with character negation.

4.9.1.5 String Negation(~)

The string negation operator (~) specifies which string to negate. This causes a match to any string except the
negated one. The negated string follows the tilda symbol (~) and must be contained within parentheses.

In the following example, the expression matches any string except car.

~(car)

In the following example, the expression matches any token that is not a Noun.

POS:~(Nn)

In the following example, the expression matches any token that is not a Noun or a verb.

POS:~(Nn|V)

 Note
Care should be taken when using string negations. For instance, alternating negations will invalidate the
entire expression:

<POS:~(Adj)|~(Nn)>

56 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

The above example will apply to all tokens that are not Adj as well as all tokens that are not Nn: in other words,
all tokens.

 Note
String negation should be used sparingly as it is costly in terms of processing time. Use only when other
ways of expressing are unavailable.

 Note
Character classifiers do not operate with string negation.

4.9.1.6 Subtraction (-)

The subtraction operator (-) specifies a subset of strings defined by one expression that are not also defined
by another. That is, matches from the first expression are only valid when they are not matched by the second.

In the following example, the expression matches all expressions beginning with house, except for strings
ending in wife, such as housewife.

house.* - .*wife

In the following French example, subtraction is used in #define in order to subtract adverbial forms
(incroyablement) from the adjectival forms (incroyable):

#define roots: (incroyabl|superb) #define pos_adv: %(roots)(ement)
#define pos_adj: (%(roots).+) - %(pos_adv)
#group PosSentiment: <POS:Nn> (<%(pos_adj)>|(<%(pos_adv)> <POS:Adj|V-PaPart|V/
Adj>))

The above pattern will extract "un dessin incroyable" and "un dessin incroyablement coloré".

 Note
This operator is only valid between two expressions that do not contain range operators or character
classifiers.

4.9.1.7 Character Classifier (\p)

The character classifier operator (\p {value}) specifies that the input string matches the character class
specified by {value}.

The possible values are:

● \p{ci}–matches the expression with the input string regardless of case (case insensitive)
● \p{di}–matches the expression exactly or the expression with an input string that contains a subset of

zero or more of the diacritics specified in the expression (diacritics insensitive)

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 57

 Note
\p{di} operator is used to allow matches on input that either has full correct diacritics, partially
correct diacritics, or no diacritics at all.

● For example, consider the following rule and different strings as input to the rule:

#group Eleve: <\p{di}(élève)>

The rule will match the following four input strings:
○ élève

(correct diacritics)
○ eleve

(no diacritic at all)
○ elève

(correct one only on 2nd “e”)
○ éleve

(correct one only on 1st “e”)
The rule will not match the following three input strings:
○ éléve

(incorrect diacritic on 2nd “e”)
○ èléve

(incorrect diacritic on both “e”)
○ elevé

(no diacritic on first 2 "e", and incorrect one on 3rd "e")

In the following {ci} examples, any of the following expressions will match any character case combination,
such as USA, Usa, usa, usA, and so on.

<\p{ci}(Usa)> <\p{ci}(usa)>
\p{ci}<usa>
\p{ci}<USA>

In the following {ci} example, the expression consists of a sequence of tokens.

\p{ci}(<the><united><states>)

In the following {di} example, the expression matches blasé and blase.

<blas\p{di}é>

In the following {di} example, the expression matches élève, elève, éleve, and eleve, but not éléve.

\p{di}<élève>

This operator is invalid when

● It is found inside {} (iteration braces)
● It is found within the range operator []
● It is used on a range
● In subtraction expressions

58 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

● In expressions that contain negation operators
● In tokens that contain STEM or POS expressions, unless the classifier is assigned to the STEM value.

However, operations on POS values are invalid
● The value is not defined
● It contains wildcards, character classifiers cannot contain wildcards

4.9.2 Iteration Operators Supported in CGUL

The iteration operators are question mark asterisk, plus, and braces.

In CGUL iteration is expressed by four basic symbols as described in the following table.

Operator Symbol Description

Question Mark ? Matches zero or one occurrence of the
preceding item

Asterisk * Matches zero or more occurrences of the
preceding item

Plus sign + Matches one or more occurrences of the
preceding item

Braces {} Indicates an item iterator that matches a
specific number of occurrences of the
preceding item

 Note
Iterators used inside of a token match the item or expression it follows in sequence, without blank spaces.
For example, <(ab){2}> would match abab. Iterators used outside of a token iterate the token it follows,
match each token individually. For example, <(ab)>{2} would match ab ab.

