
PUBLIC
2020-08-28

SAP Predictive Analytics Developer Guide

©
 2

02
0 

SA
P 

SE
 o

r a
n 

SA
P 
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s 
re

se
rv

ed
.

THE BEST RUN  



Content

1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 What's New in This Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 What You Can Do as an Administrator or Developer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 What is Predictive Analytics for OEM?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Main Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Factory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Case Iterator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Class Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Control API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Data Access API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Differences between Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Distributed Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Internationalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Usage Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Preparing the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Training a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Applying a Trained Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Using a Model for Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Features Recapitulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

5 Using the Automated Analytics API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Import. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Loading a Configuration File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Performing Direct Calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Configuration Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Licensing Your Program with the C++ API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Common Operation Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 PUBLIC
SAP Predictive Analytics Developer Guide

Content



Declaring the Java Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Getting the Class Factory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Loading a License File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Building a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Setting Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Setting Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Training a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Displaying the Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Using a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Saving a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Loading a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Releasing the Current Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Deleting a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Message Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Progress Report Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Message Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Sample Scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Prerequisites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Java Sample Scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Python Sample Scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

5.6 Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
In-Process Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Client/Server Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Segmented Modeling in the Automated Analytics Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Filter Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Integrating Generated Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1 What's New in Integrating Generated Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 About Code Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.3 Available Implementations of Code Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Generated Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

AWK Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
C Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CCL Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C++ Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
HTML Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Java Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
PMML Code (3.2 version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SAS Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SQL Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
UDF Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
VB Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

SAP Predictive Analytics Developer Guide
Content PUBLIC 3



7 Model Parameter Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1 Model Generation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Infos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Protocol Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 DataSets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.5 Plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
7.6 External Executables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209

ExternalExecutableAvailable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
External_Executable_Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
Other Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

8 KxShell: SAP Predictive Analytics Command Line Interpreter. . . . . . . . . . . . . . . . . . . . . . . . .214
8.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.2 Regression and Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Basic Script Using Text Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Basic Script Using an ODBC Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Using the Default Cutting Strategy: Random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Changing the Cutting Strategy: Periodic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Changing the Compression Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Excluding a Variable and Changing the Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Applying a Model Using Text Files (Scoring). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Applying a Model in an ODBC Source (Scoring). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.3 Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
Basic Script Using Text Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Basic Script Using an ODBC Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Using a Classification Model to Characterize a Cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Applying a Model Using Text Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Applying a Model in an ODBC Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

8.4 KxCORBAShell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9 Integrating with the Data Access API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.1 Architecture Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
9.2 Integration of a User-Defined Data Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.3 Minimum Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Case Iterator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Refinement Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4 PUBLIC
SAP Predictive Analytics Developer Guide

Content



Compilation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.4 Library Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.5 Declaration of a New User Class Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.1 Data Type Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2 File Format Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10.3 Language ISO Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

SAP Predictive Analytics Developer Guide
Content PUBLIC 5



1 Overview

The SAP Predictive Analytics Developer Guide describes how to integrate Predictive Analytics functions into 
your environments and products.

You can find the following information:

Information Description

Your role when using Predictive Analytics for OEM What You Can Do as an Administrator or Developer [page 
10]

The latest features What's New in This Release [page 9]

The main concepts and contents of the Automated Analytics 
API

Main Concepts [page 14]

A sample scenario that takes you through the complete 
process of how to create and use a model

Common Operation Workflow [page 39]

How to integrate Predictive Analytics for OEM for in-process 
or client/server use

Integration [page 56]

The set of input and output parameters that can be found in 
the parameter tree of each object

Model Parameter Reference [page 91]

How to write scripts for data-mining tasks using the propri
etary KxShell tool

KxShell: SAP Predictive Analytics Command Line Interpreter 
[page 214]

How to access data using the Data Access API Integrating with the Data Access API [page 229]

Audience

This guide is intended for integrators familiar with the use of Software Development Kits and Application 
Programming Interfaces.

6 PUBLIC
SAP Predictive Analytics Developer Guide

Overview



Documentation Changes

Version Changes

3.3 This documentation has been fully edited and reorganized.

This documentation now provides information about the Py
thon scheme of the Automated Analytics API. Information 
about C++ Common Interface scheme has been also up
dated.

The guide Integrating Generated Code has been merged to 
this documentation. See What's New in Integrating Gener
ated Codes [page 66].

A section about user roles has been added, see What You 
Can Do as an Administrator or Developer [page 10].

3.2 This documentation is provided in a brand new HTML for
mat.

API References

SAP Predictive Analytics API is available in different integration schemes (Java, C++, CORBA,…). While the 
objects and calls manipulated in the API have the same name from one scheme to another, there are only 
minor changes from one scheme to another. Find the following Automated Analytics API reference on the SAP 
Help Portal.

Reference Description

Authentication Server The API to be used when communicating with a Predictive 
Analytics Authentication server.

Java The common interface for all integration schemes in Java

C++ The C++ wrapper used to develop for C++ in-process or 
CORBA out-of-process

CORBA The CORBA API used to communicate with a Predictive Ana
lytics CORBA server.

Python The wrapper designed to make use of SAP Predictive Analyt
ics in Python

KxShell The KxShell script syntax and commands

Data Access The C API to define a specific data access to SAP Predictive 
Analytics

SAP Predictive Analytics Developer Guide
Overview PUBLIC 7

https://help.sap.com/http.svc/download?deliverable_id=20361195


Data Access API Sample Files

The library to be implemented by the integrator is specified through the KxDataAccess.h header file, which 
describes all the API calls to implement when creating a new UserStore. Sample files of a UserStore code are 
also available. Find these files on the SAP Help Portal.

Learn More

Go one step beyond in the exploration of the Python API by reviewing the following tutorials on the SAP 
community:

● Train and save an Automated Analytics model
● Load and debrief the model
● Export the scoring equation
● Make predictions

8 PUBLIC
SAP Predictive Analytics Developer Guide

Overview

https://help.sap.com/http.svc/download?deliverable_id=20361196
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F02%2F20%2Ftrain-a-model-from-a-jupyter-notebook-using-the-python-api-of-sap-predictive-analytics%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F02%2F20%2Fdebrief-a-model-from-a-jupyter-notebook-using-the-python-api-of-sap-predictive-analytics%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F02%2F21%2Fexport-the-scoring-equation-of-a-model-using-the-sap-predictive-analytics-python-api%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F02%2F22%2Fmake-predictions-using-the-python-api-of-sap-predictive-analytics-from-a-jupyter-notebook%2F


2 What's New in This Release

This guide presents the latest release of Predictive Analytics for OEM, which corresponds to the version 3.3 of 
the Automated Analytics API.

What's New:

● Support of a Python scheme for the Automated Analytics API. See Implementations [page 27].
● Python sample scripts are available in the installation directory. See Sample Scripts [page 53].

SAP Predictive Analytics Developer Guide
What's New in This Release PUBLIC 9



3 What You Can Do as an Administrator or 
Developer

The Administrator Role

 

 

● Configuration [page 34]

10 PUBLIC
SAP Predictive Analytics Developer Guide

What You Can Do as an Administrator or Developer



The Developer Role

 

 

● Using the Automated Analytics API [page 34]
● KxShell: SAP Predictive Analytics Command Line Interpreter [page 214]
● Integrating with the Data Access API [page 229]
● Python Sample Scripts [page 54]
● About Code Generation [page 66]
● In-Process Integration [page 56]
● Client/Server Integration [page 58]
● C Code [page 70]
● C++ Code Generator Framework Presentation [page 72]
● Java Code [page 77]

SAP Predictive Analytics Developer Guide
What You Can Do as an Administrator or Developer PUBLIC 11



● SQL UDF [page 86]

12 PUBLIC
SAP Predictive Analytics Developer Guide

What You Can Do as an Administrator or Developer



4 What is Predictive Analytics for OEM?

Learn about the whole architecture of Predictive Analytics for OEM.

Predictive Analytics for OEM provides advanced data analysis functions that can be embedded into third-party 
products and environments.

What is Predictive Analytics for OEM?

A component library to be integrated in final applications or software

This is not a standalone statistical environment. Its components can be integrated into full-blown 
environments such as SAS or SPSS.

An engineering product

It integrates some state of the art algorithms, with their associated engineering heuristics and scientific 
methodology describing the usage constraints. Selected algorithms must be able to give some a-priori 
estimations such as the estimated memory usage, and the estimated time to completion, and a way to assess 
the validity of their results.

A tool for non-statisticians

In particular, it must be able to check that it is used in a proper environment and to warn the users in 
understandable form for any violation of usage constraint. It allows non-statisticians to quickly apply the 
provided algorithms on proprietary data.

Who can use Predictive Analytics for OEM?

● Any application that could embed Automated Analytics
● Any application that could be packaged with SAP Predictive Analytics

Capabilities

Training, running, deploying and maintaining predictive models are its main capabilities. It relies on the 
Automated Analytics API that allows you to develop and perform the following types of predictive analysis:

● Clustering analysis
● Classification and regression analysis
● Time series analysis
● Social network analysis

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 13



What is not Predictive Analytics for OEM?

A scientific laboratory

Instead of giving all the possible tuning parameters to the end-user, the product can use some proven 
heuristics associated to the mathematical foundations to allow a fast design of operational solutions, and to 
reduce the number of tuning parameters.

A complete data analysis environment

SAP Predictive Analytics for OEM does not offer extended data pre-processing and data visualization facilities. 
There are a lot of tools on the market, and the most complex or domain specific pre-processing should be done 
within the data sources.

A vector for scientific spread

Most of the internal technology remains the sole property of SAP and is subject to patent.

4.1 Main Concepts

The concepts listed in this topic are the main concepts that you manipulate when working with the APIs. They 
are divided in two categories:

● The Control API, allowing the end user to create models:
○ Model
○ Transform
○ Protocol

● The Data Access API
○ Store
○ Space
○ Case Iterator (not in the following diagram, see Architecture Elements [page 229])

A list of datasets and a list of protocols define a model. Models and datasets can be saved and restored from 
stores.

You will also find descriptions of useful interfaces that are Context and Factory.

This image is interactive. Hover over areas for a short description.

14 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



 

 

● Transform [page 18]
● Space [page 23]
● Space [page 23]
● Store [page 23]
● Protocol [page 20]
● Model [page 15]

Related Information

Context [page 21]
Factory [page 22]
Case Iterator [page 25]
Integrating with the Data Access API [page 229]

4.1.1  Model

Models are responsible for managing state transitions of the data analysis tasks and for connecting the 
components used in this data analysis, such as the data sources and the transforms. Models are the only entity 
that can be saved and restored between working sessions.

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 15



The module defines specialized components for the following analysis tasks, described in the next sections:

● Regression
● Classification

State Diagram

1. Initialize and set the context and some characteristics such as names, parameters, protocols, datasets, 
and stores. Parameter changes are validated through the validateParameter method. Every model can 
show a parameter view of its own datasets and protocols under the sections 'Datasets' and 'Protocols' of 
the parameter tree.

2. Check consistency between the components such as the datasets and the transforms. To do so you need 
to proceed as follows:
1. Check that all datasets can be opened and that the transforms are initialized.
2. Check or enforce that all datasets have the same variable descriptions.
3. Ask the transforms to do the following:

○ To check the required datasets are present.
○ To check the compatibility of the variable types and eventually install some extra transforms.
○ To set the normalization type and reject policy.
○ To set the unknown reject policy.

 Note
SAP Predictive Analytics is able, at this point, to estimate the memory load and computing time. It 
also activates the portion of the state diagram which shows that the 'running' state can be 
interrupted, allowing a user interface to:

○ Stop the process to change some characteristics or to compute some intermediate results.

16 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



○ Resume/Abort the execution. The learn/adapt/apply phase can lead to several internal phases 
as decided by the transform.

3. Adapt/Learn/Apply the service to/of the dataset. The send method runs the process directly and the post 
method creates an internal thread to return immediately to the frontend.

4. Extract/Interpret the adaptation/learning/application results through the examination of the result 
parameters.

Related Information

Regression [page 17]
Classification [page 17]

4.1.1.1 Regression

This predictive model builds a mapping to associate a value to some input variables (presented as a Case). The 
Training data set must provide examples. An example is made of a case containing the input variables 
associated with one target (dependent) value. Cases can be made of variables of different types: continuous, 
nominal or ordinal.

The target variable must be coded as a number, which implies it is a continuous type. When the target variable 
is discrete (which means that the task is actually a classification forced into a regression), the model will code 
this target. This code is generally effected by associating '1' (for example) to each case having a specific 
discrete value and '-1' to the others.

There are two main types of transforms used in regression: some are purely numeric algorithms, which means 
that they only accept numbers as inputs. For these algorithms, nominal variables must be coded with numbers. 
The other type is symbolic and only accepts symbols as inputs. For these algorithms, continuous variables 
must be coded into ranges.

Depending on the transform, the model will apply some intermediate transforms in order to adapt the variables 
coding to the final algorithm or some intermediate transforms add extra variable based on the input variables 
in order to add more information on the model. For example, a date variable will be reencoding into multiple 
variable that describe the day of year, or the day of week.

Regression model results are made of some statistics on the difference between the target values and the 
generated values on the training set.  

4.1.1.2 Classification

This predictive model builds a mapping to associate a class to some input variables. The training data set must 
provide examples. An example is made of a case containing the input variables associated with one target 
(dependent) value. Cases can be made of variables of different types: continuous, nominal or ordinal.

The target variable must be a discrete symbol representing the class. When the desired variable is continuous 
(which means that the task is actually a regression), the model will code the target. This code is generally 

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 17



obtained by associating one symbol to the target values above the median and another symbol for the target 
values lower than the median.

Again, there are two main types of transforms used in classification: some are purely numeric algorithms, 
which means that they only accept numbers as inputs. For these algorithms, nominal variables must be coded 
with numbers. The other type is symbolic and only accepts symbols as inputs. For these algorithms, 
continuous variables must be coded into ranges.

Depending on the transform, the model will apply some intermediate transforms in order to adapt the variables 
coding to the final algorithm.

Classification model results are computed using misclassification costs, and lift curves on the training set. In 
the present release, classification can only be made between two classes.

4.1.1.3 Segmentation (Clustering)

Segmentation models groups case contained in a training data set. This clustering generally relies on a notion 
of distance between cases. Most of the times, the system tries to represent the data set through specific cases 
(that could be synthetic) that are called prototypes. It is used to understand some underlying coherent 
behaviors in the events.  

4.1.1.4 Forecasting

Forecasting models are special cases of regression. Specialization is done through some specific pre-
processing of time varying values. Such values are called signals and the extraction of the periodicity of these 
signals allows to restrain the search space used by the transforms, and gives better results that the pure 
regression techniques.  

4.1.1.5 Data Representation

The purpose of data representation is almost every time linked to data compression or how to find a way (axes) 
to represent the cases with the minimum loss of information allowing performing a certain task. Most of the 
times, this data compression can only be done if the user knows how data will be used after compression: for 
example, an attribute that could be regarded as noise for one task could be very important for another one.

4.1.2  Transform

Transforms are interfaces generating two types of information:

● Synthetic information that helps you understand a set of events. For example, some basic statistics such 
as the mean and standard deviation of variables. This information is stored into the transform itself as a 
result.

18 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



● Infomation saved as new items or numbers for each event or case into databases or files. For example, a 
score associated with a credit risk for a particular customer.

Transforms hold the actual statistical or machine learning algorithms and must go through a learning phase to 
be ready for use. This learning phase is done at the model level and used for the estimation of parameters and 
the computation of some results or descriptive information.

 Note
Although frontend users cannot initiate learning or adaptation phases, for specific uses it is possible to test 
a transform and store the results in a temporary space. This particular mechanism saves intermediate 
results. However, users do not need to know anything about the implementation details of the transform 
algorithms.

Transforms must be customized using parameters. However, all components are designed to keep the number 
of user-defined parameters as small as possible. The frontend is only allowed to edit the names and the 
parameters. The models actually control the transforms.

Internal parameters that are computed during 'Learn' or adapted during 'Adapt' can be accessed by the 
frontend through the parameters under the Results directory. Results are read-only.

When the frontend wants to stop the running computation, it asks for the Model::stopRequest method. This 
sends the appropriate event. It is up to the computation thread to process the stop request at some breakable 
points.

State Diagram

The following state diagram shows the possible transition paths from the 'Created' to the 'Ready' state.

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 19



4.1.2.1 Classification and Regression

The classification/regression engine builds models implementing a mapping between a set of descriptive 
variables (inputs of the model) and a target variable (output of the model). It belongs to the family of the so-
called regression algorithms. This is a proprietary algorithm that is our own derivation of a principle described 
by V. Vapnik called "Structural Risk Minimization". The first quality of the models built with SAP Predictive 
Analytics classification/regression engine is their robustness, which makes them very useful for very noisy data 
sets. The second quality of these models is that they are based on polynomial functions, which are well known 
mathematical objects. Furthermore, it is very easy to interpret the order 1 polynomial coefficients into variable 
contributions. This allows end-users to make fruitful variable selection based on the robust information 
extracted from the data.

The learning phase is very fast: only tens of seconds for a problem on 50,000 cases described with 15 
attributes.

4.1.2.2 Data Encoding

The data encoding engine is one of the corner stone of the application's features preprocessing utilities. Its 
purpose is to find robust encoding of discrete variables into ordinal numbers that can be injected into 
numerical algorithms such as Neural Networks, and the classification/regression engine.

The data encoding feature fits with the following constraints:

● Robust representations of discrete variables values,
● Reduced number of data access,

The target variable must be easily transformed into a number (number targets are thus accepted). When 
applied in a regression model, there is no target transformation. When applied in a classification model, the 
class less frequent is coded as a 1, and the other class as a 0 (or –1 depending on the succeeding transform).

The data encoding engine encode all discrete variables possible values with a number related to their rank in 
terms of target mean. Its only originality is to eliminate poorly represented values.

4.1.3  Protocol

Protocols are responsible for holding together a chain of interfaces containing the algorithms, named 
transforms, from the raw data to their encoding. The protocol passes through the final transforms in charge of 
information extraction and generation.

You can choose the variable role through protocols. The four roles are:

Role Characteristics

skip The transform chain doesn't use the variable.

input The transform chain uses this varable input.

20 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



Role Characteristics

target The transform chain uses this variable target value.

weigth The variable indicated the relative weight case versus the 
others. This mechanism allows giving more stress to some 
specific cases in a database.

Strange Values

Information extraction can manage the problem of processing strange values, which are either missing or out 
of range. This problem is solved through a set of policies that are implemented by the protocols during the 
check phase.

Each protocol is characterized by a policy that can take one of the three following values:

● Transform deals
The protocol asks its transforms to discuss together in order to process strange values. This is the default 
mode.

● skip
The protocol forces all transforms to use a skip action, meaning that the cases with strange values will be 
discarded both during training or application.

● Warning
This level is associated with warnings that are generated for every strange value. If this level is higher than 
the context level, the user will not see any warnings.

 Note
You can change these three parameters between training and application phases.

The protocol says if it accepts strange values that could be generated by the last transform. To do so, it uses 
two Boolean parameters, which are defaulted as false. The default behavior is thus to process empty values or 
out of range values generated by the last transform.

4.1.4  Context

The Context interface provides a way for the user to integrate models within in-house environments or 
applications. It is basically a handle to four callback procedures that are called when events to be displayed to 
the user occur.  

'userMessage' is the method called by any component that want to inform the front end of some event. 
Messages are build from a keyword and some arguments. A topic manager links this keyword with a message 
template, thus allowing very easy internationalization or customization of the messages. Messages are 
associated with a level. Only messages, with a level lower than the context level, are displayed to the user (level 
0 means an error).

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 21



When a component decides it needs confirmation from the user, it calls the userConfirm method. This 
displays a prompt to the user and asks for confirmation. It returns a Boolean value to the caller component.

Sometimes, especially, when restoring a model from a store, a component will require a value to the user 
frontend (logins and passwords for example). It does so by using the userAskOne method.

Finally, when a running component hits a request for stop, it asks for the stopCallback method that asks the 
user for the next operation which can be abort or resume.

4.1.5  Factory

The Factory implementation and cardinality depends on the interface framework (C++ or CORBA). Its role is to 
allow the creation of components by user frontends.

Besides the component creation role, the Factory collects information about the host machine such as 
duration of basic operations (add, multiply operators...) and available memory.

22 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



4.1.6  Store

Stores federates several physical spaces and help frontend designers to show available stores, spaces and 
models. Stores can be viewed as a file directory, a database, or an Excel workbook.

Models can be saved into specific spaces contained in stores, allowing one to view the models saved into a 
store and to restore the model.

A model description contains:

● Its name
● Its class name
● Its version
● The date of its last save
● The space name of its last save

State Diagram

The two operations on store are Open and Close.

Open allows to access data spaces in a given location with a user and a password that can be empty strings.

When a store is open, it can be asked for its subspaces. There is one specific subspace called 'KxAdmin' which 
holds the descriptions of models saved in this store.

4.1.7  Space

Spaces are responsible for preparing the environment to fetch the data from their actual sources, and for the 
description of these variables composing a case. The actual fetch is made through the creation of case 
iterators.

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 23



 Note
A space is generally associated with a model through a role name. This association between a name and 
space is called a dataset.

A variable description contains several information items:

● Name
● Description
● Storage type (number, string, and date)
● Value type (discrete, continuous, ordinal, date)
● Level indicating if the variable is considered as a key that could be used to retrieve this sample in the data 

sources
● Level indicating if the variable corresponds to an order of the cases
● Group indicating if the variable must be considered with others

From the user frontend, the only calls that are available after a space creation (through a store or a model), are 
about parameter edition. The user can also ask to read a specific description file that holds the variable 
descriptions.

All the other operations are done internally within the components and are just shown here to present the 
interactions between the spaces and models or protocols. Most of the operations are either about the access 
or guess variable descriptions or statistics. They mainly consist of opening a new space within an open store 
and, via the begin method, creating case iterators that are used by all subsequent protocol stacks to read or 
write data within a space.

A space can only be opened in 'read' or 'write' mode and not both. If the user wants to perform both, it has to 
open two spaces, one in 'read' mode and the other in 'write' mode.

State Diagram

24 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



4.1.8  Case Iterator

Case iterators are responsible for reading cases from opened spaces and are classical design patterns used in 
all state of the art environments.

The main operations consist of actioning case iterators to fetch or write the next line, and to access cells within 
an iterator (get or set values). Cells will be accessed accordingly to their storage types defined in the 
description and cells can have empty values.

4.2 Class Diagrams

The Automated Analytics API can be viewed as a set of two APIs:

● The Control API allows you to create, estimate, and validate descriptive or predictive models.
● The Data Access API allows you to extract information from data sources of different formats such as text 

files, or relational databases tables. It has been specifically designed to minimize memory consumption 
and can be used on large databases and data warehouses.

The purpose of the application components is to provide executable modules that embeds objects described in 
this overview. See the two following topics to view two class diagrams that illustrate the main concepts of the 
API.

Related Information

Main Concepts [page 14]

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 25



4.2.1  Control API

The following class diagram describes the inner structure of the Control API.

26 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



4.2.2  Data Access API

The following class diagram describes the inner structure of the Data Access API.

4.3 Implementations

You can use the Automated Analytics API through different schemes. All the API calls have the same 
parameters and the same semantic in all integration schemes.

Scheme Description

C++ This scheme involves a simple dynamic library.

Java Native Interface (JNI) This scheme uses a JNI layer (this option may not be available on Linux plat
forms). Here, two dynamic libraries are used (a Java Native wrapper library and 
the standard C++ library).

CORBA The CORBA object model that you can use with a wide range of programming lan
guage such as C++, Java, or Python. In this case, the API appears as a standalone 
executable, which is accessed by the CORBA communication layer.

JNI and CORBA Common Interface It is provided on top of JNI and CORBA Java implementations to facilitate the 
switch from one environment to another, and facilitate the integration process.

C++ and CORBA Common Interface It is provided on top of the C++ native and CORBA C++ implementations. This 
scheme, provides more natural C++ API (error by exceptions, function has no 
output arguments, but returned values), and the same types are used in the in-
process or client/server integration. Thus, it allows to switch easily from in-proc
ess to client/server integration (as only a few lines may differ).

Python In Python language directly, through a SWIG layer. It relies on a Python module 
and on two dynamic libraries, that is, a SWIG layer and the SAP Predictive Analyt
ics C++ library.

The following table resume the different schemes and the different integration paths.

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 27



Scheme In/Out Process Binaries Headers Platforms

C++ In-process Dynamic library 
(KxCPP.dll)

Kxen_CPP.h All (Windows, Linux)

C++ Common Inter
face

In-process Dynamic library 
(KxCPP.dll)

KxCommonInterf.
h, KxCPPInterf.h, 
KxCPPInterf.cpp, 
KxFrontEndInter
f.h, Kxen_CPP.h

C++ Common Inter
face CORBA

Out-of-process Executable Authenti
cated Remote Server

KxCommonInterf.
h, 
KxCORBAInterf.h, 
KxCORBAInterf.c
pp, 
KxFrontEndInter
f.h

Java with JNI In-process Dynamic library 
(KxCPP.dll, 
KxenJni.dll)

KxJni.jar

Optionally: 
KxCommonInterf.
jar and 
KxJniInterf.jar

All

Java Common Inter
face JNI

In-process Dynamic library 
(KxCPP.dll, 
KxenJni.dll)

KxJni.jar, 
KxCommonInterf.
jar, 
KxJniInterf.jar

All

Java Common Inter
face CORBA

Out-of-process Executable Authenti
cated Remote Server

KxCorba.jar, 
KxCommonInterf.
jar, 
KxCorbaInterf.j
ar

All

CORBA Out-of-process Executable Authenti
cated Remote Server

IDL file 
Kxen_CORBA.idl 
and 
Kxen_AuthServer
.idl

All

Python In-process Dynamic library 
(_aalib.pyd or 
_aalib.so, 
KxCPP3.dll)

aalib.py All

4.3.1  Differences between Schemes

● The initial Class Factory creation is scheme-dependent.
● Some parameters types differ from one integration scheme to another, and the native type scheme is used 

wherever it is possible (for example, strings). However, we have try to keep type definition similar when 

28 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



possible (for example, JNI parameters are defined in the same way than CORBA ones). See the table Type 
mapping for a description of the different types.

● The way output parameters are handled is scheme-dependent:
○ In C++, references to pointers (for example, for models), or literal types (for example, for integers) are 

used, and they are filled on success.
● In CORBA, JNI, C++ and Python, the main entry point in Predictive Analytics Components is the Predictive 

Analytics Class Factory, which allow the creation of all objects.
● Error management is scheme-dependent:

○ Using the common interface java framework, all error codes are returned through a generic 
KxenRuntimeException

○ In others framework no exception are thrown out from the kernel. Instead all functions return an error 
code to the caller that indicate if the function succeed or not.

○ Using the common C++ interface, error codes are also managed through exceptions.
○ Using the Python wrapper, all error codes are returned through Python exceptions derived from 

aalib.AAException.

4.4 Distributed Computing

Some of the design choices of the components were made because these components are designed and used 
in distributed computing environments such as CORBA. This section presents some of these choices.

One of the major things that could strike people familiar with distributed computing designs is that not all 
objects can be created remotely, even if most of the objects can be accessed through remote interfaces.

For example, frontends cannot create data spaces and transforms, they must go through a model to do so. This 
is because data spaces are class factories for case iterators and, for obvious performance reasons, these 
iterators must belong to the same memory space than the transforms.

So we choose to force transforms and the data spaces to be created in the same memory space. We could 
make one the class factory of the other but there was no philosophical reasons to choose one or the other, so 
we decide to choose a higher abstraction level to do so: and this was the birth of the model. Furthermore, 
models allow having a single entry point to save and restore full protocols, which is very handy.

The following table presents the accessibility of the objects in the distributed environment CORBA:  

Remote Creation Interface Factory of

No (front-end) Yes  

Yes Yes Parameter, Space, Store, Transform

Yes Yes Parameter

No Yes Parameter

No Yes Parameter

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 29



No No  

No Yes  

4.4.1  Internationalization

As it has been said the kernel uses complex mathematical functions that could encounter problems very 
deeply in their execution. Front-end applications must/can be informed of a lot of events that occur during 
fairly long processes. These events come from a large variety of problems. This is why a resource mechanism, 
that can be easily customized with a text editor, has been integrated within the components.

The core software uses an internal messaging service based on these resources. This system allows, in a 
distributed environment, several front-ends (with several languages) to communicate with a single modeling 
server.

4.5 Usage Scenarios

Four usage scenarios are described in the next sections:

● Preparing the data
● Training a model
● Applying a previously trained model
● Using a model for simulation

4.5.1  Preparing the Data

All training scenarios are based on using a training dataset in order to adapt the values of the transform 
parameters to a particular task. It is the responsibility of the external user of the software to prepare this 
dataset before entering this scenario.

Preparation here only means collect the data into a single file, table, view or SQL statement compatible with an 
ODBC driver. This dataset can come into a single dataset called the 'training' dataset, or several datasets, 
called 'estimation', 'validation', and eventually 'test' datasets. In this step the user declares the directory in 
which the files are stored or the ODBC source in which the table will be accessed.

4.5.2  Training a Model

Training a model requires the following tasks:

30 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



Creating a Model

Create a model (to perform a classification for example).

Accessing Metadata

Variable or column of every training dataset must be described in terms of storage detailing the string, number, 
date, datetime, angle and value whether it is nominal, ordinal, continuous or textual.

This variable can be taken as an identifier and used later by the system to synchronize the newly generated 
values at the proper place. The API provides a facility to guess this information directly from the data through 
SQL statement and a scan of the first 50 lines of the file by using the metadata, except if a KxDesc_"dataset 
name" file exists in the same directory.

Managing Variables

The user can exclude some variables from the study. The variables are not taken as inputs of the model to 
generate the target variable which the user chooses. The user can choose either a continuous variable, in this 
case the problem solved is a regression problem, or a Boolean variable, of which the problem is a two-classes 
classification problem.

Associating Characteristics and Transforms

This is done through a generic structure called Parameter. The design of this hierarchical structure is close to 
the Microsoft© Windows registry. It is a very versatile structure reachable by varying text based or graphical 
user front ends.

As an example, for a classification model only one parameter is needed, which is the order of the polynomial 
models created. For data encoding, the only important parameter is the profit strategy, used only for 
classification problems to associate a profit to each of the two possible classes and thus compare some 
models, based on their relative profit.

Training the Model

The model checks variable descriptions and their compatibility with the chosen transform to be sure that the 
training is valid. Internally, this creates a CaseIterator that scans through the data space to pass information 
to the transforms. Memory management for this iteration is handled by a run time class called Stack.

CaseIterator and Stack are volatile objects that cannot be seen from the external world. Missing and out of 
range values appearing in the cases that are processed by this stack are automatically taken care of.

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 31



The training process returns two main indicators: the Predictive Power (KI) and the Prediction Confidence 
(KR). The predictive power is an indicator between 0 and 100% that measures the amount of the target 
variable explained by the model using all the input variables. The prediction confidence is an indicator between 
0 and 100% that measures the robustness of the final system. This robustness indicates how the user can 
trust the performance on the training dataset, to be a good predictor of the performance of the system on new 
data. As a general business rule, a model can be trusted if this indicator is above 95%.

Interpreting the Results 

Each transform returns specific piece of knowledge on the training dataset:

● The data encoding engine:
○ Returns the intrinsic importance of each variable independently from the others, each variable being 

characterized by its own predictive power.
○ Compresses the categories of the variables that do not bring robust information into a single 

'miscellaneous' category called 'KxOther'.
○ Ranks the categories of nominal variables in terms of importance, meaning the balance between the 

fact that the target average of cases of this category is different from the target average on the entire 
dataset, and the frequency of this category.

As an example, a category can have a large importance either because the average of the target in this 
category is very high compared to the others, or because it is slightly above the global average. This 
particular category is very frequent.

● The classification or regression engine returns the contribution of each variable. The notion of contribution 
indicates how much the model is using a variable relative to the other variables. This contribution is given 
to help decision process about which variables are important in order to build a robust model of the target. 
It comes in two forms: the intrinsic contribution as used by the model, and a special view of this 
contribution that allows us to take into account the correlation between variables, that can be used to 
perform variable selection.

● All SAP Predictive Analytics transforms generate profit curves for each input or generated variable. This 
profit curve can be used in order to compare the information and robustness contained in any variable 
versus a business question. Of course, using the profit curve of the variable generated by the model gives a 
very easy and direct interpretation of the quality and robustness of the model.

Saving the Model

It saves the entire protocol and the training dataset description.

4.5.3  Applying a Trained Model

In this scenario the user can either start from a model generated in the previous scenario or reload a previously 
trained model.

The user applies the model on new data. This requires that the user specify a new space in which input 
variables values are stored. It is very important that this space has the same structure than the one used for 

32 PUBLIC
SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM?



training. No further consistency checks are made. This constraint also concerns the target variable that must 
be present in this data set (even if the actual values are yet unknown). This application also requires the user to 
specify an output space and a write strategy (append or write). The 'Write' strategy facilitates the replacement 
of previous results, and the 'Append' strategy allows the user to keep track of the previous results and add new 
ones.  

4.5.4  Using a Model for Simulation

In this scenario, the user asks the model to be applied on a single case that is filled, variable by variable, from a 
user interface.

This simulation capability allows the user to test the results of the application of the model. When the problem 
is a regression problem, the user can request an error bar on top of the actual estimation. When the problem is 
a classification problem, the user can request a probability instead of a score.

4.6 Features Recapitulation

Here are some key elements to the functional specification of the application.

● Can process number, string
● Can process nominal, ordinal or continuous variables
● Can build robust regression or classification models
● Can extract data from text files or ODBC sources
● Automatic processing of strange values (missing and out of range)
● Automatic computation of profit curves
● Can save models in both text files and ODBC tables
● Provide a single and simple mechanism for parameter access of the components.
● Manage model configurations (versions)
● Simulation capability (one case at a time)

User front ends can specify internally created components through the generic parameter interface. This is 
available for Models and Stores on the one hand, and Spaces, Protocols, and Transforms on the other hand 
(dark gray in the previous schema).

To take advantage of the international messaging service offered by the application, all end user applications 
have to define a specific adapter called Context. The context is a call back handler that allows the components 
to inform the user front end of progress.

SAP Predictive Analytics provides data source classes to access text files, and ODBC compliant data sources 
for Windows and Linux environments (light blue in the previous schema). Extra data source types can be 
added, depending on the user demands, such as DBMSCopy, Excel and OLE DB (yellow in the previous 
schema).

SAP Predictive Analytics Developer Guide
What is Predictive Analytics for OEM? PUBLIC 33



5 Using the Automated Analytics API

Learn how to use the Automated Analytics API.

This section presents the functions to be called in the API for the main modeling functionalities. Java Samples 
[../../EXE/Clients/Samples/java] described in this tutorial are also available.

5.1 Import

The following table presents the object definitions to import in your development environment for the different 
schemes:

Scheme Import

C++ #include "Kxen_CPP.h" 

C++ Common Interface #include "KxFrontendInterf.h"

C++ Common Interface CORBA #define KX_FRONTEND_CORBA #include "KxFrontendInterf.h" 

Java JNI import com.kxen.KxModelJni.*;

Java CORBA import com.kxen.KxModel.*; 

Java Common Interface import com.kxen.CommonInterf.*;

C++ with CORBA #include "Kxen_Client.h" 

Python import aalib

5.2 Configuration

You configure the SAP Predictive Analytics kernel to perform the following tasks:

● Specifying the location of your license file

34 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



● Localizing the application or adapting the user messages
● Adding some functionalities, like the possibility to define external data reader using the Data Access API
● Specifying some constants to use through the system

You can configure the SAP Predictive Analytics kernel by setting key/value pairs through one of the following 
API calls:

● loadAdditionnalConfig to load an external configuration file or table
● setConfiguration to set the key/value pairs directly

The configuration is loaded at startup in both cases.

5.2.1  Loading a Configuration File

A configuration file is a text file that contains a set of key/value pairs. Each line contains a key, a tabulation, and 
the associated value. You must make sure to keep the tabulation while editing the file to avoid loading issues. 
You can also specify the configuration in an ODBC table if ODBC is available on your system.

 Note
● Standalone KxCORBA and KxShell executables load their own configuration file at startup 

(KxCORBA.cfg and KxShell.cfg). The files are located in the same directory as the executables.
● The configuration files of the standard distribution load the license file provided by SAP Predictive 

Analytics that is also a configuration file.

Call the loadAdditionnalConfig function to load the configuration.

Example

KxenStore lStore = mFactory.createStore("Kxen.FileStore"); lStore.openStore("c:/ConfigDir", "", "" ); lStore.loadAdditionnalConfig("MyConfig.cfg");

5.2.2  Performing Direct Calls

You can set the key/value pairs directly instead of loading the configuration from a text file.

Call the setConfiguration function for each key/value pair you want to set.

Example

// Change the default Admin table name

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 35



 mFactory.setConfiguration("KxAdmin", "ModelAdmin");
// Set the license mFactory.setConfiguration("KeyCode", "B7X60-0SY0800-1234567-0PP1");

5.2.3  Configuration Keys

The following table details the different configuration keys supported by SAP Predictive Analytics components.

Key Description

KxAdmin Sets the name of the administrative file or table to be used 
to store SAP Predictive Analytics model entries. The default 
value is KxAdmin. When components save a model in a 
store (a directory or an ODBC Source), it also creates or up
dates the administrative file (KxAdmin.txt) or table 
(KxAdmin). When SAP Predictive Analytics lists the availa
ble models in a store (a directory or an ODBC source), it only 
browses this administrative file.  You can change this value if 
you want to change the name of this administrative file or ta
ble. Note that the change is global, and that it may prevent 
you from retrieving existing models.

MessageFile Adds an additional message file for SAP Predictive Analytics. 
Message files are used to translate error codes and kernel 
message in a proper language. The country code associated 
to the message file is retrieved from the file name (which 
should be XXXX_<country>.umsg). Multiple 
MessageFile entries are supported; they are added to 
the engine.

FileStoreRoot Adds new entry in the list of File "Root stores". File Root 
stores is the list of store retrieved by SAP Predictive 
Analytics, when one asks for the list of available store 
(store.lsDirGet) at the top position ("", the blank 
string).

TempDirectory Sets the directory used for temporary internal storage. This 
directory might be used by certain components for tempo
rary internal storage.

36 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Key Description

UserStore Declares a new possible Store class, using the Data Access 
API. This allows declaring that a Dynamic Library is available 
on the system to access external data. The value associated 
with this key should be a couple of string, separated by a ':' 
character:

● a symbolic name, that will be used in createStore 
calls.

● the name of an accessible dynamic library. Only the 
radix part of the library filename needs to be specified. 
The suffix part of the library filename will be added on a 
platform dependent way (.dll on Windows, .so on 
Solaris, .sl on HPUX).

Config Loads an additional configuration file or table. The name of 
the space is relative to the current configuration space (file 
or table). This configuration key is not available through 
"setConfiguration". Note that if the specified configu-
ration file does not exist it is not considered as a fatal error, 
and it is silently ignored.

CustomerId Sets the CustomerId license key. The string value associ
ated with this key is the encrypted key provided by SAP 
Predictive Analytics through the license file. This entry is 
generally set by the license file (which is in turn set by a 
Config entry).

EngineMode Sets the EngineMode license key. The string value associ
ated with this key is the encrypted key provided by SAP 
Predictive Analytics through the license file. This entry is 
generally set by the license file (which is in turn set by a 
Config entry).

Kxen.* Entries of this type, where * stands for a Components name 
(for example, Kxen.RobustRegression, or 
Kxen.ConsistentCoder) enable a license entry for a 
specified component. The string value associated with this 
key is the encrypted key provided by SAP Predictive 
Analytics through the license file. This entry is generally set 
by the license file (which is in turn set by a Config entry).

TraceLevel Creates a log file. It takes as parameter the value corre
sponding to the message level you want to display in the log 
file generated (kxlog.txt).

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 37



5.2.4  Licensing Your Program with the C++ API

If you are developing a program by using the C++ scheme of the Automated Analytics API, you first need to 
load a license file to be able to use the Predictive Analytics engine. SAP recommends you load the 
KJWizard.cfg configuration file to set up a global, complete, and clean configuration of the kernel for your 
future developments. The configuration file references the required license files.

 Note
Make sure that files are referenced with relative paths in the global configuration file as shown below.

1. Then in your program, call the KxModel::IKxenStore_ptr::openStore function:

openStore("C:/Program Files/SAP BusinessObjects Predictive Analytics/
Server/EXE/Clients/KJWizardJNI", "", "");

 Note
○ Always specify the absolute path to the KJWizard.cfg file as name of the store.
○ Always use slash (“/”) instead of backslash (“\”) as path separator.

2. Call the KxModel::IKxenStore_ptr::loadAdditionnalConfig function to load the configuration file 
to the server from this store.

loadAdditionnalConfig("KJWizard.cfg");

 Note
Make sure that the file name is passed as argument, not its absolute path. You can also specify this 
additional file relatively to the store name.