Related Information

Question Mark (?) [page 60]
Asterisk (*) [page 60]
Plus Sign (+) [page 60]
Braces ({ }) [page 61]

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 59

4.9.2.1 Question Mark (?)

The question mark (?) operator is always used following a literal character, special character, or expression
grouped as an item. The ? operator matches zero or one occurrence of the item it follows.

In the following example, the ? operator matches zero or one occurrence of h, d, and h respectively.

#subgroup GADAFY: <(G|Q)adh?d?h?a+f(y|i y?)>

This matches Gadafy, Gaddafy, Gadafi, Gaddaafiy, Qadhafi, Qadhdhaafiy, and so on.

This operator is invalid when:

● It is preceded by *, +, or ?
● It is found within the item iterator {}
● It is found within the range operator []
● It is found in POS values

4.9.2.2 Asterisk (*)

The asterisk (*) operator is always used following a literal character, special character, or expression grouped
as an item. The * operator matches zero or more occurrences of the item it follows.

In the following example the * operator matches zero or more occurrences of an adjective preceding words
with the stem animal.

#subgroup Animals: <POS: Adj>* <STEM:animal>

This matches animal, wild animal, poor mistreated animals, and so on.

This operator is invalid when:

● It is preceded by *, +, or ?
● It is found within the item iterator {}
● It is found within the range operator []
● It is found in POS values

4.9.2.3 Plus Sign (+)

The plus sign + operator is always used following a literal character, special character, or expression grouped as
an item. The + operator matches one or more occurrences of the item it follows.

In the following example, the + operator matches one or more occurrences of lowercase alphabetic characters
that follow an uppercase alphabetic character.

#group PROPERNOUNS: <[A-Z][a-z]+>

This matches any word that starts with a capital and continues with one or more lowercase letters.

60 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

In the following example, the + operator matches any ending for words that start with activat.

#subgroup Active: <activat.+>

This matches activation, activate, activator, activated, and so on.

This operator is invalid when:

● It is preceded by *, +, or ?
● It is found within the item iterator {}
● It is found within the range operator []
● It is found in POS values

4.9.2.4 Braces ({ })

Braces are used to indicate an item iterator that matches a specific number of occurrences of the expression it
follows. This iterator is always used following a literal character, special character, or expression grouped as an
item.

You can use this iterator in one of two ways:

● {m}–Matches m (1 to 9) occurrences of the preceding item
● {m, n}–Matches between m and n (0 to 99) occurrences of the preceding item

 Note
This iterator re-evaluates the expression it follows for each iteration, therefore it looks for subsequent
occurrences of the expression.

 Note
If exact iteration larger than 9 is needed, this can be expressed as a range starting and ending with the
same number:

{10,10}

means 10 iterations.

Example

In the following example, the item iterator matches numbers that contain four digits and a hyphen followed by
four more digits.

#define ISSN_Number: [0-9]{4}\-[0-9]{4}

This matches 2345-6758.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 61

The use of the iterator causes the extraction process to match four consecutive (contiguous) digits only, if the
input contains groups of three digits, or four digits separated by other characters, then there would be no
match.

In the following example, the item iterator matches strings that start with a single uppercase or lowercase
alphabetic character, followed by zero or one hyphen, followed by three digits between 0 and 6.

#define SoundexIndex: [A-Za-z]\-?[0-6]{3}

This matches S543, d-563, but does not match S54 or d-5F4D3.

In the following example, the item iterator matches sentences that are composed of zero or one determiner,
zero to three adjectives, and one or more nouns or proper nouns.

#group NounPhrase: <POS: Det>?<POS: Adj>{0,3}<POS: Nn|Prop>+

This matches Young single white female.

 Note
This iterator is invalid at the beginning of an expression or when found within braces.

4.9.3 Grouping and Containment Operators Supported in
CGUL

In CGUL, grouping and containment can be expressed by the operators as described in the following table.

Operator Symbol Description

Range delimiter - Specifies a range of characters when used inside a character class, enclosed in
square brackets, such as [a-z].

Range operator [] Indicates a character class.

Item grouper () Groups items together so they are treated as a unit.

Related Information

Range Delimiter (-) [page 63]
Range Operator ([]) [page 63]
Item Grouper () [page 64]

62 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

4.9.3.1 Range Delimiter (-)

The range delimiter (-) specifies a range of characters when used inside a character class (meaning, inside the
square brackets that represent the range operator). The range is from low to high inclusive.

The following example specifies three character ranges:

#define ALPHANUMERIC: [A-Za-z0-9]

This matches uppercase or lowercase alphabetic characters or numeric characters.

 Note
The range delimiter is only valid within range operator brackets [].

4.9.3.2 Range Operator ([])

The range operator ([]) is used to indicate a character class. A character class is a range of characters that
may be used in the current regular expression to match. This character class matches a single character,
regardless of how many characters are defined within the character class.

Characters contained within the brackets can be individually listed or specified as a character range using the
range delimiter (-). A character class can contain as many individual characters as needed and can contain
multiple character ranges.

 Note
Blank spaces within the range operator will cause a syntax error.

 Note
The range operator is invalid inside all brackets except () and <>.

The following example defines a set of single characters:

#define Vowels: [aeiou]

This is the same as (a|e|i|o|u) and matches any of a, e, i, o, and u.

The following example denotes a character range, in ascending order.

#define ALPHAUPPER: [A-Z]

The following example specifies several character ranges:

#define ALPHANUMERIC: [A-Za-z0-9]

This matches any uppercase or lowercase alphabetic character or any numeric character.

The following example specifies a range of characters and individual characters together.

#define ALPHA: [A-Za-záéíóúñ]

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 63

 Note
No special characters are allowed inside range operators other than the range delimiter (-). Also, character
classifiers do not operate within range operators (meaning, [\p] is interpreted as "match either the
backslash or the letter p.

4.9.3.3 Item Grouper ()

The item grouper () is used to group a series of items into a larger unit. The group is then treated as a single
unit by CGUL operators.

In this example, the initial character for each word is grouped to enable alternation between the uppercase and
lowercase letter. Also, each group of related tokens is grouped to enable alternation with each other.

#group AIR_POLLUTANTS: (<(S|s)ulphur> <(D|d)ioxide>) | (<(O|o)xide> <of> <(N|n)itrogen>) | <(L|l)ead>

This matches Sulphur Dioxide, sulphur dioxide, Sulphur dioxide, sulphur Dioxide, Oxide of Nitrogen, oxide
of nitrogen, Oxide of nitrogen, oxide of Nitrogen, Lead, and lead.

4.9.4 Operator Precedence Used in CGUL

CGUL has a precedence hierarchy which determines in which order the operators bind their environment.

The following table shows the order from top to bottom.

Functions Operators

Predefined items %

Escape \

Item iterator ({}), token (<>) and grouping brackets ([]) { }, <> , []

Item grouper ()

Character Classifier \p

Negation ^ , ~

Subtraction -

Item iterators *, +, ?

Concatenation (no operator)

64 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Functions Operators

Alternation |

4.9.5 Special Characters

CGUL special characters must be escaped when referring to them as part of an expression.

% \ | .

, + ? !

() []

{ } < >

^ : * ~

- @

4.10 Match Filters Supported in CGUL

CGUL supports the "longest match", "shortest match", and "list" (all matches) filters.

CGUL supports the match filters described in the following table.

Operator Description

Longest match By default, only the longest match is returned.

Shortest match

?

Forces the shortest match on the preceding token expres
sion.

List

*

Lists all matches without filtering.

Related Information

Longest Match Filter [page 66]
Shortest Match Filter (?) [page 66]

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 65

List Filter (*) [page 67]

4.10.1 Longest Match Filter

The longest match filter does not have to be specified as it is used by default, except inside markers (such as
NP and TE, and so on) where the shortest match applies and cannot be overruled. Only the longest match
applies to the preceding token expression.

For example:

#group ADJNOUN: <POS:Prop>* <>* <POS:Nn>

Using the following text:

Jane said Paul was a baker and Joan was once a carpenter

This example will match

Jane said Paul was a baker and Joan was once a carpenter.

 Note
It will match because "Jane" is a proper noun (Prop) and "carpenter" is a regular noun, so everything in
between matches the <>* operator.

Related Information

Match Filters Supported in CGUL [page 65]
Shortest Match Filter (?) [page 66]
List Filter (*) [page 67]

4.10.2 Shortest Match Filter (?)

The shortest match filter forces the shortest match on the preceding token expression.

For example:

#group ADJNOUN: <POS:Prop> <>*? <POS:Nn>

Using the following text:

Jane said Paul was a baker and Joan was once a carpenter

This example will match

Jane said Paul was a baker

66 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Joan was once a carpenter

The shortest match is calculated from every starting point. However, any match that partly or fully overlaps a
previous match is filtered out. As a result, the above example will not match "Paul was a baker" because that is
overlapped by the larger match: "Jane said Paul was a baker".