Example

Key=Value FileStoreRoot=UserDir
FileStoreRoot=../../../Samples
FileStoreRoot=DefaultRoots
LogConf=logconf.txt
MessageDirectory=../../../Resources/Messages
KTCStore.StoreClass=Kxen.FileStore
KTCStore.StoreOpen=../../../Resources/KTCData
#uncomment to define your own ktc store
#UserDefinedKTCStore.StoreClass=Kxen.FileStore
#UserDefinedKTCStore.StoreOpen=KTC_Test_Data\Test_Rules
KxDesc=KxDesc
KxAdmin=KxAdmin
# Comment to activate the Explain feature
DataAccessExplanation.*.Activated=false
SKDXml=../../../Resources/BusinessObjects_KCDefinitions_dfo.xml
Config=$UserDir/.SAP_AA_License.cfg
Config=../../../../License.cfg
Config=../../../KxStatTr.cfg
Config=../../../DataCacheManager.cfg

38 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Config=../../../FastWrite.cfg
Config=../../../SparkConnector/Spark.cfg 

 Note
If the configuration file cannot be found, the error 2147024894 E_SYSTEM__NOENT occurs when calling 
loadAdditionnalConfig. Check the path.

Once the license is loaded, you may get the error KXEN_E_ABSTRACTTRANSFORM_BADLICENSE if the key 
code defined in License.cfg is not correct or if BusinessObjects_KCDefinitions_dfo.xml is not 
reachable.

5.3 Common Operation Workflow

In this section you can find code snippets of the KxTutorial.java sample script that describe the workflow 
of commonly used operations.

Samples are provided in Java language using the Java common interface layer, which allows you to switch 
easily from CORBA (client/server mode) to JNI (standalone application).

1. Declaring the Java Variables [page 39]
2. Getting the Class Factory [page 41]
3. Loading a License File [page 42]
4. Building a Model [page 42]
5. Setting Datasets [page 43]
6. Setting Parameters [page 44]
7. Training a Model [page 46]
8. Displaying the Results [page 47]
9. Using a Model [page 48]
10. Saving a Model [page 49]
11. Loading a Model [page 49]
12. Releasing the Current Model [page 50]
13. Deleting a Model [page 51]

5.3.1  Declaring the Java Variables

Declare the following variables to be used in the sample codes:
○ Variables to initialize the Automated Analytics engine
○ Default parameters for the input data access
○ Default values for saving the model
○ Default values for applying the model
○ A series of other default values

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 39



Example

// ----------------- VARIABLES OF THE CLASS ------------------------------- // ----------------- Variables to initialize the Automated Analytics engine 
--------------
/** Place containing the Config file */
private static final String CONFIG_DIR = ".";
/** Name of the config file */
private static final String CONFIG_FILE = "KxConfig.cfg"; 
// ----------------- Default parameters for the input data access ---------
/** Default value for the main transformation of the model */
private static String sModelTransformation = "Kxen.RobustRegression";
/** Default value for the kind of store used for reading data */
private static String sStoreClass = "Kxen.FileStore";
/** Default value for the Name of the store to open, in this case it is the path 
of the current directory. */
private static String sStoreName = ".";
/** Default value for the Name of the data file to open as a space */
private static String sDataFile = "Census01.csv";
/** Default value for the description file to use for the data file. */
private static String sDescriptionFile = "Desc_Census01.csv";
// ----------------- Default values for saving model ----------------------
/** Default value for the Name of the store */
private static String sModelStoreClass = "Kxen.FileStore";
/** Default value for the Store name. It is a path of the upper directory. */
private static String sModelStoreName = ".";
/** Default value for the Space Name. Name of a file to append or create in the 
disk. */
private static String sModelSpaceName = "MyModel.mdl";
/** Default value for the Name of the model to be saved */
private static String sModelName = "MyModel";
/** Default value for the Name of the store */
private static String sModelComment = "Model generated by KxTutorial.java";
// ----------------- Default values for applying the model ----------------
/** Default value for the Name of the space to open in the main store to use the 
model. */
private static String sUsingModelInput = "ApplyFile.txt";
/** Default value for the Name of the space to put the results of the model on 
the data set to use. */
private static String sUsingModelOutput = "Output.txt";
// ----------------- Other default values ---------------------------------
/** Model oject. */
private KxenModel mModel = null;
/** Object Factory. */
private KxenClassFactory mFactory = null;
/** Transform oject. */
private KxenTransform mTransform = null;
/** Transform unique name. */
private String mTransformName = "";
/** Context class used to display messages */
private KxContext mContext;
/** Language variable used to specify to the context class which messages to 
print. */
private String mLanguage = "us";
/** Level limit of the messages to print by context object */
private int mMsgLevel = 6;
/** Choose a method for the communication with the Automated Analytics server */ private boolean mUseSend = false;

Task overview: Common Operation Workflow [page 39]

Next task: Getting the Class Factory [page 41]

40 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



5.3.2  Getting the Class Factory

First, the client application must initialize the SSL Layer. Then call the getFactory function to get the Class 
Factory.

1. Activate the SSL Layer:
a. Make sure the file KxCorbaSSL_1_5.jar is in the classpath of the application. It can be found in the 

CorbaJars folder of the installation directory.
b. Set this file as default socket factory by doing one of the following:

Option Description

Running the following com
mand

-Dcom.sun.CORBA.connection.ORBSocketFactoryClass= 
com.kxen.CorbaSSL.Sun1_5.MyORBSocketFactoryClass

Calling the 
System.setProperty() 
method

System.setProperty( "com.sun.CORBA.connection.ORBSocketFactoryClass", 
"com.kxen.CorbaSSL.Sun1_5.MyORBSocketFactoryClass");

2. Call the getFactory function.

JNI:

mFactory = KxenClassFactory.getJNIFactory(CONFIG_DIR,CONFIG_FILE);

CORBA:

String[] lArguments = new String[6]; lArguments[0] = "-ORBInitialHost";
lArguments[1] = "localhost";
lArguments[2] = "-ORBInitialPort";
lArguments[3] = "12345";
lArguments[4] = "-ServiceName";
lArguments[5] = "FactoryEntries3"; mFactory = KxenClassFactory.getCORBAFactory(lArguments);

Authenticated Server:

String[] lArguments = new String[6]; lArguments[0] = "-ORBInitialHost";
lArguments[1] = "localhost";
lArguments[2] = "-ORBInitialPort";
lArguments[3] = "12345";
lArguments[4] = "-ServiceName";
lArguments[5] = "KxAuthServer3";
KxenAuthenticatedServer lServer =
KxenAuthenticatedServer.getAuthenticatedServer(lArguments);
KxenConnection lConnection = lServer.connect("login", "password"); mFactory = lConnection.getFactory();

Task overview: Common Operation Workflow [page 39]

Previous task: Declaring the Java Variables [page 39]

Next task: Loading a License File [page 42]

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 41



5.3.3  Loading a License File

You are required to load a license file in order to build a model. There are three ways to load a license file:

● Loading the license file like a configuration file
● Including a reference to the license file in a configuration file
● Using direct API calls

Task overview: Common Operation Workflow [page 39]

Previous task: Getting the Class Factory [page 41]

Next task: Building a Model [page 42]

5.3.4  Building a Model

A model is the holder of the different Transforms and holds the whole process chain from raw data to the final 
outputs.

Request the model to the Class Factory:

mModel = mFactory.createModel("Kxen.SimpleModel");

 Note
The string Kxen.SimpleModel is a keyword to one possible model definition. Currently, only this type of 
model is supported.

Once a model is created, it does not include any Transform. You can add a SAP Predictive Analytics Modeler - 
Regression/Classification (K2R) engine in it, by doing one of the following:

int lTransforPlace = mModel.pushTransformInProtocol("Default", 
sModelTransformation); mTransform = mModel.getTransformInProtocol("Default", lTransforPlace); mTransformName = mTransform.getName();

Such a simple model is able to perform general regression or classification task. However, to perform a 
regression or a classification model, the training dataset must be encoded. SAP Predictive Analytics provides a 
component (Consistent Coder) to encode your training dataset. This component could be explicitly or 
implicitly added in your learning process.

Task overview: Common Operation Workflow [page 39]

Previous task: Loading a License File [page 42]

Next task: Setting Datasets [page 43]

42 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



5.3.5  Setting Datasets

You define datasets to be used with the current model. A dataset is a physical data support, like a text file or an 
ODBC table, associated to the model through a role, which defines how the model is going to use the data.

To define a dataset, you must set the following:

● A store, for example the directory or the ODBC source where the space can be found
● A space name, for example the file name, the table name, or a SQL statement
● A role, for example "Training", "Estimation" or "ApplyOut"

In the following procedure, you create a training dataset:

1. Open the directory:

 /** Default value for the kind of store used for reading data */ private static String sStoreClass = "Kxen.FileStore";
            
/** Default value for the Name of the store to open, in this case it is the 
path of the current directory.
*/private static String sStoreName = ".";
             int lStoreIndex = mModel.openNewStore(sStoreClass, sStoreName, "", "");

 Note
There is no user nor password used here because the directory where data are stored is a filestore, 
hence the double quotes.

2. Declare the training dataset in the store:

/** Default value for the Name of the data file to open as a space */ private static String sDataFile = "Census01.csv";
             mModel.newDataSet("Training", sDataFile, lStoreIndex);          

3. Read or guess the data descriptions by calling one of the following functions:

○ Load them:

/** Default value for the description file to use for the data file. private static String sDescriptionFile = "Desc_Census01.csv";
               mModel.readSpaceDescription("Training", sDescriptionFile, 
lStoreIndex);             

○ Analyze them through the system:

mModel.guessSpaceDescription("Training");

The variables are created in the protocol so that they can be accessed for parameter modifications. By default, 
the current algorithm will select the last compliant variable as target.

Task overview: Common Operation Workflow [page 39]

Previous task: Building a Model [page 42]

Next task: Setting Parameters [page 44]

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 43



5.3.6  Setting Parameters

Parameters are trees of key/values pairs. Before running the model, you can tune the following parameters:

● High-level parameters of the model
The model has some high-level parameters such as the one used to split a single training dataset into three 
Training/Validation/Testing datasets.

● Variable descriptions
Each variable has some descriptive parameters (type, storage, keys...) that can be adjusted, and also has a 
role with respect to the current model.

● Transform parameters
Each transform defines its own set of parameters that generally control the algorithm used in the 
transform, for example the regression polynomial degree used in K2R.

1. Call the getParameter function on the object with an empty string ("") to retrieve its parameter tree.

2. Set the correct values to the corresponding node in the tree.
3. Validate or commit the changes made to the parameter tree.

Example

Set the CutTrainingPolicy of the model to the value random and the role of the variable class to target 
through the following script:

KxenParameter lParameterP = mModel.getParameter(""); lParameterP.release();
mModel.changeParameter("Parameters/CutTrainingPolicy", "random");
mModel.changeParameter("Protocols/Default/Variables/class", "target"); mModel.validateParameter();

 Note
getParameter and validateParameter are expensive function calls, as they convert an object internal 
state into a tree of parameters or revert the parameter tree into the internal state. You can group the 
changeParameter calls for each object, in order to limits the number of such calls. See the 
documentation Components Parameters for an in-depth description of such parameters.

Task overview: Common Operation Workflow [page 39]

Previous task: Setting Datasets [page 43]

Next task: Training a Model [page 46]

44 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



5.3.6.1 Variable Roles

A role is defined for each variable. The following table describes the available roles and their corresponding 
code:

Role Code

Excluded variable skip

Target variable target

Weight variable weight

Explanatory variable input

 Note
● skip for all variables which have a KeyLevel different from 0 (key of your dataset)
● target for the last compliant variable if the current algorithm requires a target

Example

For example, to exclude the age variable, call the changeParameter function and set the variable age to skip 
as follows:

mModel.changeParameter("Protocols/Default/Variables/age", "skip");

5.3.6.2 Getting Variable Values

To retrieve a list of variables with values, proceed as follows:

1. Call the getParameter function:

mModel.getParameter("") mModel.getParameter("Protocols/Default/Variables") gKxenModel.ParaModel.getSubEntries "Value", lstrTemp1, lstrTemp2

2. Parse the two strings lstrTemp1 and lstrTemp2 to get arrays:

lVarName = Split(lstrTemp1, Chr(10))  lValue = Split(lstrTemp2, Chr(10))

 Note
Value can be replaced to obtain all roles, storages and so on.

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 45



5.3.7  Training a Model

● The model is defined.
● The transform protocol is established.
● The input data is set.
● The parameters are tuned.

You can now train the model.

Send a "Learn" message by doing one of the following:

Op
tion Description

Syn
chro
nous 
call

mModel.sendMode(KxenModeTag.Kxen_learn, 0);

The sendMode function is a synchronous call, which means it waits until the model training is completed.

 Note
The 0 refers to a store that could be used for a temporary storage, if needed by the model.

Asyn
chro
nous 
call

mModel.postMode(com.kxen.CommonInterf.KxenModeTag.Kxen_learn, 0); while (mModel.isRunning()) {
 try {
  // To avoid too much communication
  Thread.sleep(400);
 } catch (InterruptedException e) {
 System.err.println("Waiting method failed");
 } }

The postMode function is an asynchronous call, which means it waits while the model state is running.

 Note
The loop above corresponds to the one implemented by the KxShell command waitRunning.

In this case, the learning process will be fired in a separate thread. This can be used to keep a Graphical User 
Interface active while learning the model. For example, in Visual Basic environment a call to DoEvents will keep 
the GUI reactive. Also, retrieving information and error messages can be done here. For more information, see 
Message Management [page 51].

Task overview: Common Operation Workflow [page 39]

Previous task: Setting Parameters [page 44]

Next: Displaying the Results [page 47]

46 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



5.3.8  Displaying the Results

Once the model has been generated you will need to retrieve its results.

Parent topic: Common Operation Workflow [page 39]

Previous task: Training a Model [page 46]

Next task: Using a Model [page 48]

5.3.8.1 Getting Variable Statistics

Use the function getSubValue to get a value (iElement) from the parameter tree:

1. Define a dataset (iDataset), a target variable (iTarget) and a variable (iVariable).

2. Proceed as follows:

private double getStatisticsValue(String iVariable, String iDataset, String 
iTarget, String iElement) {  double lDoubleValue = 0;
 String lPathKr = "Protocols/Default/Variables/" + iVariable + "/Statistics/" 
+ iDataset + "/Targets/" + iTarget + "/" + iElement;
 try {
  KxenParameter lParam = mModel.getParameter("");
  String lString = lParam.getSubValue(lPathKr);
  lDoubleValue = Double.parseDouble(lString);
 } catch (NumberFormatException e) {
  lDoubleValue = -1;
 }
 return lDoubleValue;     }         

It returns a double value. If any error occurs on converting to double, it returns -1.

Example

Call the getKiKr function to retrieve the statistic values for Prediction Confidence "KR" and Predictive Power 
"KI":

private void getKiKr() {  String lDatasetKi = "Validation";
 String lDatasetKr = "Estimation";
 String lVariable = "rr_class";
 String lClassName = "class";
 System.out.println("KR Value=" + getStatisticsValue(lVariable, lDatasetKr, 
lClassName, "Kr"));
 System.out.println("KI Value=" + getStatisticsValue(lVariable, lDatasetKi, 
lClassName, "Ki")); }

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 47



5.3.8.2 Getting Variable Contributions

Retrieve the contribution of each variable for the current model:

1. Load variable names and role from the model using the getParameter function.

2. Get roles as an array of name/role using the getSubEntries and getValue functions.

Example

private void getVariableContributions() {  String lParameterName = "Protocols/Default/Transforms/" + mTransformName + "/
Results/class/Coefficients";
 KxenParameter lParam = mModel.getParameter(lParameterName);
 DataTable lRoles = lParam.getSubEntries("Contrib");
 System.out.println("-- Contributions of each variable --");
 for (
  int lIdx = 0;
  lIdx < lRoles.getRowCount(); lIdx++) {
   System.out.print(lRoles.getRowName(lIdx));
   System.out.print(" = ");
   System.out.println(lRoles.getValue(lIdx, 0));
 } }

5.3.9  Using a Model

All the output results are stored in the resulting parameter tree. You can retrieve output values computed by 
the model through the parameter objects, by using the getParameter and getNameValue functions. In the 
Java Wizard interface, all the displayed graphs are simple plots of values found in the model parameter tree 
after the training phase. You can also apply the model.

Apply the transformation built during the training phase on new data and produce some expected output by 
proceeding as follows:
a. Set a new input dataset, with a role ApplyIn.

b. Set a new output data, created by the model, with a role ApplyOut.
c. Send an Apply message to the model with the sendMode function.

The data files in the following code are located in the same store than the training data. It illustrates the latest 
procedure:

// Open the Store containing the apply data int lStoreIndex = mModel.openNewStore(sStoreClass, sStoreName, "", "");
// Set input and output datasets for Apply
mModel.newDataSet("ApplyIn", sUsingModelInput, lStoreIndex);
mModel.newDataSet("ApplyOut", sUsingModelOutput, lStoreIndex);
try {
 mModel.sendMode(KxenModeTag.Kxen_apply, 0);
 } catch (KxenAbortException e) {
   System.err.println("Apply stopped"); }

48 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Task overview: Common Operation Workflow [page 39]

Previous: Displaying the Results [page 47]

Next task: Saving a Model [page 49]

5.3.10  Saving a Model

Once you create and validate a model on the basis of KI/KR (Prediction Confidence/Predictive Power) 
indicators, you can save it.

1. Create a new data store to hold the model:

int lStoreIndex = mModel.openNewStore(sModelStoreClass, sModelStoreName, "", 
"");

2. Set the model name:

mModel.setName(sModelName);

3. Save the model:

mModel.saveModel(lStoreIndex, sModelSpaceName, sModelComment);

Here, for simplicity, use the same store to save the model in. A model can be indifferently saved in a text file 
or in an ODBC table.

 Note
A commitModel call is also available to be able to save a new version of the same model in the same 
Space (file or table).

Task overview: Common Operation Workflow [page 39]

Previous task: Using a Model [page 48]

Next task: Loading a Model [page 49]

5.3.11  Loading a Model

1. Create a directory reference:

KxenStore lStore = mFactory.createStore(sStoreClass);

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 49



2. Open the correct location:

lStore.openStore(sModelStoreName, "", "");

3. Load the model using the last saved version:

mModel = lStore.restoreLastModelD(sModelName);

Alternatively, instead of restoring the latest version, you can also load a specific version of a model:

int lModelVersion = 1;  mModel = lStore.restoreModelD(sModelName, lModelVersion);

 Note
When the model is loaded, create some memory space to avoid any performance drop. To do so you 
need to delete the store:

lStore.release();

At that stage, the model is fully restored and ready for use. It can be applied to a new dataset or some 
parameters can be retrieved to display some curves, indicators and so on. For more information, see Displaying 
the Results

Task overview: Common Operation Workflow [page 39]

Previous task: Saving a Model [page 49]

Next task: Releasing the Current Model [page 50]

5.3.12  Releasing the Current Model

When you release a model from the memory, you free all the corresponding resources on the server (for 
example in CORBA framework).

Use the release function:

mModel.release();

 Note
It also releases recursively all the objects created through the model such as Transforms, Space, 
Parameters and so on.

Task overview: Common Operation Workflow [page 39]

Previous task: Loading a Model [page 49]

50 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Next task: Deleting a Model [page 51]

5.3.13  Deleting a Model

To remove a model from the disk storage, call the eraseModelD function at the store level.

Use the eraseModelD function:

KxenStore lStore = mFactory.createStore(sStoreClass); int lModelVersion = 1; lStore.eraseModelD(sModelName, lModelVersion);

Task overview: Common Operation Workflow [page 39]

Previous task: Releasing the Current Model [page 50]

5.4 Message Management

SAP Predictive Analytics for OEM may send messages to your integration environment.

Messages can be:

● Error messages when an error occurs
● Information messages that provides progress information on the current process

The type of message is indicated by a message level as described in the following table:

Level Type of Message Usage

0 error error pop-up

1 info info pop-up

2 old progress messages not used

3 phase message put in a log

4 detailed information put in a log

5 warning put in the log

6 progress report message in a progress bar

8 programming error written in a log file for debugging pur
pose

You can implement one of the following mechanisms to manage messages:

● Push
You implement a class that inherits from IKxenContext and pass such a "context" object to the Automated 
Analytics API objects used. To do this, you call the setContext function that is available from models and 

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 51



stores. All messages from theses objects are forwarded to the context object in the integration 
environment.

● Pull
After each call or during long asynchronous calls done using postMode, you implement a loop on the 
getMessage function to retrieve the next available message. The getMessage function also returns the 
message level.

You generally need to filter and dispatch the messages according to the level of interaction needed.

5.4.1  Progress Report Messages

Progress report messages are sent to the integration environment as regular string messages.

A progress message is formatted as follows:

KXEN_W_PROGRESS <CompletedSteps> <TotalSteps> ...message...

Where:

● <CompletedSteps> is the current number of steps completed in the current phase.
● <TotalSteps> is the total number of steps to be performed in the current phase.
● The rest of the string is a text describing the current phase.
● Blank characters are separators.

Here is a sample processing of this string:

Example

This example illustrates the parsing of the message string before print:

StringTokenizer lTk = new StringTokenizer(iMessage); String lMsgCode = lTk.nextToken();
int lCompleted = 0;
int lTotal = 0;
try {
    lCompleted = Integer.parseInt(lTk.nextToken());
    lTotal = Integer.parseInt(lTk.nextToken());
} catch(java.lang.Exception e) {}
String lPhase = lTk.nextToken(""); System.out.println("Phase: " + lPhase + " - " + lCompleted + "/" + lTotal);

5.4.2  Message Translation

The message translation is done by SAP Predictive Analytics for OEM and depends on the language requested 
by the application.

52 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



You set the requested language as follows:

● Push
In the setContext call, when you give the context object to the Automated Analytics API

● Pull
In the getMessage call, when you get back each message.

There is a number of message files for each language. Their name is built on the following convention:

Kx<Module>_<languageCode>.umsg

For example, the distribution provides the following language files: KxTool_us.umsg, KxTool_fr.umsg, and 
KxObject_us.umsg.

These files must be loaded in the system at the start up of the application. This is already done for server 
processes, such as the SAP Predictive Analytics CORBA server. For in-process integration (JNI, C++), you load 
them through a configuration file that lists the available message files for translation. You load the configuration 
file with the loadAdditionnalConfig function.

5.5 Sample Scripts

SAP Predictive Analytics provides Java and Python sample scripts to test the Automated Analytics API.

5.5.1  Prerequisites

● You must install a valid license in the following location of your system:
○ In the C:\Program Files\SAP Predictive Analytics\ folder on Microsoft Windows
○ In the folder where you have decompressed the KXENAF archive file on Linux.

● You must set up J2SDK 1.6 on your system and declare the JAVA_HOME environment variable.
● You must set the PATH environment variable to the following value:

○ %JAVA_HOME%/bin on Microsoft Windows
○ $JAVA_HOME/bin on Linux

5.5.2  Java Sample Scripts

Use the following sample scripts to run the sample scenario described in this guide.

File Description

KxTutorial.java The complete script described in Common Operation Workflow [page 39].

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 53



File Description

KxContext.java An object used to retrieve SAP Predictive Analytics messages. See Message Man
agement [page 51].

KxTutorialAdvanced.java An advanced scenario that scores each line of a data file (simulation).

Util.java Common functions used in both scenarios.

5.5.2.1 Running the Java Sample Scripts on Microsoft 
Windows

The following batch files are located in the C:\Program Files\SAP Predictive Analytics
\Predictive Analytics\...\EXE\Clients\Samples\java\script, where they must be executed.

1. Run the prepare.bat batch file to retrieve the files needed to run the sample scenario, such as 
configuration files and datasets.
These files are located in the C:\Program Files\SAP Predictive Analytics\Predictive 
Analytics\...\EXE\Clients\Samples\java\script directory.

2. Run the compile.bat batch file to compile the Java sample scripts.

These files are located in the C:\Program Files\SAP Predictive Analytics\Predictive 
Analytics\...\EXE\Clients\Samples\java\src\ directory.

3. Finally, run the run.bat batch file to execute the scenario.

5.5.2.2 Running the Java Sample Scripts on Linux

The batch files are located in the KXROOT/SamplesSrc/java/script directory, where they must be 
executed.

1. Run the prepare.sh batch file to retrieve the files needed to run the sample scenario, such as 
configuration files and datasets.
These files are located in the KXROOT/SamplesSrc/java/script directory.

2. Run the compile.sh batch file to compile the Java sample scripts.

These files are located in the KXROOT/SamplesSrc/java/src directory.

3. Finally, run the run.sh batch file to execute the scenario.

5.5.3  Python Sample Scripts

Run the following sample scripts to test the Python scheme.

54 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



File Description

classification.py A script that demonstrates the classification model scenario with the Python 
scheme of the Automated Analytics API.

clustering.py A script that demonstrates the clustering model scenario with the Python 
scheme of the Automated Analytics API.

recommendation.py A script that demonstrates the recommendation model scenario with the Python 
scheme of the Automated Analytics API.

timeseries.py A script that demonstrates the time series model scenario with the Python 
scheme of the Automated Analytics API.

5.5.3.1 Running the Python Sample Scripts on Microsoft 
Windows

Make sure you have installed Python 3.5 on your system. Possible distributions are CPython, Anaconda, or 
WinPython.

The installation of Python 3.5 automatically declares the PYTHONHOME environment variable and updates the 
PATH environment variable with the %PYTHONHOME% value.

1. Run the setvars.bat batch file to configure the PATH and PYTHONPATH environment variables.

The file is located in the C:\Program Files\SAP Predictive Analytics\OEM\EXE\Clients
\Python35 directory.

○ PATH is updated with the directory of the Automated Analytics C++ dynamic libraries.
○ PYTHONPATH is updated with the directory of the aalib.py file.

2. Open the sample script for editing and modify the AA_DIRECTORY value with the Automated Analytics 
installation directory, for example C:\Program Files\SAP Predictive Analytics\OEM\ or C:
\Program Files\SAP Predictive Analytics\Desktop\Automated.

The sample scripts are located in the C:\Program Files\SAP Predictive Analytics\OEM\EXE
\Clients\Samples\Python directory.

3. Run the sample script with the Python executable python.exe either on a command line or within a 
Python notebook, Jupyter for example.

5.5.3.2 Running the Python Sample Scripts on Linux

Make sure you have installed Python 3.5 on your system. Possible distributions are CPython or Anaconda.

The installation of Python 3.5 automatically declares the PYTHONHOME environment variable and updates the 
PATH environment variable with the $PYTHONHOME value.

1. Source the setvars.sh batch file to configure the PATH and LD_LIBRARY_PATH environment variables.

The file is located in the Python35 directory of the Automated Analytics installation.

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 55



○ PATH is updated with the directory of the Automated Analytics C++ dynamic libraries.
○ LD_LIBRARY_PATH is updated with the directory of the aalib.py file.

2. Open the sample script for editing and modify the AA_DIRECTORY value with the Automated Analytics 
installation directory, for example /opt/AutomatedAnalyticsOem_X86-64-redhat-
Linux-2.6.18-8.El5smp_v3.3.

The sample scripts are located in the Samples/Src/Python directory of the Automated Analytics 
installation.

3. Run the sample script with the Python executable python either on a command line or within a Python 
notebook, Jupyter for example.

5.6 Integration

The way to deploy and distribute SAP Predictive Analytics for OEM within your application depends on the kind 
of integration. The components and files that must be embedded in your software are reviewed in the next 
sections according to the different integration schemes.

5.6.1  In-Process Integration

In an "in-process" integration, the embedding software includes SAP Predictive Analytics for OEM within the 
same process and memory space.

C++ Integration

You install the following components and files to use the C++ native implementation of the SAP Predictive 
Analytics kernel.

Required? Components and Files

Yes, this is the minimum configuration 
for using the basic functionality.

● The SAP Predictive Analytics C++ library
● Some resource files and message translations for the supported languages. 

The location of the messages should be specified to the kernel using a con
figuration key or file.

● For Linux, ODBC libraries, as provided by SAP Predictive Analytics

56 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Required? Components and Files

No, it depends on your modeling or 
data access needs.

● SAP Predictive Analytics Advanced Access provides access to external data 
files such as SAS data files or SPSS files. It is implemented as an external 
data access plug-in to SAP Predictive Analytics.

● A Japanese library to process Japanese language with Text Coding feature. A 
set of external libraries must be used (specific stemming process).

● Teradata FastLoad to improve the read/write performance of Teradata con
nections. It is implemented as an external data access plug-in to SAP 
Predictive Analytics. Teradata FastLoad must be installed on the target ma
chine.

 Note
● These components are activated by some additional configuration keys. 

You can reuse existing distributed SAP Predictive Analytics configuration 
files.

● Some of these components may not be available for all platforms sup
ported by the SAP Predictive Analytics kernel.

The following table gives the name of the files associated with each resource presented above according to the 
platform. Files between parentheses may not be available on all platforms.

Components and Files Microsoft Windows Linux

SAP Predictive Analytics C++ library KxCPP3.dll libKxCPP3.so

Resources files Resources directory Resources directory

ODBC Driver Manager Included in the operating system KxenConnectors/*

KAA KxStatTr.dll

statrn64.dll

iconv.dll

libxml2.dll

libKxStatTr.so

libst.so

(libst.so.11)

(libstodbc.so.11)

(libiconv_st.so*)

Japanese library for KTC KTCJpLib.dll

libmecab.dll

libKTCJpLib.so

FastLoad Access KxFastLoadBridge.dll libKxFastLoadBridge.so

 Note
● On Microsoft Windows, the DLL files can be found for example in the EXE\Clients\CPP directory.
● On Linux, the libraries are located in SAP Predictive Analytics libs directory. The libraries needed at 

runtime must also be included in the shared library search path (environment variable 
LD_LIBRARY_PATH).

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 57



Java Integration

Java integration is done through Java Native Interface (JNI). To deploy SAP Predictive Analytics with a Java 
application using JNI, you install the components and files needed for the C++ integration and the following JNI 
resource files:

● KxCommonInterf.jar
● KxJniInterf.jar
● KxJni.jar
● KxUtils.jar
● KxenJni3.dll on Microsoft Windows, libKxenJni3.so on Linux.

Python Implementation

Python integration is done through a SWIG wrapper. To deploy SAP Predictive Analytics with a Python script, 
you install the components and files needed for the C++ integration and the following Python integration layer:

● aalib.py
● _aalib.pyd on Microsoft Windows, _aalib.so on Linux

5.6.2  Client/Server Integration

In the following case of a client/server integration, your client application communicates with an SAP Predictive 
Analytics Authenticated Server. It is assumed that the server standard installer is used to configure the server.

Java Integration

The CommonInterf layer can be derived for CORBA communication. You must deploy the following JAR files 
with the application:

● KxCommonInterf.jar
● KxAuthentInterf.jar
● KxAuthent.jar
● KxUtils.jar

Integration with Other Languages

SAP Predictive Analytics does not provide specific wrappers for other languages. You must use a CORBA client 
implementation layer and integrate the CORBA description of the SAP Predictive Analytics Server used with 
these layers.

58 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



For example, using Python and a CORBA implementation (for example omniORBPy), you need to import 
KxAuthServer.idl into the development environment.

5.7 Segmented Modeling in the Automated Analytics 
Engine

Segmented modeling means adding a filter to a data space so only rows matching the filter will feed the 
Automated Analytics modeling engine.

A filter only supports:

● Any imbrications of AND & OR operators with any number of operands.
● Comparisons between a variable and a given constant.

For example:

Age>10 Age>10 AND Class <> <empty> Age<10 OR ( Age>10 AND Class <> empty)

Default Filtering

Default filtering (or abstract filtering) is used by the engine when the data storage has no native filtering 
capability (File, SAS File, etc.):

● Each row is read by the Data Access layer of the engine.
● If the row matches the filter, it is sent to modeling layer, otherwise it is skipped.

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 59



For the filter age>10 AND Class<>empty, the following process is applied:

Optimized Filtering

Optimized filtering is used by the engine when the data storage has a native filtering capability (DBMS):

● The filter is translated into an SQL expression and added to a WHERE clause.
● Only rows matching the filter are sent by DBMS so all rows are sent to the modeling layer.

For example, the previous examples are translated into SQL as:

((Age>10) AND (Class IS NOT NULL))

So, the actual SQL used by engine to read data is:

SELECT * FROM <table> WHERE ((Age>10) AND (Class IS NOT NULL))

60 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Filter Specifications

Logical Operators
The operators AND, OR are available. These operators can have any number of operands (>2) not only 2. The 
classic optimization is used which means that the evaluation stops:

● At the first operand evaluated to ‘false’ when operator is AND
● At the first operand evaluated to ‘true’ when operator is OR

Comparison Operators
The operators <, <=, > and >= are available. The usage of empty values as value to test is checked and 
forbidden.

The operators = and <> are available. The usage of the empty values is allowed and translated as IS NULL and 
IS NOT NULL.

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 61



Remarks

The filter evaluation is done after the mapping process meaning the variable names are the logical variable 
names and not the physical fields.

The Data Cache is compatible with Filters. And only the filtered values are stored in the cache.

The KxIndex variable cannot be used in a filter (it may work in a file but will trigger an error in an ODBC). This 
is not checked at this time.

The values of KxIndex in a filtered space are generated after the filtering: the standard sequence 1,2,3... is 
visible (and not 1,45,74... depending on the KxIndex values coming from the non filtered space)

5.7.1  Filter Syntax

Syntax of a filter

Here is a pseudo BNF grammar of the filter:

 <FilterCondition>:= <LogicalOperator>{<SimpleFilter>} | 
<LogicalOperator><FilterCondition>
<SimpleFilter>:= <Operator><Variable><Value> |  
<Operator>:=Equal|NotEqual|Greater|GreaterEqual|Less|LessEqual
<logicalOperator>:=And|Or 

Globally, a filter is:

● A list of simple filters connected by logical operators (AND, OR)
● A list of filters connected by logical operators (AND, OR)

And a simple filter is just a variable, an operator and a constant.

A final filter is a list of simple filters connected by operators (AND, OR).

For example, the filter Age<10 OR ( Age>10 AND Class <> empty) can be seen as the tree:

62 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Describing a filter with SAP Predictive Analytics API

A filter definition is stored in the parameter tree of a space under Parameters/FilterCondition.

In the previous BNF, each bold word is a new parameter name or subtree name.

For example:

Age>10 AND Class <> <empty>

Is expressed in the parameter tree:

Parameters/FilterCondition/Operator                   “And”                           /SimpleFilter1/Operator     “Greater”
                          /SimpleFilter1/Variable     “Age”
                          /SimpleFilter1/Value                “10”
                          /SimpleFilter2/Operator     “NotEqual”
                          /SimpleFilter2/Variable     “Class”                           /SimpleFilter2/Value                “”

And can be built by this KxShell script:

st.newSpace "adult01_500.csv" sp sp.getParameter ""
sp.bindParameter "Parameters/FilterCondition" AndFilter
AndFilter.insert "SimpleFilter1" SimpleFilter
delete SimpleFilter
AndFilter.insert "SimpleFilter2" SimpleFilter
delete SimpleFilter
delete AndFilter
sp.validateParameter
sp.getParameter ""
sp.changeParameter "Parameters/FilterCondition/Operator" "And"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Operator" "Greater"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Variable" "age"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Value" "10"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter2/Operator" "NotEqual"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter2/Variable" "Class"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter2/Value" "" sp.validateParameter

The more complex filter:

Age<10 OR ( Age>10 AND Class <> empty)

Is expressed as the following parameter tree:

Parameters/FilterCondition/Operator                                   “Or”                           /SimpleFilter1/Operator                     “Less”
                          /SimpleFilter1/Variable                     “Age”
                          /SimpleFilter1/Value                                
“10”
                          /FilterCondition2/Operator                  “AND”
                                            /SimpleFilter1/Operator   “Greater”
                                           /SimpleFilter1/Variable    “Age”
                                           /SimpleFilter1/Value               
“10”
                                            /SimpleFilter2/Operator   “NotEqual”
                                           /SimpleFilter2/Variable    “Class”                                            /SimpleFilter2/Value               “”

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 63



This parameter tree can be built by the following script:

st.newSpace "adult01_500.csv" sp sp.getParameter ""
sp.bindParameter "Parameters/FilterCondition" OrFilter
OrAndFilter.insert "SimpleFilter1" SimpleFilter
delete SimpleFilter
OrFilter.insert "FilterCondition2" FilterCondition2
FilterCondition2.insert “SimpleFilter1” SimpleFilterLevel2
delete SimpleFilterLevel2
FilterCondition2.insert “SimpleFilter2” SimpleFilterLevel2
delete SimpleFilterLevel2
delete FilterCondition2
delete OrFilter
sp.validateParameter
sp.getParameter ""
sp.changeParameter "Parameters/FilterCondition/Operator" "Or"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Operator" "Less"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Variable" "age"
sp.changeParameter "Parameters/FilterCondition/SimpleFilter1/Value" "10"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/Operator" "And"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter1/
Operator" "Greater"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter1/ /
Variable" "Age"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter1/
Value" "10"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter2/
Operator" "NotEqual"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter2/ /
Variable" "Class"
sp.changeParameter "Parameters/FilterCondition/FilterCondition2/SimpleFilter2/
Value" "" sp.validateParameter

Operators have different names when stored in the parameter tree:

Operator Parameter value

< Less

<= LessEqual

> Greater

>= Greater

= Equal

<> NotEqual

These names are case sensitive.

Special Case

An elementary filter like age>10 must be expressed as AND operator with only one operand.

64 PUBLIC
SAP Predictive Analytics Developer Guide

Using the Automated Analytics API



Example

Age>10

Is expressed as the simple parameter tree:

Parameters/FilterCondition/Operator                   “And”                           /SimpleFilter1/Operator     “Greater”
                          /SimpleFilter1/Variable     “Age”                           /SimpleFilter1/Value                “10”

SAP Predictive Analytics Developer Guide
Using the Automated Analytics API PUBLIC 65



6 Integrating Generated Code

6.1 What's New in Integrating Generated Codes

Links to information about the new features and documentation changes for Integrating Generated Codes.

SAP Predictive Analytics 3.3

What's New Link to More Information

Codes for SAP HANA, Hive, Spark, and Vora are now sup
ported.

● About Code Generation [page 66]
● Other SQL Codes [page 85]

MySQL, WX2 and Neoview are no longer supported. ● About Code Generation [page 66]
● Other SQL Codes [page 85]
●

Sybase has been added to the list of available UDFs. SQL UDF [page 86]

The table listing the differences of results has been updated. Available Implementations of Code Generation [page 68]

6.2 About Code Generation

Code generation is a component that exports regression and segmentation models in different programming 
languages. The generated code enables you to apply models from outside of the application. It reproduces 
operations made by the application when encoding data and creating either classification, regression, 
clustering or recommendation models. All code types are not available depending on the model definition.

The code generation uses the following API call:

long generateCode(in string iType, in string iDirectory, in string iFileName);  long generateCode2(in string iType, in string iDirectory, in string iFileName, 
in String iTargetName, in String iSpaceName, in String iKeyName); 

The following table details how to use the variables used in the API call.

Variable Description

iType Key code of the generated language. For the list of available 
key codes, see section Available Keycodes.

66 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



Variable Description

iDirectory Directory where the code is generated

iFileName Name of the output file

iTargetName Selects the model target to generate the code

iSpaceName Replaces the reference dataset used in the generated code

iKeyName Replaces the reference key used in the generated code.

Available Key Codes

Key Code

AWK

C

CCL - on SAP HANA Smart Data Streaming databases

CPP

JAVA

JSON

PMML3.2

SAS

 Note
For SAS code, use the call generateCode2 directly to set the application dataset and the key of the 
application dataset.

Codes with UDF Available

Key Code UDF Key Code Dedicated Database

HANA HANAUDF SAP HANA

ORACLE OracleUDF Oracle

SQLDB2 DB2UDF IBM DB2

SQLNetezza N/A Netezza

SQLServer SQLServerUDF SQLServer

SQLTeradata TERAUDF Teradata

SybaseIQ SybaseIQUDF Sybase IQ

 Note
For SQL code, use the call generateCode2 directly to set the application dataset and the key of the 
application dataset.

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 67



Codes for use in HADOOP

Key Code Dedicated Database

HIVE Hive

SPARK Spark

VORA SAP HANA Vora

Full Documentation

Complete documentation can be found on the SAP Help Portal at http://help.sap.com/pa.

6.3 Available Implementations of Code Generation

Scores obtained by using generated codes should be the same as those obtained with the application. 
However, slight differences may exist, mainly due to precision issues in computation.

 Caution
● Only C++ and Java codes can work with composite variables.
● All generated codes, except for PMM3.2 and AWK, can work with dateparts. A datepart is an automatic 

information extraction from an input date or datetime variable. Note that the code generator doesn't 
support date or datetime variables that are not split into dateparts. It means that if the final equation 
contains a date or datetime variable that is not split into dateparts, the application cannot generate an 
export of your model.

Possible Differences of Results Depending on the Code

Key Code

Classification/ Re
gression with a poly
nomial degree 1

Classification/ Re
gression with a poly
nomial degree greater 
than 1

Segmentation/ Clus
tering

Segmentation/Clus
tering with SQL Ex
pression

AWK ! ! ! !

C ++ ++ ++ ++

CCL ++ !! !! ++

CPP ++ ++ ++ ++

DB2V9 ++ !! !! ++

DB2UDF ++ !! !! ++

HANA ++ !! !! ++

HANA UDF ++ !! !! ++

Hive ++ !! !! ++

68 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code

http://help.sap.com/pa


Key Code

Classification/ Re
gression with a poly
nomial degree 1

Classification/ Re
gression with a poly
nomial degree greater 
than 1

Segmentation/ Clus
tering

Segmentation/Clus
tering with SQL Ex
pression

JAVA ++ ++ ++ ++

ORACLE ++ !! !! ++

Oracle UDF ++ !! !! ++

PMML 3.2 ++ !! ++ ++

PostgreSQL ++ !! !! ++

SAS ++ ++ ++ ++

Spark ++ !! !! ++

SQLDB2 ++ !! !! ++

SQLNetezza ++ !! !! ++

SQLServer ++ !! !! ++

SQLServerUDF ++ !! !! ++

SQLTeradata ++ !! !! ++

SQLVertica ++ !! !! ++

SybaseIQ ++ !! !! ++

SybaseIQUDF ++ !! !! ++

TERAUDF (UDF export 
in C)

++ ++ !! ++

Vora ++ !! !! ++

Caption

Symbol Meaning

++ The syntax is correct and results are the same as the ones 
obtained with Automated Analytics engines1.

! The syntax is correct but the results are different2.

!! The code is not implemented.

 Note
1 Results may be slightly different due to precision issues. Since each variable introduces a delta, the more 
variables the model contains, the more the results can differ.

2 Database types without right trim (RTrim) consider as disctinct two categories with names only differing 
by an ending whitespace.

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 69



6.4 Generated Codes

6.4.1  AWK Code

The generated AWK code allows applying a model on flat files with a simple script. There is: no need to compile, 
just run it through a single command line as follows:awk -F"," -f myawkmodel.awk myinputdata > 
output.csv

6.4.2  C Code

The generated C code is a standard ANSI code.

The entry point is a function with the following signature:

void    mymodel _apply( char* iValues[],                         FILE* iOutFile,                         unsigned long iLineIdx);

The following table details each parameter used by this function:

The parameter... is...

iValues an array of string (char*) containing the input values for the 
current record. These values must be in the exact same 
order as the training dataset (target and skipped values 
included, even empty)

iOutFile an open file where the generated values are written

iLineIdx the index of the current record

mymodel the name of the current model

This function writes the model output in the argument file as follows:

iLineIdx, target_1, output_1, ..., target_n, output_n

where n is the number of targets. For Classification/Regression, the output is the classification score when 
dealing with binary target and the predicted value when dealing with continuous target, and for Clustering, the 
output is the cluster index.

 Note
When generating probability in classification mode for Classification/Regression, the output appears as 
shown below:

iLineIdx, target_1, output_1, proba_1, ..., target_n, output_n, proba_n

70 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



The sample program (main.c), provided with the product, allows reading and code generating a flat file. To be 
able to compile with the generated file, the sample program includes some #define flags.

Example

On Windows platform, using Microsoft C compiler, the following command should compile sources:

cl /o model.exe  -DKX_GENERATEDCFILENAME=\"myModel.c\" 
-DKX_MODELFUNCTIONNAME=mymodel_apply 
-DKX_FIELDSEPARATOR=","
-DKX_NB_FIELDS=300 main.c 

This command generates the model.exe file. To run this executable file to score a flat dataset, use the 
following syntax:

model.exe -in myInputData -out output.txt

where:

● myinputdata is the name of the dataset to score
● output.txt is the generated file containing scores

 Note
myinputdata must have its columns in the exact same order as the training dataset - target and skipped 
variables included.

6.4.3  CCL Code

Continuous Computation Language (CCL) is an event processing language of SAP HANA Smart Data 
Streaming (SDS). CCL is based on Structured Query Language (SQL), and adapted for stream processing. 
Generating CCL code allows embedding prediction code associated to a model in a Smart Data Streaming 
project.

The code generation module of Automated Analytics generates one or more output stream definitions that 
compute scores and other prediction values. Those stream definitions can then be included in a streaming 
project. Your Advanced Analytics model must be trained using a dataset containing a subset of your streaming 
events. This dataset must have variable names matching exactly the name of the input stream that will be used 
for scoring.

The following table details the parameters needed to generate CCL code.

Parameter Name Description

$Key key field of the input stream/window

$Dataset name of the input stream/window to score

In some situations where additional information beyond the score is requested, the CCL code generator may 
produce more than one stream. In that case, cascading streams are produced to build the required prediction 

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 71



information. The name of the final output stream is deduced from the name of the generated file by removing 
the extension, and additional output stream names are built by appending a meaningful suffix, such as _bar or 
_proba, for example.

Only the key information is added by default to the output stream along with the prediction information. If you 
want to keep all input fields and not only the key, you can set the global parameter named 
CodeGenerator.CCL.AddAllInputStreamInResult in the Automated Analytics configuration file.

Example

Add the following line to the KJWizard.cfg file or the KxCORBA.cfg file, depending on the component you 
have installed.

CodeGenerator.CCL.AddAllInputStreamInResult=true

6.4.4  C++ Code

6.4.4.1 C++ Code Generator Framework Presentation

The framework is close to the Java code generator framework as both frameworks use vectors and maps to 
manage models.

The C++ code generator framework is based on several interfaces and classes:

● KxCppRTModel: interface implemented by each generated model
● KxCppRTModelManager: manager holding a map of models and allowing to reach back models by their 

name.
● KxCppRTCase: representation of one input record or output record, it is composed of KxCppRTValue 

elements
● KxCppRTValue: representation of one variable value

The C++ code generator produces a single file, the model class definition and the implementation.

Each file contains only a single class defining the apply function of a model. In addition, the name of the model 
is equal to the class name (this name is created by the application). Each generated model is registered in the 
model manager (this process is automatic, see static at the end of this example).

Here is a sample skeleton of such a generated file:

Example

 Sample Code

... 

72 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



    // definition of all categories
...
class cKxMyModel : public virtual KxCppRTModel
{
 public :
    cKxMyModel();
    cKxMyModel(KxCppRTModelManager& iModelManager);
    // Others functions definition...
    …
private:
    … // Internal functions definition
    double Kxen_RobustRegression_10e4c50l__0_KxVar1(KxCppRTCase iInput) const;
    …
};
cKxMyModel::cKxMyModel(KxCppRTModelManager& iModelManager)
{
    // register the model into the model manager
    iModelManager.registerModel(“cKxMyModel”, this);
    …
}
void
cKxMyModel::apply(const KxCppRTCase& iInput, KxCppRTCase &oOutput) const
{
    Kxen_RobustRegression_10e4c50l__0_KxVar1 (iInput, oOutput);
}
static CPPKxModel gKxMyModel(KxCppRtModelManager::instance()); 

6.4.4.2 C++ Framework Detail

This section details the behavior and usage of each class in the C++ code generator framework.

6.4.4.2.1 KxCppRTModel

Each generated model implements a generic interface called KxCppRTModel.

The KxCppRTModel interface has the following methods:

● String getModelName(): this method returns the name of the model as a string
● apply(KxCppRTCase, KxCppRTCase): this method applies the model on a data row called a case. It 

needs input object providing input variable values and returns an object containing results value. Both 
input and output values are using an object to represent a set of values that will be described further.

● StringVector getInputVariables(): this method specifies the input variables the generated model 
needs. It returns a vector of needed input variable names.

● StringVector getOutputVariables(): this method specifies the output variables generated by the 
model. It returns a vector of output variable names.

class KxCppRTModel {
 public:
    virtual ~KxCppRTModel() {};
    virtual const KxSTL::string& getModelName() const = 0;
    virtual const KxSTL::vector<KxSTL::string>& getModelInputVariables() const = 
0;

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 73



    
    virtual const KxSTL::vector<KxSTL::string>& getModelOutputVariables() const 
= 0;
    virtual void apply(const KxCppRTCase& iInput, KxCppRTCase& iOutput) const = 
0;
}; 

6.4.4.2.2 KxCppRTCase

KxCppRTCase interface allows feeding models with values. It provides services allowing the model to access 
values by rank (generated codes use the variable rank internally), and allows the external environment to set 
values using input variables names.

KxCppRTCase interface is implemented by the integrator to connect its physical data values to the model class 
instances.

● Void setValue(String iVariableName, KxCppRTValue value): this method is used by the 
calling program to fill the input case with proper values associated with variable names. This method is also 
used by the model to fill the proper output value.

● KxCppRTValue getValue(Int ): this method is used by the model to get the value associated by the 
input case provided by the integrator.

● KxCppRTValue getValueFromName (String iVariableName): this method can be used by the 
external program to get back the generated value from the model in the output case.

class KxCppRTCase {
    virtual ~KxCppRTCase() {};
    virtual void setValue(KxSTL::string const& iName, KxCppRTValue const& 
iValue) = 0;
    virtual const KxCppRTValue& getValue(int i) const = 0;
    virtual const KxCppRTValue& getValueFromName(KxSTL::string const& iName) 
const = 0;
}; 

An example of a very simple implementation is provided (see SampleMappedCase.cpp)

6.4.4.2.3 KxCppRTModelManager

The framework uses a model manager providing model registering facilities. It associates each model with a 
name.

struct sPrivateData; class KxCppRTModelManager
{
public:
   ~KxCppRTModelManager ();
   static KxCppRTModelManager& instance();
   void registerModel(KxSTL::string const& iModelName, KxCppRTModel* iModelPtr) {
mModelFactory[iModelName] = iModelPtr;
   }
   static const KxCppRTModel& getKxModel (KxSTL::string const& iModelName) {
      return instance().getModel(iModelName);
   }

74 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



   KxSTL::vector<KxSTL::string> getListModel() {
...
   }
private:
   KxCppRTModelManager () {}
   const KxCppRTModel& getModel (KxSTL::string iModelName) {...}
   struct sPrivateData *mData;
};
struct sPrivateData {
    KxSTL::map< KxSTL::string, KxCppRTModel* > mModelFactory;
}; 

6.4.4.2.4 KxCppRTValue

The CPP Runtime uses KxCppRTValue as data.

struct sValueData; class KxCppRTValue
{
public:
   KxCppRTValue(KxCppRTValue const& iOther);
   KxCppRTValue();
   KxCppRTValue(KxSTL::string const& iValue);
   KxCppRTValue(const char* iValue);
   ~KxCppRTValue();
   KxSTL::string const& getValue() const;
   KxCppRTValue& operator=(KxCppRTValue const& iOther);
private:
   struct sValueData*    mValueData;
};
struct sValueData {
    KxSTL::string mValue;
    sValueData() {}
    sValueData(KxSTL::string const& iValue) : mValue(iValue) {}
    sValueData(const char* iValue) : mValue(iValue) {}
    sValueData(sValueData const& iOther) : mValue(iOther.mValue) {}
}; 

6.4.4.3 Using the Generated Models

The provided main sample program will create an instance of the generated model and feed it with the proper 
cases.

 Sample Code
 #include "StringUtilities.h"
#include "KxCppRTModelManager.h"
#include "SampleMappedCase.cpp"
int main( int argc, char ** argv )
{
   FILE*    lInFile        = NULL;
   FILE*    lOutFile    = stdout;
...
   lInFile    = fopen(..., "r");
   lModelName = ...;

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 75



   lOutFile    = fopen(..., "w");
...
   // return model called CPPModel
   const KxCppRTModel& lModel = KxCppRTModelManager::getKxModel(lModelName);
   // return the variable names used
   KxSTL::vector<KxSTL::string> lInputNames = lModel.getModelInputVariables();
   SampleMappedCase lInCase     =  SampleMappedCase(lInputNames);
...
   SampleMappedCase lOutCase =
      SampleMappedCase(lModel.getModelOutputVariables());
   while (...)
   {
...
      lInCase.setValue(...,
                       ...);
      // apply
      lModel.apply(lInCase, lOutCase);
...
   }
   fclose(lOutFile);
   fclose(lInFile);
   return 0;
} 

Maintaining Generated Codes

In this sample implementation, generated codes are located in a stand-alone dynamic library (DLL). To add a 
new model runtime in this DLL, update dll_X86-WIN32.mak makefile. Replace the value of MODEL_OBJECTS 
target by the list of generated models.

76 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



6.4.5  HTML Code

The generated HTML code is an HTML page that can be viewed in any Javascript compliant Web browser. The 
user has to fill each variable value and click the target link at the bottom to access the model output.

6.4.6  Java Code

Java Code compilation needs KxJRT.jar in the classpath as shown below:

javac -classpath "path-to-KxJRT.jar" model.java

where model.java is the generated java code. This generates a file named model.class containing java 
bytecode.

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 77



 Note
KxJRT.jar file is provided in the Samples directory.

Then, to use the model, the KxJRT.IKxJModelInputWithNames interface must be implemented. This object 
is passed as an argument to the IKxJModel.apply() method and defines how to retrieve the input data.

This interface has the following methods that must be implemented:

● java.lang.String[] getVariables()
returns the variable names used in the data source the model is to be applied on.

● boolean isEmpty( int iVarIdx, java.lang.String iMissingString )
returns whether the current value of the variable with index iVarIdx in the array returned by 
getVariables is the empty value or not.

Other methods (floatValue(), intValue(), ..., dayOfWeek()) that convert a value into a correct data 
type are also available. These methods are described in the IKxJModelInput interface.

Example

Consider an object DataProvider able to provide variable values, the following code could be:

... import KxJRT.*;

...
class KxJModelInput extends DataProvider implements IKxJModelInputWithNames {
...
    // IKxJModelInputWithNames interface
    
    String[] getVariables() {
        // use DataProvider to get the list of available variables
        ...
    }
    
    boolean isEmpty( int iVarIdx, java.lang.String iMissingString ) {
        boolean lIsMissing;
        // use DataProvider to test if current 
        // value for variable iVarIdx is missing.
        // for example, perfom a "ISNULL" when using a SQL source.
        String lStringValue;
        // use DataProvider to get, if possible, 
        // the string representation of the current value.
        // when dealing with  SQL source, it is not 
        // available for continuous value.
        if( lIsMissing || lStringValue.equals( iMissingString ) ) {
            return true;
        }
        else return false;
    }
    
    float  floatValue( int iVarIdx ) {
        // if current value is continuous, then return its value, else return a 
default value say 0 .
        ...
    }    
    ... And so on ...
} 

78 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



The previous class reads a flat file and converts string values into the desired type. To have a concrete 
implementation of this class, please refer to KxJRT.KxFileReaderWithNames for an example code.

The final skeleton code should contain the following lines to execute an exported model in JAVA code:

... import KxJRT.*;

...
    // String containing the model class name. For example,
    // if model.java was generated, then lModelName is "model" .
    java.lang.String lModelName;
    ...
    // ask the factory to instanciate the class.
    IKxJModel mKxModel = KxJModelFactory .getKxJModel( lModelName );
    ...
    // instanciate IKxJInputModelWithNames
    KxJModelInput lInput = new KxJModelInput( ... );
    ...
    // instanciate KxJRT.KxJModelInputMapper (see KxJRT.Mapper class )
    KxJModelInputMapper    mMapper = new KxJModelInputMapper (  lInput,  
mKxJModel );
    ...
    // instanciate a data source (it may be already done via lInput)
    DataProvider mDataProvider = new DataProvider( ... );
    ...
    // main loop that reads each data row and applies the model on it
    while( mDataProvider.hasMoreRows() ) {
        Object[] lResults = mKxJModel. apply( mMapper ); 
        // store or print the results somewhere. 
        // here print results on standard output
        for( int i=0; i<lResults.length; i++ ) {
                System.out.print( lResults[i].toString() );
                if( i+1<lResults.length ) System.out.print(",");
        }
        System.out.println();
    }
... 

The above code should be compiled with KxJRT.jar in it, and executed with both KxJRT.jar and the 
directory containing model.java in it.

 Note
See KxJRT.KxJApplyOnFile for sample code.

KxJRT.jar contains a sample program to read and score flat files.

To apply a Java model on a flat file, use the syntax as below:

"Usage: [-nonames] [-separator <sep>] [-out <file>] -model <model> -in <file>

The parameter... indicates...

-nonames do not look for variables names on first line

 Note
Setting nonames implies the input file has the same 
structure as dataset used for training.

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 79



The parameter... indicates...

-separator set field separator (default is a comma (,))

-out set output file (default is standard output)

-model set Java model

-in set input file to score

Example

To apply the model SampleModel.java on SampleDataset.csv (that is a comma separated values file) and 
store results in results.csv: javac -classpath KxJRT.jar SampleModel.java java -jar 
KxJRT.jar -model mymodel -in SampleDataset.csv -out results.csv".

The help is obtained by typing this command: java -jar KxJRT.jar -usage.

6.4.7  PMML Code (3.2 version)

Predictive Model Markup Language (PMML) is an XML markup language used to describe statistical and data 
mining models. It is edited by the Data Mining Group (http://www.dmg.org/ ). PMML is supported by 
products listed on this Web page: http://www.dmg.org/products.html .

6.4.7.1 Code Generation Using PMML and DB2 IM Scoring

This section explains how to generate scores in a database with PMML and DB2 IM Scoring V7.1 from a model.

Some prerequisites are needed to use PMML with the application:

● A database (DB2 or Oracle)
● The IBM product DB2 IM Scoring V7.1 that should be installed on this database

1. Generate the PMML code corresponding to the model.
2. Insert the PMML model in the database with an SQL insert statement.
3. Apply the model on a table with an SQL query.

6.4.7.1.1 DB2 IM Scoring for DB2 and Oracle

DB2 IM Scoring is available for two databases: DB2 and Oracle.

80 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.dmg.org%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.dmg.org%2Fproducts.html


6.4.7.1.1.1  Installing DB2

The following DB2 versions are required to work with IM Scoring:

● Fixpack 5 if you are working with DB2 UDB V6
● Fixpack 1 if you are working with DB2 UDB V7

During the DB2 installation, use the same logon and password for the DB2 instance user as for your Windows 
account. Otherwise, the scripts will be unable to automatically stop and start your DB2 instance when required.

 Tip
To launch a DB2 command, use C:\>db2cmd DOS command.

To launch script.sql SQL script in the DB2 environment (in a DB2 CLP DOS window), use C:\>db2 -
stf script.sql DB2 command.

6.4.7.1.1.2  Installing Oracle

The Oracle8i 8.1.7 database version is required to work with DB2 IM Scoring.

 Tip
To launch an Oracle command, use C:\>sqlplus user/password@connectionstring DOS 
command.

To launch script.sql SQL script in the Oracle environment, use SQL> @script.sql Oracle command.

6.4.7.1.2 DB2 IM Scoring V7.1 for DB2 and Oracle

 Caution
Before installing DB2 IM Scoring, create a specific user (into DB2 or Oracle) to store all IM Scoring tables.

It is also recommended to install the IM Scoring V7.1 Fixpack 1.

Download Program Temporary Fixes (PTFs) from IBM Web site: http://www-3.ibm.com/software/data/
iminer/scoring/downloads.html .

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 81

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww-3.ibm.com%2Fsoftware%2Fdata%2Fiminer%2Fscoring%2Fdownloads.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww-3.ibm.com%2Fsoftware%2Fdata%2Fiminer%2Fscoring%2Fdownloads.html


6.4.7.1.2.1  Installing IMScoring DB2 UDF on an Existing 
Database

1. Launch the DB2 command in IM Scoring bin directory: idmEnableDB.bat DatabaseName fenced
2. Set the database parameters to increase memory management:

a. Launch the following DOS script:

rem ---increase size of UDF_MEM_SZ db2 update dbm cfg using udf_mem_sz 60000
db2set DB2NTMEMSIZE=APLD:60000000
rem --- increase size of APPLHEAPSZ
db2 update db cfg for YourDatabaseName using APPLHEAPSZ 8192
db2stop
db2start
rem --- start the DB2 JDBC Applet Server for port 6789
db2jstrt 6789 

b. Be sure that your DB2 instance has been restarted by checking the DB2 instance UDF_MEM_SIZE 
property. This parameter must be set to 60000.

6.4.7.1.2.2  Installing IMScoring Oracle Packages on the 
Default Database 

The Default Database is identified by ORACLE_SID parameter.

1. Use idm_setup.bat DOS script with the SYS Oracle user (default password: change_on_install).

2. In samples\Oracle IM Scoring directory, use idm_create_demotab.sql Oracle SQL script to create 
tables containing PMML models.

6.4.7.2 Inserting PMML in the Database

Once the PMML file has been generated, you have to load it into the database.

This insert is made with an SQL query and with an IM Scoring function.

In IM Scoring, a regression PMML model is inserted into REGRESSIONMODELS table with DM_impRegFileE 
function.

REGRESSIONMODELS table contains two columns:

● MODELNAME (VARCHAR(240)): name of the model
● MODEL (IDMMX.DM_REGRESSIONMODEL): PMML model in DB2 format. IDMMX is the DB2 schema 

installed and used by DB2 IM Scoring.

DB2 IM Scoring create its own data types and functions (User Defined Function) on this schema.

DM_impRegFileE function from the IDMMX schema is used to transform a PMML file into 
DM_REGRESSIONMODEL DB2 IM Scoring data type.

82 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



The following script is a sample DB2 SQL query for inserting a regression PMML model:

 Sample Code

connect to DATABASE; insert into IDMMX.REGRESSIONMODELS
values (
'KXENModel',
IDMMX.DM_impRegFileE(' C:\directory\model.pmml ','Windows-1252')
); 

6.4.7.3 Score Generation

Finally, when the PMML model is in the database, you can apply the model on a table and generate scores.

We are working in a database with an SQL query, so this apply can be done with an UPDATE or INSERT query.

In DB2 IM Scoring, the functions DM_getPredValue, DM_applyRegModel and Dm_ApplData are used to 
apply a regression model.

The script below is a sample DB2 SQL query for creating a result table SCORE_RESULT and applying the model 
on TABLE_TO_SCORE table. The original model was generated with TABLE_TO_SCORE table. Scores are 
generated in SCORE_ RESULT table with two columns, CLASS column to be predicted and the score computed 
by the model.

connect to DATABASE; create table SCORE_RESULT (
CLASS INTEGER,
SCORE DOUBLE
 );
insert into SCORE_RESULT
select
t.CLASS,
IDMMX.DM_getPredValue(
IDMMX.DM_applyRegModel(r.model,
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
IDMMX.DM_applData (
'age', t.AGE),
'workclass', t.WORKCLASS),
'fnlwgt', t.FNLWGT),
'education', t.EDUCATION),
'education-num', t.EDUCATIONNUM),
'marital-status', t.MARITALSTATUS),
'occupation', t.OCCUPATION),
'relationship', t.RELATIONSHIP),
'race', t.RACE),

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 83



'sex', t.SEX),
'capital-gain', t.CAPITALGAIN),
'capital-loss', t.CAPITALLOSS),
'hours-per-week', t.HOURSPERWEEK),
'native-country', t.NATIVECOUNTRY))
)
 from IDMMX.RegressionModels r, TABLE_TO_SCORE t
where r.modelname='KXENmodel'; 

6.4.8  SAS Code

SAS code is a script that can be interpreted by the SAS system.

The following first two lines must be added:

data  in_dataset ;  set out_dataset;

The following table details the parameters used:

The parameter... Is...

in_dataset the SAS dataset to score

out_dataset the generated dataset with scores

 Note
The parameter &Key must be replaced by the ID of the dataset to have an ID with a score.

6.4.9  SQL Code

The SQL code is database-dependent and some context-dependent variables have to be set in the SQL query 
before applying:

The variable... Has to be replaced by...

<$KEY> the key of the apply dataset

<$DATASET> the table or view to score

 Note
In an automatic process, the search-and-replace job can be done with a PERL or AWK script. A special SQL 
for MySQL database has been released because of the symbol surrounding variable names ( " instead of 
standard " ).

84 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



6.4.9.1 SQL ANSI

The generated SQL ANSI code is compliant and should work on most databases which are not yet supported 
by the application.

6.4.9.2 SQL Generation Options

SAP Automated Analytics allows users to set the following parameters for code generation:

Separator [SQL]: allows customizing the SQL separator between two SQL queries. By default, this 
parameter is set to GO.

6.4.9.3 Other SQL Codes

Key Code UDF Key Code Dedicated database

HANA N/A SAP HANA

Hive N/A ?

ORACLE OracleUDF Oracle databases

Spark N/A ?

SQLServer SQLServerUDF SQLServer databases

SQLDB2 DB2UDF IBM DB2 databases

SQLTeradata TERAUDF Teradata databases

SQLNetezza N/A Netezza databases

SQLVertica N/A Vertica databases

SybaseIQ SybaseIQUDF Sybase IQ databases

SYBASEASE N/A Sybase ASE databases

VORA N/A ?

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 85



6.4.10  UDF Code

6.4.10.1  SQL UDF

The generated SQL code creates a SQL User Defined Function (UDF) computing a score from model 
parameters.

The syntax for creating a UDF and describing its parameters depends on the DBMS. The SQL UDF code 
generators for the following DBMS are available:

● DB2
● Oracle
● SAP HANA
● SQLServer 2000
● Sybase

6.4.10.1.1  Installing the SQL UDF

The file generated by the code generator contains all necessary SQL instructions to install the UDF.

You must use the standard SQL front-end of the DBMS to execute the generated file.

The following table details the standard SQL front-end for each DBMS:

DBMS SQL Front-End

SAP HANA SAP HANA Studio

SAP HANA web-based development workbench

SAP HANA Web IDE

SQLServer 2000 Query Analyser

Oracle SQLPlus

DB2 Command Center

 Caution
Since the generated file can contain the instruction to drop the UDF before re-creating it, it is normal for the 
SQL front-end to signal an error the first time when the UDF does not exist yet.

Except the UDF header, the generated SQL code does not use special features of the DBMS or ANSI mode 
setup.

The current user must have the actual rights to drop/create a UDF. Check with your DBA.

86 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



6.4.10.1.2  Using the SQL UDF

When installed, the UDF extends SQL exactly as a standard SQL function.

A typical use is (supposing UDF is named ClassPredictedByKXAF):

SELECT 
ClassPredictedByKXAF(age,workclass,fnlwgt,education,educationnum,maritalstatus,occu
pation,relationship,race,sex,capitalgain,capitalloss,hoursperweek,nativecountry) 
FROM Adult

As a convenience, all generated UDF code files include a comment with a typical usage of the current UDF.

6.4.10.1.3  SQL UDF Generation Options

The application allows users to set the following parameters for code generation:

SmartHeaderDeclaration [UDF]: this parameter allows excluding from the generated code all the non-
contributive variables (variables with a contribution of 0). The default value of the parameter is set to true for 
the application to generate an UDF declaration with only useful variables. In some cases, it can significantly 
reduce the size of the generated code. Changing the value of this parameter has no effect on the final results.

6.4.10.1.4  DBMS Dependent Options on Generated SQL UDF

Each DBMS has different options for fine tuning the UDF.

Here is the set of options the application uses:

● ORACLE
○ PARALLEL_ENABLE: self explained.
○ DETERMINISTIC: SQL code does not use or change external values. Each UDF call with the same 

actual parameters gives the same result. It allows Oracle to cache previous calls result.
● DB2

○ DETERMINISTIC: SQL code does not use or change external values. Each UDF call with the same 
actual parameters gives the same result. It allows Oracle to cache previous calls result.

○ NO EXTERNAL ACTION: no external DBMS resource (file, lock, and so on) is used or changed
○ CONTAINS SQL: indicates that the code does not read or modify other SQL data.

● SybaseIQ
○ DETERMINISTIC: SQL code does not use or change external values. Each UDF call with the same 

actual parameters gives the same result. It allows Oracle to cache previous calls result.
● Other UDFs

○ No specific option is used.

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 87



6.4.10.2  Teradata C UDF

The application generates specific Teradata User Defined Function. The scoring code is written in C (with 
Teradata coding conventions) and the UDF itself is described in SQL.

 Caution
Teradata C UDF is only available on Teradata V2R5.1.

6.4.10.2.1  Installing the Teradata UDF

Considering a model with n targets, the code generator generates n+2 files:

● The Teradata C code: the file name is given by the user with the extension .teraudf. This file contains all 
the C code needed to build the UDF for all targets.

● The SQL creation and description of the UDF: the file name is the same as the one given to the C code file 
with a .bteq extension. This file contains all SQL wrappers needed to describe the UDF from a SQL 
perspective.

● One C file per target (that is n files) which name is <Name><TargetName>.c, where <Name> is the name 
given by the user. These files are only created for technical reasons linked to the limitations of the Teradata 
compilation environment.

Example

If the user has chosen the name MyUDF and a model with two targets, class and sex, four files will be 
generated:

● MyUDF.teraudf: the C code
● MyUDF.bteq: the SQL installation and description code of two UDF named MyUDFclass and MyUDFsex
● MyUDFclass.c
● MyUDFsex.c

You must use Teradata BTEQ tool to execute the .bteq file. In the BTEQ tool, enter:

● .login <node>/<login>
● .run file=<UDF Name>.bteq

This will automatically do the whole task:

● transfer the C code
● compile the C code
● create the UDFs

 Caution
Since the generated file contains the instruction to drop the UDF before re-creating it, it is normal bteq 
signals an error the first time when the UDF does not exist yet.

88 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



The current user must have the actual rights to drop/create a UDF. Check with your DBA.

6.4.10.2.2  Using the Teradata UDF

When installed, the UDF extends SQL exactly as a standard SQL function.

Supposing UDF is named ClassPredictedByKXAF, a typical use is:

SELECT 
ClassKXAFPredicted(age,workclass,fnlwgt,education,educationnum,maritalstatus,occupa
tion,relationship,race,sex,capitalgain,capitalloss,hoursperweek,nativecountry) FROM 
Adult

As a convenience, the .bteq file includes a comment with a typical use of the UDF.

6.4.10.2.3  Obtaining help on the Teradata UDF

The code generator generates a Teradata comment associated to the UDF.

This comment contains useful information, for example the application version and the generation date.

To see this comment in any Teradata request tool, type: Comment on function <UDF Name>

You can also display a full description of the UDF and its parameters by typing: Show function <UDF Name> 
in any Teradata request tool.

6.4.10.3  Frequent Problems when Using UDF

Since parameters types (INTEGER, FLOAT, and so on) are explicitly described in the UDF, you must call the 
function with correct types parameters. If actual parameters types do not match, the DBMS displays this error: 
<UDF name> not found. To solve this issue, use standard SQL CAST operators.

For the same reason, passing an explicit NULL value as an actual parameter also needs a CAST operator. 
Because NULL is a special SQL value with no type, the parameter type will never match.

Example

If the first parameter of the UDF is described as a FLOAT, TheUDFName( NULL,… ) call must be replaced by 
TheUDFName( CAST( NULL AS FLOAT ),…)

SAP Predictive Analytics Developer Guide
Integrating Generated Code PUBLIC 89



6.4.10.4  Performances of Automated Analytics SQL and UDF

This section details results of a performance test on model scoring.

The test consisted in applying a model on an existing dataset (update mode) in three different ways:

● Using the Automated Analytics engine and an ODBC connection
● Using a SQL generated code
● Using a generated UDF

DBMS
Automated Analytics /UDF 
ratio

Automated Analytics /SQL 
ratio UDF/SQL ratio

DB2 4.7 5.5 1.2

Oracle 4.3 5.0 1.2

SQLServer 2000 4.7 5.6 1.2

Teradata v2R5.1 Cannot be tested Cannot be tested 0.5

6.4.11  VB Code

The VB code is generated in standard VB 7 code.

The entry point is a function with the following signature:

Public Function ApplyModel( iInputs() As Variant ) As Variant()

The following table details parameters used in the function above:

The parameter... Is...

iInputs an array of variants containing the input values for the 
current record

These variants must be in the exact order specified by the following function generated at the beginning of the 
script:

Public Function GetModelInputs() As String()

It returns an array of input names.

ApplyModel function returns an array of outputs specified by the following function:

Public Function GetModelOutputs() As String()

90 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating Generated Code



7 Model Parameter Reference

This section presents the model parameters as they are displayed in the parameter tree.

 Syntax
Path: <Model_Name>

The root of the path is the name of the model.

In SAP Predictive Analytics, a model is more than an algorithm. It contains all the information needed to 
process the data in the original format they are stored in the source database up to the modeling results. This is 
why a model is described by the data sets it has been trained on and by the protocol (which is a chain of 
transforms) it uses. All this information is saved in a tabular form when a model is saved.

The models are adaptive models: they must be generated, or trained (the terms "estimated" or "adapted" are 
also used), on a training data set before they can be used, or applied, on new data sets. As all objects defined in 
SAP Predictive Analytics architecture, a model is described by parameters, which are described in the following 
sections.

7.1 Model Generation Parameters

 Syntax
Path: Parameters

This folder contains the parameters related to the model generation.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 91



Parameter Description Values

CutTrainingPolicy Indicates the way a training dataset is cut into three subsets 
when needed (estimation, validation and test). The impact of 
each of these strategies can be finely tuned through the pa
rameters of the training dataset.

● random with no 
test (default except for 
Time Series)

● sequential with 
no test (default for 
Time Series)

● random
● periodic
● sequential
● periodic with 

test at end
● random with test 

at end
● periodic with no 

test

CodingStrategy Version of the model strategy used to build the model By default, it is the number of 
the SAP Predictive Analytics 
version used to generate the 
model.

State Indicates the state of the model.

As all SAP Predictive Analytics objects, a model is described 
by a state diagram. States are used internally to know what 
are the possible actions that can be asked on these objects. 
This is an internal parameter and the user cannot change 
the state of a model. Most of the time, when a model has 
been trained, it will be saved in the "ready" state. When a 
model is saved before training, it can be saved with a 
"checked" state and used as a template.

● created (default)
● ready
● checked
● running

 Syntax
Path: Parameters/AutoSave

This folder contains the necessary information to automatically save the model at the end of the learning 
phase.

Parameter Description Values

AutosaveEnabled Boolean value that indicates whether the model must be au
tomatically saved at the end of the learning phase

● False (default): the 
model will not be saved

● True: the model will be 
automatically saved

AutosaveStoreIdx Integer that represents the return value of the openStore 
function used when saving the model to indicate the store lo
cation

● 0 (default)
● Any unsigned integer

92 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

AutosaveModelCommen
t

Comment associated to the model User-defined character string

AutosaveModelSpace Space where the model is saved Name of a file or of a data
base table

 Syntax
Path: Parameters/CodeGeneration

This folder contains the parameters used to generate the code corresponding to the model.

Parameter Description Values

NbLineForScoreCard Number of colors used to display the result lines in the score 
card

● 2 (default)
● any integer

UTF8 Allows you to generate a report in UTF-8 format ● false (default)
● true

Separator Allows you to customize the SQL separator between two 
SQL queries

● GO (default)
● Any user-defined string

SmartHeaderDeclarat
ion

Allows you to exclude from the generated code all the non-
contributive variables (variables with a contribution of 0). In 
some cases, this can significantly reduce the size of the gen
erated code. Changing the value of this parameter has no ef
fect on the final results.

● true (default): all non-
contributive variables 
are excluded from the 
generated code

● false: all variables are 
included in the gener
ated code

7.2 Infos

 Syntax
Path: Infos

Additional information is stored in this folder after the model has been generated, that is, when the 
Parameters/State value is ready. All these parameters are read-only.

Parameter Description Values

Author Name of the user who has generated the model By default it is the name of 
the user logged on the ma
chine

LearnTime Duration of the model generation (in seconds) Positive integer

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 93



Parameter Description Values

ApplyTime Duration of the latest application of the model (in seconds)

This duration is updated each time a model receives one of 
the following commands using the sendMode call:

● Kxen_apply
● Kxen_filterOutlier
● Kxen_test

● 0 (default): this value is 
used when the model 
has never been applied

● Positive integer

BuildDate GMT time at the end of the generation process, in the format 
YYYY-MM-DD HH:MM:SS

● blank (default)
● Any date

KxenVersion Version of SAP Predictive Analytics used to generate the 
model

Any SAP Predictive Analytics 
version number (for example 
2.1.0)

ModelVersion Version of the model built by SAP Predictive Analytics

When saving a model you have two options: overwriting the 
existing model with the current one, or creating a new ver
sion of the model, in which case the previous model will still 
be accessible.

● 1 (default)
● Positive integer

Model32Bits Boolean value that indicates if the model has been gener
ated on a 32-bit architecture

● true
● false

BuildData Name of the training dataset Name of the file or database 
table that was used to train 
the model

ModelName Logical name of the model either automatically generated 
(default) or provided by the user

● <target_name>_<dat
aset_name> (default, 
except for Social and As
sociation Rules)

● <dataset_name>_<gr
aph_type> (default for 
Social)

● <item_column_name>
_<dataset_name> (de
fault for Association 
Rules)

● User-defined character 
string

FilterConditionStri
ng

Definition of the filter applied on the training dataset, if there 
is one

● blank (default)
● Logical expression

94 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

LastApplyStatus The status of the last application (or test) task on the model

It is empty if the model has never been applied.

● Success: the task has 
been successfully com
pleted with no warning.

● Failure: errors have 
prevented the task from 
completing successfully.

● SuccessWithWarni
ngs: the task has been 
successfully executed 
but some warnings have 
been encountered (for 
example conversion 
problems).

● Aborted: the user has 
canceled the process.

 Syntax
Path: Infos/ClassName

This parameter allows you to assign a class to the model. This will make it easier to sort your models and find 
them (for example when using Model Manager). You can use the project name or the type of campaign (churn, 
up-sale, ...).

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 95



Parameter Description Values

Default If the value of this parameter is not set by the user, the value 
set in the Default subparameter is used. The Default 
parameter is automatically filled by the system and depends 
on the type of model.

Any user-defined string

System values:

● Kxen.Classificat
ion (classification 
model - nominal target)

● Kxen.Regression 
(regression model - con
tinuous target)

● Kxen.Segmentatio
n (segmentation model - 
SQL Mode)

● Kxen.Clustering 
(clustering model - no 
SQL Mode)

● Kxen.TimeSeries 
(time series model)

● Kxen.Association
Rules (association 
rules model)

● Kxen.Social (social 
networks analysis 
model)

● Kxen.Recommendat
ion (recommendations 
model)

● Kxen.SimpleModel 
(multi-target models, 
any other model)

7.3 Protocols

 Syntax
Path: Protocols

A protocol is a stack of transforms applied on the data as it is stored in the databases or files.

Each transform in this stack generates information of higher and higher abstraction level, and more and more 
related to business questions. A good way of picturing a protocol is to remember communication protocol 
stacks that are in charge of transporting information from one point to the other using more and more complex 
structures. A protocol is referred to in the model through its name ('Default' for SAP Predictive Analytics).

A protocol contains information about the chain of transforms processing the data, and about all variables 
used or produced by these transforms. Furthermore, the high level strategies driving the transforms behaviors 
are also defined in the protocol. 'Kxen.SimpleModel' uses only one protocol (whose default name is 
'Default'), but, as an example, multi-class models will use several protocol (each protocol dedicated to a two-
classes problem).

96 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.1  Variables

 Syntax
Path: Protocols/Default/Variables

This folder contains all information on variables used in the modeling process. This does not only mean the 
variables that are stored into the spaces (files or DBMS tables), but also variables that are created by data 
preparation transforms within protocols.

Variables are defined by their name, some high level descriptions, and their role with respect to the protocol. 
They contain information about statistics on each useful dataset. Variables can be accessed either through the 
protocol objects or from the datasets objects.

7.3.1.1 Variable Parameters

 Syntax
Path: Protocols/Default/Variables/<Variable_Name>

The parameter tree devoted to the variable can be very large, because it contains information about the 
statistics collected on this variable. Parameters are under several groups for clarity of the presentation.

Basic Description

Parameter Access Value Type Description

Value Read-only when the 
model is in ready state

● Nominal
● Ordinal
● Continuous
● Textual
● Composite

 

Storage Read-only when the 
model is in ready state

● Integer
● Composite
● Angle
● String
● Date
● Datetime

 

KeyLevel Read-only when the 
model is in ready state

Integer A number different than 0 indicates that this 
variable can be considered as a part of the iden
tifier of each line.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 97



Parameter Access Value Type Description

OrderLevel Read-only when the 
model is in ready state

integer A number different from 0 indicates that this 
variable can be used to sort the cases in a natu
ral order.

MissingString Read-only when the 
model is in ready state

String When a value equal to the string specified here 
is found in the input space, the variable is con
sidered as missing. This allows coping when 
specific codes are used to represent missing 
values (such as 9999 for a four digit unknown 
year for example).

Group Read-only when the 
model is in ready state

String Used to identify the group of the variable.

This notion can be used to optimize internal 
computation. Information is not searched in 
crossing variables that belongs to the same 
group. For example, when a color information is 
already encoded into three disjunctive columns 
in a dataset (one column for green, the second 
for red, the third for blue), if an event is green, it 
is useless to search for information in object 
that could be both green and blue.

Description Read-write String Comment

Advanced Description

The second group collects information about some elements that can be refined by the advanced user.

Parameter Access Value Type Description

MinForRange Read-write Only used for ordinal or continuous variables.

The user can increase this value before the ap
ply process, but in this case, the expectation on 
the level of performance of the global system 
cannot be guaranteed.  It also has a sub param
eter named Default [always read-only], which 
is filled with default values by the statistics com
putation (minimum value found on the Estima
tion data set). The default value is used if no 
value is specified (or "").

98 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Access Value Type Description

MaxForRange Read-write Only used for ordinal or continuous variables.

The user can decrease this value before the ap
ply process, but in this case, the expectation on 
the level of performance of the global system 
cannot be guaranteed. It also has a sub parame
ter named Default [always read-only], which 
is filled with default values by the statistics com
putation (maximum value found on the Estima
tion data set).  The default value is used if no 
value is specified (or "").