 Note
Valid only when preceded by a token wildcard <expr>+ or <expr>*, where expr can be any valid
expression or empty.

Related Information

Match Filters Supported in CGUL [page 65]
Longest Match Filter [page 66]
List Filter (*) [page 67]

4.10.3 List Filter (*)

The list filter returns all matches.

For example:

#group ADJNOUN: <POS:Prop> <>** <POS:Nn>

Using the following text:

Jane said Paul was a baker and Joan was once a carpenter

This example will match

Jane said Paul was a baker
Paul was a baker
Jane said Paul was a baker and Joan was once a carpenter
Paul was a baker and Joan was once a carpenter
Joan was once a carpenter

 Note
The list filter is valid only when preceded by a token wildcard<expr>+ or <expr>*, where expr can be any
valid expression or empty.

Related Information

Match Filters Supported in CGUL [page 65]

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 67

Longest Match Filter [page 66]
Shortest Match Filter (?) [page 66]

4.11 Preparing Extraction Rules for Use

When you have a text file that contains your extraction rules, you use the rule compiler to compile your rules
into .fsm files and to check the syntax of your rules. The .fsm files can contain multiple custom entity
definitions. The rule compiler uses the following syntax.

 Note
The rule compiler does not recognize file names that include blanks.

Syntax

tf-cgc -i <input_file> [<options>]

where,

-i <input_file> specifies the name of the file that contains the extraction rules. This parameter is
mandatory.

[<options>] are the following optional parameters:

Parameter Description

-e <encoding> Specifies the character encoding of the input file. The op
tions are unicode, utf-8, utf-16, utf_8, and
utf_16.

If the parameter is not specified, the rule compiler checks
for a BOM (byte order marker) in the file. This marker in
forms the compiler about the encoding type. If no BOM is
found, the default encoding value is ISO-8859-1.

-o <filename> Specifies the name of the output file. The output file must
have an extension of .fsm.

The default name is <input_file> .fsm

-h, -help, --help, -? Displays a message outlining the command options.

68 P U B L I C
Text Data Processing Extraction Customization Guide

Using Extraction Rules

Example

To run the rule compiler, type the following at the command prompt:

tf-cgc -i myrules.txt

where,

myrules.txt is the name of the file that contains the custom entity rules.

In this example, the compiler assumes the default character encoding for the input file (ISO-8859-1), and the
output file is myrules.fsm.

Text Data Processing Extraction Customization Guide
Using Extraction Rules P U B L I C 69

5 CGUL Best Practices and Examples

5.1 Best Practices for Rule Development

These are the guidelines to follow when developing rules using CGUL.

1. Anything that is repeated belongs in a #subgroup statement, or in case of a character expression, in a
#define statement.
For example,

!example 1 #subgroup sympton_adj: <STEM:stiff|painful|aching|burning>
#subgroup body_part: <STEM:head|knee|chest|ankle|eye|mouth|ear>
#group symptoms: %(symptom_adj) %(body_part)
#group vague_symptoms: %(symptom_adj) <STEM:sensation>
!example 2
#define neg_prefix: (de|dis|un) #group negative_action: <STEM:%(neg_prefix).+, POS:V> | (<POS:V> [NP] <>*
<STEM:%(neg_prefix).+, POS:Nn> [/NP])

Define and subgroup statements have no impact on the performance of a rule file. They are not compiled
separately. Instead, their content is copied into their While posing no restrictions, they offer three
considerable advantages:
○ They reduce the risk of typographical errors
○ They allow faster and easier maintenance
○ They allow reuse in other rules

2. If you use a complicated character expression, assign it to a #define statement. If you use a long list of
strings, such as alternate stems for one token, assign it to a #subgroup statement.
For example,

!example 3 #define chemical_prefix:
{
((mono)|
(bi)|
(di)|
(tri)|
(tetra)|
(octo)|
(deca)|
(hepto)|
(desoxy)|
(mero)|
(meso)|
(ribo))
}
!example 4
#subgroup weather_phenomena:
{
(<STEM:snow> |
<STEM:frost,POS:Nn> |
<STEM:cold,POS:Nn> |
<STEM:rain,POS:Nn> |
<STEM:hail,POS:Nn> |

70 P U B L I C
Text Data Processing Extraction Customization Guide

CGUL Best Practices and Examples

<STEM:flood(ing)?,POS:Nn> |
<STEM:hurricane> |
<STEM:drought> |
<STEM:tornado> |
<STEM:lightning> |
<STEM:weather,POS:Nn>)
}

Even if you intend to use a list only once, storing them in a #define or #subgroup statement makes your
group rules easier to read.