ConstantForMiss
ing

Read-write Indicates the preferred value to be used to re
place missing values from the data.

It also has a subparameter Default [always 
read-only] which is filled with default value cor
responding to the most frequent category of the 
Estimation data set with nominal or ordinal vari
ables, and with the average computed on the 
Estimation data set for continuous variables.  
The default value is used if no value is specified 
(or "").

IsVirtualKey Read-only Boolean Is true if the variable is an index automatically 
generated by SAP Predictive Analytics (typically 
named KxIndex). This index is generated only 
when there is no declared key in the current 
data set.

UserPriority Read-only when the 
model is in ready state

Number This parameter can be used by the components 
in internal computations.

If a component needs to make variable selec
tion (either in to discard some variables in inter
nal processes or to present variables to the user 
in a specific order), the priority can be used in 
conjunction with other internal measures: for 
variables with the same internal importance, the 
variable with the lower priority will be selected. 
The user can use this variable in order to en
force usage of variable that are "cheap" to col
lect versus others (in that case, a high number 
in the priority parameter must be set for expen
sive variables). The default priority is 5.

UserEnableCompr
ess

Read-only when the 
model is in ready state

Boolean When set to false allows the user to deacti
vate the target based optimal grouping per
formed by K2C on this single variable.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 99



Parameter Access Value Type Description

UseNaturalEncod
ing

Read-only when the 
model is in ready state

Boolean The Natural Encoding Mode has been added for 
the Variables. In this mode, only the original ver
sion of the variable is used by SAP Predictive 
Analytics. Encoded versions are disabled and 
exclusion criteria are relaxed for original ver
sions.

UserBandCount Read-only when the 
model is in ready state

Number Only for continuous variables.

Allows the user to force a number of bands 
(segments, bins) to collect statistics on this var
iable.

UserEnableKxOth
er

Read-only when the 
model is in ready state

Boolean Only for nominal variables.

When set to false allows the user to deacti
vate the compression into KxOther for very in
frequent categories.

 Caution
This will generally lead to non stable data 
representation and coding.

NominalGroups, 
OrdinalBands or 
ContinuousBands

 Subdirectories Can be inserted by the user to force a data 
structure.

UserModulus Read-only when the 
model is in ready state

Allows the user to enforce the bands of the con
tinuous variables to be modulus of the given 
value. For example this allows the user to en
force the fact that bands are always multiple of 
1000 when dealing with monetary values.

SpaceName Read-write String Secondary name of the variable that can be 
used when putting back results within an output 
data set. The user can change the actual col
umn in which the values are stored back by 
changing the SpaceName of the variable. This 
allows making the distinction between the name 
of the variable presented to the user and the 
name of the technical column to write in. If not 
explicitly changed, the technical column name 
to write back is the name of the variable.

InSpaceName Read-write String Another name of the variable that can be used 
when getting results from an input data set. The 
user can change the actual column in which the 
values are read by changing the 
InSpaceName of the variable. If not explicitly 
changed, the technical column name to read 
from is the name of the variable.

100 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Statistics

The final group is the entry point to get information about variable statistics on the different datasets.

Parameter Access Value Type Description

Monotonicity Read-write Boolean Indicates that the variable is monotonic with re
spect to the line number.

This can be bad news if the cutting strategy is 
not consistent with it. When a useful variable is 
monotonic, the system will enforce in next re
leases the cutting strategy to be sequential.

StatForCode Read-only String Name of the data set used to encode the data.

Most of the time, the statistics used to encode 
the data is "Estimation" for the input variables 
and "Validation" for the generated variables.

EstimatorOf Read-only Used internally to remember that a variable has 
been created as an estimator of another one be
longing to the protocol.

TargetKey Read-write Only for nominal target variable.

It contains the variable category specified by 
the user as the target category. By default, the 
target category is the least frequent one.

Translations Read-write Folder A folder is created for each variable, it contains 
one entry per language, and for each language, 
an entry per variable category. This allows the 
user interfaces to translate the identifiers of the 
category with their proper string representation 
(that could depend on the language of the client 
interface). If no translations have been defined, 
the folder is empty. If one or more languages 
have been defined, they appear as sub-parame
ters.

● all: contains the default translations. If 
the translations for the language used by 
the interface do not exist, the translations 
stored in all are used. If there are no 
translations in all, the value found in the 
data set is used.

● <ISO_language code>: contains the 
translations for the language correspond
ing to the give ISO language code (see the 
list of ISO codes).

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 101



Parameter Access Value Type Description

SpaceOrigin Read-only Boolean true if the variable has been found in the input 
space (training for example), and false other
wise.

For example, for all variables generated by SAP 
Predictive Analytics Explorer - Event Logging, 
SAP Predictive Analytics Explorer - Sequence 
Coding, SAP Predictive Analytics Explorer - Text 
Coding and score or segment variables, 
SpaceOrigin is set to false.

Statistics Read-write Folder Folder in which the statistics on all data sets are 
stored.

Role Read-only when the 
model is in ready state

● skip
● input
● weight
● target

 Caution
This parameter does not exist for internal 
variables.

7.3.1.2 Variable Statistics

 Syntax
Path: Protocols/Default/Variables/<Variable_Name>/Statistics/<Dataset_Name>

Statistics are collected for each dataset. Each dataset is referenced through its name. In this folder, you find as 
many directories as there are valid datasets defined for the model. None of these computed elements can be 
changed by the user.

Parameter Description

NbKnown Number of observations where this variable is known on the dataset

NbUnknown Number of observations where this variable is not known on the dataset

NbOutOfRange Number of observations where the variable is out of range (outside the data dic
tionary builds for nominal and ordinal variables, and outside the [min, max] range 
for ordinal continuous variables)

NbTotal Total number of observations. It is equal to the sum of NbKnown, NbUnknown 
and NbOutOfRange.

IsMerged Used to reload some models that were saved with a lack of precision.

ProbaDeviation Probability that there is a significant deviation in the distribution of categories (or 
bands in the case of continuous variables) between this data set and the data set 
jointed by the parameter StatForCode. This probability is computed through a 
CHI-square test.

102 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

Min Only for number or date variables

Minimum value on the dataset.

Max Only for number or date variables

Maximum value on the dataset

Mean Only for number or date variables

Mean value on the dataset

Variance Only for number or date variables

Variance on the dataset

StandardDeviation Only for number or date variables

Standard deviation value on the dataset

Targets The new architecture of components allows for multiple targets. This folder is 
prepared to hold information specific to each target, this comprises the groups of 
the original categories and the computed values such as KI and KR. See Targets 
[page 103].

Categories Sub tree collecting statistics of each category of nominal or ordinal variables. It 
also correspond to some binning of continuous variables when this is required by 
the following transforms. See Categories [page 104].

UniformCurvePoints Only for continuous variables

It corresponds to the points allowing to draw the cumulative distribution curve. 
Each point is given through [X, Y] coordinates. In regular situations, it should be 
S-shaped.

7.3.1.2.1 Targets

 Syntax
Path: Protocols/Default/Variables/<Variable_Name>/Statistics/<Dataset_Name>/
Targets/<Target_Name>

This folder holds information that is specific to each possible target. You find a subfolder for each target 
variable.

Parameter Description

Ki KI (Predictive Power) of the variable with respect to this target variable

Kr KR (Prediction Confidence) of the variable with respect to this target variable

Ks Kolmogorof-Smirnoff of the variable with respect to this target variable

AUC Area Under the ROC Curve of the variable with respect to this target variable

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 103



Parameter Description

GINI GINI index of the variable with respect to this target variable

GroupProbaDeviation Probability that there is a significant deviation in the distribution of the categories 
groups, created with respect to the target, between this data set and the data set 
jointed by the parameter StatForCode

Groups Statistics of the groups that have been created for the target variable.

The grouping is different for each target variable, as the grouping strategy de
pends on the target variable itself. Groups for continuous variables are made. The 
information under the "Groups" folder is equivalent to the information on the 
original categories of the variables. For each, you will find a sub tree under the 
group label. The sub tree is exactly equivalent to the one found under 
CategoryName (see below).

OrderForTarget Default (or "natural) order of categories that gives the best KI (Predictive Power) 
for the variable with respect to the target. This parameter is especially useful for 
continuous and ordinal variables to express non-linear relationship with the tar
get, if the value is "profit" or "basic profit". Possible values:

● Increase
● Decrease
● Profit
● Basic Profit

TargetCurvePoints Only for continuous variables.

This parameter corresponds to the points allowing to draw the curve used to en
code a continuous variable with respect to the target. Each point is given through 
[X, Y] coordinates.

BarCurvePoints Only when the variable is an estimator of another variable (for example, 
rr_<target>).

It corresponds to the points that allow drawing the piecewise linear interpolation 
curve giving the error bar in relation to the score. This values can be used to plot 
an expected error bar around the predicted value.

ProbabilityCurvePoints Only when the variable is an estimator of a nominal variable (for example 
rr_<target> when target is nominal).

It corresponds to the points that allow drawing the piecewise linear interpolation 
curve giving the probability in relation to the score.

7.3.1.2.2 Categories

 Syntax
Path: Protocols/Default/Variables/<Variable_Name>/Statistics/<Dataset_Name>/
Categories/<Category_Name>

104 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

Code Code of the category is randomly assigned in the order of category appearance in 
the dataset

Count Number of cases where this category has been encountered on the dataset.

Frequency Category frequency (ratio of the cases with this category on the number of cases 
where this variable is known). This is found only in the parameter tree when pre
sented to the user (not in the saved version of the models).

ProbaDeviation Probability that the category is significantly different from its distribution in 
StatForCode

SegmentMean Mean of the variable for this segment when this variable is continuous.

TargetMean Mean of the target for cases belonging to this category when the target is contin
uous.

SmoothedTargetMean TargetMean corrected to obtain a smoothed cycle. This component will only be 
usable for a model generated by SAP Predictive Analytics Modeler – Time Series.

TargetVariance Variance of the target for cases belonging to this category when the target is con
tinuous.

UserProfit Profit that can be associated with this category when the variable is the target 
variable. This user profit is then used when asking the model for profit curve with 
user profits.

Targets Subtree collecting information about how the (several) targets are distributed for 
cases with this category in the data set. Of course, this is only available when the 
variable is not a Target Variable Name

NormalProfit Coding number associated with this category and used by SAP Predictive Analyt
ics Modeler - Regression/Classification in order to translate the category name 
into a number when appropriate.

TargetRank Rank of this category with respect to this target

GroupCode Technical detail reserved for internal use. This parameter links towards the code 
of the associated group, if any.

ProbaDeviation Probability that the category is significantly different from its distribution in 
StatForCode, taken the distribution over the groups into account for the tar
get under consideration.

TargetCategories Subtree collecting information on all the categories of the target:

<Target_Category_Name>

● Count Number of times the category of the target has been encountered on 
the data set for cases with this category.

7.3.1.3 Data Structure

Concept hierarchies allow the mining of knowledge at multiple levels of abstraction. A concept hierarchy 
defines a sequence of mappings from a low level concepts to a higher level, and more generally, concepts 
related to a single dimension (or variable, or column). In general, concept hierarchies describe several levels of 
abstraction. In SAP Predictive Analytics, we have focused on representing the first level of concept hierarchies 

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 105



that we call: Data structures. A data structure can be seen as a user defined specific initial binning/banding 
before the eventual compression. Data structures come from different viewpoints:

● A data structure provided by system users generally reflects a grouping used to store information in large 
scale data bases or OLAP systems.

● A data structure provided by domain experts generally reflects background knowledge (a dimension 
location aggregates cities in states, then aggregated in countries).

● A data structure provided by knowledge engineers generally reflects a grouping strategy to improve the 
robustness of internal representations (a category very infrequent is aggregated with a larger one).

● A data structure can be automatically generated by SAP Predictive Analytics components or an external 
tool (some tools generate ranges for continuous variables).

A data structure can be used by the components to build higher levels of abstraction. A data structure 
represents the first level of aggregation of concept hierarchies. Data structure elements depend upon the 
variable type (nominal, ordinal, or continuous).

● Nominal Variables

The data structure is described by groups of categories. Each group is designed with a name for the user, and 
the list of possible values belonging to this group. In version 2.1 of the components, this list must be given in 
extension (all values must be listed), but the possibility to use regular expressions will be given in the future. 
The entry point in the parameter tree is called NominalGroups.

● Ordinal Variables

The data structure is described by ranges of values (called bands). A band is defined by a name for the user, a 
minimum value, and a maximum value. These two values are assumed to belong to the range. These values can 
be either number or strings (for which the alphabetical order will be used as the sort function). The entry point 
in the parameter tree is called OrdinalBands.

● Continuous Variables

The data structure is described by ranges of values (called bands). A band is defined by a name for the user, a 
minimum value, a flag indicating if the minimum value belongs to the range or not (open or closed boundary), a 
maximum value, and a flag indicating if the maximum value belongs to the range or not (open or closed 
boundary). The data structure for continuous variables is checked after the user has described it from a 
parameter tree. The system automatically checks if the bands given by the user overlap (in which case it 
outputs an error message), or if there is a 'hole' between successive bands (in which case the system 
completes with the needed segment). The entry point in the parameter tree is called ContinuousBands.

7.3.2  Protocol Parameters

 Syntax
Path: Protocols/Default/Parameters

106 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



The following table lists the parameters that can be accessed under the protocol Parameters section:

Parameters Access Description Possible Values

StrangeValueLev
el

Read-write Used to send warning messages to the client 
context when strange values are encountered 
by one transform in the protocol

● 10 (default value)
● Positive integer

VariableCountIn
Space

Read-only Number of variables in the source data sets ● 0 (default value)
● Positive integer

WeightIndex Read-only Index of the weight variable in the source data 
sets. A WeightIndex of -1 means that there 
is no weight column defined in the source data 
set

● -1 (default value)
● Integer

StrangeValuePol
icy

Read-write read-only 
when the model is in 
ready state

The strange value policy is used when the sys
tem checks the compatibility of the transforms 
and the available data. This "check" phase takes 
place before model generation (or training). Af
ter the model has been generated, this value is 
no longer used, because it is converted into a 
set of actions to take place for each variable 
contained into the protocols.

● Dialog (default 
value)

● skip

CopyTarget Forces the copy of the target into the apply out
put during an apply process.

● true (default 
value)

● false

SoftMode Enables a mode where all the involved trans
forms produce a default model when no model 
is produced by the standard learning process. In 
this mode, when no model is found, SAP Predic
tive Analytics Modeler - Regression/Classifica-
tion produces a constant model and SAP Pre
dictive Analytics Modeler – Time Series produ
ces a Lag1 Model. No effect on other trans
forms. This mode is disabled by default.

● false (default 
value)

● true

7.3.3  Transforms

 Syntax
Path: Protocols/Default/Transforms/

Transforms are holding the actual statistical or machine learning algorithms. All transforms must go through a 
learning phase to be ready for use. This learning phase is used for the estimation of parameters, and the 
computation of some results or descriptive information. The transforms held by the protocols are the data 
processing unit.

Whilst most transforms parameters are specific each the kind of transform used (SAP Predictive Analytics 
Modeler - Data Encoding, SAP Predictive Analytics Modeler - Regression/Classification,... see below), some are 
common to all transform types.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 107



7.3.3.1 Transform Information

 Syntax
Path: Protocols/Default/Transforms/<Transform_Name>/Infos

Additional information is stored in this folder after the model has been generated, that is, when the 
Parameters/State value is ready. All these parameters are read-only.

Parameter Access Description

LearnTime Read-only The time (in seconds) that this transform took to process 
the learn request.

 Syntax
Path: Protocols/Default/Transforms/<Transform_Name>/Parameters

The following parameters can be found in the Parameters folder of each Transform:

Parameter Access Description Values

State Read-only The state of the transforms. As all objects, a 
model is described by a state diagram. States 
are used internally to know what are the possi
ble actions that can be asked on these objects. 
This is an internal parameter and the user can
not change the state of a model. Most of the 
time, when a model has been trained, it will be 
saved in the "ready" state. When a model is 
saved before training, it can be saved with a 
"checked" state and used as a template.

● Created(default 
value)

● Ready
● Checked
● Running

VariablePrefix Read-only when trans
form is in ready state

It indicates to the user the used prefix on the 
target.

● rr (default)
● User-defined 

string

 Syntax
Path: Protocols/Default/Transforms/<Transform_Name>

This parameter can be found at the root of each transform:

Parameter Description

Extensions Folders under which an integrator can add specific information. Any information 
stored in these folders will be saved in the model.

108 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.2 Kxen.RobustRegression

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression

SAP Predictive Analytics Modeler - Regression/Classification builds models implementing a mapping between 
a set of descriptive attributes (model inputs) and a target attribute (model output). It belongs to the regression 
algorithms family building predictive models.

SAP Predictive Analytics Modeler - Regression/Classification uses a proprietary algorithm, a derivation of a 
principle described by V. Vapnik as "Structural Risk Minimization". It builds predictive models from a training 
data set containing a business question. The returned models are expressed as polynomial expression of the 
input numbers. The only element specified by the user is the polynomial degree.

It also allows to specify weighting factor for each training case in order to adapt the cost function to the user 
requirements. The output model can be analyzed in terms of attributes contribution weighing the relative 
importance of the inputs and is characterized by two indicators:

● the Predictive Power (KI)
● and the Prediction Confidence (KR).

The consistent (robust) models built with SAP Predictive Analytics Modeler - Regression/Classification are 
very efficient with very noisy data sets. Furthermore, based on polynomial functions, the model learning 
phase is very fast: only 50 seconds for a problem on 50,000 cases described with 13 attributes. This speed 
is obtained because SAP Predictive Analytics Modeler processes data with a single pass on the estimation 
set and only a few passes on the validation set. The behavior of SAP Predictive Analytics is almost linear 
with the number of lines of the training set, but it is combinatorial with respect to the degree of the 
polynomial and the input variables number.

7.3.3.2.1 Thresholds

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Thresholds/

This folder contains one subfolder for each discrete target variable and defines for each the threshold used for 
the classification decision.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Thresholds/<Target_Name>

This folder contains the threshold of the target variable.

 Syntax
Path Protocols/Default/Transforms/Kxen.RobustRegression/Thresholds/<Target_Name>/
Threshold

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 109



This folder indicates the score used to separate positive observations from negative observations (number 
between 0 and 1). If no value is set by the user, the system value provided in the Default subparameter is 
used.

7.3.3.2.2 SelectionProcess

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/SelectionProcess

This folder contains the results of the variable selection process.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/SelectionProcess/
Iterations

This folder contains all the iterations made during the selection process.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/SelectionProcess/
Iterations/<Iteration_Number>

Number of the iteration of the variable selection process. This folder contains the following parameters:

Parameter Description

Ki Predictive Power (KI) obtained on the validation dataset with the current iteration.

The predictive power is the quality indicator of the models generated using Chile. 
This indicator corresponds to the proportion of information contained in the tar
get variable that the explanatory variables are able to explain.

Kr Prediction Confidence (KR) obtained on the estimation dataset with the current 
iteration.

The prediction confidence is the robustness indicator of the models generated 
using Chile. It indicates the capacity of the model to achieve the same perform
ance when it is applied to a new data set exhibiting the same characteristics as 
the training data set.

KiE Predictive Power (KI) obtained on the estimation dataset with the current itera
tion.

L1 L1 obtained with the current iteration

L1 is the residual mean (the mean of the absolute value of the difference between 
the predicted value and the actual value); also known as City Block distance or 
Manhattan distance.

110 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

L2 L2 obtained with the current iteration. L2 is the square root of the mean of square 
residuals.

LInf LInf obtained with the current iteration. LInf is the maximum residual absolute 
value.

NbVariablesKept Number of variables selected for this iteration.

Chosen This parameter indicates whether the current iteration is the one selected by the 
variable selection process.

● true: the current iteration is the selected one
● false

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/SelectionProcess/
Iterations/LastUsedIterations

This folder contains the list of the input dataset variables with the number of the last iteration in which each 
was used.

7.3.3.2.3 Transform Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters

This section describes the parameters of the classification/regression engine.

Parameter Description Values

Order The degree of the polynomial model. This parameter is set 
by the user before the learning phase and cannot be 
changed later on for a given model.

● 1 (default)
● A positive integer

K2RMode A specific interpretation mode for scores.

If the value is set to either Rule Mode or Risk Mode, the 
corresponding parameter RuleMode or RiskMode is set 
to true.

● Standard Mode (de
fault)

● Rule Mode
● Risk Mode

Strategy Allows the user to specify the type of strategy used to build 
the regression model

● WithoutPostProce
ssing (default)

● WithOriginalTarg
etEncoding

● WithUniformTarge
tEncoding

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 111



Parameter Description Values

EncodingStrategy Controls the way the inputs are encoded. By default the en
coding in a piece-wise linear. When in risk mode, SAP Predic
tive Analytics uses a step wise linear encoding.

● PieceWize 
Encoding (default)

● StepWize 
Encoding

MaximumKeptCorrelat
ions

Allows the user to set the maximum number of displayed 
correlation. This parameter accepts only an unsigned inte
ger.

● 1024 (default)
● Integer

LowerBound Allows the user to set the threshold to define if a correlation 
has to be displayed or not.

● 0.5 (default)
● real number

ContinuousEncode Allows the user to de-activate the encoding of the continu
ous variables. This is given to compare results between ver
sion 1 and version 2 and allows a more precise control for ad
vanced users.

● true (default)
● false

ExtraMode A special flag that drive the kind of outputs that the classifi-
cation/regression engine will generate.

Depending on its value, the outputs generation will be done 
either in the expert mode or the assisted mode. The former 
allows selectively choosing the outputs and the latter will 
generate consistent and system-defined outputs.

Note that when switching from the expert mode to the as
sisted one, the user choices are discarded and replaced by 
those implied by the specified extra mode value.

Assisted Modes / Generated 
outputs

● No Extra default) / 
key + predicted value + 
score

● Min Extra / No 
Extra + probabilities + 
error bars

● IndividualContri
butions / No Extra 
+ variable individual 
contributions

● Decision / No 
Extra + decision

● Quantiles / No 
Extra + approximated 
quantiles
Expert Mode

● Advanced Apply 
Settings (set in 
ApplySettings)

PutTargetNameInIndi
vContrib

Used to guarantee the backward compatibility with version 
prior to 2.1.1. It will prevent generating the name of the target 
in the individual contributions column names

Available only for mono-target models

● true (default)
● false

ScoreUserBoundCount Defines the number of bins for score variables ● 20 (default)

● Integer

DecisionTreeMode Activates the ability to present SAP Predictive Analytics 
Modeler - Regression/Classification as a decision tree.

● true
● false (default)

112 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.2.3.1  IDBScoreDevConfig

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
IDBScoreDevConfig

This folder contains the parameter allowing you to generate SQL code that computes score deviations for the 
model. This code will be executed at the end of the in-database application process.

Parameter Description Values

Apply This parameter allows you to activate or deactivate the 
IDBScoreDevConfig feature.

● true (default): acti
vated

● false: not activated

7.3.3.2.3.2  GainChartConfig

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
GainChartConfig

This folder contains the parameters allowing to compute the gain chart. The gain chart allows you to rank your 
data in order of descending scores and split it into exact quantiles (decile, vingtile, percentile).

The gain chart can be computed when training a model or when applying it. Two different folders contain the 
gain chart parameters depending on the task to perform on the model:

● Learn: when training a model
● Apply: when applying a model on new data

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
GainChartConfig/Learn

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
GainChartConfig/Apply

Parameter Description Values

NbQuantiles This parameter allows you to set the number of quantiles 
you want to compute for the gain chart.

● 10 (default)
● Positive integer

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 113



Parameter Description Values

ValueVariables This folder allows you to set the list of the variables for which 
aggregated values must be computed for each quantiles.

Each variable is a sub-parameter of this folder and is defined 
by its name.

7.3.3.2.3.3  VariableExclusionSettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
VariableExclusionSettings

Contains the settings for variable exclusion during modeling.

Parameter Description Values

ExcludeSmallKR This parameter allows you to indicate whether variables with 
a low predictive confidence (KR) must be excluded from the 
modeling.

● system (default): the 
value (true/false) is au
tomatically selected by 
SAP Predictive Analytics

● true: the variables will 
be excluded

● false: the variable will 
not be excluded

ExcludeSmallKIAddKR This parameter allows you to indicate if the variables for 
which the sum of the predictive power and the prediction 
confidence (KI+KR) is too low must be excluded from the 
modeling.

● system (default): the 
value (true/false) is au
tomatically selected by 
SAP Predictive Analytics

● true: the variables will 
be excluded

● false: the variable will 
not be excluded

7.3.3.2.3.4  VariableSelection

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
VariableSelection

114 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Description Values

When set to true, the variable selection 
is enabled. This folder contains the pa
rameters used by the variable selection 
process.

● true
● false (default)

Parameter Description Values

DumpIntermediateSte
ps

It allows the user to specify that all intermediate iterations 
are saved in the parameter tree or not.

● true
● false (default)

SelectionMode This folder contains the settings of the automatic variable 
selection process.

StopCriteria Contains the settings of the stop criteria to use for the varia
ble selection process.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
VariableSelection/SelectionMode

Parameter Description Values

Mode Allows the user to specify the type of automatic process var
iable selection.

● ContributionBase
d: for each iteration, the 
variables that contains 
the less quantity of infor
mation are skipped. 
Used with the parameter 
PercentageContri
b.

● VariableBased: for 
each iteration, a speci
fied number of variables 
is skipped. Used with the 
parameter 
NbVariableRemove
dByStep.

NbVariableRemovedBy
Step

Allows the user to specify, in the case of the automatic varia
ble selection is in VariableBased, the number of skipped 
variables by iteration process.

● 1 (default)
● integer

PercentageContrib Allows the user to specify the percentage amount of infor
mation to keep

● 0.95 (default)
● Real number

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/
VariableSelection/StopCriteria

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 115



Parameter Description Values

QualityCriteria Allows the user to set the type of quality criteria to be used 
for the automatic variables selection

● None: no quality criteria 
is set

● KiKr:(default) the qual
ity criteria is based on 
the sum of the predictive 
power (KI) and the pre
diction confidence (KR).

● Ki: the quality criteria is 
based on the sum of the 
predictive power (KI)

● Kr: the quality criteria is 
based on the sum of the 
prediction confidence 
(KR).

MaxNbIterations Allows the user to stop the automatic variable selection 
process when the number of iterations exceeds this value.

● Integer
● -1 (default): no limit

MinNbOfFinalVariabl
es

Allows the user to fix the final number of kept variable in the 
final model.

● 1 (default)
● Integer

MaxNbOfFinalVariabl
es

Allows the user to fix the maximum number of variable to 
keep in the final model

● -1 (default) : all varia
bles

● positive integer

QualityBar Allows the user to specify the quality loss by iteration. ● 0.01 (default)
● Real number

ExactNumberOfVariab
les

Allows the user to force the final number of variable to be 
equal to MinNbOfFinalVariables

● true
● false (default)

SelectBestIteration Allows you to select which model of the variable selection 
process will be used. Usually the best model is the one be
fore last, however the quality of the last model can be suffi-
cient for your needs and you may want to use it instead.

● true (default): the best 
model will be selected

● false: the last model 
will be selected

FastVariableUpperBo
undSelection

Allows you to define the strategy to use when you have set 
the parameter MaxNbOfFinalVariables. Two strat
egies are available:

● Removing the variables with the lowest contribution to 
reach directly the expected number of variables 
(true).

● Creating as many iterations as needed to reach the ex
pected number of variables (false). Note that using 
this strategy can be resource-consuming if the initial 
number of variables is high and the expected number is 
low.

● true (default)
● false

116 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.2.3.5  RiskMode

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/RiskMode

Description Values

Allows the user to activate the risk mode for a classification model. It allows ad
vanced users to ask a classification model to translate its internal equation ob
tained with no constraints into a specified range of scores associated with a spe
cific initial score. When this mode is activated, the different types of encoding that 
are used internally for continuous and ordinal variables are merged in a single 
representation, allowing a simpler view of the model internal equations. To use 
this mode, you need to choose a range of scores associated with probabilities.

Available only for classification models, that is models with a nominal target

● true
● false (default)

Parameters

Parameter Description Values

PDO PDO stands for Points to Double the Odds.

This parameter allows the user to specify the low score asso
ciated with the low probability.

● 15 (default)
● Real number

RiskScore Allows the user to specify a low probability that will be asso
ciated with a low score.

● 615 (default)
● Real number

GBO Allows the user to specify a high probability that will be asso
ciated with a high score.

● 9 (default)
● Real number

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/RiskMode/
RiskFitting

Description Values

This folder contains the parameters allowing the user to control the way risk 
score fitting is performed, that is, how SAP Predictive Analytics fits its own scores 
to the risk scores.

● Frequency_Based (default)
● PDO_Based

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 117



Parameters

Parameter Description Values

NbPDO When RiskFitting is set to PDO_Based, indicates the 
number of PDOs around the median score. It is used to com
pute the fitting area:

[Median Score - NbPDO*PDO ; Median Score + 
NbPDO*PDO].

● 2 (default)
● Integer

MinCumulatedFrequen
cy

When RiskFitting is set to Frequency_Based, indi
cates the frequency of extreme scores to be skipped. It is 
used to compute the fitting area:

[Quantile(MinCumulatedFrequency) ; 
Quantile(1.0 - MinCumulatedFrequency)]

● 15 (default)
● Integer

UseWeights Indicates whether to use score bin frequency as weights ● true (default)
● false

7.3.3.2.3.6  DecisionTree

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/DecisionTree

Description Values

This folder allows writing a 
request on the decision tree 
and obtaining the results.

Available only after model 
training when 
DecisionTreeMode is set 
to true.

● true
● false (default)

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/DecisionTree/
DimensionOrder

Contains one folder per target. Each folder contains the list of the 5 most contributive variables.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/DecisionTree/
DimensionOrder/Request

118 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Allows creating a request to obtain a leaf or a level of the decision tree. The request will be processed after a 
validateParameter when ProcessRequest value is true.

Parameter Description Values

Target Specifies the target to use in the request.

ProcessRequest Indicates whether the request must be executed or not. ● true (default): the re
quest will be executed

● false: the request will 
not be executed

Datasets Lists the data sets on which the request will be made

RequestBody Contains the list of dimensions on which the request will be 
made. The value of each dimension must be the group code. 
If a dimension has an empty group code then all the leaves of 
this node will be computed. Only one dimension can be 
empty.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/DecisionTree/
DimensionOrder/Result

Contains the result of the request and is displayed after a getParameter when ProcessRequest is set to 
true.

Parameter Description

SingleResult Subparameters:

● Count: population of the current node
● TargetMean: mean of the target in the current node
● Weight: weight of the current node
● Variance: variance of the current node

ExpandResult

7.3.3.2.3.7  ApplySettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings

This parameter allows you to set the advanced application settings, that is, to select and fine-tune the outputs 
that SAP Predictive Analytics will generate. These outputs belong to one of the two following groups: 
supervised (target-dependent) or unsupervised (non target-dependent).

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 119



Supervised

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
Supervised

It is the section for defining target-dependent outputs for classification/regression models. Each of its 
subsections corresponds to a target and is outlined depending on this variable type.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
Supervised/<Target_Name>

Contains the application settings related to the current target.

Parameter Description Values

Contribution Specifies whether contributions of variables should be pro
duced or not.

● None (default): the flag 
is deactivated.

● All: all the contribu
tions will be produced.

● Individual: specific 
variables of interest can 
be selected (inserted as 
sub-nodes).

Confidence Specifies whether or not to produce the confidence (also 
known as error bar).

Available for continuous or ordinal variables only

● true
● false (default)

Inputs Allows to transfer apply-in input variables to apply-out varia
bles

Note - only the variables used in the model can be transfer
red.

● None: the flag is deacti
vated.

● All: all the variables will 
be used in the apply-in 
data set.

● Individual (default): 
specific variables of in
terest can be selected 
(inserted as sub-nodes).

OutlierFlag Specifies whether or not to produce the outlier flag ● true
● false (default)

PredictedQuantile Indicates whether the quantile associated with the score 
value should be produced or not. This flag is activated by 
providing a quantile level greater than 0.

Available for continuous or ordinal variables only

● true
● false (default)

120 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

PredictedValue Indicates whether or not to produce the score

Available for continuous or ordinal variables only

● true (default)
● false

OutputCosts (Not Used)

PredictedCategoryCo
nfidence

Allows generating in the output file the confidence (also 
known as the error bar) corresponding to each data set line 
for the different categories of the target variable.

● none: the flag is deac
tivated.

● all: the confidence is 
generated for all catego
ries.

● individual: the 
confidence will be gener
ated for selected (in
serted as sub-nodes) 
categories only.

PredictedCategoryPr
obabilities

Allows generating in the output file the probability for one or 
more target variable categories, that is, for each observation 
the probability of the target variable value to be the selected 
category.

● none: the flag is deac
tivated.

● all: the probability is 
generated for each cate
gory.

● individual: the 
probability will be gener
ated for selected (in
serted as sub-nodes) 
categories only.

PredictedCategoryPr
ofits

(Not Used)

PredictedCategoryQu
antile

(Not Used)

PredictedCategorySc
ores

Allows generating in the output file the score for one or more 
target variable categories.

● none: the flag is deac
tivated and no score will 
be generated.

● all: all the scores will 
be produced.

● individual: the 
score will be generated 
for selected(inserted as 
sub-nodes) categories 
only.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 121



Parameter Description Values

PredictedRankCatego
ries

Allows generating in the output file the best decisions. ● none: the flag is deac
tivated.

● all: all the decisions 
(ranked by their associ
ated score value) will be 
produced.

● individual: the 
specified count of best 
decisions is generated. 
This count has to be 
provided (inserted as a 
sub-node).

PredictedRankProbab
ilities

Allows generating in the output file the score for one or more 
target variable categories.

● none: the flag is deac
tivated and no score will 
be generated.

● all: all the scores will 
be produced.

● individual: the 
score will be generated 
for selected(inserted as 
sub-nodes) categories 
only.

PredictedRankScores Allows to generate in the output file the best score(s) for 
each observation.

● none: the flag is deac
tivated.

● all: all the scores will 
be produced.

● individual: the re
quested number of 'best 
scores' is generated. 
This value has to be pro
vided (inserted as a sub-
node).

ProfitMatrix (Not Used)

RankType (Not Used)

UnSupervised

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
UnSupervised

This folder contains only information non-dependent on a target, for example constants such as the date of 
learn, the application date, the model version.

122 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
UnSupervised/Default

Default subfolder containing the settings that do not depend on the target. This folder always exists and cannot 
be changed.

Parameter Description Values

DatasetId This parameter allows you to add a column containing the 
name of the data set each line belongs to. The possible out
put values in this column are:

● Estimation
● Validation
● Test
● Applyin

● False (default): the 
column is not added

● True: the column is 
added to the output 
data set

Inputs Allows you to add input variables to the output data set.

When the value is set to individual, this parameter be
comes a folder containing the variables selected by the user.

● none (default): no input 
variable is added to the 
output data set

● all: all input variables 
are added to the output 
data set

● individual: only the 
input variables selected 
by the user will be added 
to the output data set

Weight If a weight variable has been defined during the variable se
lection of the model, this parameter allows you to add it to 
the output file

● false (default): the 
weight variable will not 
be added to the output 
data set

● true: the weight varia
ble will be added to the 
output data set

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
UnSupervised/Default/Constants

This folder contains the constants related to the model. Its value is always set to export.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Parameters/ApplySettings/
UnSupervised/Default/Constants/<Constant_Name>

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 123



Description Values

This folder is the name of the 
constant to be generated in 
the output data set. The con
stant name can be one of the 
following:

● Apply Date (date 
when the model was ap
plied)

● Build Date (date 
when the model was 
created)

● Model Name
● Model Version
● User defined string (you 

can define your own 
constants, for example 
the name of the person 
who created the model, 
or the project it belongs 
to). The name cannot be 
the same as the name of 
an existing variable of 
the reference data set.

● If the name is the same 
as an already existing 
user defined constant, 
the new constant will re
place the previous one
It contains all the set
tings needed to define a 
variable in the output 
data set.

● export: the constant will appear in the output data set
● skip (default): the constant will not appear in the data 

set

Parameter Description Values

OutVarName Name of the constant in the output data set By default the value is the 
name of the constant, but it 
can be modified to fit data
base restrictions for exam
ple.

Value Value of the constant that will appear in the output data set Depends on the value of the 
storage parameter of the 
constant

KeyLevel This parameter allows you to indicate whether the current 
constant is a key variable or identifier for the record . You can 
declare multiple keys. They will be build according to the in
dicated order (1-2-3-...).

● 0 (default): the variable 
is not an identifier

● 1: primary identifier
● 2: secondary identifier

124 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

Storage This parameter allows you to set which kind of values ate 
stored in this variable

● Number: "computable" 
numbers (be careful: a 
telephone number, or an 
account number should 
not be considered num
bers)

● Integer: integer num
bers

● String: character 
strings

● Datetime: date and 
time stamps

● Date: dates

Origin This parameter indicates the origin of the constant. ● BuitlIn: automati
cally generated by SAP 
Predictive Analytics

● UserDefined: cre
ated by the user

7.3.3.2.4 Results

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results

This section describes the results for regression and classification models. Under this folder, there is a sub-
folder for each target variable. SAP Predictive Analytics Modeler can handle several targets at the same time. 
All the parameters dealt with in this section are read-only once the model has been generated.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>

<Target_Name> corresponds to the name of the target for which the results are listed. There can be more 
than one target in the same model.

Parameter Description Values

NbInput The number of explanatory – or, input – variables of the re
gression engine. It corresponds to the sum of the values of 
the parameters NbOrgInput and NbContInput.

Integer

NbOrgInput The original number of explanatory input variables. Integer

NbContInput The number of encoded continuous explanatory variables. Integer

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 125



Parameter Description Values

Order A reminder of the polynomial degree (corresponding to the 
model complexity).

Integer

NbExtended The number of explanatory and extended variables.

When the polynomial degree is 1, this number equals the 
number of inputs + 1 (the constant value). When the polyno
mial degree is more than 1, then the number of extended var
iables corresponds to the number of cross products that can 
be created from these original variables.

Integer

ConstantModel If set to true, the model is constant. ● true
● false

Constant The score produced for a constant model. ● 0 (default)
● Real number

MaximumKeptCorrelat
ions

It links to the other tree parameter called 
MaximumKeptCorrelations in the Parameters section.

Real value which equals the 
value of 
MaximumKeptCorrelat
ions

LowerBound It links to the other tree parameter called LowerBound. Same value as 
Parameters/
LowerBound

ZscoreCurve Stores the encoding curve used to translate scores to the 
target space when in a postprocessing regression strategy.

DiscardedVariables Folder containing the list of discarded variables in the regres
sion engine

7.3.3.2.4.1  DataSets

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
DataSets

This folder contains performance indicators for each data set that has been evaluated by the model.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
DataSets/<Dataset_Name>

Dataset_Name is the name of the dataset that has been evaluated by the model. The name of the dataset can 
be one of the following:

For the training:

126 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



● Estimation
● Validation
● Test
● ApplyIn

For the application:

● ApplyIn

Parameters

Parameter Description

L1 The residual mean (the mean of the absolute value of the difference between the 
predicted value and the actual value); also known as City Block distance or Man
hattan distance.

L2 The square root of the mean of square residuals.

LInf The maximum residual absolute value

ErrorMean The mean of the error, that is, the difference between predicted values and actual 
values

ErrorStdDev The standard deviation

ClassificationRate Used in classification case, that is with a nominal target

Classification rate. The threshold is used to make the decision.

R2 Used in in regression case, that is with a continuous target

The R2 is computed as the square correlation between the target and the model 
output ( prefixed by rr_).

7.3.3.2.4.2  GainChartResults

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
GainChartResults

This directory contains information about the gain chart computed for each action made on the model 
(training or application).

Parameter Description

Learn This directory contains information about the gain charts computed for the 
trained model.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 127



Parameter Description

Transversal This directory contains information about the gain charts computed for the ap
plied model.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
GainChartResults/<Model_Type>/Quantiles

This folder contains a folder for each quantile computed for the current gain chart. <Model_Type> is either 
Learn or Transversal.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
GainChartResults/<Model_Type>/Quantiles/<Quantile_Index>

This folder contains the metrics computed for the current quantile. <Quantile_Index> is the number of the 
quantile. Quantile 1 is the one containing the highest number of positive observations.

Parameter Description

Weight Number of observations in the current quantile

MinScore All observations contained in the current quantile have a score equal or above this 
value.

MaxScore All observations contained in the current quantile have a score equal or below this 
value.

Predicted Number of positive observations predicted by the model in the current quantile

Actual Actual number of positive observations existing in the current quantile

Values This folder contains the variables for which the value has been aggregated. These 
variables are defined in the parameter Protocols/Default/Transforms/
Kxen.RobustRegression/Parameters/GainChartConfig/
<Step Name>/ValueVariables

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
GainChartResults/<Model_Type>/Quantiles/<Quantile_Index>/Values/<Variable_Name>/
Value

<Variable_Name> is the name of the variable whose value is aggregated. Value parameter is the aggregated 
value of the current variable for the current quantile.