3. Save your reusable #define statements and #subgroup statements in a separate file. You can include
them wherever you need them by using the #include statement.
For example, suppose you have created a rule file called MyShortcuts.txt, containing the following
statements:

#subgroup PERSON: [TE PERSON]<>+[/TE] #subgroup NP: [NP]<>+[/NP]

You can refer to these expressions in another rule file by including them:

#include "MyShortcuts.txt" !(...) #group purchase: %(PERSON) <STEM:buy> %(NP)

4. You must declare #subgroup, #define, and #include statements before they are invoked in a rule.
For example,

#subgroup search_expr: <STEM:look><STEM:for> #group missing: %(search_expr) [OD missing_obj][NP]<>+[NP][/OD]

5. The #subgroup statement helps make your rule files easier to understand, edit, and test. However,
#subgroup statements do not reduce the processing speed of the rules. They can be cascaded, though
not recursively. Test your #subgroup statement by temporarily casting it as a #group and running it over a
sample text with some entities it is intended to match.
For example,

#subgroup PERSON: [TE PERSON]<>+[/TE] #subgroup PGROUP: %(PERSON) (<\,> %(PERSON))* (<and> %(PERSON))? #group missing: <STEM:look><STEM:for> [OD missing_ps]%(PGROUP)[/OD]

6. Give descriptive names to your #group, #subgroup and #define statements, and output delimiters [OD
name]. This will make your rules much easier to understand and edit.
For example,

#subgroup PERSON: [TE PERSON]<>+[/TE] #subgroup attack_verb: <STEM:attack|bomb|highjack|kill>
#group terrorist_attack: {
[OD terrorist] %(PERSON) [/OD] <>* %(attack_verb) <>* [OD target] [NP] <>+ [/
NP] [/OD]
}

7. CGUL is case-sensitive. To match both cases, list the alternatives, as in <(A|a)ward>.
For example,

#group POLLUTANTS: (<(S|s)ulphur> <(D|d)ioxide>) | (<(O|o)xides> <of> <(N|
n)itrogen>) | <(L|l)ead>

Text Data Processing Extraction Customization Guide
CGUL Best Practices and Examples P U B L I C 71

CGUL expressions or sub-expressions can be made case insensitive by deploying the character classifier
\p{ci}. This operator allows matching of strings that differ from the string in the rule only in its case
value. For example, \p{ci}(usa) will match "USA", "Usa" and so on.

8. The character classifier \p{di} forces diacritics insensitivity. This operator allows matching of strings that
differ from the string in the rule only in the presence of diacritics. For example, \p{di}(élève) matches "
elève", " eleve" and so on. For more information, read Character Classifier (\p) [page 57] before using this
character classifier.

9. If the pattern to be matched is non-contiguous, you need to insert a token wildcard, such as <>* or <>+, in
your rule. Be aware that token wildcards affect performance, and that their total number per rule, including
those present in invoked subgroups, should be kept within reasonable limits.

10. Try to avoid unbounded token wildcards, especially at the beginning or end of an expression. They lengthen
the runtime considerably. Use sentence delimiters ([SN]) or punctuation tokens to limit the scope of your
wildcards. Avoid writing: #group quote_sent: <>* [TE PERSON]<>+[/TE] %(say_expr) <>*
For example,

#subgroup say_expr: <STEM:say|remark|conclude|insinuate|insist> #group quote_sent: [SN] <>* [TE PERSON]<>+[/TE] %(say_expr) <>* [/SN]

11. The default for token wildcards is the longest match. Match filters are available to force shortest (or all)
matches. Tempting as they may be, use them sparingly. When several are invoked within the same rule,
matching filters inevitably interact with each other, which can lead to unintended results.
For example,

#group visit: [CC] [OD visitor] [TE PERSON] <> +[/TE] [/OD] <>* <STEM:visit>
<>*? [OD visitee] [TE PERSON] <>+ [/TE] [/OD] [/CC]

12. To restrict the processing of a rule to a portion of the input document, you can define an input filter in the
group header.
For example, a rule myrule with the following header:

#group myrule (paragraph="[1-4]"): ...
is applied only to the first four paragraphs of the input text.