128 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.2.4.3  Coefficients

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Coefficients

Directory where the actual polynomial coefficients are stored. Coefficients can be used to determine how the 
system is using the extended variables. This directory contains one sub-directory for each of the extended 
variables.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Coefficients/<Variable_Name>

<Variable_Name> corresponds to the extended variable for which the coefficients are listed.

Parameter Description

PseudoCoeff Coefficient of the corresponding extended variable in the polynomial

Min Used for normalization purposes

Range Used for normalization purposes

Mean Used for normalization purposes

StDev Standard Deviation, used for normalization purposes

Weight Extended variable weight. This weight is the coefficient associated with the nor
malized extended variable, divided by the sum of all the coefficients.

Contrib Coefficient associated with the normalized extended variable absolute value, div
ided by the sum of all the normalized extended variables coefficients absolute val
ues

7.3.3.2.4.4  SmartCoefficients

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
SmartCoefficients

Directory where the smart coefficients are stored. Smart coefficients are just another view of the coefficients in 
which the redundancy between the variables is removed. When two variables are very correlated, the robust 
system K2R will almost equalize the contributions on the two variables, the smart coefficients view will put 
almost all the contribution on the most contributive variable (which we call the leader variable) out of the very 
correlated ones, and will translate the remaining variables into the difference between the leader variable and 
this variable. Smart Coefficients can be used to perform variable selection.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 129



 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
SmartCoefficients/<Variable_Name>

<Variable_Name> corresponds to the extended variable for which the smart coefficients are listed.

Parameter Description

Weight Extended variable weight. This weight is the coefficient associated with the nor
malized extended variable, divided by the sum of all the coefficients.

Contrib Coefficient associated with the normalized extended variable absolute value, div
ided by the sum of all the normalized extended variables coefficients absolute val
ues

7.3.3.2.4.5  MaxCoefficients

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
MaxCoefficients

Directory where the maximum coefficients are stored. Max coefficients are obtained from the smart 
coefficients, which are sorted and scanned in decreasing order of their contributions. The purpose of 
MaxCoefficients is to cope with the fact that the user wants to have a single view about the importance of a 
variable, even if this variable is encoded twice in the predictive model (such as the continuous variables). This is 
also true for order 2 models where the original inputs are found in all the cross products. In that case, the 
maximum smart contribution is first associated with each variable, then sorted accordingly to this new order, 
finally the sum of the resulting contributions is used to renormalize the coefficients for the sum to be one. 
MaxCoefficients are the one to use when the user wants to perform variable selection.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
MaxCoefficients<Variable_Name>

<Variable_Name> corresponds to the extended variable for which the max coefficients are listed.

Parameter Description

Weight Extended variable weight. This weight is the coefficient associated with the nor
malized extended variable, divided by the sum of all the coefficients.

Contrib Coefficient associated with the normalized extended variable absolute value, div
ided by the sum of all the normalized extended variables coefficients absolute val
ues

130 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.2.4.6  Rule

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Rule

This folder contains information about SAP Predictive Analytics rule mode.

Parameter Description

Slope The slope of the linear transform to go from basic score to user-defined score.

Intercept The intercept of the linear transform to go from basic score to user-defined score.

ProbaSlope Used with ProbaIntercept to transform the score into probability

1 / (1+exp( - ( ProbaSlope * score + ProbaIntercept ) ) )

ProbaIntercept Used with ProbaSlope to transform the score into probability

1 / (1+exp( - ( ProbaSlope * score + ProbaIntercept ) ) )

7.3.3.2.4.7  Correlations

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Correlations

This directory contains the correlations observed in the model between different variables (for example, 
correlation between age and marital-status).

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Correlations/<i>

<i> is the index of the correlation used to identify the various correlations found in the model. This index does 
not imply any order in the correlations.

Parameter Description Value

Var1 First variable involved in the correlation Variable name

Var2 Second variable in the correlation Variable name

Details This folder contains the details of the current correlation.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 131



 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
Correlations/<i>/Details/<i>

<i> is the index of the detailed correlation.

Parameter Description Value

Var1 First variable involved in the correlation Variable name

Var2 Second variable in the correlation Variable name

7.3.3.2.4.8  AutoCorrelations

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
AutoCorrelations

This directory contains the auto-correlations observed in the model. These are correlations between a variable 
and its encoded form (for example, correlation between age and c_age). Given here for its descriptive value.

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/Results/<Target_Name>/
AutoCorrelations/<i>

<i> is the index of the correlation used to identify the various correlations found in the model. This index does 
not imply any order in the correlations.

Parameter Description Value

Var1 First variable involved in the autocorrelation Variable name

Var2 Second variable in the autocorrelation (usually an encoded 
form of the first variable).

Variable name

7.3.3.2.5 AdditionalResults

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/AdditionalResults/

This folder provides additional information about the results of the modeling.

132 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/AdditionalResults/
VariableExclusionInfo

This folder provides the list of excluded variables as well as the reason why each variable was excluded by SAP 
Predictive Analytics depending on the target variable. These are mainly data quality issues.

Parameter Description

AllTargets This folder contains the variables that have been excluded 
from the model with respect to all targets. These are mainly 
constant variables. The reason why each variable has been 
excluded is indicated as a subparameter of the variable.

TargetSpecific This folder contains the list of excluded variables with re
spect to the given target and the reason why they have been 
excluded.

Reason

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/AdditionalResults/
VariableExclusionInfo/AllTargets/<Variable_Name>/Reason

 Syntax
Path: Protocols/Default/Transforms/Kxen.RobustRegression/AdditionalResults/
VariableExclusionInfo/TargetSpecific/<Target_Name>/<Variable_Name>/Reason

Description Values

Reason why the variable has been ex
cluded

For AllTargets:

● Constant: the variable has only one value in the data set
● Small Variance: the variation of the variable corresponds to noise

For TargetSpecific:

● Fully Compressed: fully compressed variable with respect to the target 
variable

● Small KI on Estimation
● Small KI on Validation
● Large KI Difference: sensible difference between the estimation and 

validation data sets
● Small KR (on the estimation data set)

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 133



7.3.3.3 Kxen.SmartSegmenter

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter

SAP Predictive Analytics Modeler - Segmentation/Clustering (formerly known as K2S) builds models 
implementing a mapping between a set of descriptive attributes (model inputs) and the id (model output) of 
one of several clusters computed by the system. It belongs to the clustering algorithms family building 
descriptive models.The goal of these models is to gather similar data in the same cluster. The question of 
similarity is discussed below.

Current version of SAP Predictive Analytics Modeler - Segmentation/Clustering uses a K-Means engine to 
compute the cluster index output variable. K-Means is a method for finding clusters of similar individual within 
a population. The K-Means method proceeds as follows: starting from an initial position of would-be centers of 
clusters, the method associates the closest individual with each center, which leads to a first definition of the 
clusters. The positions of the centers are then adjusted to the true central positions within the clusters. The 
new positions are then used to recompute the closest individuals, and the process is restarted. This is repeated 
iteratively until the centers land in a stable position. In practice, the process converges very quickly to a stable 
configuration.

The distance used to determine the closest center is the L infinite distance in the encoded space generated by 
SAP Predictive Analytics Modeler - Data Encoding. Hence the segmentation process is explicitly supervised, 
which makes SAP Predictive Analytics Modeler - Segmentation/Clustering a unique clustering algorithm: any 
distance-based clustering process is supervised, most of the time without even mentioning it ! Indeed, the 
encoding phase of the process determines entirely the resulting segmentation, since this is the phase that 
decides what is far, and what is close, that is what is similar to what. When dealing with non continuous 
variables, the decision can be really tricky, even impossible... for example, how to answer the following 
question: given three individuals described by the age, the gender and the marital status [31, Male, Married], 
[41, Male, Divorced], [28, Female, Divorced], which are the most similar individuals ? A quick mind tour tells 
that there is no answer, unless there is a referee criteria to rely on that will guide the decision. Basically, if 
gender is chosen then male individuals are grouped, and if marital status is chosen, then divorced individuals 
are grouped. This example aims to show that there is no segmentation unless a criteria is decided to be 
relevant with respect to similarity between individuals. This is the very meaning of SAP Predictive Analytics 
Modeler - Segmentation/Clustering being supervised: the target, or business question, is necessary for SAP 
Predictive Analytics Modeler - Data Encoding to create a relevant topology that SAP Predictive Analytics 
Modeler - Segmentation/Clustering will use to detect similarity in data.

As for SAP Predictive Analytics Modeler - Regression/Classification, the target is any variable relevant to the 
user's business : for example the purchase amount for a customer, the answer to a marketing campaign, the 
fact that an individual churned in the last 2 months, and so on.

SAP Predictive Analytics Modeler - Segmentation/Clustering is now able to output a SQL formula of the 
cluster. For example a cluster may be defined as "age <= 35 AND marital-status in [ 'Divorced' ]". This has 
several advantages :

● the textual SQL formula may be very easy and natural to interpret if it's not too complex.
● clustering process is made easier to integrate in operational environment

134 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



In order to debrief a SAP Predictive Analytics - Segmentation/Clustering model several statistics are provided 
beside SQL expressions when available:

● Frequency: percentage of population gathered in the cluster.
● % of 'label' in classification case (binary target): percentage of label in the cluster, where label is the least 

frequent category of the binary target.
● Target Mean in regression case (continuous target): mean value of the target for data assigned to the 

cluster.
● A detailed description of each cluster is also available via the distribution within the cluster of every input 

variable.

The model can also be analyzed in terms of two indicators concerning the generated cluster Id variable:

● Predictive Power (KI)
● Predictive Confidence (KR).

The model learning phase takes one minute for a problem on 50,000 cases described with 13 attributes on a 
regular PC (64-128 MB).SAP Predictive Analytics Modeler - Segmentation/Clustering processes data with 4 
sweeps on the estimation set and one sweep on the entire data set. The behavior of SAP Predictive Analytics 
Modeler - Segmentation/Clustering is almost linear with the number of lines.

7.3.3.3.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters

This section describes the parameters of SAP Predictive Analytics Modeler - Segmentation/Clustering 
component that can be found under the 'Parameters' section of the component.

Parameters Access Description Possible Values

NbClusters ● Read-write
● Read-only when 

transform is in 
ready state

It is the number of clusters for the model. This 
parameter is set by the user before the learning 
phase and cannot be changed later on for a 
given model.

● Positive integer
● Default value: 10

InertiaDivider  No longer used

Distance ● Read-write
● Read-only when 

transform is in 
ready state

It specifies the distance used to compare SAP 
Predictive Analytics Modeler - Data Encoding-
encoded input data.

EncodingStrateg
y

 It is a flag that drives the kind of encoding SAP 
Predictive Analytics Modeler - Segmentation/
Clustering is expecting from SAP Predictive An
alytics Modeler - Data Encoding.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 135



Parameters Access Description Possible Values

ExtraMode Read-write It is a special flag that drives the kind of outputs 
that SAP Predictive Analytics Modeler - Seg
mentation/Clustering will generate. Depending 
on its value, the outputs generation will be done 
either in the export mode or the assisted mode. 
The former allows selectively choosing the out
puts and the latter will generate consistent and 
system-defined outputs. Note that when switch
ing from the expert mode to the assisted one, 
the user choices are discarded and replaced 
with those implied by the specified extra mode 
value.

CrossStats  It is a flag that enables/disables the computa
tion of cross statistics between cluster ID and 
input variables.

SQL  It is a flag that enables/disables the computa
tion of clusters as SQL expressions.

● disabled(de
fault value): disa
bles cluster gener
ation as SQL ex
pressions.

● enabled: ena
bles SQL expres
sion. In this case, 
the 
CrossStats 
parameter is over
written to 
enabled.

Supervised Read-only An informative item taking the value true when 
the clustering has been built using target varia
ble, false otherwise.

● true
● false

MultiEnginesMod
e

 This is the multi-engines mode top level switch. ● enabled(default 
value): allows test
ing several clus
ters counts (per 
target) in one run 
by specifying the 
range these 
counts will vary in. 
Each cluster 
count will be han
dled by a dedi
cated engine.

● disabled: SAP 
Predictive Analyt
ics Modeler - Seg
mentation/Clus
tering runs in the 
standard single-
engine mode.

136 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Access Description Possible Values

MultiEnginesMod
eForApply

  

EngineSelection
Strategy

 When the multi-engines mode is on, this param
eter specifies the criteria used for selecting the 
best engine (that is, the winner engine).

● KiPlusKr(de
fault value): the 
engine with the 
higher sum of KI 
and KR is desig
nated to be the 
best.

● FirstEngine: 
The first engine is 
selected (simu
lates the single 
engine mode be
havior).

BenchesMode   

RunnerConfig  Folder 

EnginesConfigur
ation

 The root location for configuration information 
related to the multi-engines mode.

ApplySettings Read-only This folder can be considered as the advanced-
users-intended version of the 'ExtraMode'. It 
provides the user with a way of fine tuning the 
outputs that SAP Predictive Analytics Modeler - 
Segmentation/Clustering will generate.

● Supervised 
(folder)

● Unsupervised 
(folder)

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Distance

Possible Values Description

L1 The sum of absolute difference between coordinates

L2 or euclidean The square root of sum of square difference between coordinates

LInf

also called city-block

The maximum of absolute difference between coordinates

SystemDetermined Lets the system determine the best distance to be used according to the model 
build settings. The current policy is to use LInf either in unsupervised mode or 
when the clusters SQL expressions have been asked for, and L2 otherwise.

 Syntax
Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/EncodingStrategy

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 137



Possible Values Description

Uniform Each variable segment is coded in the range [-1;+1] so that distribution of the vari
ables is uniform.

Unsupervised Default value for unsupervised clustering

A target free strategy. Only segment frequency is used to encode variables.

TargetMean Default value for supervised clustering

Each value of a continuous input variable is replaced by the mean of the target for 
the segment the value belongs to.

Each category of a nominal input variable is replaced by the mean of the target for 
this category.

In case of a nominal target variable, the mean of the target corresponds to the 
percentage of positive cases of the target variable for the input variable category.

Natural Applicable only when all the variables are continuous.

This encoding does not transform the input data.

SystemDetermined Lets the system select the best encoding according to the model parameters. The 
TargetMean encoding is used for supervised models.Otherwise, variables are 
encoded using the Unsupervised scheme.

MinMax Applicable only when all the variables are continuous.

This option encodes the categories of the variable in the range [0,1], where 0 cor
responds to the minimum value of the variable and 1 corresponds to the maxi
mum value.

MinMaxCentered Applicable only when all the variables are continuous

This option encodes the categories of the variable in the range [-1,1], where -1 cor
responds to the minimum value of the variable and 1 corresponds to the maxi
mum value.

StdDevNormalization Applicable only when all the variables are continuous.

This option performs a normalization based on the variable mean and standard 
deviation. It is computed using the following formula:

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/ExtraMode

Possible Values Description

No Extra (default) Generates no extra output, this is the default behavior (provides only the cluster 
ID of the current input data)

138 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Possible Values Description

For K2R Additionally generates a disjunctive coding of the cluster ID. This may be used to 
launch SAP Predictive Analytics Modeler - Regression/Classification with as 
many targets as clusters.

For K2R copy data Same as above and additionally copy input data set. This is to be used with small 
data set.

Target Mean Additionally generates the target mean value of the cluster ID.

Advanced Apply Settings Expert mode allowing the user to selectively choose the outputs of interest.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/CrossStats

Values Description

disabled Disables cross statistics. This may be useful when there are a lot of input varia
bles : this indeed speeds SAP Predictive Analytics Modeler - Segmentation/Clus
tering up and reduces memory load as well as the size of the saved model. As a 
drawback, clusters debriefing in JNI/CORBA client is no more available. KI, KR 
and basic clusters statistics are still available.

enabled (default) Enables cross statistics

7.3.3.3.1.1  EnginesConfiguration

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/
EnginesConfiguration/ClustersCountRangePolicy

Specifies how clusters count range should be configured for each target.

Value Description

Shared All the targets use the shared clusters count specification (default).

Custom Each target will specify its own clusters count range, the initial values being taken 
from the shared configuration section.

OverwritableCustom This mode differs from the previous one by the fact that the specific configuration 
is overwritten by the shared one any time the latter happens to change (provided 
that both are not altered at the same time).

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/
EnginesConfiguration/Kxen.SharedEngineConfiguration/ClustersCountSpec

This folder contains the configuration information that is shared by engines.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 139



Parameter Description

Min Lower cluster number

Max Upper cluster number

Enumeration Reserved for future use. It will allow specifying clusters count as a set of custom 
values instead of a range.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/
EnginesConfiguration/ByTargets

The location for configuration information in a per-target basis.

Parameter Description Values

<target_name> | 
<clusterId>/
ClustersCountSpec 

This is the place where clusters count range customization 
can be taken in a per-target basis provided that the clusters 
count range policy has been set either to Custom or 
OverwritableCustom. It can be a Mix/Max range or an 
enumeration. Currently only the Mix/Max range is available.

● Min: lower clusters 
number

● Max: upper clusters 
number

● Enumeration: re
served for future use. It 
will allow specifying 
clusters count as a set 
of custom values instead 
of a range.

<target_name> | 
<clusterId>/Engines/
<Engine_index>

This section is read-only in the current implementation and 
will be opened in the future to allow some fine tunings such 
as the distance, encoding strategy, … to be used by a given 
engine.

● Not applicable

7.3.3.3.1.2  ApplySettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/ApplySettings

Common ApplySettings

The table below describes the Apply Settings which are common to both supervised and unsupervised modes.

140 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Access Description Values

DisjunctiveT
opRankNodeId

Read-write Allows adding to the output file the dis
junctive coding of the clusters.

● true
● false(default value)

OutlierFlag  (no longer used)  

PredictedNod
eIdDistances

Read-write Allows adding to the output file the dis
tance to the various clusters of each 
observation.

● None(default value): no distance 
will be produced.

● All: the distance from each of the 
clusters will be produced.

● Individual: a set of clusters of 
interest can be selected (inserted).

PredictedNod
eIdProbabili
ties

Read-write Allows adding to the output file the 
probability of each observation to be
long to the various clusters.

● None(default value): no probability 
will be produced.

● All: the probability for each of the 
clusters will be produced.

● Individual: a set of clusters of 
interest can be selected (inserted).

PredictedRan
kDistances

Read-write Allows adding to the output file the dis
tances of each observation from the 
nearest clusters.

● None(default value): no distance 
will be produced.

● All: the distance from each of the 
clusters will be produced.

● Individual: a set of clusters of 
interest can be selected (inserted).

PredictedRan
kNodeId

Read-write Allows adding to the output file the indi
ces of the nearest clusters for each ob
servation.

● None: no cluster index will be pro
duced.

● All: all the indices will be gener
ated, sorted (increasingly) accord
ing to their associated distance

● Individual(default value): the 
requested nubmer of nearest clus
ter indices is produced. This value 
has to be inserted.

PredictedRan
kNodeName

Read-write Allows adding to the output file the 
names (instead of the indices) of the 
nearest clusters for each observation.

● None(default value): no cluster 
name will be produced.

● All: all the cluster names will be 
generated, sorted (increasingly) 
according to their associated dis
tance.

● Individual: the requested 
number of nearest cluster names 
is produced. This value has to be 
inserted.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 141



Parameter Access Description Values

PredictedRan
kProbabiliti
es

Read-write Allows adding to the output file the 
probabilities that the observation be
longs to each of the nearest clusters.

● None(default value): the option is 
deactivated.

● All: all the probabilities will be 
generated, from the highest to the 
lowest.

● Individual: the requested 
number of highest probabilities is 
produced. This value has to be in
serted.

Specific Apply Settings for Unsupervised Mode

Description of the Default Values

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/ApplySettings/
UnSupervised/Default

Parameter Access Description Possible Values

Constants Read-write Allows to generate user-defined con
stants in the output. Each direct sub-
node is named after a user-defined con
stant.

● <Constant_Name>/
<OutVarName> [read-write]: the 
name of the constant

● <Constant_Name>/<Value> 
[read-write]: the constant value

● <Constant_Name>/Storage: 
the constant storage.

Inputs Read-write Allows you to add to the output file one 
or more input variables from the data 
set.

User-dependent

Weight Rread-write Allows you to add to the output file the 
weight variable if it had been set during 
the variable selection of the model.

User-dependent

Specific Apply Settings for Supervised Mode

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/ApplySettings/
Supervised

● Apply Settings for Continuous and Ordinal Targets

142 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Access Description Value

<Target_Name> Read-only It extends the common set of flags. TargetMean (read-write): a boolean 
value type which allows adding to the 
output file the mean of the target for 
the cluster containing the observation. 
false is the default value.

● Apply Settings For Nominal targets

Parameter Access Description Value

<Target_Name> Read-only It extends the common set of flags. ● OutlierFlag: [Not Imple
mented]

● OutputCosts: [Not Imple
mented]

● ProfitMatrix: [Not Imple
mented]

● RankType: [Not Implemented]
● TargetMean (read-write): a boo

lean value type which allows add
ing to the output file the proportion 
of the least frequent category of 
the target variable (key category) 
in the cluster containing the cur
rent observation.

7.3.3.3.2 Results

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Results/
<Target_Name>

This section describes the results of SAP Predictive Analytics Modeler - Segmentation/Clustering. Under this 
folder there is a subfolder for each target variable. SAP Predictive Analytics Modeler - Segmentation/Clustering 
can indeed run several models simultaneously, that is one per target variable. In multi-engines mode this folder 
will hold the results for the winning engine only. Results for all the engines can then be found in the 
AdvancedResults folder. All parameters are in read-only mode.

Parameter Description

NbCentroids The number of clusters requested by the user.

EffNbCentroids The number of clusters computed by the KMeans engine.

TargetEstimator The name of the variable used for the cluster index prediction (also know as the 
target estimator in supervised mode).

Clusters (folder) A folder where all the information about clusters may be found. It contains one 
sub-folder for each cluster.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 143



Parameter Description

Metrics (folder) Contains the quality metrics for the found segmentation.

Overlapp (only in SQL mode) The off diagonal percentage of the confusion matrix between covers. More infor
mation on covers is availble under the 'Clusters' parameters, below.

GazFrequency (only in SQL mode) The percentage of input data that are not assigned to a cluster.

Index The engine index within the set of engines associated with this target.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Results/
<Target_Name>/Clusters

Parameter Description Values

Id The id of the cluster.  

Coordinates (folder) The folder where the coordinates of clusters are stored. This 
folder contains one sub-folder per dimension.

 

Frequency The percentage of population gathered in the cluster.  

TargetMean The mean value of the target for data assigned to the cluster. 
The target mean is the percentage of <label> in the cluster, 
where <label> is the least frequent category.

In classification case (binary 
target) the encoding of the 
target is as follows:

● 1: for the least frequent 
category

● 0: for the other

WeighedCount The weight of the cluster.  

TargetStdDev Represents the standard deviation of the target in this clus
ter, when the segmentation has been surpervised by a con
tinuous target.

 

Metrics (folder) Standard clustering metrics for this cluste.  

Cover (only in SQL mode) A folder where part of the cluster SQL formula is stored. A 
cover is an SQL formula made of a conjunction (that is, a ser
ies of 'AND') of basic SQL statements such as "variable 
i in [ 'value1', 'value2' ]" for nominal varia
bles and "variable i < value1 AND variable 
i > value2" for continuous variables.

 

ANDNOT (only in SQL mode) A folder that contains the rest of the information necessary 
to build the cluster SQL formula. The folder contains the ids 
of the covers to subtract from this cover to obtain the cluster 
formula as shown in the following example: say 2 is the cur
rent cover index and { 3, 4 } is the set of indices found in the 
ANDNOT folder.

The cluster expression is 
built as :Cluster = 
Cover2 AND NOT 
( Cover3 OR Cover 
4 ) = Cover2 AND 
NOT Cover3 AND NOT 
Cover4

144 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

SQL The cluster SQL expression.

Note - only build-time detected overlaps are expressed using 
exclusions (that is, AND NOT) in the generated SQL. Anyway, 
at apply time overlaps are handled by testing clusters ac
cording to their (increasing) KI.

 

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Results/
<Target_Name>/Clusters/Coordinates

Parameter Description Values

Value It is the coordinate of the centroid.  

KL When used in JNI/CORBA interface to debrief the clusters, it 
is the Kullback-Leibler divergence between cluster distribu
tion for this dimension ( that is, this input variable ) and pop
ulation distribution. This distance is used in JNI/CORBA in
terface to debrief clusters.

Given a cluster and a dimen
sion, it is computed using the 
following formula:

where :

● N is the number of cate
gories for this dimen
sion,

● pi ((resp. qi) is the pro
portion of the ith cate
gory (of the concerned 
dimension) within the 
cluster (resp. the whole 
population). The propor
tion of a given category 
represents its weight 
over the total weight of 
the concerned set (ei
ther cluster or global 
population).

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 145



Parameter Description Values

ChiSquare It is another divergence measure between cluster distribu
tion and population distribution for this dimension. More 
precisely, its value represents the degree of confidence one 
can have in stating that the two distributions are significantly 
different.

Unlike the KL, it does not provide a measure of  how far 
these distributions are from each other. Instead it allows us 
to be sure that the two distributions ARE different when we 
get a value near to 1. Thus we can consider the concerned di
mension as really discriminative for this cluster. On the con
trary, a value of 0 suggests that both distributions may be 
identical for the dimension, but it cannot be stated for sure. 
This indicator can only be of real use when its value nears 1. 
It is not used in the JNI/CORBA interface for debriefing.

 

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Results/
<Target_Name>/Clusters/Cover

Parameter Description

Cluster The index of the cover. It must be equal to the Id above.

P Cover's statistics for internal use only.

AnPn Cover's statistics for internal use only.

AnPp Cover's statistics for internal use only.

ApPn Cover's statistics for internal use only.

ApPp Cover's statistics for internal use only.

KI Cover's statistics for internal use only.

Confidence Cover's statistics for internal use only.

Covering Cover's statistics for internal use only.

Operator (folder) See explanation below.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SmartSegmenter/Parameters/Results/
<Target_Name>/Clusters/Cover/Operator

146 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



The cover SQL formula is stored in the Operator subfolder, and in its subfolder Ranges. This folder contains 
one subfolder for each explanatory variable. Each subfolder contains the following information:

Parameter Description

Values (when the variable is nominal/ordinal) The set of categories of data assigned to 
the cluster.

Min (when the variable is continuous) The minimum of the values for data assigned to 
the cluster.

MinEqual (when the variable is continuous ) A boolean that specifies whether the Min value 
is included in the range.

Max (when the variable is continuous) The maximum of the values for data assigned 
to the cluster.

MaxEqual (when the variable is continuous ) A boolean that specifies whether the Max value 
is included in the range.

Advanced Results

This is the location for all the (intermediate) results when the multi-engines mode is enabled. The results for 
the winning engine are additionally saved in the Results folder. Under this folder there is a sub folder for each 
target variable containing in its turn a sub-folder for each engine. Each of these second level sub-directories 
has the same layout as the Results folder.

7.3.3.4 Kxen.ConsistentCoder

 Syntax
Path: Protocols/Default/Transforms/Kxen.ConsistentCoder

SAP Predictive Analytics Modeler - Data Encoding is a data preparation transform building consistent (robust) 
coding scheme for any attribute belonging to a training data set containing a business question (specific target 
variable to analyze). Each nominal attribute possible value is:

● either discarded as non consistent,
● or coded as a number for later use by subsequent transforms.

The attributes may also be called variables, whereas their possible values are sometimes referred to as 
categories.

SAP Predictive Analytics Modeler - Data Encoding brings Intelligence to any OLAP system (IOLAP TM) through 
a ranking of the variables based on their robust information to explain a business question. SAP Predictive 
Analytics Modeler - Data Encoding processes on both estimation and validation sets in a single pass. SAP 
Predictive Analytics Modeler - Data Encoding finds a robust (consistent) encoding to nominal variables in order 
to be used with numerical algorithms. SAP Predictive Analytics has refined techniques that have been used for 
years in this field. The strength of SAP Predictive Analytics Modeler - Data Encoding lies in the fact that it can 

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 147



dialog with the following transform in order to adapt its encoding scheme. Nominal variable encoding schemes 
can follow two main paths :

● coding based on disjunctive Boolean coding: (0,1) or (-1, 1)
● coding based on the average of the target value.

SAP Predictive Analytics Modeler - Data Encoding belongs more to the second category. When dealing with a 
nominal variable, it first computes the statistics associated with each category of this nominal attribute.

For example: for a nominal variable called 'Color' with three possible categories: 'Red', 'Blue' and 'Green', SAP 
Predictive Analytics Modeler - Data Encoding first computes the average of the target for each of these 
categories. When the target is a continuous variable, the average of the target for each category is a 
straightforward computation. When the target is a nominal variable, the user can associate a cost (profit) for 
the different classes.

The nominal variable coding is based on the target average for each categories.

Let's go back to our 'Color' example, and let's assume that the target average for each color given by the 
following table.

Category Target Average

Red .75

Green .35

Blue .50

Then, the most simple coding scheme is to encode each category with its target average. But this technique 
has some drawbacks.

● First you can lose some information when two categories have the same target average (or very close).
● Second, for the target average to have any meaning at all, you must have enough cases for the category.

To counter the first issue, SAP Predictive Analytics Modeler - Data Encoding allows the user to code the 
category not directly with the target average but with the rank of the sorted target averages as shown in the 
next table:

Category Target average Rank

Red .75 3

Green .35 1

Blue .50 2

In this scheme, each category is coded as the rank. To counter the second issue, SAP Predictive Analytics 
Modeler - Data Encoding automatically searches the minimum number of cases for each category needed to 
keep this category. All categories that are not represented enough into the data base is associated with a 
miscellaneous class (whose default name is 'KxOther'). This search is done using SRM (Structural Risk 
Minimization) principle.

148 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.3.3.4.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.ConsistentCoder/Parameters

This section describes the SAP Predictive Analytics Modeler - Data Encoding components parameters which 
can be found under the 'Parameters' section of the component.

Parameter Access Description Values

Compress ● Read-write
● Read-only (when 

the transform is in 
ready state)

This variable can be used to deactivate the com
pression of SAP Predictive Analytics Modeler - 
Data Encoding, by setting its value to false.

● true [Default]
● false

UseKxOther2   ● true (default and 
highly recom
mended)

● false

ExtraMode ● Read-write
● Read-only (when 

the transform is in 
ready state)

This parameter belongs to the set ['No Extra', 
'K2R Coding', 'K2S Coding']. This value is used 
when SAP Predictive Analytics Modeler - Data 
Encoding is used alone in a model. This mode 
can be used to store back the results of the cod
ing into a space.

● No Extra [De
fault]

● K2R Coding
● K2S Coding
● K2S 

Unsupervised
● KSVM Coding

7.3.3.4.2 Results

Most of the information generated by SAP Predictive Analytics Modeler - Data Encoding is stored into the 
current protocol original nominal variables 'Statistics' section. SAP Predictive Analytics Modeler - Data 
Encoding changes the original categories by introducing the 'KxOther' category if needed. After SAP Predictive 
Analytics Modeler - Data Encoding has been trained, the original dictionaries are smaller.

7.3.3.5 Kxen.SocialNetwork

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork

SAP Predictive Analytics Social is an automatic data preparation transform that extracts and uses implicit 
structural relational information stored in different kinds of data sets, and thus improves model decisions and 
prediction capacities. The user configures the loading module and graph filters. The configuration is made 
through specifying parameters in the SAP Predictive Analytics Social parameter tree. SAP Predictive Analytics 

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 149



Social will use these loading specifications to create a graph set during the learning process, and store them in 
the model. Graphs are now available for variable computation.

7.3.3.5.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters

Parameter Description Value

ExtraMode Extra mode of the current transform ● Default_Mode (default)

LoadSettings Folder contains all the parameters used 
to load the graphs.

ApplySettings This folder contains the parameters 
used for applying the model.

7.3.3.5.1.1  LoadSettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings

The LoadSettings folder contains all the parameters used to load the graphs.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
GraphOutputDir

Used for debug purposes. It indicates the path where generated graphs will be dumped in DOT format. If left 
empty, nothing is done. Default value is empty.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
NodeSettings_<Repository>

It contains the parameters for providing descriptive attributes and identifiers conversion.

Parameter Description

IndirectionTableDataSet Indicates the location of the mapping information between 
the identifier used to build the graphs and the identifier used 
in the node datasets.

150 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

IndirectionTableIdColumnName Indicates the column in the identifier conversion table that 
contains the node identifier, such as the line number. Any 
node that has no match in the node data set for the value of 
the node column will be declared as 'off-net'.

IndirectionTableNodeColumnName Indicates the column in the node data set that contains the 
entity identifier, such as the customer identifier.

NodeTableDataSet Name of the table containing the descriptive attributes of 
the entity, for example the customer. All columns contained 
in the node data set may be used in queries or aggregates. 
The selected columns are indicated under the sub-folder 
NodeProperties.

NodeTableIdColumn Name of the column containing the nodes identifiers in the 
descriptive attribute data set. This column will be used to 
join attributes with the nodes existing in the graph.

MaxValueCount Maximum number of distinct categories to remember for 
discrete variables. The N most frequent categories will be 
kept, while the others will be represented as a KxOther cat
egory.

NodeProperties The user can use this parameter to specify the variables to 
be used to decorate the node; the NodeProperties pa
rameter changes to a directory containing the variables in
serted by the user.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
GraphFilters

The GraphFilters sub-folder is used to insert parameter templates in the graphs created from a single table 
containing the relational data. Every inserted template contains parameters for the concerned graph (type, 
column to filter, etc…):

Parameter Description Possible Values

GraphType Directed/Undirected/Bipartite.  

StartDate The begin of date filter interval.  

EndDate The end of date filter interval.  

MinimumEventCount/
SumForLink

(for Contact/Transaction mode only) 
Keep links if more events than the 
specified threshold have been met.

 

MaximumEventCount/
SumForLink

(for Contact/Transaction mode only) 
Keep links if less events than the speci
fied threshold have been met.

 

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 151



Parameter Description Possible Values

First/
SecondMaximumWeightSum

Allows the user to filter nodes with a 
threshold value on the sum of its 
weighted degree, for the first/second 
population.

 

NumberOfNeighbors (for K-Nearest neighbors mode only) 
The maximum number of neighbors for 
each node. It is the K parameter.

 

DistanceColumnName (for K-Nearest neighbors mode only) 
The name of the column that provides 
distance between the two nodes.

 

DeriveFirst and 
DerivedSecond

(for Bipartite graphs) Indicates the 
threshold used to generate the unipar
tite graph. If no value is set, no addi
tional graph is generated.

 

PairingGraphName Indicates the name of the other associ
ated graph to generate the pairing 
graph.

 

Node1Column/Node2Column Every graph filter can specify its own 
column containing node identifiers. If 
no value is set, the graph filter inherits 
columns set at the upper loadsettings 
level.

 

NodeSet Can be used to force the graph to store 
its nodes in a specific node repository.

● First: source node
● Second: target node

ColumnFilter Can be used to insert several column 
names to filter the event data set. The 
generated graph will only contain links 
that match all the inserted conditions. 
Each column filter can be set the follow
ing way:

1. FilterMaximum/FilterMinimum: 
cannot be set if Filtervalue is set. 
Used to filter values between two 
bounds.

2. FilterValues/FilterNotValues: can 
be used to filter on a precise dis
crete values list (include or ex
clude).

 

7.3.3.5.1.1.1  PostProcessing

 Syntax
Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing

152 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



In Transaction mode, SAP Predictive Analytics Social offers the possibility to process some post-loading 
operations on graphs, by inserting a template in the PostProcessing sub-folder. After selecting the 
FromModel option for the GraphLoadType parameter, the Ksn.BipartiteGraphProjection sub-folder is 
created.

Since version 6.0.0, it is possible to set a priority order to all graph post-processings. For instance it can be 
important to force the mega-hub filter to be launched before the community detection. The priority can be set 
using the priorityLevel common to all post-processings.

By default, post-processes are executed in this order:

1. Mega-hub filtering
2. Bipartite graph projection
3. Community detection
4. Node pairing

All post-processing parameters must be specified after the graph specifications and before the model learning 
stage.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/Node1Column

The name of the column containing the first node identifier (input node if directed graph is built).

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/Node2Column

The name of the column containing the second node identifier (output node if directed graph is built).

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/DateColumn

The name of the column containing the date of the events (optional, may be left blank).

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/KSN.BipartiteGraphProjection/<Graph_Name>

Bipartite projection is used to transform a bipartite graph into a unipartite graph in which nodes from a same 
population are connected if they share a certain amount of relevant neighbors. There is one folder for each 
projected graph.

Parameter Description

SourceGraphName Name of the bipartite source graph

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 153



Parameter Description

TargetGraphName Name of the projected graph. If no name is specified, an au
tomatic name is generated.

Population Population used for the graph projection

Values:

● First
● Second

MinimumSupport Number of minimum common neighbors to build a link in the 
projected graph

Weight Similarity measure used to weight links in projected graphs

Values:

● Support
● Jaccard
● Independence Probability

Filter/MinimumConfidence Minimum confidence to keep a link in the projected graph

Filter/MinimumKi Minimum KI to keep a link in the projected graph

Filter/Directed Produces directed links in projected graphs

Values:

● true
● false (default)

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/KSN.MegaHubFilter/<Graph_Name>

Mega-hub filtering can be activated for a given graph to filter high connected nodes. This folder contains one 
sub-folder for each graph for which the mega-hub filtering has been activated. The parameters corresponding 
to each graph are stored in these sub-folders.

Parameter Description

GraphName The graph in which the mega-hubs must be filtered.

MethodId Values:

● 0: manual threshold method
● 1: n-sigma method (default).

StdDevFactor If MethodId = 1, this parameter can be used to set the 
sigma parameter.

Default value: 4

154 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

DistributionStrip If MethodId = 0, this parameter can be used to set the 
manual mega-hub threshold.

Default value: 50000

UserThreshold

Population Sets the population to be used to filter the mega-hubs on bi
partite graphs.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/KSN.CommunityDetection/<Graph_Name>

The Community Detection algorithm can be activated for a given graph. This folder contains one sub-folder for 
each graph for which the community detection has been activated.

Parameter Description

GraphName The graph in which the communities should be detected.

MaxIteration Maximum number of iterations of the algorithm

EpsilonValue The stop condition for the algorithm. The detection stops if 
there is no modularity gain bigger than EpsilonValue.

RandomSeed Used to initialize the random number generator. Two com
munity detection processes on the exact same graph and 
same RandomSeed parameter option will always find the 
same community segmentation. The random value will gen
erate a random node selection during the community detec
tion. This is an optional parameter. If set to 0, nodes are 
picked in the order of their IDs.

Default value: 0

InitFromGraph Name of the graph to use to initialize the community detec
tion with communities from another graph.

IgnoreSelfLoop If set to true, this option will create smaller hierarchical 
graphs.

Values:

● true
● false (default)

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
PostProcessing/KSN.NodePairing/Pairing<n>

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 155



Node pairing will create a new graph where nodes are linked if they share a certain amount/ratio of common 
neighbors in a graph. It can be activated for one or two graphs. This folder contains one sub-folder for each 
pairing requested.

Parameter Description

FirstGraphName Name of the first graph to pair

SecondGraphName Name of the second graph to pair

Note - if FirstGraphName and SecondgraphName are 
the same, the graph will be paired with itself.

PairingGraphName Name of the output graph containing the pairing

Value: string. If let empty, an automatic name is generated 
as follows: 
np_<FirstGraphName>_<SecondGraphName>.

CountThreshold Minimum number of common neighbors needed to pair two 
nodes

Default value: 4

RatioThreshold Minimum ratio of common neighbors needed to pair two no
des

Default value: 0.5

WeightedRatio If activated, will compute weighted similarity measures, tak
ing weights into account.

Values:

● true
● false (default)

IncludeCountGraph If activated, will generate a graph with the "count" similarity 
measure.

Values:

● true
● false (default)

TopN Maximum number of neighbors to pair for each node. Keep 
the N nodes with the highest weights as determined by the 
parameter PairingType.

Default value:0 (which means keeping all nodes)

156 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

PairingType Similarity measure used to weight the links of the paring 
graph

Values:

● Ratio (default)
● Count
● Jaccard
● Independence Ratio
● Confidence
● Clustering

7.3.3.5.1.1.2  FromModelLoadSettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/LoadSettings/
FromModelLoadSettings

This folder contains all the parameters required to specify models, including saved models to be imported.

Parameter Description Values

StoreClass Contains the class of the store (file di
rectory or ODBC source).

● Kxen.ODBCStore
● Kxen.FileStore

StoreName Name of the store containing the model

ModelName Actual name of the model String

Version The model version

7.3.3.5.1.2  GraphApplySettings

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/ApplySettings/
GraphApplySettings/<Graph_Name>

There is one folder for each graph generated. The names of the community graphs created for a graph defined 
by the user are suffixed _cm_lvl_<level_number>.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 157



Parameter Description

CommunityCount This folder allows the user to insert all the discrete variables for which they want 
to compute the count in the community. This generates as many columns as 
there are categories in the target variable.

CommunityIndex Index of the community

CommunityLinks Lists all the links inside the community of the input node. This can be used to ex
tract the subgraph of nodes and links inside a community.

CommunityMean Allows the user to insert all the continuous variables (age, capital_gain…) for 
which they want to compute the mean on the community.

CommunityNode Only for community graphs. Gives a node ID inside the input community (ID) 
(used for internal display).

CommunityOffNetCount

CommunityOffNetRatio

Count/ratio of offnet nodes in the community

CommunityRatio Allows the user to insert all the discrete variables for which they want to compute 
the modes in the community. This generates as many columns as there are cate
gories in the target variable.

CommunityRole Role of the node inside the community

Values:

● Textual: output roles as a textual value
● Integer: output roles as an integer value
● None: deactivated

CommunitySize Outputs the size of the community of the input node

Values:

● true (default)
● false

CommunityVariance This folder allows the user to insert all the continuous variables (age, capi
tal_gain…) for which they want to compute the variance on the community

Count This folder allows the user to insert all the discrete variables for which they want 
to compute the modes in the first circle (set of direct neighbors). This generates 
as many columns as there are categories in the target variable, containing the 
count for this category.

Degree Generates degree-related outputs

Values:

● true (default)
● false

Describe Activates the described mode.

Values:

● true
● false (default)

158 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

IOSegment Class of the node between sink,source and repeater.

Values:

● ‘0’ / ‘REPEATER’: incoming/outgoing link count is balanced
● ‘1’/ ‘SOURCE’: mostly outgoing links
● ‘2’ / ‘SINK’: mostly incoming links

InfluenceReach This folder can be used to insert a template parameter in the Social ApplySet
tings Influence Reach node. The label name used for the inserted template has no 
importance.

Leader Activates the centrality output

Mean Allows the user to insert all the continuous variables (age, capital_gain…) for 
which they want to compute the mean on the first circle

Mode Allows the user to insert all the discrete variables for which they want to compute 
the modes in the first circle. This generates as many columns as the number of 
categories in the target variable.

Neighbors Activates the neighbors multiline mode

OffNetCount

OffnetRatio

Activate the offnet statistics outputs

Profile Same as the Mode parameter but using ratios instead of counts

Ratio This folder allows the user to insert all the discrete variables for which they want 
to compute the ratio of each of the categories in the first circle (set of direct 
neighbors). This generates as many columns as there are categories in the target 
variable, containing the ratio for this category.

Recommendation This folder can be used to Insert a template parameter in the Social ApplySet
tings Recommendation node. This must be done in the bipartite graph apply set
tings.

SPActivation Spreading activation, or graph diffusion, is used to spread a value into the graph. 
The diffusion is initiated by labeling all the nodes with weights or "activation" and 
then iteratively propagating or "spreading" that activation out to other nodes 
linked to the source nodes. The result of the apply is the weight of each nodes af
ter the diffusion process.

Triangle Computes the number of triangles the input node is a part of. If two neighbors of 
a node are themselves connected, they are forming a triangle.

Values:

● true
● false

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/ApplySettings/
GraphApplySettings/<Graph_Name>/InfluenceReach/<Label>

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 159



The Influence Reach detects the collection of all Influence Cascades starting from a given node. It can be used 
to detect how many nodes have adopted a given behavior after a source node did. The graph must contain a 
date variable in its attributes that correspond to the time of the activation (behavior adoption, churn date…).

Parameter Description

VarName Name of the variable containing the activation date information. The variable 
must have a date description.

StartDate Start of the time frame to observe the activation diffusion. Nodes that do not 
match the time frame are not taken into account. Can be left blank.

EndDate End of the time frame to observe the activation diffusion. Nodes that do not 
match the time frame are not taken into account. Can be left blank.

DeltaMin Minimum delta of time between two nodes to observe the activation diffusion. 
Can be left blank.

ActivatedOnly If activated, will only compute cascade size if the node itself is activated.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/ApplySettings/
GraphApplySettings/<Graph_Name>/Recommendation

Parameter Description

FilterPurchased If set to true, will exclude already purchased items from the recommendation 
set; that is, the items the user is connected to in the bipartite graph.

Values:

● true
● false

ProjectedGraphName Name of the source graph containing the recommendation rules

Value:

● string: must be a valid projected graph name

SortCriteria Sort criteria for the items

Values:

● Support
● Confidence
● KI

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Parameters/ApplySettings/
GraphApplySettings/<Graph_Name>/SPActivation

160 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

VarName Name of an available descriptive attribute (nominal/continuous) that will be used 
as a seed weight for each node

SpreadingFactor Decay factor of the diffusion, part of the score that will be propagated

Values:

● 0.75 (default)
● Any float value in [0 ; 1]

MaxIteration Maximum number of iterations of the diffusion

Values:

● 10 (default)
● Any integer >1

ActivationThreshold Nodes with weights above this threshold will be considered as activated. Only ac
tivated nodes will spread weights to their neighbors.

Values:

● 0.1 (default)
● any float value in [0 ; 1]

7.3.3.5.2 Results

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Results

In the Results folder, the following parameters are available:

Parameter Description

NumberOfGraphs Shows the number of generated graphs

NodesInFirstRepo Number of unique nodes (from all graph) stored in the first node repository

NodesInSecondRepo Number of unique nodes (from all graph) stored in the second node repository 
(for bipartite graphs)

NodesAttributes (folder)  

AvailableGraphs (folder) Stores graph-specific information for each generated graph

DeriveFrom This parameter is available with a derived graph of a bipartite graph, or a node 
pairing graph. It indicates if the graph is a result of a post-processing operation on 
another graph.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Results/AvailableGraphs

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 161



Parameter Description Values

Type The type of the graph. ● Directed
● Undirected
● Bipartite

Nodeset Indicates in what node repository nodes are stored. For bi
partite graphs, it indicates the node repository of the first 
population.

● First
● Second

Nodes The number of edges (or vertices) in the concerned graph.

NodesFirst The number of nodes in the first population.

NodesSecond The number of nodes in the second population.

OffNetNodesFirst The number of off-net nodes in the first population.

OffNetNodesSecond The number of off-net nodes in the second population.

Edges The number of links (or vertices) stored in the concerned 
graph.

Density The density of the network.

RemovedNodes Remembers the nodes ignored during the community detec
tion if the AutoModularityFilter parameter was used (see 
Community Detection Post Processing).

In/Out/
UndMedianDegree

Gives the median value for the node incoming/outgoing/
undirected degree distribution, depending on the graph 
type.

In/
OutPowerLawExponent

Indicates the power law exponent of the node degree distri
bution.

In/
OutPowerLawExponent
Fit

of fit indicator for the node degree distribution detection.

MegaHubs (folder)  It contains parameters which 
are available only when the 
model is live but not saved.

Communities (folder)  It provides some information 
on the community inside the 
graph.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Results/AvailableGraphs/
MegaHubs

Parameter Description

Threshold Detected degree threshold for mega-hubs.

HubsCount The number of detected mega-hubs.

NodeList The list of mega-hubs, with their respective degree.

162 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



 Syntax
Path: Protocols/Default/Transforms/Kxen.SocialNetwork/Results/AvailableGraphs/
Communities

Parameter Description

NumberOfCommunities Number of detected communities

Modularity Value of the final modularity, a goodness indicator of the community partition

Intra/Inter-LinksMedian Median value of the intra/inter links distribution for all the nodes

SumOfWeights Weighted sum of all the links in the graph. This value is needed for several com
munity detection algorithm or modularity optimization

CommunitySizeDistribution Stores a list of couple of integers that describe the distribution of community size 
in the given graph

In/OutPowerLawExponentFit Indicator for the node degree distribution detection

7.3.3.6 Kxen.DateCoder

 Syntax
Path: Protocols/Default/Transforms/Kxen.DateCoder

Date Coder is an automatic data preparation transform that extracts date information from a date or datetime 
input variable. This component is automatically inserted by SAP Predictive Analytics Modeler - Data Encoding if 
one of the input variables is a date or a datetime variable.

7.3.3.6.1 Variables Used

This section of the parameter tree contains all the date and datetime variables used by the Date Coder 
component.

Date variables are broken down into 7 dateparts:

Datepart Description Values Generated Variable Name

Day of week day of week according to the 
ISO disposition

Monday=0 and Sunday=6 <OriginalVariableNa
me>_DoW

Day of month day of month 1 to 31 <OriginalVariableNa
me>_DoM

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 163



Day of year day of the current year 1 to 366 <OriginalVariableNa
me>_DoY

Month of quarter month of the quarter ● January, April, July and 
October = 1

● February, May, August 
and November = 2

● March, June, September 
and December = 3

<OriginalVariableNa
me>_MoQ

Month of year month 1 to 12 <OriginalVariableNa
me>_M

Year year four digits of the year <OriginalVariableNa
me>_Y

Quarter quarter of the year ● January to March = 1
● April to June = 2
● July to September = 3
● October to December = 

4

<OriginalVariableNa
me>_Q

On top of the 7 dateparts above, Datetime variables are broken down into 3 more dateparts:

Datepart Generated Variable Name

Hour <OriginalVariableName>_H

Minute <OriginalVariableName>_Mi

Second <OriginalVariableName>_S

The generated variables are stored in the parameter tree under Protocols > Default > Variables.

Note- all generated variables are ordinal except for ’DayOfYear’ and ‘µ seconds’ which are continuous.

7.3.3.7 Kxen.AssociationRules

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules

SAP Predictive Analytics Modeler - Association Rules generates association rules. Association rules provide 
clear and useful results, especially for market basket analysis. They bring to light the relations between 
products or services and immediately suggest appropriate actions. Association rules are used in exploring 
categorical data, also called items.

164 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



The strengths of SAP Predictive Analytics Modeler - Association Rules are:

● to produce clear and understandable results,
● to support unsupervised data mining (no target attribute),
● to explore very large data sets thanks to its ability to first generate rules on parts of the data set before 

aggregating them (exploration by chunks),
● to generate only the more relevant rules (also called primary rules).

7.3.3.7.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters

This section describes the parameters of SAP Predictive Analytics Modeler - Association Rules that can been 
found under the 'Parameters' section of the component.

Parameter Access Description Values

ExtraMode read-write A special flag allowing to set the type of outputs 
that Association Rules will generate.

● No Extra
● Optimized by 

KI
● Optimized by 

Confidence
● Full 

Description
● Full 

Description 
and 
Optimized by 
Confidence

● Full 
Description 
and 
Optimized by 
KI

DateColumnName Sequence mode only The column in which the date is stored.  

SequencesMode Sequence mode only A flag specifying if the Sequence mode of Asso
ciation Rules is activated.

● true (or 1): 
means that the 
Sequence mode is 
activated,

● false (or 0) 
means that the 
Sequence mode is 
deactivated.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 165



Parameter Access Description Values

Transactions (folder)  Used to set the information relative to the 
Events data source.

 

References (folder)  Used to set the information relative to the Refer
ence data source.

TIDColumnName: in
dicates the name of 
the reference key vari
able.

ARulesEngineParame
ters (folder)

 Meaning Association Rules Engine Parameters.  

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/ExtraMode

Values Description

No Extra Generates basic outputs, that is the session key, the ID of the rule used to find the 
consequent and the consequent itself.

Optimized by KI Generates basic outputs. If more than one rule give the same consequent for a 
session, the rule presenting the best KI will be selected.

Optimized by Confidence Generates basic outputs. If more than one rule give the same consequent for a 
session, the rule presenting the best Confidence will be selected.

Full Description Generates the extended outputs, that is the session key, the rule ID, the conse
quent, the antecedent, the KI, the confidence and the rule support.

Full Description and 
Optimized by Confidence

Generates the extended outputs. If more than one rule give the same consequent 
for a session, the rule presenting the best Confidence will be selected.

Full Description and 
Optimized by KI

Generates the extended outputs. If more than one rule give the same consequent 
for a session, the rule presenting the best KI will be selected.

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/Transactions

Parameter Description

LogSpaceName Indicates SAP Predictive Analytics role set for the Transactions space name.

TIDColumnName Indicates the name of the transactions key variable.

ItemIDColumnName Indicates the name of the item variable.

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/
ARulesEngineParameters

Association rules has two usages in SAP Predictive Analytics. The first one is as a standalone module used to 
detect interactions between items that are associated with a common entity: it is used for example to detect 
rules in market basket analysis linked products that are bought together by the same customer. It is referred to 

166 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



as "Default Use" below. The second use case is to search for rules that link elements of a single data set one to 
the other and is used for data quality tasks: it is used for example to detect that when a variable has this value, 
another variable has a given value in 95% of the times. We will call this use case the "Data quality mode". It is 
referred to as "Data Quality Mode" below.

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/
ARulesEngineParameters/FPV

Default Use

Parameters Description Values

Activated Indicates whether the FPV algorithm is 
activated or not.

● true(default value)
● false

MinimumSupport Gives the minimum support required 
for a rule.

● 1 (default value)
● > 0: required value

Note - With a value > 1, we consider 
the number of sessions. With a 
value between 0 and 1, we consider 
a percentage of the number of ses
sions

MinimumConfidence Gives the minimum threshold for the 
confidence of a rule.

● 0.5 (default value)
● Required value between 0 and 1

MaxLength Saves the maximum size of a rule. A 
rule has a minimum size equal to 2: the 
antecedent plus the consequent.

● 4 (default value)
● Required value >=2

SearchMethod Indicates the search method the FPV 
has to use. When the value equals 1, the 
Association Rules engine uses the basic 
FPV algorithm. When the value equals 
2, the Association Rules uses a modi
fied FPV algorithm: the rules are gener
ated regarding the frequence order of 
their consequent item and the memory 
used is limited.

● 2 (default value)
● Required value: 1 or 2

SkipDerivedRules Indicates to FPV to generate only the 
primary rules and thus skip the derived 
rules. For instance, given R1 = X => Z 
and R2 X,Y =>Z two association rules, 
R1 is called a primary rule and R2 a de
rived rule.

Note - the option SkipDerivedRules is 
only available with a SearchMethod pa
rameter equal to 2.

● true (default value)
● false

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 167



Parameters Description Values

SkipReducibleItemsets [deactivated] Indicates if FPV has to 
generate the reducible itemsets. An 
itemset is non reducible if one of its 
items cannot be removed without 
changing the transaction space.

● true
● false (default value)

TidSet Indicates the storage method of the 
transactions associated to an itemset.

● 2 (default value)
● Required value: or

ChunkSize Saves the size of the chunks (in number 
of sessions) used by FPV to import and 
generate the rules. With a value equal to 
0, the chunk strategy will not be used 
and ALL the sessions will be imported 
before generating the rules.

● 0 (default value)
● Required value >=

GuessChunkSize When set to true, overrides the Chunk
Size parameter to automatically com
pute the proper chunk size to use in or
der to process ten chunks.

● true
● false (default value)

CheckAntecedents Is used to check if the consequent of a 
rule is present in the antecedent items.

● true (default value)
● false

Data Quality Mode

Parameters Description Values

DefaultTargetEnable Indicates whether to generate the rules 
that have the most frequent item of a 
group as the consequent part. This pa
rameter should be set to false, because 
it is useless to deduce the rules used to 
fill the missing values.

● true
● false(default value)

UseMissInfo Indicates that the confidence of the 
rules will be computed taking into ac
count the missing information for each 
variable. This parameter is only used 
when the Association Rules engine is 
used to replace the missing values.

● true
● false

AutomaticParameterSettings Used in the Data Quality Mode of KAR 
in order to infer what is usually given by 
the user such as the maximum length, 
the default support and confidence. 
The maximum length is computed with 
respect to the number of columns in or
der to fight for combinatorial explosion.

● true: means that thethe Quality 
Data Mode is selected.

● false: means the Default Use 
mode is selected.

168 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/
ARulesEngineParameters/RulesGenerationFilters

This folder contains the ConsequentFilters folder, which contains the following parameters:

Parameter Description

IncludedList All rules with a consequent belonging to the list of values in
serted below this parameter will be generated. When this list 
is empty, all rules are generated (with respect to the Ex
cludeList).

ExcludedList All rules with a consequent not specified in the list of values 
below this parameter will be generated. When this list is 
empty, all rules are generated (with respect to the IncludeL
ist).

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Parameters/
ARulesEngineParameters/ApplyActivationOptions

Parameter Description

RulesExcludedList Can be filled by the user with identifiers of rules not to be 
used to generate recommendations.

ActivatedConsequentsList Be filled by the user with items. All rules having one of these 
items as consequent will be kept to generate recommenda
tions.

7.3.3.7.2 Results

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Results

This section describes the results of SAP Predictive Analytics Modeler - Association Rules. This can be found 
under ‘Results’ section of the component.

Parameter Description Values

ItemCategories (folder) The folder where the global information of the Item variable 
is stored.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 169



Parameter Description Values

ARulesEngineResults 
(folder)

The folder where all the information about the rules found is 
stored.

● NumberOfItemSets
Generated

● NumberOfFrequent
ItemSets

● NumberOfFrequent
Items

● NumberOfItems
● NumberOfRules
● FillingRatio
● NumberOfTransact

ions
● Rules (folder)

TransactionStats 
(folder)

Contains all the statistics relative to the number of transac
tions by session.

● Mean
● StDev
● Min
● Max

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Results/ItemCategories

Parameter Description Values

Value   

Storage  

KeyLevel  

OrderLevel

MissingString

Group  

Description  

ConstantForMissing 
(folder)

 

SpaceName (folder)  

InSpaceName 
(folder)

 

IsVirtualKey  ● true
● false

UserPriotiry

DescriptionSource

170 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

UserEnableKxOther ● true
● false

UserEnableCompress ● true
● false

NominalGroups

Monotonicity

UserModulus

StatForCode

EstimatorOf

ClusterOf (folder)

TargetKey

SpaceOrigin ● true
● false

Translations

NativeInformation 
(folder)

Statistics (folder)

Extensions

BasedOn

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Results/
ARulesEngineResults

Parameter Description Values

NumberOfItemSetsGen
erated

The total number of itemsets created during the learning 
phase.

An integer value.

NumberOfFrequentIte
mSets

The number of frequent item sets, that is the number of 
itemsets whose support is superior to the minimum support 
set by the user.

An integer value.

NumberOfFrequentIte
ms

The number of frequent items, that is the number of items 
whose the support is superior to the minimum support set 
by the user.

An integer value.

NumberOfItems The number of items found in the transaction data set. An integer value.

NumberOfRules The number of association rules generated by Association 
Rules.

An integer value.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 171



Parameter Description Values

FillingRatio The rate of filling of the missing values. An integer value.

NumberOfTransaction
s

The number of sessions treated by Association Rues. An integer value.

Rules (folder) The folder where all the rules generated are stored. ● Antecedent (folder)
● Consequent (folder)
● Confidence
● KI
● Lift
● AntecedentSuppor

t
● ConfidenceSuppor

t
● RuleSupport
● SequenceSupportP

ct
● SequenceSupportR

atio
● SequenceConfiden

ce
● SequenceKI
● SequenceLift
● DurationMin
● DurationMax
● DurationMean

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Results/
ARulesEngineResults/Rules

Parameter Description Values

Antecedent (folder) The folder where the names of the items composing the an
tecedent are stored.

 

Consequent (folder) The folder where the name of the item composing the con
sequent is stored.

 

Activated  ● true
● False

Confidence The confidence of the rule.  

KI The KI of the rule.  

Lift The Lift of the Rule. A value stictly greater than 0.

AntecedentSupport The support of the rule antecedent.  

172 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

AntecedentSupportPc
t

  

ConsequentSupport The support of the rule consequent.  

ConsequentSupportPc
t

  

RuleSupport The support of the rule  

RuleSupportPct  

SequenceSupportPct 
[Sequence mode only]

Indicates the absolute sequence support of the rule, that is 
the number of sessions in which the antecedent occurs be
fore the consequent.

 

SequenceSupportPct 
[Sequence mode only]

Indicates the relative sequence support of the rule. A real value between 0 and 1.

SequenceSupportRati
o [Sequence mode only]

Indicates for a specified rule the percentage of session 
where the consequent occurs after the antecedent.

 

SequenceConfidence 
[Sequence mode only]

Indicates the rule confidence in the sequence mode. A real value between 0 and 1.

SequenceKI [Sequence 
mode only]

Indicates the rule KI in the sequence mode. A real value between -1 and 1.

SequenceLift [Sequence 
mode only]

Indicates the rule Lift in the sequence mode. A value strictly greater than 
0.

DurationMin [Sequence 
mode only]

Indicates the minimum amount of time observed between 
an antecedent and its consequent.

A value expressed in seconds 
if the date is in a date or da
tetime format.

DurationMax [Sequence 
mode only]

Indicates the maximum amount of time observed between 
an antecedent and its consequent.

A value expressed in seconds 
if the date is in a date or da
tetime format.

DurationMean [Sequence 
mode only]

Indicates the average amount of time observed between an 
antecedent and its consequent.

A value expressed in seconds 
if the date is in a date or da
tetime format.

 Syntax
Path: Protocols/Default/Transforms/Kxen.AssociationRules/Results/TransactionsStats

Parameter Description

Mean Indicates the average number of transactions.

StDev Indicates the standard deviation for the number of transactions.

Min Indicates the minimum number of transactions encountered.

Max Indicates the maximum number of transactions encountered.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 173



7.3.3.8 Kxen.EventLog

 Syntax
Path: Protocols/Default/Transforms/Kxen.EventLog

The purpose of SAP Predictive Analytics Explorer - Event Logging is to build a mineable representation of 
events history. It is not a data mining algorithm but a data preparation transform. All algorithms to perform 
regression, classification or segmentation only work on a fixed number of columns, but sometimes a customer 
can be associated with a list of events (the purchase history for example) with different size for every customer, 
so this list of events must be translated in a number of fixed columns in one way. These type of operations are 
called pivoting in data mining because they translate information contained in the same column of different 
lines into different columns on a single line (for a given customer identifier for example). SAP Predictive 
Analytics Explorer - Event Logging and SAP Predictive Analytics Explorer - Sequence Coding belong to these 
type of transformations. SAP Predictive Analytics Explorer - Event Logging can be used to represent the history 
of a customer, or a log history of defects associated with a machine in a network. This component merges 
static information (coming form a static table) and dynamic information (coming from a log table). The user 
must have these two tables before using the component. The table containing static information is generally 
called the "reference" table, and it is associated in the models with the classical data set names or roles such as 
Training, Estimation, Validation, Test or ApplyIn. The table containing the log of events (sometimes called the 
"transactions" table) is associated with a name beginning with the name "Events". SAP Predictive Analytics 
Explorer - Event Logging is said to build coarse grain representations as it summarize the events on different 
periods of interest; this is done with some information loss. A good example of using SAP Predictive Analytics 
Explorer - Event Logging is when trying to represent RFA (Recency-Frequency-Amount) views of a customer 
based in his purchase history.

7.3.3.8.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.EventLog/Parameters

This section describes the parameters of SAP Predictive Analytics Explorer - Event Logging that can be found 
under the 'Parameters' section. All the parameters are read-only when transform is in ready state.

Parameter Description Values

Reference (folder)   

Representation (folder) The variables concerned by 
each operator are listed un
der it in the parameter tree.

 

InternalStorage Contains the placeholder 
that allows us to activate our 
own internal storage to avoid 
large memory consumption.

● Memory
● Db
● ByChunk(default value)

174 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

ExtraMode Indicates the mode in which 
SAP Predictive Analytics Ex
plorer - Event Logging will be 
applying the aggregations; 
changing this will influence 
the output produced by SAP 
Predictive Analytics Explorer 
- Event Logging.

● No Extra(default value): produces all aggregates, 
and also outputs its input variables.

● Output Only Aggregates: outputs only the vari
ables generated by SAP Predictive Analytics Explorer - 
Event Logging.

 Syntax
Path: Protocols/Default/Transforms/Kxen.EventLog/Parameters/Reference

Parameter Description

IdColumnName The name of the column containing the identifier of the main 
object (customer ID, machine ID, session ID) in the reference 
table. A proper value is mandatory.

DateColumnName [read-write]: when not empty, this name is the name where 
the component can find a reference date. The reference date 
is used to compute aggregates on periods starting at the ref
erence date. In this case the reference date can be different 
for every line. If this value is left empty, then it is assumed 
that the user will specify a proper RefDefaultDate which is 
defaulted to 1-01-01 00:00:00.

Period [read-write] indicates what is the period used for aggregation 
(day, week, month, year,...). This value is defaulted to 'week'.

PeriodStartNumber [read-write] indicates the lower bound of the time window. 
This number must be less than the RefPeriodEndNumber. A 
minus sign indicates that the user is interested by periods 
before the reference date. As an example if the period is 
taken as 'Week' and the RefPeriodStartNumber is -4, the first 
period of interest will be 4 weeks before the reference date of 
the line. This value is defaulted to 0.

Note - The PeriodStartNumber and the PeriodEndNumber 
are the bounding limits of the time window, not the number 
of the first and last period. For example, if you choose 
"2005-01-10 12:00:00" as reference date and set start and 
end to be -5 and 0 (with day as unit) your time window will 
go from -5 days before the reference date up to 0 zero days.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 175



Parameter Description

PeriodEndNumber [read-write] indicates the upper bound of the time window. 
This number must be larger than the RefPeriodStartNumber. 
A minus sign indicates that the user is interest by periods 
before the reference date. As an example if the period is 
taken as 'Week' and the RefPeriodEndNumber is +3, the last 
period of interest will be 3 weeks after the reference date of 
the line. This value is defaulted to 0.

Note - The PeriodStartNumber and the PeriodEndNumber 
are the bounding limits of the time window, not the number 
of the first and last period. For example, if you choose 
"2005-01-10 12:00:00" as reference date and set start and 
end to be -5 and 0 (with day as unit) your time window will 
go from -5 days before the reference date up to 0 zero days.

DefaultDate [read-write]: when not empty, this reference date is used ei
ther when there is no reference date column or when this 
value is missing. It must be noted that if the user specify 
both a ReferenceDateColumnName and a RefDefaultDate, 
only the later is taken is taken under consideration.

CyclicPeriod [read-write]: indicates whether the periods are cyclic, and 
the type if they are (possible values: NotCyclic (default), 
HourOfDay, DayOfWeek, DayOfMonth, MonthOfYear, Quar
terOfYear).

PeriodLength [read-write]: as the label indicates, it is the length of one pe
riod.

 Syntax
Path: Protocols/Default/Transforms/Kxen.EventLog/Parameters/Representation

Parameter Description

Count Indicates the number of states contained in the selected pe
riod. By default, this parameter is always computed whether 
you select it or not. However, it can be disabled using the Ex
traMode.

Sum Indicates the sum for the selected variable during the de
fined period.

Average Indicates the average for the selected variable during the de
fined period.

Min Indicates the min for the selected variable during the defined 
period.

Max Indicates the max for the selected variable during the de
fined period

176 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



 Note
Meta-operators can be attached to each variable impacted by an operator. The available meta-operators 
are listed below:

● Delta calculates the difference between the values of two consecutive periods for all the periods.
● PercentIncrease calculates the difference in percentage between the values of two consecutive periods 

for all the periods.
● Accumulation calculates the current total accumulation for each period.
● BackAccumulation calculates the current total accumulation for each period calculated backwards.
● GlobalSum calculates the sum of all periods values.

 Syntax
Path: Protocols/Default/Transforms/Kxen.EventLog/Parameters/Transactions

Parameter Access Description Values

EventSpaceName Read-write The name that allows this SAP Predictive Ana
lytics Explorer - Event Logging to find back infor
mation on the transactions. We had to allow dif
ferent names for this role because the user can 
stack several SAP Predictive Analytics Explorer - 
Event Logging in a single protocol each SAP Pre
dictive Analytics Explorer - Event Logging can 
deal with one specific transaction file. It is up to 
the user to specify then several event space 
names such as Events HotLine, Events Products 
and so on. All these names must start with 
"Events".

A character string.

'Events': default 
value.

Note - a proper value is 
mandatory. Since it is 
defaulted to 'Events', 
this default cannot be 
used if two SAP Predic
tive Analytics Explorer 
- Event Logging are in
serted in the same 
model.

IdColumnName Read-write Indicates the name of the column containing the 
identifier of the main object (customer ID, ma
chine ID, session ID, etc...) in the log (transac
tion) table. This is used to join the event log with 
the proper case.

A character string.

Note - a proper value is 
mandatory.

DateColumnName Read-write Indicates the name of the column containing the 
event (or transaction) in the events (or transac
tions) table. Together with the reference date, it 
is used to determine which period each event 
will be aggregated into.

A character string.

EventColumnName Read-write Some transactions can be associated with an 
event code (such as buy, test, receive_mailing, 
answer_mailing for a customer history, or type 
of failure for a machine on a network), and the 
user can force the aggregates only on a sub list 
of accepted event codes.

The default value is left 
empty, which means 
that no filter is applied. 
When this value is not 
empty, it should be 
used in conjunction 
with AcceptedEvent.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 177



Parameter Access Description Values

AcceptedEvent  This list allows filtering some events (only trans
actions with events present in the listed codes 
will be kept).

The value is left empty 
by default, which 
means that all events 
are kept.

DismissedEvent  This list allows filtering some events (only trans
actions with events present in the listed codes 
will be ignored).

The value is left empty 
by default, which 
means that all events 
are kept.

7.3.3.8.2 Results

There is no results provided by SAP Predictive Analytics Explorer - Event Logging. SAP Predictive Analytics 
Explorer - Event Logging only outputs new variables with their statistics on all data sets.These variables can be 
found in the Variables section of the parameter tree.

Different variables are created depending on the selected operators and meta operators. Different elements 
are used to build the variables names:

<prefix> By default, the prefix is set to "el", but it can be modified.

<Period>, Pn Number of the current period. The periods are numbered 
from 0. If there are 4 periods from -2 years to +2 years, the 
periods are numbered 0, 1, 2, 3. With 0 being the oldest one 
and 3 the last one.

n the total number of periods minus 1. For the example above 
n=3.

<Operator> The operator applied

<Meta> The meta operator applied

<Variable> The variable on which the operator applies

The following table details the generated output variables.

Operator / Meta Operator Name Syntax Example

Count <prefix>_Count_<PeriodNumber> el_Count_0

SumMinMaxAverage <prefix>_<Operator>_<Variable>_<Pe-
riod>

el_Sum_OS_1 el_Min_OS_0 el_Aver
age_OS_3 el_Max_OS_2

178 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



DeltaPercentIncrease <prefix>_<Meta>_<Operator>_<Varia-
ble>_P0<->P1

<prefix>_<Meta>_<Operator>_<Varia-
ble>_P1<->P2

...

<prefix>_<Meta>_<Operator>_<Varia-
ble>_Pn-1<->Pn

el_Delta_Min_OS_0<->1 el_PercentIn
crease_Sum_OS_1<->2

Accumulation <prefix>_<Meta>_<Operator>_<Varia-
ble>_P0+P1

<prefix>_<Meta>_<Operator>_<Varia-
ble>_P0+P1+P2

...

<prefix>_<Meta>_<Operator>_<Varia-
ble>_P0+P1+...+Pn

el_Accumulation_Min_OS_0+1+2

BackAccumulation <prefix>_<Meta>_<Operator>_<Varia-
ble>_P0+P1+...+Pn

<prefix>_<Meta>_<Operator>_<Varia-
ble>_P1+...+Pn

...

<prefix>_<Meta>_<Operator>_<Varia-
ble>_Pn-1+Pn

el_BackAccumulation_Max_OS_2+3

GlobalSum <prefix>_<Meta>_<Operator>_<Varia-
ble>_0<->n

el_GlobalSum_Average_OS_0<->3

7.3.3.9 Kxen.SequenceCoder

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder

The purpose of SAP Predictive Analytics Explorer - Sequence Coding is to build a mineable representation of 
events history. It is not a data mining algorithm but a data preparation transform. All algorithms to perform 
regression, classification or segmentation only work on a fixed number of columns, but sometimes a customer 
can be associated with a list of events (the purchase history for example) with different size for every customer, 
so this list of events (or transactions) must be translated in a number of fixed columns in one way. These type 
of operations are called pivoting in data mining because they translate information contained in the same 
column of different lines into different columns on a single line (for a given customer identifier for example). 
SAP Predictive Analytics Explorer - Event Logging and SAP Predictive Analytics Explorer - Sequence Coding 
belong to these types of transformations.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 179



SAP Predictive Analytics Explorer - Sequence Coding can be used to represent the history of a customer, or an 
history of a log of defects associated with a machine in a network. This component merges static information 
(coming form a static table) and dynamic information (coming from a log table). The user must have these two 
tables available before using the component. The table containing static information is generally called the 
"reference" table, and it is associated in the models with the classical data set names or roles such as Training, 
Estimation, Validation, Test or ApplyIn. The table containing the log of events (sometimes called the 
"transactions" table) is associated with a name beginning with the name "Events".

SAP Predictive Analytics Explorer - Sequence Coding is said to build fine-grained representations as it 
summarizes the count of different events or even the transitions between different events for a given reference 
object. A good usage example of SAP Predictive Analytics Explorer - Sequence Coding is when trying to 
represent web log sessions. The reference table contains information about the sessions, and the transactions 
table contains the click-stream. SAP Predictive Analytics Explorer - Sequence Coding is able to represent each 
session as the transitions between possible pages (or meta-information about the pages).

7.3.3.9.1 Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder/Parameters

This section describes the parameters of the KSC component, which can be found under the Parameters 
section of the component.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder/Parameters/Transactions

This folder contains information related to the log (transaction) dataset.

Parameter Description

EventsSpaceName [read-only when transform is in ready state] The mandatory 
column in which is stored the name of the data set that holds 
information about the events. The default value is 'Events'. 
The name of this dataset must start with 'Events'.

IdColumnName [read-only when transform is in ready state] Indicates the 
name of the column containing the identifier of the main ob
ject (customer ID, machine ID, session ID) in the transaction 
table. A proper value – that is, a value of a discrete variable – 
is mandatory.

DateTimeColumnName [read-only when transform is in ready state] he mandatory 
column in which is stored the date of each event in the trans
action data set. The system does not test for the fact that 
the events of this data set are extracted in the increasing 
date order. It is up to the environment to ensure this is cor
rectly done (using proper index and sorted by SQL state
ment for example).

180 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

StartLogOnDate [read-only when transform is in ready state] This allows to 
consider only sequences identifiers for which the Date col
umn contains a value superior to the specified date.

EndLogOnDate [read-only when transform is in ready state] This allows to 
only consider sequences identifiers for which the Date col
umn contains a value inferior to the specified date.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder/Parameters/Reference

This is the folder for information related to the sequences (static or reference table for sequence) dataset.

Parameter Description

IdColumnName [read-only when transform is in ready state] indicates the 
name of the column containing the identifier of the main ob
ject (customer ID, machine ID, session ID, etc...) in the refer
ence table. This is used to join the event log with the proper 
case. A proper value – that is, a value of a discrete variable is 
mandatory.

DateColumnName [read-only when transform is in ready state] This column (if 
filled) contains a date that will be compared to StartDate and 
EndDate. This allows to clip the references object between 
two dates. It must be noted that this is done of the reference 
table and NOT on the transactions table.

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder/Parameters/Representation

This folder contains all the information needed to specify what type of encoding of sequences is chosen by the 
user.

Parameter Description

InterSeq This is a boolean value that allows to generate intermediate 
sequence when set to 'true'. This value can be changed for 
runtime where the transaction set contains only the last 
valid events and the user wants to make real-time evaluation 
at this point of the sequence. This flag is mainly used to gen
erate training data set from a transaction file when the de
sired predictive model is to be used at each step of a se
quence of events. The default value is "false".

LastStepOnly This is a boolean value only meaningful in intermediate se
quences mode. This instructs KSC to only generate lines cor
responding to last steps of sessions. The default value is 
"false".

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 181



Parameter Description

InternalStorage This contains the place holder that will allows us to activate 
our own internal storage to avoid large memory consump
tion. The default value is "Memory".

PercentageToKeep This value is used to filter the CountXXX/CountTransi
tionXXX output columns generated by KSC (see KSC gener
ated variables for more information).

 Syntax
Path: Protocols/Default/Transforms/Kxen.SequenceCoder/Parameters/Representation/
Operations

Parameter Description

Count [folder] contains a simple template that allows the user to in
sert variable names. Each value of the inserted variables will 
be translated in a new column by KSC. Count encodes the 
sequences using one column per valid state in the specified 
column (states that are seen only once for the transactions 
associated with the reference id present in the Estimation 
data set are discarded).

CountTransition [folder] contains a simple template that allows the user to in
sert variable names. Each transition of values of the inserted 
variables will be translated in a new column by KSC. Count
Transition encodes the sequences using one column per 
valid pair wise state transition in the specified column (state 
transitions that are seen only once for the transactions asso
ciated with the reference id present in the Estimation data 
set are discarded).

FirstLast [folder] contains a simple template that allows the user to in
sert variable names. All the standard columns not related to 
a specific operator (see the Result section) will be generated 
(that is: all the columns except for the ksc_Countxxx and 
ksc_CountTransitionxxx ones).

7.3.3.9.2 Results

There is no "real results" provided by SAP Predictive Analytics Explorer - Sequence Coding. SAP Predictive 
Analytics Explorer - Sequence Coding only outputs new variables with their statistics on all data sets.These 
variables can be found in the Variables section of the parameter tree.

As far as integration is concerned, there is a little trick to know. When integrating a SAP Predictive Analytics 
Explorer - Sequence Coding transform into a protocol, it is indeed useful to ask this transform to compute the 
output columns. The catch is that, in order to do this, SAP Predictive Analytics Explorer - Sequence Coding 
must make a first pass on the transaction table to find what the valid states and transitions are between states. 
This is done through a checkMode call to the model. The generated output variables (for example, the output 
columns) are provided below.

182 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



● ksc_Start_Date: the starting date of the session, deduced from the transaction space (can be unknown if 
bad date format is encountered ).

● ksc_End_Date: the ending date of the session.
● ksc_TotalTime: the total time of the session (namely, the difference between ksc_Start_Date and 

ksc_End_Date).
● ksc_Number_Events: the total number of steps (events) in the session, computed from the transaction 

space.
● ksc_XXX_FirstState: the first state of the variable XXX at the first step of the session.
● ksc_XXX_FinalState: the final state of the variable XXX at the closing step of the session.
● ksc_CountXXX-C_sn: the number of times the 'sn' state has been encountered in the session for the 

variable XXX. The number of CountXXX columns can be regulated via the PercentageToKeep parameter: 
only those column whose total number of events (computed over all the sessions) account for the given 
percentage of all events will be kept.

● ksc_CountXXX_KxOther: a column agglomerating results for events not encountered enough to have their 
own Count column. Filtered out CountXXX columns are agglomerated here.

● ksc_CountTransitionXXX-T_sn->sm: the number of times the transition between 'sn' and 'sm' states has 
been encountered for the variable XXX. Those columns can be filtered out as with the ksc_CountXXX-C_sn 
ones.

● ksc_CountTransitionXXX-KxOther: a column agglomerating results for transitions not encountered enough 
to have their own Count column. Filtered out CountTransistionXXX columns are agglomerated here.

● ksc_CountTransitionXXX-T_OUT->sn: similar to sn->sm columns. The OUT state is SAP Predictive 
Analytics naming meaning that the session had not begun yet.

On intermediate sequences mode, the following variables are also generated:

● ksc_LastStepNumber: the number of steps of the session up to the previous step.
● ksc_Last_date-time: the date of the previous step in the session.
● ksc_Last_duration: the duration of the session up to the previous step.
● ksc_Session_continue: a boolean value saying whether the current step is ending the session.
● ksc_XXX_LastState: the previous step state of the variable XXX.
● ksc_XXX_NextState: the next step state of the variable XXX.

7.3.3.10  Kxen.TimeSeries

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries

SAP Predictive Analytics Modeler – Time Series lets you build predictive models from data representing time 
series. Thanks to SAP Predictive Analytics Modeler – Time Series models, you can:

● Identify and understand the nature of the phenomenon represented by sequences of measures, that is, 
time series.

● Forecast the evolution of time series in the short and medium term, that is, to predict their future values.

How does SAP Predictive Analytics Modeler – Time Series work?

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 183



SAP Predictive Analytics Modeler – Time Series breaks down the signal into four components:

● The trend. The trend represents the evolution of a time series over the period analyzed. The trend is 
represented either by a function of time or by signal differentiating, which is calculated in SAP Predictive 
Analytics Modeler – Time Series using the principle that a value can be predicted well enough based on the 
previous known value. Calculating the trend allows to build a stationary representation of the time series 
(that is, the time series does not increase or decrease any more). This stationary representation is 
essential for the analysis of the three others components.

● The cycles. The cyclicity describes the recurrence of a variation in the signal. It is important to distinguish 
calendar time from natural time. These two time representations are often out of phase. The former - 
which is referred to as seasonality - represents dates (day, month, year and so on), while the latter - which 
is referred to as periodicity - represents a continuous time ( 1, 2, 3 and so on).

● The fluctuations. Fluctuations represent disturbances that affect a time series. In other words a time series 
does not only depend on external factors but also on its last states (memory phenomena). We try and 
explain parts of the fluctuations by modeling them on past values of the time series (ARMA or GARCH 
models).

● The residue. The information residue is the information that is not relevant to explain the target variable. As 
such, predictive models generated by SAP Predictive Analytics Modeler – Time Series are characterized 
only by the three components trend, cycles and fluctuations.

Another important part of a Time Series modeling is to make some forecasts. An SAP Predictive Analytics 
Modeler – Time Series model will use its own prediction in order to predict the next value.

7.3.3.10.1  Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Parameters

This section describes parameters of SAP Predictive Analytics Modeler – Time Series which can been found 
under the 'Parameters' section of the component.