13. To restrict the processing of a rule to a particular sentence in the input document, you can use the scope
key and the [P] and [SN] delimiters to mark the desired sentence.
For example, to extract the last sentence of the first paragraph:

#group myrule (scope="paragraph" paragraph="[1]"): [SN] <>+ [/SN] [/P]

14. When clause boundaries ([CL], [CC]) are available for the language on which you are working, always
consider using them for discontinuous patterns. Matches on such patterns that cross clause boundaries
are often unintended.
For example,

#group quote: <STEM:say>[OD quotation][CL]<>+[/CL][/OD]

15. For more information, refer to theText Data Processing Language Reference Guide.
16. If you want to include a list of lexical entries in a CGUL rule file, there is no need to copy and format them

into that rule file. Provided that your list consists of single words separated by hard returns, you can include
the list using the following syntax:

@lexicon PASSWORDS mypasswords.txt

72 P U B L I C
Text Data Processing Extraction Customization Guide

CGUL Best Practices and Examples

The list can then be referred to as %(PASSWORDS), representing all the entries contained in
mypasswords.txt as a list of alternate forms. The expression can be used to specify a token string such
as <%(PASSWORDS)> or a stem, such as <STEM: %(PASSWORDS)>.

17. Be careful with entity filters when running the extraction process with extraction rules. If your rules refer to
entity types, the entities for these types will have to be loaded, regardless of the filter you have set. As a
consequence, the output for certain filters may be different from expected.

5.2 Common Syntax Errors in Custom Rules

Certain common syntax errors are untraceable by the compiler.

1. Incorrect reference to #define and #subgroup directives is a very common error that the compiler often
cannot detect. For example:

#define SZ: (s|z) #group SpanishName: <.*gueSZ>
This looks for strings ending on gueSZ rather than the intended gues and guez. The correct syntax is
<.*gue%(SZ)>

2. By default, surround alternations with parentheses ().
3. Be careful with wildcard expressions in [UL] unordered lists. Using wildcards expressions that introduces

optionality in the list leads to unintended results.
For example:

([UL]<Fred>,<F.+>*[/UL])

unintentionally matches the single item Fred. It is the optionality of * that results in an unintended single
item extraction Fred.

5.3 Examples For Writing Extraction Rules

To write extraction rules (also referred to as CGUL rules), you must first determine the patterns that match the
type of information you are looking to extract. The examples that follow should help you get started writing
extraction rules.

Related Information

Example: Writing a simple CGUL rule: Hello World [page 74]
Example: Extracting Names Starting with Z [page 74]
Example: Extracting Names of Persons and Awards they Won [page 75]

Text Data Processing Extraction Customization Guide
CGUL Best Practices and Examples P U B L I C 73

5.3.1 Example: Writing a simple CGUL rule: Hello World

To write a rule that extracts the string Hello World, you create a token for each word, and define them as a
group:

#group BASIC_STRING: <Hello> <World>

where,

BASIC_STRING is the group name; names are always followed by a colon (:).

<Hello> is a token formed by a literal string.

<World> is a token formed by a literal string.

If you want to extract the words with or without initial caps, then you would re-write the rule as follows:

#group BASIC_STRING: <(H|h)ello> <(W|w)orld>

This would match Hello World, hello world, Hello world, and hello World.

The statement uses the alternation operator (|) to match either upper case or lower case initial characters. The
parentheses groups the alternating characters together.

5.3.2 Example: Extracting Names Starting with Z

!This rule extracts title and last name for persons whose last name !starts with Z
#define LoLetter: [a-z]
#subgroup ZName: <Z%(LoLetter)+>
#subgroup NamePart: <(van|von|de|den|der)>
#subgroup Title: <(Mr\.|Sr\.|Mrs\.|Ms\.|Dr\.)> #group ZPerson: %(Title) %(NamePart){0,2} %(ZName)

Lines 1 and 2 are a comment. The exclamation mark (!) causes the compiler to ignore the text that follows it on
the same line.

!This rule extracts people's full name for persons whose last name !starts with Z

Line 3 defines a character class for all lowercase alphabetic characters. Character classes are enclosed within
the range operator ([]), and can use the hyphen (-) symbol to indicate a range. Character classes can also
include lists of individual characters without indicating a range, or a combination of both, for example [a-
zãæëïõü].

#define LoLetter: [a-z]

Once an item, such as LoLetter, is given a name and defined, it can be used within another item, such as a
group or subgroup. The syntax is: %(item). The % and parentheses are required.

Lines 4, 5, and 6 are subgroups that define tokens that match the different components of a name.

#subgroup ZName: <Z%(LoLetter)+>

74 P U B L I C
Text Data Processing Extraction Customization Guide

CGUL Best Practices and Examples

#subgroup NamePart: <(van|von|de|den|der)> #subgroup Title: <(Mr\.|Sr\.|Mrs\.|Ms\.|Dr\.)>

● ZName–Defines a token that matches words that start with the uppercase letter Z.
The token consists of the literal character capital Z, the character class LoLetter, followed by the + iterator.
The + iterator matches the item it follows one or more times. Finally, the entire expression is delimited by
angle brackets (<>), defining it as a token.
This rule matches all words that start with an initial capital Z, followed by one or more lower case
characters (LoLetter).

● NamePart–Defines a token that matches the possible name parts that can be part of a last name.
The token consists of a group of alternating terms. Each term is separated by the alternation operator (|),
denoting that the expression matches any of the terms within the group of alternating terms. The terms
are enclosed within parentheses (). The parentheses group the items into a larger unit, which is then
treated as a single unit. Finally, the entire expressions is delimited by angle brackets (<>), defining it as a
token.
Another way of expressing the same operation would be:

#subgroup NamePart: <van>|<von>|<de>|<den>|<der>

This rule matches the literal strings van, von, de, den, and der.
● Title–Defines a token that matches the possible titles a person can have.

The token consists of the same components as NamePart, with the exception of the literal string content
of the token, and the use of the escape symbol (\) to add a period at the end of each literal string. The
escape symbol (\) is used to escape special characters so they are handled as literal characters. If the
period is not escaped, it is interpreted as a wildcard.
This rule matches the literal strings Mr., Sr., Mrs., Ms., Dr.

Line 7 defines the actual entity type for a person's full name, whose last name starts with Z.

#group ZPerson: %(Title) %(NamePart){0,2} %(ZName)

The group consists of a string of the items you defined in the previous lines as subgroups or character classes.

● Title–token representing the person's title
● NamePart–token representing the person's name parts, if any
● Zname–token representing the person's last name

Tokens cannot contain other tokens, therefore, it would be an error to express %(Title), %(NamePart), or %
(Zname) between angle brackets (<>) within the ZPerson group. Items that are not already defined as tokens,
must be declared as tokens.

The {0,2} iterator that follows the NamePart token matches the NamePart token zero to two times, with
white space between multiple items.

The rule matches names such as Dr. van der Zeller.

5.3.3 Example: Extracting Names of Persons and Awards they
Won

!Rules for extraction of Award relations

Text Data Processing Extraction Customization Guide
CGUL Best Practices and Examples P U B L I C 75

 #subgroup Person: [OD Honoree] [TE PERSON] <>+ [/TE] [/OD]
#subgroup Award1: [NP] <~(Academy)>+ <(A|a)ward|(P|p)rize> [/NP]
#subgroup Award2: <Best|Top> <POS:Num>? <POS:Prop>+
#subgroup AnyAward: [OD Award] (%(Award1) | %(Award2)) [/OD]
#group Win: {
[CC] %(Person) <>*? (<STEM:win|receive|accept>|<named|listed|awarded>) <>*? %
(AnyAward) [/CC] }

Line 1 is a comment. The exclamation mark (!) causes the rule compiler to ignore the text that follows it on the
same line.

Lines 2, 3, 4 and 5 are subgroups that define tokens that match different components of the rule.

● Person–Defines a PERSON entity with output delimiters ([OD Honoree]).
● Award1–Defines a noun phrase that ends in variations of the words award and prize, but does not include

the word Academy.
● Award2–Defines an expression that includes combinations of either Best or Top followed by an optional

number and one or more proper nouns. For example, Top Ten Entertainers, Best Footballer Players, and
so on.

● AnyAward–Defines a subgroup for Award1 and Award2 with output delimiters.

Line 6 defines the actual relationship between a person and an award.

#group Win: { [CC] %(Person) <>*? (<STEM:win|receive|accept>|<named|listed|awarded>) <>*? %
(AnyAward) [/CC]}

The group consists of a string of the items previously defined as well as intervening words denoting the
relation.

The group uses a Clause Container ([CC]) that utilizes the shortest match filter (?) to relate a person to an
award.

76 P U B L I C
Text Data Processing Extraction Customization Guide

CGUL Best Practices and Examples

6 Testing Dictionaries and Extraction Rules

To test dictionaries and extraction rules, use the Entity Extraction transform in the Designer.