Parameter Description Values

AutoFeedCount The number of steps in the future for which the model will be 
optimized (Learning Horizon).

An integer value.

MaxCyclics The maximal number of cycles analyzed by SAP Predictive 
Analytics Modeler – Time Series. 450 is the maximal num
ber of cycles that SAP Predictive Analytics Modeler – Time 
Series is able to analyze. During the learning phase, this 
number may be reduced to half of the estimation data set.

An integer value.

450 is the default value.

MaxLags The number of lagged variables equal to a quarter of the es
timation set size with no maximum value.

An integer value.

Note - The fluctuations step 
can be skipped by setting 
this parameter to 0.

LastRowWithForecast
ingInformation

Saves the index of the last line of the file. This parameter is 
required if you want to use extra predictable inputs.

An integer value.

184 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

ModelsGenerationOpt
ion

Controls how the models are generated internally by SAP 
Predictive Analytics Modeler – Time Series.

● Default
● “Only Based on 

Extra 
Predictables”

● “Disable the 
Polynomial 
Trend”

● Customized

CustomizedModelGene
ration (folder)

Used when the model generation is customized. It contains a 
boolean entry for each model.

Not applicable.

VariableSelection 
(folder)

This parameter groups some controls for the variable selec
tion feature. When a variable selection is used, an automatic 
selection process is performed on trends or AR models dur
ing the competition and the result is kept only if it improves 
the final model.

● PercentageContri
b

● ActivateForEXPTr
ends

● ActivateForAutoR
egressiveModels

ProcessOutliers Activates an outliers processing strategy. Some extreme val
ues are avoided when estimating the time-based trends 
leading to a more robust trend estimation.

● true (default value)
● false

ForcePositiveForeca
st

Activates a mode where the negative forecasts are ignored 
(replaced by zero). This is useful when the user knows that 
the nature of the signal is positive (number of items in stock, 
amounts, number of passengers, and so on).

● true
● false (default value)

AutoFeedCountApplie
d (Apply Horizon)

The number of steps in the future on which the model will be 
applied. This parameter may be different from the learning 
horizon (AutoFeedCount). This will generate as many fore
casts.

An integer value.

Note - If this parameter is not 
set, it is equal to the learning 
horizon.

ForecastsConnection Gives the format of the forecasts in the output of SAP Pre
dictive Analytics Modeler – Time Series.

● true(default value): the 
forecasts are trans
posed at the end of the 
kts_1 variable with the 
corresponding dates.

● false: the forecasts 
stay in the last line of the 
file.

ExtraMode A special flag that allows to set the type of outputs that SAP 
Predictive Analytics Modeler – Time Series will generate.

● No Extra
● Forecasts and 

Error Bars
● Signal 

Components
● Component 

Residues

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 185



Parameter Description Values

ErrorBarsConfidence Used to control the degree of confidence requested to com
pute the confidence interval for each horizon forecast (de
fault 95%).

A percentage value.

95% is the default value.

DateColumnName The column in which is stored the date. This parameter is set 
by the user and it cannot be changed later for a given model.

A character string.

DateNeedSetKeyLevel Unsed internally when the key level is not set. Not applicable.

PredictableExtras The folder that contains all the exogenous variables whose 
future values are known (like a variable describing "the first 
Friday of the month", an "isAWorkingDay" variable describ
ing working days).

User-dependent

UnPredictableExtras The folder that contains all the exogenous variables whose 
future values are not known (like variables describing 
"monthly benefits" or "oil crisis").

User-dependent

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Parameters/
ModelsGenerationOption

Parameter Description

Default No specific action. Generate all the known models.

"Only Based on Extra 
Predictables"

Restricts the models to those using extra predictable variables.

"Disable the Polynomial 
Trend"

Generates all the models but those containing a polynomial trend.

Customized Gives the possibility to enable/disable any model generated by SAP Predictive 
Analytics Modeler – Time Series. A boolean flag is associated to each trend/
cycle/fluctuation model type. These flags are detailed in the CustomizedModel
Generation parameter below.

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Parameters/
CustomizedModelGeneration

The following options are relevant only if the ModelGenerationOption parameter is set to Customized.

Parameter Description

Lag1 Controls the Lag1 trend (the previous value of the signal).

Lag2 Controls the Lag2 trend (the value before previous).

Linear Controls the Linear trend (Linear regression on the time).

Polynomial Controls the Polynomial trend (Polynomial regression on the time).

186 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

ExtraPredictors Controls the ExtraPredictors trend (Linear regression on the extra-predictable 
Variables).

LinearPlusExtraPredictors Controls the Time and ExtraPredictors trend (Linear regression on the time and 
extra-predictable Variables).

PolynomialPlusExtraPredict
ors

Controls the polynomial in time and linear in ExtraPredictors trend (polynomial 
regression on the time and linear in extra-predictable variables).

Cycles Controls the cyclic variable detection.

Seasonal Controls the Seasonal Variable detection.

PeriodicExtraPredictables Controls the extra-predictable usage as periodics.

AutoRegression Controls the autoregressive modeling.

For example, to disable the linear trend, you need to set CustomizedModelGeneration/Linear to false.

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Parameters/VariableSelection

Parameter Description Values

PercentageContrib The percentage of contributions that are kept in the auto
matic selection process.

95% is the default value.

ActivateForEXPTrend
s

When set to true, it performs a variable selection on all ex
tra-predictable-based trends.User variables are kept only if 
they have sufficient contributions in the trend regression.

● true (default value)
● false

ActivateForAutoRegr
essiveModels

When set to true, it performs a variable selection on all 
auto-regressive models. This is an automatic selection on 
the past values (lags) of the signal. This leads to a more par
simonious (lower order and simpler) AR model.

● true
● false (default value)

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Parameters/ExtraMode

Parameter Description

No Extra Generates basic outputs, that is the target variable and its predicted values.

Forecasts and Error Bars Generates the same as above, with the confidence interval for each learning hori
zon.

Signal Components Generates basic outputs plus signal components (trend, cycles and so on). Pre
dicted values correspond to the sum of all of these signal components.

Component Residues Generates the same outputs as Signal Components plus to the residues' values 
for each predicted signal component.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 187



7.3.3.10.2  Results

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Results

This section describes the results of SAP Predictive Analytics Modeler – Time Series.

Parameter Description Values

Variables (folder) The folder where all variables used to build the model are 
stored. Each variable appears as a folder containing two sub
folders:

The <Variable_Name> 
folder is described by two 
subfolders:

● Variable (folder)
● KTS_Specifics 

(folder)

Model (folder) The folder describing all the components used by the gener
ated model. The specified value is the name of the model 
created by SAP Predictive Analytics Modeler – Time Series.

Note - This variable can be found in the 'Variables' folder un
der 'Results' section. If this section does not exist, it means 
that no model has been found.

● MaximalHorizon
● Trend (folder)
● Fluctuations
● Outliers 

(folder)

Perfs (folder) The folder where all performance indicators on all data sets 
for all forecasts are stored (details on these indicators is 
given previously). These performances were computed be
tween signal and all autofeed variables.

For detailed explanation, see 
KTS_Specifics Perfs values.

TimeAmplitude Set only for datetime or date variable. This describes granu
larity of the amplitude between the first and the last date of 
the estimation data set (hour, day, month, year).

● hourAmplitude
● dayAmplitude
● monthAmplitude
● yearAmplitude

TimeGranularity Set only for datetime or date variable. This describes the 
average granularity between each dates of the Estimation 
data set (second, minute, hour, day, week, month, year).

● secondAmplitude
● minuteAmplitude
● hourAmplitude
● dayAmplitude
● weekAmplitude
● monthAmplitude
● yearAmplitude

TimeStorage the storage type of date variable. ● date
● datetime
● integer
● number

FirstDate The first date in learning file. date

LastDate The last date is the learning file.s date

IsDeltaTimeConstant A boolean value that indicates if variation between each date 
are constant.

● true
● false

188 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

DeltaTime The mean difference betwwen two consecutive times ob
served on the estimated dataset.

A real value.

NbInit The number of lines reading in the file before learning or ap
plying. This index is used to initialize model variables.

Not applicable (it is an inter
nal parameter).

Forecast n MAPE Indicators

Parameters Description

Estimation/MAPE MAPE indicator value for each horizon in the training dataset

Validation/MAPE MAPE indicator value for each horizon in the validation dataset

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Results/Variables

The Variables folder is the folder where all variables used to build the model are stored. Each variable appears 
as a folder containing two subfolders. The table below describes the two subfolders available.

Parameters Description Values

Variable (folder) The folder for global information related to internal SAP Pre
dictive Analytics Modeler – Time Series variables.

All SAP Predictive Analytics 
regular variable parameters, 
together with some specific 
ones (see KTS_Specifics pa
rameter, detailed below).

KTS_Specifics (folder) The folder for specific information for each variable build by 
SAP Predictive Analytics Modeler – Time Series. The value 
specified is the type of the variable generated by SAP Predic
tive Analytics Modeler – Time Series.

Variable-dependent.

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Results/Model

Parameter Description Values

MaximalHorizon The maximal reliable horizon for the final SAP Predictive An
alytics Modeler – Time Series Model. This horizon may be 
lower than the horizon requested by the user.

An integer value.

Trend (Folder) The name of the trend used by the model. Model-dependent.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 189



Parameter Description Values

Cycles Contains all the periodic and seasonal variables, separated 
by commas, used by KTS. For each cyclic, seasonal, extra-
predictable variable in the cyclic component, the duration 
(when relevant) is given under Cycles/CycleName/Duratio
nInSeconds.

A list of cyclic components.

Fluctuations Describes the auto-regressive process used by the model. 
This process is noted AR, and the number between the pa
rentheses gives the order of this one.

The "AR" process, followed 
by its order in parentheses.

e.g.: [AR(37)]

Outliers (folder) Provides the outliers for the current model. For each data set and each 
outlier, the date, signal and 
model values are provided.

 Note
One or more of the previous elements (Trend, Cycles, Fluctuations) may not exist. In this case, it means 
that the related component has not been detected by the model.

Outliers

For each outlier, the following three pieces of information are provided:

Parameter Values

Date A date format.

Signal A real value.

Model A real value.

7.3.3.10.3  Infos

 Syntax
Path: Protocols/Default/Transforms/Kxen.TimeSeries/Infos

This folder contains the LearnTime parameter, that is the time (in seconds) needed for the model learning.

7.3.3.11  Kxen.TextCoder

 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder

190 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



SAP Predictive Analytics Explorer - Text Coding (formerly known as KTC) is a solution for Text Analytics. It 
automatically prepares and transforms unstructured text attributes into a structured representation to be used 
within the SAP SAP Predictive Analytics modeling components.

SAP Predictive Analytics Explorer - Text Coding automatically handles the transformation from unstructured 
data to structured data going through a process involving “stop word” removal, merging sequences of words 
declared as 'concepts', translating each word into its root through “stemming” rules, and merging synonyms. 
SAP Predictive Analytics Explorer - Text Coding allows text fields to be used “as is'” in classification, regression, 
and clustering tasks. It comes packaged with rules for several languages such as French, German, English and 
Spanish, and can be easily extended to other languages.

SAP Predictive Analytics Explorer - Text Coding improves the quality of predictive models by taking advantage 
of previously unused text attributes. For example, messages, emails sent to a support line, marketing survey 
results, or call center chats can be used to enhance the results of models for cross-sell or attrition.

7.3.3.11.1  Parameters

 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder/Parameters

This section describes parameters of SAP Predictive Analytics Explorer - Text Coding that can been found 
under the 'Parameters' section of the component.

Parameter Description Values

WordSeparators Indicates a list of possible word separators in 
the textual fields. The default value contains the 
following separators:, . [ ] ( ) < > " 
+ & = + # @ * ! ' - : ; ? / \ 
tabulation return

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 191



Parameter Description Values

LanguageStore  ● Location: loca
tion of new lan
guage files. A lan
guage is repre
sented by two 
files: 
StemmingRule
s_<language 
name> and 
StopList_<la
nguage name> 
(by default this 
parameter is 
empty).

● ExcludedLang
uage: list of the 
languages ex
cluded from the 
language auto
matic detection 
(by default this 
parameter is 
empty).

Language  ● Language: the 
language of the 
textual fields (de
fault value en).

● LanguageDefa
ultValue: the 
default language if 
no language has 
been detected 
during the lan
guage automatic 
detection (the de
fault value is en).

LanguageDetecti
onEnabled

A Boolean value that indicates whether the lan
guage automatic detection is enabled.

● False: If set to 
False, the user-
defined language 
will be used.

● True: default 
value.

 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder/Parameters/ExtraMode

A special flag that allows setting the type of outputs that SAP Predictive Analytics Explorer - Text Coding will 
generate during an apply.

192 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description

Transactional Generates one row for each identified root with:

● a column containing the key index from the original row,
● a column containing the index of the current root in the textual field,
● a column indicating from which textual field the root is extracted,
● a column containing the current root.

Vectorization Generates all the columns provided in the original data set and for each textual 
field:

● a column is created for each root identified by the model. If the root repre
sented by the column is present in the record, the value is set to 1, else it is 
set to 0.

● one column provides the number of elements recognized by SAP Predictive 
Analytics Explorer - Text Coding in the record

● one column provides the number of distinct root found in the record.

Language Detection Generates for each textual field a column indicating the language recognized by 
SAP Predictive Analytics Explorer - Text Coding for this record. The value can be 
the ISO language code, or the empty value if no language is recognized.

Generate Only Roots Generates the following columns for each textual field:

● one column for each root identified by the model. If the root represented by 
the column is present in the record, the value is set to 1, else it is set to 0.

● one column providing the number of elements recognized by SAP Predictive 
Analytics Explorer - Text Coding in the record

● one column providing the number of distinct root found in the record.

 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder/Parameters/ProcessingOptions

Parameter Description Values

StopListenabled A Boolean value that indicates whether the stop list will be 
used or not.

● true(default value)
● false

Stemmingenabled A Boolean value that indicates whether the stemming rules 
will be used or not.

● true(default value)
● false

ConceptListenabled A Boolean value that indicates whether the concept list will 
be used or not.

● true
● false(default value)

Synonymyenabled A Boolean value that indicates whether the synonymy will be 
used or not.

● true
● false(default value)

DebugMode A Boolean value that indicates whether the debug mode is 
activated.

● true
● false(default value)

VolatileStopList A parameter used to define a user's list of stop words. The default value is empty.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 193



 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder/Parameters/RootSelection

Parameter Description Values

RankingStrategy Allows you to select the ranking strategy for the root selec
tion, that is, to select which roots to keep in the dictionary.

● Frequency(default 
value)

● shannonEntropy
● kullbackInformat

ion
● mutualInformatio

n
● chiSquare
● informationGains

NbRootGenerated Indicates the maximum number of roots generated by SAP 
Predictive Analytics Explorer - Text Coding.

1000: default value

MinThreshold Indicates a threshold in percentage. If a root apepars in less 
than the inicated percentage of all textual fields, it will be 
eliminated.

5: default value

MaxThreshold Indicates a threshold in percentage. If a root appears in more 
than the indicated percentage of all textual fields, it will be 
eliminated.

100: default value

 Syntax
Path: Protocols/Default/Transforms/Kxen.TextCoder/Parameters/EncodingStrategy

Each root is converted into a variable and when the root appears in a text, its presence can be encoded with 
one of the strategies listed.

Parameter Description Values

boolean Specifies whether the word is present or not. 1: the word is present.

0(default value): the 
word is absent.

termFrequency The frequency of apparitions of the root in the 
current text.

An integer value.

termCount The frequency of apparitions of the root in the 
current text.

An integer value.

termFrequencyInverseDocumentFreq
uency

Stands for the apparition frequency of the root 
in the current text divided by the apparition fre
quency of the root in the whole set of texts.

An integer value.

termCountInverseDocumentFrequenc
y

The number of apparitions of the root in the cur
rent text divided by the number of apparitions of 
the root in the whole set of texts.

An integer value.

194 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.4 DataSets

 Syntax
Path: DataSets

A data space is an ordered list of cases (or events). It can be viewed as a file in a folder, a table in a database, a 
SELECT statement (using SQL), or an Excel worksheet. A data space is generally associated with a model 
through a role name: we call this association a 'dataset'. A classical example is when the transform must be 
trained (you may prefer the term 'estimated') on a set of examples: in this case the set of examples used to 
estimate the transform parameters will be known to the model as the "Estimation" dataset. Data spaces belong 
to stores. A store federates several physical spaces. It can be viewed as a file folder, a database, or an Excel 
workbook. Stores can be created directly because models can be saved into specific spaces contained in 
stores: this mechanism allows to view the models saved into a store and to restore them.

7.4.1  Parameters

 Syntax
Path: DataSets/<Dataset_Name>/Parameters

Parameters Access Description Possible Values

MappingByPositi
onCheckPolicy

Read-write When SAP Predictive Analytics needs to use a 
mapping by position, it checks that technical 
columns and variables have compatible types. 
This check can be setup to be very strict and ac
cept only equals types or more loose and accept 
some type conversions. For example, a integer 
to datetime conversion is always rejected, but a 
text to datetime conversion is accepted with 
SoftCheck setup and rejected with 
StrongCheck setup.

● StrongCheck
● SoftCheck (De

fault value)

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 195



Parameters Access Description Possible Values

MappingReportSu
ccessUILevel

Read-write This parameter allows tuning the quantity of in
formation displayed to the user when a success
ful mapping is done.

● NoReport (De
fault value): it 
does not provide 
any information.

● SmallReport: 
it displays only a 
short report on 
important infor
mation (for exam
ple, the number of 
unmapped col
umns).

● FullReport: it 
displays all de
tailed informa
tions (for exam
ple, the full list of 
columns not map
ped).

MappingReportFa
ilureUILevel

Read-write This parameter allows tuning the quantity of in
formation displayed to the user when a mapping 
has failed.

● NoReport it 
does not give any 
information.

● SmallReport (the 
default value): it 
displays only a 
short report on 
important infor
mation related to 
the failure (for ex
ample, the num
ber of mandatory 
variables not 
mapped).

● FullReport it 
displays all de
tailed information 
(for example, the 
full list of variables 
not mapped).

196 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Access Description Possible Values

MappingReportPa
rameterLevel

Read-write For each mapping, whatever its result, a report 
is stored in the parameters tree, which the user 
can programmatically investigate. As previously, 
the level of information stored in the parameters 
tree can be tuned with this parameter.

● NoReport it 
does not give any 
information.

● SmallReport it 
displays only a 
short report on 
important infor
mation related to 
the failure (for ex
ample, the num
ber of mandatory 
variables not 
mapped).

● FullReport (De
fault Value): it dis
plays all detailed 
information (for 
example, the full 
list of variables 
not mapped).

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 197



Parameters Access Description Possible Values

MappingResults Read-only A set of parameters describing what is the de
tailed result of the mapping process.

● MappingOK
● PhysicalToLo

gical
● MappingByNam

e
● HasAddedKxIn

dex
● NbMandatoryV

ariables
● NbOptionalVa

riables
● NbFieldsForM

ap
● NbMandatoryV

ariablesNotM
apped

● NbVariablesN
onCompatible

● NbVariablesM
appedWithFor
biddenConver
sion

● NbVariablesM
apped

● NbVariablesA
utoName

● NbVariablesM
appedUserNam
e

● NbVariablesM
appedWithCon
version

● NbFieldsMult
iUsed

Explain Read-only If the parameter is set to true, then when sub
mitting an SQL request, instead of returning the 
resulting values, the DBMS returns a specific re
sult set describing step by step how the SQL re
quest will be executed and how much time each 
step will take.

● true
● false(default 

value)

CanExplain Read-only Asks whether SAP Predictive Analytics can 
manage the Explain mode.

● true
● false

FilterCondition 
(Directory)

Describes the filter as a tree of atomic tests to 
be evaluated.

● Operator
● Variable
● Value

198 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Access Description Possible Values

FilterCondition
String

Read-only A character string featuring a filter condition. A character string, for 
example 'where'

Locale Read-write It is used to specify the character set of the data 
set (ASCII, Latin-1,UTF-8), the decimal symbol 
(dot or comma) and the number of digits after 
the decimal. The following table details these el
ements and their values.

● L
● S
● P
● D

Connector Read-write It indicates whether or not the space is a data 
manipulation.

● true: the root of 
the data manipu
lation structure.

● false

SkippedRows ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is the number of rows that the system must 
skip before actually reading data. This is filled in 
when the user specify a periodic cut strategy for 
a model.

An integer

LastRow ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is the last valid row that the system will take 
as part of the data set. This is filled when the 
user specify a periodic cut strategy for a model.

An integer value.

ModuloMin ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is used for periodic cut training strategy and 
filled by the system.

An integer value.

ModuloMax ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is used for periodic cut training strategy and 
filled by the system.

An integer value.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 199



Parameters Access Description Possible Values

ModuloPeriod ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is used for periodic cut training strategy and 
filled by the system.

An integer value.

RandomMin ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is used for random cut training strategy and 
filled by the system.

An integer value.

RandomMax Read-only for all input 
spaces except ApplyIn 
when the model is in 
ready state, not availa
ble for output space

It is used for random cut training strategy and 
filled by the system.

An integer value.

RandomSeed Read-only for all input 
spaces except ApplyIn 
when the model is in 
ready state, not availa
ble for output space

It is used for random cut training strategy and 
filled by the user.

An integer value.

HeaderLines ● Read-write
● Read-only for all 

input spaces ex
cept ApplyIn when 
the model is in 
ready state, not 
available for out
put space

It is the number of lines that the system must 
skip before actually reading the header line.

If this parameter is set 
to 0, then the data file 
begins with the column 
names.

Note - this parameter 
is used only if the 
ForceHeaderLine 
parameter is set to 
true.

RowsForGuess Read-write It is the number of rows that SAP Predictive An
alytics will read in order to analyze the actual 
data and guess the value of variables (nominal, 
ordinal, continuous) and depending on the kind 
of data access, their storage (integer, number, 
string, date, datetime).

An integer value.

200 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Access Description Possible Values

GuessDescriptio
nUsesConnectorI
nfo

Read-write It is a boolean flag used by connectors to give 
priority to or ignore the user-defined informa
tion (fields storage, value type, description, …) 
in the guess description process.

● true: the infor
mation coming 
from the user will 
be preferred and 
used.

● false: the guess 
description will al
ways follow the 
full process 
(which involves 
the analysis of the 
first N data rows).

ForceHeaderLine Read-write ● true: if the data 
has a header line 
but the analysis 
done by SAP Pre
dictive Analytics 
did not find it. For 
example, this hap
pens when the 
data set contains 
only strings or 
only numeric val
ues. In such a 
case, by design, 
the data set does 
not have any 
header and all 
rows are consid
ered as data. 
When set to 
true, the param
eter HeaderLines 
must also be set.

● false: ex
plain???

Open Read-only The name of the space (that can be used to 
open the physical space containing data)or the 
full SQL string when the space is a data manipu
lation.

A character string.

Specification Read-only It is either the name of the data manipulation 
being used (when working with a data manipula
tion) or the value of the Open parameter (see 
above).

A character string.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 201



Parameters Access Description Possible Values

Mode Read-only ● r" (default value): 
for input space

● w": for output 
spaces

● "a": also for out
put spaces

Store Read-only The open string used to open the store to which 
belongs the space. A store can be either a folder 
or an ODBC source.

A character string.

StoreClass Read-only The class of the store 'Kxen.ODBCStore' or 
'Kxen.FileStore'.

● Kxen.ODBCStore
● Kxen.FileStore
● Kxen.UserStore
● Kxen.FlatMemor

yStore

State Read-only The state of the data space. ● created
● withVariableSta

tistics

FilterCondition
String

Read-only A user-friendly version of the filter applied to the 
training data set, if there is any.

A character string.

7.4.1.1 MappingResults

Parameters Description Values

MappingOK Specifies if the mapping is successful 
or not.

● true: when the mapping is suc
cessful

● false: when the mapping failed.

PhysicalToLogical Is set to true when the mapping is 
done in read mode (mapping a techni
cal column name to a variable) or in 
write mode (mapping a variable to a 
technical column name).

● true
● false

202 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Description Values

MappingByName Is set to true if the mapping has suc
cessfully associated all mandatory vari
able names to a unique technical col
umn name. The comparison is case-in
sensitive but will prefer case-sensitive 
matching. For example, for a variable 
named Age and technical names AGE 
and Age, the mapping will select Age. 
If AGE is the only technical column 
name available, it will be selected. If 
MappingByName is false, it means 
that a mapping by position has been 
tried. The variable and technical col
umn names have matched related to 
their position.

● true
● false

HasAddedKxIndex Specifies if SAP Predictive Analytics 
has automatically added its own key. 
This occurs when no other key has 
been declared.

● true: if SAP Predictive Analytics 
has automatically added its own 
key.

● false: if a key exists, but has not 
been added by SAP Predictive Ana
lytics.

NbMandatoryVariables Refers to the number of variables 
that ;ust be successfully mapped. This 
set of variables depends on the data set 
and on the operation requested. For ex
ample, for a regression, a training data
set must have its target mapped. But 
for an applyIn dataset, the target is not 
mandatory.

An integer value.

MandatoryVariables Refers to the list of variables that ;ust 
be successfully mapped. This set of var
iables depends on the data set and on 
the operation requested. For example, 
for a regression, a training dataset must 
have its target mapped. But for an ap
plyIn dataset, the target is not manda
tory.

List of the variables separated by a 
comma.

NbOptionalVariables Refers to the number of variables that 
need not be mapped.

An integer value.

OptionalVariables Refers to the list of variables that need 
not be mapped.

List of the variables separated by a 
comma.

NbFieldsForMap Refers to the number of technical col
umn names that SAP Predictive Analyt
ics has found in the data set.

An integer value.

FieldsForMap The list of technical column names that 
SAP Predictive Analytics has found in 
the data set.

List of the fields separated by a comma.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 203



Parameters Description Values

NbMandatoryVariablesNotMap
ped

Refers to the number of mandatory var
iables not mapped.

An integer value. Any value other than 0 
indicates a mapping error.

MandatoryVariablesNotMappe
d

Refers to the list of mandatory variables 
not mapped.

List of the variables separated by a 
comma.

NbVariablesNonCompatible Refers to the number of variables that 
matched but needed a conversion de
pending on the CheckPolicy. For exam
ple, with StrongCheck an integer 
technical column cannot be mapped to 
a text variable.

An integer value.

VariablesNonCompatible Refers to the list of variables that 
matched but needed a conversion de
pending on the CheckPolicy.

List of the variables separated by a 
comma.

NbVariablesMappedWithForbi
ddenConversion

Refers to the number of variables that 
matched but needed a forbidden con
version. For example, an integer techni
cal column cannot be mapped to date
time variable.

An integer value.

VariablesMappedWithForbidd
enConversion

Refers to the list of variables that 
matched but needed a forbidden con
version.

List of the variables separated by a 
comma.

NbVariablesMapped Refers to the number of variables suc
cessfully mapped whatever their man
datory status.

An integer value.

VariablesMapped Refers to the list of variables success
fully mapped whatever their mandatory 
status.

List of the variables separated by a 
comma.

NbVariablesAutoName Refers to the number of variables which 
have been automatically matched by 
SAP Predictive Analytics without any 
user action.

An integer value.

VariablesAutoName Refers to the list of variables which have 
been automatically matched by SAP 
Predictive Analytics without any user 
action.

List of the variables separated by a 
comma.

NbVariablesMappedUserName Refers to the number of variables which 
have been explicitly matched by the 
user (with the use of the InSpaceName 
or Spacename mechanisms).

An integer value.

VariablesMappedUserName Refers to the list of variables which have 
been explicitly matched by the user 
(with the use of the InSpaceName or 
Spacename mechanisms).

List of the variables separated by a 
comma.

NbVariablesMappedWithConve
rsion

Refers to the number of variables which 
have been matched but needed a type 
conversion.

An integer value.

204 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameters Description Values

VariablesMappedWithConvers
ion

Refers to the list of variables which have 
been matched but needed a type con
version.

List of the variables separated by a 
comma.

NbFieldsMultiUsed Refers to the number of technical col
umn names that have been used sev
eral times in the current mapping. A 
technical column name can be used 
only once.

An integer value.

FieldsMultiUsed Refers to the list of technical column 
names which have been used several 
times in the current mapping. A techni
cal column name can be used only 
once.

List of the fields separated by a comma.

7.4.1.2 Locale

The Locale parameter must be filled in the following format:

L=<locale>;S=<decimal symbol>;P=<precision>;D=<date representation>

The elements must be separated by semicolons.

Parameters Description Possible Values

L Stands for "locale". It refers to a charac
ter set.

file locale.

Example: fr_FR@8859-1, 
en_US.ISO8859-1, UTF-8,…

S Stands for "decimal symbol". ● 0, for dot
● 1, for comma

P Stands for "precision". It refers to the 
number of digits after the decimal. This 
element is only used when writing.

for example: 2

0 has the special meaning of “best 
width for a readable value"

D Stands for "date". It refers to the date 
format used within this file.

The value is of the form: XXX[:Z]

XXX is a group of 3 letters (among ‘Y’, 
‘M’ and ‘D’), indicating in which order 
Year, Month and Day are represented. Z 
is a symbol giving the separator used 
between each of these.

Examples of valid dates:

YMD DMY:/ MDY:-

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 205



7.4.1.3 Parameters Specific to File Spaces

Possible paths to the Parameters of the data set (according to the type of dataset):

● DataSets/Estimation/Parameters
● DataSets/Training/Parameters
● DataSets/Validation/Parameters

The following parameters are specific to file spaces:

Parameters Description Values

WarnIfLessFields A flag indicating if the user wants to be 
warned when the system does not find 
all fields on some line.

 

Separators This parameter can be changed until 
the space is actually read or write for 
the first time.The separator character 
used to separate fields in the line. In the 
user interface, user is required to de
scribe characters as strings such as 
"<tab>", "<comma>", "<semicolon>", 
"<space>", or any other non special 
character. More than one character can 
be specified here.

 

TrimedChars Characters that are trimmed when ap
pearing around fields.

The separator character used to sepa
rate fields in the line. In theThis param
eter can be changed until the space is 
actually read or write for the first time.

 

QuotingPolicy The quoting policy of the fields content. ● never: no matter what the con
tent of the fields are, it is never 
quoted.

● ifNeeded: the field content is 
quoted only when it contains a 
space or a special character.

● always: the field content is al
ways quoted.

 Note
Many parameters are available to tune the parameters for ODBC Spaces. See ODBC Fine Tuning 
documentation.

206 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.5 Plan

 Syntax
Path: Plan

The Plan groups together all parameters involved when performing In-database Application (IDBA). The IDBA 
is also an optimized scoring mode.

 Syntax
Path: Plan/Conditions

All following parameters must be true to fully perform the in-database-apply process.

Parameter Access Default Value Description

OnODBCStore Read-only true the applyIn store and applyOut store are an 
ODBC type

OnSameDataBase Read-only true the applyIn space and applyOut space are on 
the same ODBC source

OnDifferentTabl
e

Read-only true the applyIn space and applyOut space are differ-
ent

NoSubSamplingDe
fined

Read-only true no sub-sampling has been defined on the ap
plyIn space

KMXExistForThis
ODBC

Read-only true this ODBC source is available in SAP Predictive 
Analytics scorer

KMXLicenseAvail
able

Read-only true a license scorer is valid for the ODBC source

KMXDefinedForTr
ansformChain

Read-only true all transforms in the current model could be ex
ported with the in-database-apply process

PrimaryKeyDefin
edForApplyIn

Read-only true the current model has a physical primary key

LastTransformCo
mpliant

Read-only true the tuning parameter of the last transform for 
the current model is exported with the in-data
base-apply process

 Syntax
Path: Plan/Options

Parameter Access Default Value Description

Condition Read-only [Exist]

LogEnabled Read-only [false]

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 207



Parameter Access Default Value Description

NbColumnByUpdat
e

Read-only [n] The value of this parameter defines the number 
of element that is updated by pass.

For example, when the in-database-apply proc
ess exports model contributions, it updates n 
columns by pass (where n is the value of this pa
rameter). 0 indicates no limitation on element 
by update pass.

 Syntax
Path: Plan/Steps

Parameters Access Description Values

Query Read-only This parameter represents the internal SQL 
code that be executed at the steps .

[CREATE]

[INSERT]

[UPDATE]

Volume Read-only When it is possible, this parameter contains 
volumetric information of the internal SQL code 
for the current step.

 

Comment Read-only This parameter stores a short comment of the 
current internal SQL code.

[comment]

 Syntax
Path: Plan/Results

Parameters Access Description Values

PreparationTime Read-only Represents the time to initialize the in-data
base-apply process.

 

ExecutionTime Read-only Represents the time to execute the entire SQL 
plan defined by each steps.

 

Status Read-only Stores the result of the in-database-apply proc
ess.

In case of Failure, when information are availa
ble, the error will be stored in Plan/Results/
ERROR.

Failure/Success

208 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



7.6 External Executables

An external executable lets you define a list of programs (executables or scripts) in a configuration file. These 
executables can be run from a client on a server.

See the SAP Predictive Analytics Administrator Guide for more information.

7.6.1  ExternalExecutableAvailable

 Syntax
Path: ExternalExecutableAvailable

This parameter contains the list of available external executables. Each external executable is defined by a label 
and a description.

 Syntax
Path: ExternalExecutableAvailable/<External_Executable_Name>

This parameter contains the name of the external executable as defined by the key 
ExternalExecutable.Name in the configuration file.

Parameter Description

Label This parameter contains the label of the current external ex
ecutable. The label is in the current language if it has been 
translated in the configuration file.

This label is commonly a word that describes the behavior of 
the external executable.

Description This parameter contains the description of the current exter
nal executable. The description is in the current language if it 
has been translated in the configuration file.

The description is commonly one or two sentences that de
scribe the behavior of the external executable.

 Syntax
Path: ExternalExecutableAvailable/ExternalExecutableName

This node appears after the node ExternalExecutableName has been set and a command 
validateParameter has been performed. It contains all information about the current script.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 209



7.6.2  External_Executable_Name

 Syntax
Path: <External_Executable_Name>

This node appears after the node ExternalExecutableName has been set and a command 
validateParameter has been performed. It contains all information about the current script.

Parameter Description Value

ExternalExecutableName This parameter contains the name of 
the file that will be executed.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.External
ExecutableName defined in the con
figuration file.

Description This parameter contains the descrip
tion of current external executable.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Descript
ion defined in the configuration file.

Label This parameter contains an identifier 
that will be displayed by the SAP Pre
dictive Analytics Modeler. It is generally 
a word used to identify the external exe
cutable.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Label de
fined in the configuration file.

DefaultOutput This parameter is a Boolean that indi
cates whether the output is in the 
standard stream (in which case it will be 
displayed in the SAP Predictive Analyt
ics Modeler).

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.DefaultO
utput defined in the configuration file.

FormatOutput This parameter is a string that indicates 
the format of the output. If its value is 
set to txt or html, the output will be 
displayed by the SAP Predictive Analyt
ics Modeler.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.DefaultO
utputFormat defined in the configu-
ration file.

Possible Values:

● txt
● html
● User value

IsScript This parameter is a Boolean that indi
cates if the current external executable 
is a script or an executable.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.isScript 
defined in the configuration file.

210 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Value

NbArgument This parameter is an integer that indi
cates the number of arguments re
quired by the external executable.

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.NbArgume
nt defined in the configuration file.

Possible values: a positive integer

Arguments This node contains a list of nodes corre
sponding to the arguments used by the 
current external executable.

 Syntax
Path: <External_Executable_Name>/Arguments/Argument_<n>

This parameter contains the information on the nth parameter of the current external executable.

Parameter Description Value

Label The name of the nth parameter of the 
current external executable

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Argument
.<id>.Label defined in the configu-
ration file.

DefaultValue The default value of the nth parameter 
of the current external executable

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Argument
.<id>.DefaultValue defined in 
the configuration file.

Description The description of the nth parameter of 
the current external executable

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Argument
.<n>.Description defined in the 
configuration file.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 211



Parameter Description Value

ArgumentType The type of the nth parameter of the 
current external executable

Its value corresponds to the value of the 
key 
ExternalExecutable.<Extern
al Executable Id>.Argument
.<n>.Type defined in the configura-
tion file.

Possible Values:

● ExistingStore
● ExistingSpace
● Store
● Space
● Bool
● Index
● Number
● Integer
● Double
● String

Value The value of the external executable pa
rameter to be used when executing it

AllowedValue This node exists only if the parameter 
requires a list of allowed value. In this 
case it contains a list of nodes, each 
node representing one of the allowed 
values.

NbAllowedValue This node contains the number of al
lowed values.

If the value is set to 0 any value of the 
correct type will be accepted. This 
number also represents the number of 
nodes under the node 
AllowedValue.

Prefix This node contains the prefix that will 
be concatenate to the value.

7.6.3  Other Parameters

 Syntax
Path: ScriptInformation

212 PUBLIC
SAP Predictive Analytics Developer Guide

Model Parameter Reference



Parameter Description Values

ScriptLauncher The command used to launch the exter
nal executable when it is a script.

The default values are the following:

● Linux: /bin/sh
● Windows: c:\windows

\system32\cmd.exe

ScriptLauncherOption This parameter contains the option 
used to launch the external executable 
when it is a script.

The default values are the following:

● Linux: -c
● Windows:/C

ScriptExtension This parameter contains the extension 
that will be added at the end of the 
name of the script if needed.

The default values are the following:

● Linux: .sh
● Windows: .bat

 Note
The syntax of the command is:

ScriptLauncher ScriptLauncherOption <External_Executable_Name> ScriptExtension

 Syntax
Path: ExternalExecutableName

This parameter is used to specify the name of the script that you want to execute. The value is one of the values 
listed in the node ExternalExecutablesAvailable.

 Syntax
Path: UseDefaultPath

This parameter is a Boolean that indicates whether the value of the key ExternalExecutablePath must be 
added in front of the name of the external executable before calling it.

SAP Predictive Analytics Developer Guide
Model Parameter Reference PUBLIC 213



8 KxShell: SAP Predictive Analytics 
Command Line Interpreter

Learn how to write scripts for the most common data-mining tasks with the scripting tool, KxShell.

Find the KxShell reference guide in the Automated Analytics API Reference on the SAP Help Portal.

Related Information

Overview [page 214]
Regression and Classification [page 215]
Segmentation [page 222]
KxCORBAShell [page 227]

8.1 Overview

This document explains how to write scripts for the most common data-mining tasks with the scripting tool, 
KxShell.

KxShell is distributed with its source code as an example of how to use the C++ library directly in a C++ 
program.

There are three ways of using KxShell:

● Running the command kxshell.exe script.txt where script.txt is a text file containing the script.
● Launching KxShell and typing the command read script.txt where script.txt is a text file 

containing the script.
● Launching KxShell and typing interactively the commands, which can for example be copied from a 

document and pasted into the KxShell console.

The KxShell can be used to automate data-mining tasks because it does not require interaction. For example, a 
program can automatically generate a script file named script.txt and launch the external command 
kxshell.exe script.txt.

Every command/instruction executed is terminated with a 'OK' or 'not OK' status: For example:

 Store.openStore "C:\" 

This command is correctly executed because the instruction was executed successfully.

 Store.openStore "DoesNotExist" 

This command displays an error because the instruction did not complete successfully.

214 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter

https://help.sap.com/http.svc/download?deliverable_id=20569176
https://help.sap.com/pa


A KxShell script is a sequence of KxShell instructions; the script.txt script can be described as the 
sequence as follows:

 Inst1..
Inst2..
Inst3.. 

Typing the command kxshell.exe script.txt helps executing the sequence of instructions contained in 
the script.txt script.

If an error is generated by a given instruction in the script, the execution of the script stops.

A modifier ( '-' or '+' ) can be used at the beginning of each instruction / line of the script.

● if the command is preceded by '-': If there is an error, it is ignored and the execution of the script goes on, 
the next instruction is executed. For example, before applying a model, it is required to delete an output 
table if it exists:
-store.dropSpace "MyOutputTable"
model.apply
If the MyOutputTable table does not exist, the error is ignored and the model.apply instruction is 
executed.

● if the command is preceded by '+': here, the execution of the script goes on only if the current instruction 
fails. The '+' prefix is mostly used by developers but its use may be useful in some cases. For example, it 
may be required to check that a table does not exist. An attempt to read the table is performed and this 
attempt must fail. Otherwise, it means that the table exists.
+store.readSpace "MyTestTable"
model.apply
If the MyTestTable table does not exist, the first instruction causes an error. Then the model.apply 
instruction is executed.
If the MyTestTable exists, the first instruction completes sucessfully. That stops the execution of the 
script.

The scripts of the first section will show how to use KxShell in a regression/classification task context, while the 
scripts of the second section focus on clustering tasks. All the scripts use the data set known as Adult Census, 
which is distributed with the software along with its description file. When files are used, it is assumed that 
Census01.csv and desc_Census01.csv are in the current working directory; the models and output files 
are also saved in the current directory. When an ODBC source is used, it is assumed that an ODBC connection 
with the name Database is set up for user UserName/password.

8.2 Regression and Classification

8.2.1  Basic Script Using Text Files

Basic Script Using Text Files

This script trains a regression model on a training data set. It uses files as the data source. The script executes 
the steps listed below:

1. Create a model variable of the type Kxen.SimpleModel.

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 215



createModel Kxen.SimpleModel census1
2. Open the data store containing the data set needed to create the model and the data set description. Since 

the model uses files, the type of the store will be Kxen.FileStore.
census1.openNewStore Kxen.FileStore .