Text Data Processing Extraction Customization Guide
Testing Dictionaries and Extraction Rules P U B L I C 77

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

78 P U B L I C
Text Data Processing Extraction Customization Guide

Important Disclaimers and Legal Information

Text Data Processing Extraction Customization Guide
Important Disclaimers and Legal Information P U B L I C 79

www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Text Data Processing Extraction Customization Guide
	Content
	1 Text Data Processing Extraction Customization Guide
	2 Introduction
	2.1 Who Should Read This Guide
	2.2 About This Guide

	3 Using Dictionaries
	3.1 Entity Structure in Dictionaries
	3.1.1 Generating Predictable (Standard) Variants
	3.1.2 Custom Variant Types
	3.1.3 Entity Subtypes
	3.1.4 Variant Types
	3.1.5 Wildcards in Entity Names
	3.1.5.1 Wildcard Definitions
	3.1.5.2 Wildcard Usage

	3.2 Creating a Dictionary
	3.3 Extraction Dictionary Syntax
	3.3.1 Dictionary XSD
	3.3.2 Guidelines for Naming Entities
	3.3.3 Character Encoding in a Dictionary
	3.3.4 Dictionary Sample File
	3.3.5 Dictionary Source Format

	3.4 Preparing a Dictionary for Use
	3.4.1 Command-line Syntax for Compiling a Dictionary

	3.5 Customization of Sentiment Analysis Dictionaries
	3.5.1 Whitespace Language Sentiment Analysis Customization
	3.5.2 Nonwhitespace Language Sentiment Analysis Customization

	4 Using Extraction Rules
	4.1 About Customizing Extraction
	4.2 Understanding Extraction Rule Patterns
	4.2.1 CGUL Elements
	4.2.2 CGUL Conventions

	4.3 Including Files in a Rule File
	4.3.1 Using Predefined Character Classes

	4.4 Including a Lexicon in a Rule File
	4.5 CGUL Directives
	4.5.1 Writing Directives
	4.5.2 Using the #define Directive
	4.5.3 Using the #subgroup Directive
	4.5.4 Using the #group Directive
	4.5.5 Using Prefixes in a #group Directive
	4.5.6 Using Items in a Group or Subgroup

	4.6 Tokens
	4.6.1 Building Tokens

	4.7 Expression Markers Supported in CGUL
	4.7.1 Paragraph Marker [P]
	4.7.2 Sentence Marker [SN]
	4.7.3 Noun Phrase Marker [NP]
	4.7.4 Clause Marker [CL]
	4.7.5 Clause Container [CC]
	4.7.6 Context Marker [OD]
	4.7.7 Entity Marker [TE]
	4.7.8 Unordered List Marker [UL]

	4.8 Writing Extraction Rules Using Context Markers
	4.9 Regular Expression Operators Supported in CGUL
	4.9.1 Standard Operators Valid in CGUL
	4.9.1.1 Character Wildcard (.)
	4.9.1.2 Alternation (|)
	4.9.1.3 Escape (\)
	4.9.1.4 Character Negation(^)
	4.9.1.5 String Negation(~)
	4.9.1.6 Subtraction (-)
	4.9.1.7 Character Classifier (\p)

	4.9.2 Iteration Operators Supported in CGUL
	4.9.2.1 Question Mark (?)
	4.9.2.2 Asterisk (*)
	4.9.2.3 Plus Sign (+)
	4.9.2.4 Braces ({ })

	4.9.3 Grouping and Containment Operators Supported in CGUL
	4.9.3.1 Range Delimiter (-)
	4.9.3.2 Range Operator ([])
	4.9.3.3 Item Grouper ()

	4.9.4 Operator Precedence Used in CGUL
	4.9.5 Special Characters

	4.10 Match Filters Supported in CGUL
	4.10.1 Longest Match Filter
	4.10.2 Shortest Match Filter (?)
	4.10.3 List Filter (*)

	4.11 Preparing Extraction Rules for Use

	5 CGUL Best Practices and Examples
	5.1 Best Practices for Rule Development
	5.2 Common Syntax Errors in Custom Rules
	5.3 Examples For Writing Extraction Rules
	5.3.1 Example: Writing a simple CGUL rule: Hello World
	5.3.2 Example: Extracting Names Starting with Z
	5.3.3 Example: Extracting Names of Persons and Awards they Won

	6 Testing Dictionaries and Extraction Rules
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