3. Set the data set as the training data set.
census1.newDataSet Training Census01.csv

4. Read the description of the training data set.
census1.readSpaceDescription Training desc_Census01.csv

5. A model processes the data to extract information and knowledge. This process is called a 'protocol', which 
is a sequence of transforms to applied to the data. Models usually hold a single protocol (called 'Default'). A 
regression model contains a coding transform followed by a regression transform:
census1.addTransformInProtocol Default Kxen.ConsistentCoder
census1.addTransformInProtocol Default Kxen.RobustRegression

6. The model is now ready to process the data, which is called learning. This is the potentially lengthy 
operation.
census1.sendMode learn

7. Once the model has learned the data and stored the information and knowledge in the memory, it can be 
saved for future use.
census1.saveModel Models.txt "This is the basic model, trained on a flat file." census1

8. Add either delete census1 to free the memory and be able to create new models, or quit.

8.2.2  Basic Script Using an ODBC Source

Basic Script Using an ODBC Source

This script has exactly the same behavior as the previous one, except for the fact that it uses an ODBC source.

1. The first step is the same:
createModel Kxen.SimpleModel census1

2. Open the data store. Since the script uses an ODBC source, the type of this store is Kxen.ODBCStore. At 
this step, the name of the ODBC source, the user name and the password need to be specified.
census1.openNewStore Kxen.ODBCStore Database UserName password

3. Specify the name of the table. In this example, the table is named Census01.
census1.newDataSet Training Census01

4. Read the description of the training data set, which is contained in the desc_Census01 table.
census1.readSpaceDescription Training desc_Census01
census1.addTransformInProtocol Default Kxen.ConsistentCoder
census1.addTransformInProtocol Default Kxen.RobustRegression
census1.sendMode learn
Note - If the description is stored in a file, open a new store of type Kxen.FileStore before writing this 
command with the suitable filename.

5. Save the model in the database.
census1.saveModel Models "This is the basic model, trained on an ODBC source." census1_odbc
Note - To save the model in a text file, open a Kxen.FileStore and specify the file in which you want to 
save it.

6. Add either delete census1 to free the memory and be able to create new models, or quit.

216 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



8.2.3  Using the Default Cutting Strategy: Random

Using the Default Cutting Strategy: Random

Now take a look at the way the data set is cut into estimation, validation and test data. There are two 
possibilities:

● specify three files that will be used as Estimation, Validation and Test respectively,
● define a single file with the three roles and choose between the periodic and random cutting strategies. 

The default cutting strategy is random, which means that each record will be chosen to be part of the 
estimation, validation or test set depending on the value of a random number calculated for that record.

1. Create the model variable:
createModel Kxen.SimpleModel census1

2. Open the data store:
census1.openNewStore Kxen.FileStore

3. Define the training data set:
census1.newDataSet Training Census01.csv

4. Read the description file for the Estimation data set:
census1.readSpaceDescription Training desc_Census01.csv
Note - Since all the data sets must have the same structure, the Estimation data set description is used for 
all the data sets.

5. Load the model parameters:
census1.getParameter ""

6. Set the minimum and maximum values between which the random number must be in order for the line to 
be attributed to the Estimation data set. In the case of a random cutting strategy, a random number is 
calculated for each record. According to its value, the line is attributed to estimation, validation or test. In 
this example, the record will be attributed to Estimation when the random number is between 0 and .7 
(which should be the case for 70 % of the records approximately).
census1.changeParameter DataSets/Estimation/Parameters/RandomMin 0
census1.changeParameter DataSets/Estimation/Parameters/RandomMax .7

7. Set the minimum and maximum values between which the random number must be in order for the line to 
be attributed to the Validation data set. In this example, a record will be in validation when the random 
number is between .7 and .9 (which should be the case for another 20 % of the records approximately).
census1.changeParameter DataSets/Validation/Parameters/RandomMin .7
census1.changeParameter DataSets/Validation/Parameters/RandomMax .9

8. Set the minimum and maximum values between which the random number must be in order for the line to 
be attributed to the Test data set. The test data set is a part of the data from which the model does not 
learn, but on which its results are applied in order to see how it performs on completely new data.
census1.changeParameter DataSets/Test/Parameters/RandomMin .9
census1.changeParameter DataSets/Test/Parameters/RandomMax 1

9. Validate the parameter changes:
census1.validateParameter

10. Define the protocols to apply:
census1.addTransformInProtocol Default Kxen.ConsistentCoder
census1.addTransformInProtocol Default Kxen.RobustRegression

11. Learn the model:
census1.sendMode learn

12. Save the model with the same name and with a new automatic version number.
census1.saveModel Models.txt "This is a model for which estimation was randomly 70% of the data set,

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 217



validation was 20% and test was 10%." census1
13. Add either delete census1 to free the memory and be able to create new models, or quit.

8.2.4  Changing the Cutting Strategy: Periodic

Changing the Cutting Strategy: Periodic

This script will change the cutting strategy to the periodic method. In this example, out of 10 lines, 7 lines will be 
used for Estimation, the 8th and 9th for Validation and the 10th for Test.

1. Create the model variable:
createModel Kxen.SimpleModel census1

2. Open the data store:
census1.openNewStore Kxen.FileStore

3. Define the training data set:
census1.newDataSet Training Census01.csv

4. Read the description file for the Estimation data set:
census1.readSpaceDescription Training desc_Census01.csv
Note - Since all the data sets must have the same structure, the Estimation data set description is used for 
all the data sets.

5. Load the model parameters:
census1.getParameter ""

6. Change the cutting strategy for each data set. In the tree representation of a model, there are three main 
branches, which are Parameters, Protocols and Data sets. The cutting strategy is located in the 
Parameters branch and has the name CutTrainingPolicy. It can be changed as follow:
census1.changeParameter Parameters/CutTrainingPolicy periodic

7. Set the following parameters to attribute a line to the Estimation data set when the modulo is between 0 
and 7 (exclusive of 7), with a period of 10.
census1.changeParameter DataSets/Estimation/Parameters/ModuloPeriod 10
census1.changeParameter DataSets/Estimation/Parameters/ModuloMin 0
census1.changeParameter DataSets/Estimation/Parameters/ModuloMax 7

8. Set the following parameters to attribute a line to the Validation data set when the modulo is between 7 
and 9 (exclusive of 9), with a period of 10.
census1.changeParameter DataSets/Validation/Parameters/ModuloPeriod 10
census1.changeParameter DataSets/Validation/Parameters/ModuloMin 7
census1.changeParameter DataSets/Validation/Parameters/ModuloMax 9

9. Set the following parameters to attribute a line to the Test data set when the modulo is 9, that is between 9 
and 10 exclusive of 10, with a period of 10.
census1.changeParameter DataSets/Test/Parameters/ModuloPeriod 10
census1.changeParameter DataSets/Test/Parameters/ModuloMin 9
census1.changeParameter DataSets/Test/Parameters/ModuloMax 10

10. Validate the parameters in order for the changes to take effect:
census1.validateParameter

11. The rest of the script does not change. The name of the model being the same (census1), it will be saved 
as census1 version 2 if there was already one saved.
census1.addTransformInProtocol Default Kxen.ConsistentCoder
census1.addTransformInProtocol Default Kxen.RobustRegression

218 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



census1.sendMode learn
census1.saveModel Models.txt "This is a model for which, out of every 10 lines, 7 were used as
estimation, 2 as validation and 1 as test." census1

12. Add either delete census1 to free the memory and be able to create new models, or quit.

8.2.5  Changing the Compression Parameter

Some variables are defined as nominal, which means that their values represent categories. In that case the 
coding engine (SAP Predictive Analytics Modeler - Data Encoding) analyzes how relevant the categories are 
and 'compresses' them by grouping together categories that have the same behavior regarding the target and 
by creating a 'KxOther' category for unimportant categories. This script shows how to disable this feature of 
the Data Encoder.

1. Create a new model named census2 and define a training data set with its description:
createModel Kxen.SimpleModel census2
census2.openNewStore Kxen.FileStore .
census2.newDataSet Training Adult01.csv
census2.readSpaceDescription Training desc_Adult01.csv

2. Add the the encoding protocol with a specific name to be able to change its parameters. The syntax of the 
addTransformInProtocol function allows giving a symbolic name to a transform as shown below:
census2.addTransformInProtocol Default Kxen.ConsistentCoder myK2CTransform
census2.addTransformInProtocol Default Kxen.RobustRegression

3. Load the parameters of the Kxen.ConsistentCoder transform:
myK2CTransform.getParameter ""

4. Modify the compression parameter called Compress, located in the Parameters branch of its sub tree:
myK2CTransform.changeParameter Parameters/Compress false

5. Validate the change by entering the command:
myK2CTransform.validateParameter

6. The rest of the script does not change:
census2.sendMode learn
census2.saveModel Models.txt "This is a model for which compression has been disabled." census2

7. To complete the script, add either delete census2 to free the memory and be able to create new 
models, or quit.

8.2.6  Excluding a Variable and Changing the Target

This script shows how to exclude a variable and set the target variable. In a model, each variable must have role 
one of the following roles: input, skip, target or weight. In order to exclude a variable, its role must be set 
to skip. To select the target, the variable role must be set to target. By default, all variables have the input 
role except for the last one, which has the target role.

Note - Remember that the target has to be numeric and either nominal with exactly two values (binary), or 
continuous.

1. Create a new model named census3.
createModel Kxen.SimpleModel census3

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 219



2. Open a new store and read the data and description files:
census3.openNewStore Kxen.FileStore .
census3.newDataSet Training Adult01.csv
census3.readSpaceDescription Training desc_adult01.csv

3. Load the tree containing the properties of the variables, including their roles. This tree is located under 
Protocols/Default/Variables/<the name of the variable>. :
census3.getParameter ""

4. Change the role of the variable occupation from skip (SAP Predictive Analytics is case-sensitive, 
therefore the case of the letters is important):
census3.changeParameter Protocols/Default/Variables/occupation/Role skip

5. Changing the target involves changing the role of the previous target (class) to input or skip and the 
role of the new target (age) to target:
census3.changeParameter Protocols/Default/Variables/class/Role skip
census3.changeParameter Protocols/Default/Variables/age/Role target

6. Validate the changes:
census3.validateParameter

7. The rest of the script does not change:
census3.addTransformInProtocol Default Kxen.ConsistentCoder
census3.addTransformInProtocol Default Kxen.RobustRegression
census3.sendMode learn
census3.saveModel Models.txt "For this model, the occupation was manually excluded from the predictors 
and the target was changed from 'class' to 'age'" census3

8. To complete the script, add either delete census3 to free the memory and be able to create new 
models, or quit.

8.2.7  Applying a Model Using Text Files (Scoring)

Applying a Model Using Text Files (Scoring)

We are now going to show how to apply a model which has just been created or which we restore from the disk 
to a new data set. (In fact, for this tutorial, we will use the same data set but it would be the same method for 
another file.)

Since we already showed how to create a new model, we are going to try to restore one of the models we have 
created.

1. Create a store variable of type Kxen.FileStore in order to be able to open a file:
createStore Kxen.FileStore myStore

2. Open the current directory:
myStore.openStore

3. Load the first version of the model census1 previously saved in the current directory:
myStore.restoreModelD census1 1 model
The 1 between census1 and model refers to the version number; each time a model is saved with the 
same name as a previous one, the version number is incremented.

4. Open the store containing the application data set:
model.openNewStore Kxen.FileStore .

5. Define the application input data set:
model.newDataSet ApplyIn Census01.csv

220 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



The ApplyIn data set is the one that contains the predictors. Although the target value is generally 
unknown for an ApplyIn data set, the field should be present (for example a question mark can replace 
the unknown value).

6. Define the application output data set:
model.newDataSet ApplyOut scoring.txt
The ApplyOut data set is a new file that will be generated by default with three fields for each record:
○ the row number or record key if one was specified,
○ the target value in the ApplyIn data set (usually a question mark)
○ the score attributed to the record.

The score is the original output of the model. The scores allow sorting the records by probability of 
having a target value of 1, but they are not the probabilities themselves.

7. To output the probabilities as well, you need to change a parameter of the Kxen.RobustRegression 
transform located in the protocol: 'ExtraMode'. To do that, you need a variable referring to the 
Kxen.RobustRegression transform. The solution is to 'bind' the Kxen.RobustRegression transform 
to a symbolic name. This transform belongs to the 'Default' protocol and is the furthest from the data 
(the last one we 'added' or the first one we 'pushed'.) Therefore it has the index 0.
model.bind TransformInProtocol Default 0 myK2RTransform
The name myK2Rtransform now refers to the appropriate transform.

8. Change the parameter that governs the output in the ApplyOut file.
myK2RTransform.changeParameter Parameters/ExtraMode "Min Extra"

9. Validate the changes:
myK2RTransform.validateParameter

10. The model is now ready to apply the transforms it had calculated to the new data and print the result in the 
specified output file. Launch the process by entering:
model.sendMode apply

11. To complete the script, add either delete model and delete myStore to free the memory and be able 
to create new models, or quit.

8.2.8  Applying a Model in an ODBC Source (Scoring)

Applying a Model in an ODBC Source (Scoring)

This script will do exactly the same thing as the previous one, except that the data will come from an ODBC 
source. The scoring file will be a table in the database as well.

1. Create a store variable of the type Kxen.ODBCStore in order to be able to open a table:
createStore Kxen.ODBCStore myStore

2. Open the database:
myStore.openStore Database UserName password

3. Let's assume that a model with the name census1_odbc has been saved in Database, load it in the 
variable model:
myStore.restoreModelD census1_odbc 1 model

4. Open the store containing the application data set:
model.openNewStore Kxen.ODBCStore Database UserName password

5. Define the application input data set:
model.newDataSet ApplyIn Census01.csv

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 221



The ApplyIn data set is the one that contains the predictors. Although the target value is generally 
unknown for an ApplyIn data set, the field should be present (for example a question mark can replace 
the unknown value).

6. Define the application output data set:
model.newDataSet ApplyOut scoring

7. As in the previous script, you will output the probabilities as well as the scores:
model.bind TransformInProtocol Default 0 myK2RTransform
myK2RTransform.changeParameter Parameters/ExtraMode "Min Extra"

8. Validate the changes:
myK2RTransform.validateParameter

9. The model is now ready to apply the transforms it had calculated to the new data and print the result in the 
specified output file. Launch the apply process:
model.sendMode apply

10. To complete the script, add either delete model and delete myStore to free the memory and be able 
to create new models, or quit.

8.3 Segmentation

8.3.1  Basic Script Using Text Files

This script trains a clustering model on a training data set. The first steps are the same as for a regression/
classification model: create a model (still of type Kxen.SimpleModel) and define a training data set or three 
data sets (estimation, validation and test sets).

1. Create a model variable named census4:
createModel Kxen.SimpleModel census4

2. Open a new store to be able to load the data set and its description:
census4.openNewStore Kxen.FileStore .

3. Specify the data set's role as Training:
census4.newDataSet Training Census01.csv
The data set is automatically split into Estimation and Validation.

4. Read the description of the data set:
census4.readSpaceDescription Training desc_Census01.csv

5. Define the coding transform:
census4.addTransformInProtocol Default Kxen.ConsistentCoder

6. Define the segmentation transform with a symbolic name to be able to modify its parameters:
census4.addTransformInProtocol Default Kxen.SmartSegmenter myKMeansTransform

7. Load the parameter tree of the myKMeansTransform object:
myKMeansTransform.getParameter ""

8. Set the number of clusters to 10. The number of clusters is a parameter of the Kxen.SmartSegmenter 
transform.
myKMeansTransform.changeParameter Parameters/NbClusters 10

9. Validate the changes:
myKMeansTransform.validateParameter

222 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



10. Start the learning process:
census4.sendMode learn

11. Save the model in the current directory, which is the last open store.
census4.saveModel ClusteringModels.txt "This is the first clustering model." census4

12. To complete the script, add either delete census4 to free the memory and be able to create new 
models, or quit.

8.3.2  Basic Script Using an ODBC Source

This script trains the same clustering model, but using an ODBC source and saving the model in the database.

1. Create a model named census4:
createModel Kxen.SimpleModel census4

2. Open a new ODBC store to be able to load the data set table and its description:
census4.openNewStore Kxen.ODBCStore Database UserName password

3. Specify the data set's role as Training:
census4.newDataSet Training Census01

4. Read the description of the training data set:
census4.readSpaceDescription Training desc_Census01

5. Add the data encoding transform:
census4.addTransformInProtocol Default Kxen.ConsistentCoder

6. Add the segmentation transform with a symbolic name to be able to modify its parameters:
census4.addTransformInProtocol Default Kxen.SmartSegmenter myKMeansTransform

7. Load the parameters of the Kxen.SmartSegmenter transform:
myKMeansTransform.getParameter ""

8. Set the number of cluster to 10:
myKMeansTransform.changeParameter Parameters/NbClusters 10

9. Validate the changes:
myKMeansTransform.validateParameter

10. Start the learning process:
census4.sendMode learn

11. Save the model with the name census4_odbc in the table ClusteringModels:
census4.saveModel ClusteringModels "This is the first clustering model trained with an ODBC source." 
census4_odbc

12. To complete the script, add either delete census4 to free the memory and be able to create new models, 
or quit.

8.3.3  Using a Classification Model to Characterize a Cluster

On a clustering problem, the basic approach is to create a clustering model using SAP Predictive Analytics 
Modeler - Segmentation/Clustering. Nevertheless, the available definitions of the clusters may not be entirely 
satisfactory and the clusters may be difficult to understand.

An interesting additional approach could be to run a classification model (with SAP Predictive Analytics 
Modeler - Regression/Classification) afterwards on the data with the cluster we are interested in as target. This 

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 223



means first creating a clustering model, then applying it to the data to have the cluster number for each record, 
and then running a classification model on the data with a given cluster as target. Fortunately it is possible to 
do this automatically with KxShell and ODBC.

The following section describes the general methodology to be used and illustrates it below with the Adult 
Census data:

1. First, you need to build the clustering model using SAP Predictive Analytics Modeler - Segmentation/
Clustering and apply it to your data in order to have a table with the cluster number for each record.

2. Then you need to join our data and this table. Assuming that our data set is stored in a table named 
Dataset, has an key field named ID, and that the result of the model application has been saved in the 
table named Clustering, the following SQL statement (where the 10th cluster is used as example) can be 
used:
SELECT Dataset.*, target = CASE kc_clusterId WHEN 10 THEN 1 ELSE 0 END FROM Dataset, Clustering 
WHERE Dataset.ID = Clustering.ID
Note - The KeyLevel of the ID field must be set to 1 in the description file of the data set to be able to be 
used by SAP Predictive Analytics as key in the output table. Otherwise, a field called KxIndex is created 
and used to reference the records.

3. Finally, you have to create a new description file for this view, which is the same as for your data set, except 
that it has an additional line for the variable 'target' that you created in the SELECT statement (name: 
'target', storage: 'number', value: 'nominal').

4. You are then ready to run a classification model on the view created with the SQL statement, and see how 
the regression engine characterizes it.

The following script is the application of this methodology to the Adult Census data to characterize the 10th 
cluster.

For practical purposes, let's suppose that:

● An ID field has been added to the Adult01 table, which has been renamed Adult01_ID.
● In the desc_Adult01 description table, the KeyLevel of the ID field has been set to 1 and the table has 

been renamed desc_Adult01_ID.
● A description for the SQL SELECT statement that will be used has been prepared and named 

desc_Cluster. It is the same as in point 2, except that it has an additional line for the target variable.
● The database supports the CASE statement.

Note - Contrary to the other scripts in this document that use ODBC, this one has not been tested with the 
Access ODBC driver because Access does not support the CASE SQL function.

This script shows how to build a clustering model, apply it to a data set -either the same one or a new one, and 
to automatically characterize one of the clusters using SAP Predictive Analytics Modeler - Regression/
Classification.

1. Create a model with the variable name adult_id:
createModel Kxen.SimpleModel adult_id

2. Open an ODBC store:
adult_id.openNewStore Kxen.ODBCStore Database UserName password

3. Load the data set and its description:
adult_id.newDataSet Training Adult01_ID
adult_id.readSpaceDescription Training desc_Adult01_ID

4. Add the transforms in the protocol:
adult_id.addTransformInProtocol Default Kxen.ConsistentCoder
adult_id.addTransformInProtocol Default Kxen.SmartSegmenter myKMeansTransform

224 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



5. Load the parameters of the Kxen.KMeans transform:
myKMeansTransform.getParameter ""

6. Set the number of clusters:
myKMeansTransform.changeParameter Parameters/NbClusters 10

7. Validate the change:
myKMeansTransform.validateParameter

8. Exclude the ID field since it is not a predictor:
adult_id.getParameter ""
adult_id.changeParameter Protocols/Default/Variables/ID/Role skip
adult_id.validateParameter

9. Start the learning process:
adult_id.sendMode learn

10. Apply the model to the data set to get the number of the cluster to which each record belongs:
adult_id.newDataSet ApplyIn Adult01_ID
adult_id.newDataSet ApplyOut Clustering
adult_id.sendMode apply

11. Load the corresponding description, which has been prepared with the name desc_Cluster:
classif_cluster.readSpaceDescription Training desc_Cluster

12. Add the coding and regression transforms:
classif_cluster.addTransformInProtocol Default Kxen.ConsistentCoder
classif_cluster.addTransformInProtocol Default Kxen.RobustRegression

13. Exclude the variables ID and class so that they will not be used as predictors:
classif_cluster.getParameter ""
classif_cluster.changeParameter Protocols/Default/Variables/ID/Role skip
classif_cluster.changeParameter Protocols/Default/Variables/class/Role skip
classif_cluster.validateParameter

14. The model is ready to start the learning process, and give us the characterization of the 10th cluster:
classif_cluster.sendMode learn

15. Save the model:
classif_cluster.saveModel classif_cluster.txt "This model helps characterize the 10th cluster built by Smart 
Segmenter."

16. You can ask for the attributes contribution, the categories' importance and so on to get an idea of the 10th 
cluster.

8.3.4  Applying a Model Using Text Files

This script is the equivalent of the scoring script presented for regression/classification. Its goal is to load a 
model and apply it to a new data set (in practice the same one) and ask the model to determine to which 
cluster each record belongs.

1. Create a store variable of type Kxen.FileStore in order to be able to open a file:
createStore Kxen.FileStore myStore

2. Open the current directory:
myStore.openStore .

3. Load the first version of the model census4 previously saved in the current directory:
myStore.restoreModelD census4 1 model

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 225



The 1 between census1 and model refers to the version number; each time a model is saved with the 
same name as a previous one, the version number is incremented.

4. Open the store containing the application data sets:
model.openNewStore Kxen.FileStore .

5. Define the application input data set:
model.newDataSet ApplyIn Census01.csv
The ApplyIn data set is the one that contains the predictors. Although the target value is generally 
unknown for an ApplyIn data set, the field should be present (for example a question mark can replace 
the unknown value).

6. Define the application output data set:
model.newDataSet ApplyOut clustering.txt
The ApplyOut data set is a new file that will be generated by default with three fields for each record:
○ the row number or record key if one was specified,
○ the target value in the ApplyIn data set (usually a question mark),
○ the cluster number attributed to the record.

The model is now ready to apply the transforms it has calculated to the new data and print the result in 
the specified output file.

7. Launch the apply process:
model.sendMode apply

8. To complete the script, add either delete model and delete myStore to free the memory and be able 
to create new models, or quit.

8.3.5  Applying a Model in an ODBC Source

Applying a Model in an ODBC Source

This script is the equivalent of the previous one for ODBC. The goal of this script is to open the model saved 
with the second script of this section (Basic Script Using an ODBC Source) and apply it to build a table 
containing the cluster numbers for each record.

1. Create a store variable of type Kxen.ODBCStore in order to be able to open a file:
createStore Kxen.ODBCStore myStore

2. Use this store variable to open the Database:
myStore.openStore Database UserName password

3. Load the clustering model named census4_odbc:
myStore.restoreModelD census4_odbc 1 model

4. Open the store containing the application data sets:
model.openNewStore Kxen.ODBCStore Database UserName password

5. Define the application input data set:
model.newDataSet ApplyIn Census01

6. Define the application output data set:
model.newDataSet ApplyOut Clustering
The model is now ready to apply the transforms it has calculated to the new data and insert the result in 
the specified output table.

7. Launch the apply process:
model.sendMode apply

226 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



8. To complete the script, add either delete model and delete myStore to free the memory and be able 
to create new models, or simply quit.

8.4 KxCORBAShell

Additionally to the standard KxShell interpreter, another interpreter is included to be able to run KxShell scripts 
in a client-server environment.

During SAP Predictive Analytics installation, a sub folder named KxCORBAShell is created at the same level as 
KxShell.

KxCORBAShell contains two files:

● KxCORBAShell, the actual executable.
Note - Under Windows, it is named KxCORBAShell.exe.

● KxCORBAShell.sh or KxCORBAShell.bat. A shell script that will execute KxCORBAShell with the following 
default values as arguments:
○ Remote Server: localhost
○ Connection Port: 12345
○ Service Name: FactoryEntries3

KxCORBAShell options

KxCORBAShell uses the same options and the same syntax as KxShell. However some additional options are 
provided to specify the connection to the Remote server:

● -ORBInitRef
This option can be used to specify the physical server (<RemoteHostName>) and the default port 
(<RemotePort>) used by SAP Predictive Analytics Server.
Syntax: -ORBInitRef NameService=corbaname::<RemoteHostName>:<RemotePort>
Example: -ORBInitRef NameService=corbaname::kxserv:12345

● -Service Name
This option can be used to specify the name of the logical service name used by the KXEN server, if it has 
been changed at the installation by the administrator (this is only to be used if several SAP Predictive 
Analytics Server have to be started on the same physical machine).
Syntax: -ServiceName <RemoteServiceName>
Example: -ServiceName FactoryEntries3

● -authenticated
This option must be specified if the SAP Predictive Analytics Server is in "Authenticated mode", which 
means that a proper authentication is required to connect to the server.
Syntax: -authenticated

● -user
This option must be used in the case of an Authenticated Server to provide the user name to be used to 
connect to the server. The user policy depends on the actual SAP Predictive Analytics installation, but 
most of the time, it must be a valid user name for the Server’s Operating System.

SAP Predictive Analytics Developer Guide
KxShell: SAP Predictive Analytics Command Line Interpreter PUBLIC 227



Syntax: -user <UserName>
Example: -user ustat1

● -password
This option must be used in the case of an Authenticated Server to specify the password associated with 
the user specified by the ‘-user’ option.
Syntax: -password <Password>
Example: -password xbkxenU1

Customize the Script

Copy KxCORBAShell.sh (or .bat for Windows) then update the copy to reflect your installation 
RemoteServerName, RemoteServerPort and ServiceName.

228 PUBLIC
SAP Predictive Analytics Developer Guide

KxShell: SAP Predictive Analytics Command Line Interpreter



9 Integrating with the Data Access API

Learn how to use the Data Access API, which is the way for integrators and OEMs to extend how SAP Predictive 
Analytics accesses external data.

Some integration or operational environments have proprietary data storage. For example, presentation tools 
use their own internal layer to access data on many platforms and OLAP tools have their own internal way of 
storing their data. In such cases, it can be useful to provide integrators with a solution to connect SAP 
Predictive Analytics to their internal storage. This requires specifying a data access API that should be 
implemented by the integrators. It can be useful for programming an additional data driver.

 Note
Integrators must implement such extensions in C. This language is used for stability reasons, because C++ 
name mangling is not yet very stable in many environments. Even written in C, the functions defined in the 
API can be viewed as methods defined for three classes: store, space and case iterator.

9.1 Architecture Elements

In SAP Predictive Analytics, data access is done through an abstraction layer that is decomposed under the 
main classes of Store, Space, and Case Iterator.

This image is interactive. Hover over areas for a short description.

 

 

● Store [page 23]

SAP Predictive Analytics Developer Guide
Integrating with the Data Access API PUBLIC 229



● Space [page 23]
● Case Iterator [page 25]

9.2 Integration of a User-Defined Data Storage

There are two specializations of the abstraction layer:

● FileStore, FileSpace, FileCaseIter
● ODBCStore, ODBCSpace, ODBCCaseIter

These classes allow SAP Predictive Analytics to access data from sources that can be text files with separators, 
or tables or SQL select statements accessible through an ODBC driver. In order to allow integrators to define 
their own data access functions, the following third set of classes is available:

● UserStore, UserSpace, UserCaseIter

Together, these classes are not enough to run the data access. C++ wrappers are used to call functions written 
in a dynamic loadable library. The internal architecture allows you to create several data access types.

The final architecture of the solution is shown below:

 Note
The functions used to perform these initial operations cannot be described in this document, as they are 
depending on each integrator environment. In the case where some of these initializations must be done, it 
is required that the integration environment loads the library and initializes it, because SAP Predictive 
Analytics would load it without running the proper initialization.

230 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating with the Data Access API



Main Integration Steps

The process of integrating a user-defined data access is the following:

Step Description

Implement the dynamic loadable library. Minimum Implementation [page 231]

Install the dynamic loadable library so that the run-time of 
SAP Predictive Analytics components can load it (in most 
environments, libraries are looked for in a set of predefined 
locations).

Library Installation [page 235]

Declare the new user class name associated with its library 
in the configuration file and its configuration options.

Declaration of a New User Class Name [page 235]

9.3 Minimum Implementation

The DLL to be implemented is specified through the KxDataAccess.h header file.

This section presents the minimum implementation required to perform the first tests of integration. These 
minimum requirements are decomposed for store, space, and case iterator. It also shows how a first running 
implementation can be further refined.

9.3.1  Space

● Space_Cst

KXDA_DLLEXPORT extern void * Space_Cst (void);

This function returns a handle (implemented as a void*) on a newly created space. A classical 
implementation could return a memory pointer to a C++ class kept inside the memory space managed by 
the library written by the integrator.

● Space_Dst
This function deletes a space and the memory location associated with this space. This function does not 
have to close the space. SAP Predictive Analytics components will close the space before (see below).

KXDA_DLLEXPORT extern void Space_Dst (void *iUserThis);

● Space_Open
This function opens a space within a store at a given location. For a directory, iOpen would be the name of a 
file in the directory, for an ODBC source, it would be the name of the view, or the table or a complete select 
statement within the specified ODBC source. In a specific implementation iOpen can be any of the logical 
name that allows the system to run a query to extract from or put back in the user internal storage. The 
string iMode can be either "r" for space opened in read mode, and "w" for space opened in write mode.

KXDA_DLLEXPORT extern KxenResult Space_Open (void * iUserThis,           void * iUserStoreThis,

SAP Predictive Analytics Developer Guide
Integrating with the Data Access API PUBLIC 231



          const char * iOpen, 
          const char * iMode,            const char * iTestMode);

● Space_Close
This function closes a previously opened space.

KXDA_DLLEXPORT extern KxenResult Space_Close (void *iUserThis);

 Note
The proposed level of the API does not make any assumption about where the actual connection to the 
data source will be performed. Let us take the analogy with the ODBC connection, and assume that we 
want to implement a user data access through ODBC by developing a user data access library. It is up to 
the user design, taking into consideration the concurrent data access problems, to actually open an ODBC 
connection at the store level when performing the Store_Open, the space level when performing the 
Space_open, or simply at the case iterator level, when performing the begin.

9.3.2  Store

● Store_Cst
This function returns a handle (implemented as a void*) on a newly created store. A classical 
implementation could return a memory pointer to a C++ class kept inside the memory space managed by 
the library written by the integrator.

KXDA_DLLEXPORT extern void * Store_Cst (void);

● Store_Dst
This function deletes a store and the memory location associated with this store. This function does not 
have to close the store. SAP Predictive Analytics components will close the store before.

KXDA_DLLEXPORT extern void Store_Dst (void * iUserThis);

● Store_Open
This function opens a store at a given location. For a directory, iOpen would be the path name of the 
directory, for an ODBC source, it would be the ODBC source logical name as seen on the machine running 
the SAP Predictive Analytics components. In some cases, the environment can provide a user name and a 
password to check access rights. The result of this operation is either KXDA_OK if successful, or 
KXDA_FAIL is failure.

KXDA_DLLEXPORT extern KxenResult  Store_Open (void * iUserThis,           const char * iOpen,
          const char * iUser,           const char * iPassword);

● Store_Close
This function closes a previously opened store. When used from SAP Predictive Analytics components, all 
spaces opened from this store have been previously closed, so the implementation of this function does 
not have to check for opened spaces within that store.

KXDA_DLLEXPORT extern KxenResult Store_Close (void *  iUserThis);

232 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating with the Data Access API



 Note
The class cUserStore keeps an internal flag to indicate if the store is currently open or closed. The calls to 
Store_Open or Store_Close should not break the expected state diagram for these operations.

Sometimes, the integration environment does not have, in its original design, an object corresponding to 
the notion of store. In this case, the integrator can create an empty C++ class with no method associated, 
any call to Store_Open with any iOpen will return success, and all the implementation will focus on the 
notion of space and case iterator. Having several stores is only important when the integrator wants to save 
models within its own internal storage. In SAP Predictive Analytics design, any store can/should contain a 
specific space called "KxAdmin" that holds information about the actual locations where models are stored 
within this store, it is then important that the SAP Predictive Analytics components can retrieve the models 
description using this name (KxAdmin can reconfigured with another name through the configuration file).

This minimum implementation does not allow a graphical interface to present to the user the names of the 
stores that can be opened by the user. Most of the graphical user interfaces create an empty store, and ask 
to open this store with an iOpen equals to the empty string ("") in order to get the list of possible stores. An 
advanced implementation can use this feature but is not required at the beginning.

9.3.3  Case Iterator

● CaseIter_Cst
This function returns a handle (implemented as a void*) on a newly created case iterator. A classical 
implementation could return a memory pointer to a C++ class kept inside the memory space managed by 
the library written by the integrator.

KXDA_DLLEXPORT extern void * CaseIter_Cst (void *iSpaceThis);

● CaseIter_Dst
This function deletes a case iterator and the memory location associated with this case iterator.

KXDA_DLLEXPORT extern void CaseIter_Dst (void * iUserThis);

 KXDA_DLLEXPORT extern KxenResult  CaseIter_Begin_GetNumberOfColumns 
( void * iUserThis,
  unsigned long * iNumberOfColumnsPtr); 

9.3.4  Refinement Steps

Refining the Space

There are some types of user-defined spaces that know the storage of each column (variable, dimension). 
When this is the case, SAP Predictive Analytics components can ask for this description instead of using a 
default algorithm that will force a case iterator of cells of strings in order to derive this information from the first 
100 lines of the space.

SAP Predictive Analytics Developer Guide
Integrating with the Data Access API PUBLIC 233



Some types of user-defined space can even go further and can access to a metadata repository where all 
information (the value type of each column between ordinal, nominal and continuous, the code to represent 
missing values, the fact that a column can be used to sort the lines) about variable description is stored and 
forward this to the SAP Predictive Analytics components.

Example

KXDA_DLLEXPORT extern KxenResult CaseIter_GetDllSupportValueType (void * 
iUserThis, unsigned long * iDllSuportValueTypePtr); KXDA_DLLEXPORT extern KxenResult CaseIter_Begin_GetTypeOfColumns (void * 
iUserThis, unsigned long iNumberOfColumns, KxenStorageType * iTypesOfColumnsPtr);
KXDA_DLLEXPORT extern KxenResult CaseIter_GetDllSupportDescription (void * 
iUserThis, unsigned long * iDllSuportDescriptionPtr); KXDA_DLLEXPORT extern KxenResult CaseIter_Begin_GetDescOfColumns (void * 
iUserThis, unsigned long  iNumberOfColumns, KxenStorageType * 
iTypesOfColumnsPtr);

Refining the Store

Available Stores

When the user-defined DLL is used from a graphical interface, you can provide the list of available stores that 
the application can open.

In this case, the user must provide a function call that returns the number of available stores and their 
descriptions. In order to initiate this process, user interfaces always ask for a store with an empty open string, 
and then it asks for the available stores in this stub store to have all the possible stores. When stores have a 
hierarchical structure, this mechanism can be used to browse all available stores.

Available Spaces

When the user-defined DLL is used from is used form a graphical interface, it can be nice to have the list of 
available spaces that the application can open from this store. In this case the user must provide a function 
that returns the number of available spaces (and then their description).

Using Internal Storage to Save and Restore Models

When the user wants to use its own internal storage to save and restore models, it has to provide a certain 
number of functions. First of all, it should be possible to open space in the write mode (to save the models) and 
to erase lines within a space in a store that has some keys equal to some values.

9.3.5  Compilation Process

The following table presents some of the compilers required to generate dynamic loadable libraries for different 
platforms. The compilers required are C compilers, as C language has been chosen for stability reasons.

234 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating with the Data Access API



Operating System Compiler

Win64 CL

Linux gcc

9.4 Library Installation

This section presents what to do in order for SAP Predictive Analytics to find a dynamic loadable library within 
different environments.

The DLL file should be installed somewhere so that the application will find it. Typically a path variable is 
searched for such DLL, or the directory where the initial application is located.

To configure a new DataAccess library, a call to setConfiguration is issued, for example:

lFactory.setConfiguration("UserStore", "MyAccess:XXXX");

This call tries to load the corresponding dynamic library, but the loading of such a library is done in an OS-
dependent way. The following convention are used:

Operating System Library Name Search Variable System Call Used

Win64 XXXX.dll PATH LoadLibrary()

Linux XXXX.so or libXXXX.so LD_LIBRARY_PATH dlopen()

 Note
The Search Variable is the variable used by the OS to locate dynamic libraries.

On Linux systems, we try first to load XXXX.so, then libXXXX.so. So any of the two names is valid.

9.5 Declaration of a New User Class Name

This section presents what you must do to declare a new user-defined data access class within SAP Predictive 
Analytics components.

The user-defined data access dynamic library must be "declared" to SAP Preditcive Analytics components 
environment. To do this,you must add a configuration entry, either in the configuration file loaded by the 
executable (for example, KxShell.cfg or KxCORBA.cfg), or using the setConfiguration call.

SAP Predictive Analytics Developer Guide
Integrating with the Data Access API PUBLIC 235



Here is an example of a configuration file with the last lines presenting declarations of new user classes:

Key Value

MessageFile ../KxCORBA/KxTool_us.umsg

MessageFile ../KxCORBA/KxTool_fr.umsg

KxDesc KxDesc

KxAdmin KxAdmin

UserStore MySpecialStore:MyLib

UserStoreOption.MySpecialStore.MultiLang
uage

true

Once the configuration file is written, there are two ways of loading it. A default configuration file is always 
loaded at init time at the place where the executable code is present. Then, the user can force to load 
supplementary configuration files through the following commands.

This configuration entry's key should be "UserStore", and the value should be a string composed of 2 fields, 
separated by a ':' character:

● The first one is the symbolic name that will be attached in SAP Predictive Analytics components to this 
class of Store, for example MySpecialStore. This name is used for example in the class Factory, in 
createInstance, and by the model's function openNewStore.

● The second one is the actual name of the library, without any extension of system specific prefix, for 
example MyLib, but not MyLib.dll, neither libMyLib.dll.

Of course, you can have several such entries in a configuration file, or call several times the 
setConfiguration function.

 Note
If the dynamic library cannot be loaded at when the configuration entry is set, it is currently silently 
ignored. Calls to the getClassInfo function will not report any information on such store, and calls to 
createInstance with this class name will fail.

Optionnally, a configuration option can be added to describe processing of charsets by the dynamic library. The 
key name is UserStore.<My_Dynamic_Library>.MultiLanguage. Possible values are:

● False: all strings returned or consumed by the dynamic library are encoded using the current OS’s native 
charset. In such a case, the kernel applies its own UTF8 encoding/decoding. This is the default value of the 
option.

● True: all strings returned or consumed by the dynamic library are already encoded in UTF8, avoiding and 
encoding/decoding step to the kernel.

Example

UserStore.SasWindows7.MultiLanguage=true

236 PUBLIC
SAP Predictive Analytics Developer Guide

Integrating with the Data Access API



10 Appendix

Data Type Mapping [page 237]

File Format Specifications [page 240]

Language ISO Codes [page 244]

10.1 Data Type Mapping

The data types of the Automated Analytics API are based on the CORBA scheme, which makes them language-
independent. However, each type is mapped to a real type in each scheme. The following table shows the API 
data types with their corresponding language data types.

 Note
Using the Java Common Interface layer or the Python scheme, objects are now returned without holder 
types. See the Java Common Interface API documentation for more information.

API Type C++ Type Java CORBA Type JNI Type Python Type

long (return) long int int long

in string const char* String String str

in unsigned long unsigned long int int int

in Object void * org.omg.CORBA.Ob
ject

com.kxen.KxMo
delJni.KXObject

Object

in long long int int Int

in boolean bool boolean boolean bool

in eKxenMode KxModel::eKxenMode com.kxen.KxMo
del.KxenModeTag

com.kxen.KxMo
delJni.KxenModeTag

aalib.Kxen_learn

in IKxenXXX KxModel::IKxenXXX* com.kxen.KxModel.IK
xenXXX

com.kxen.KxMo
delJni.IKxenXXX

aalib.IKxenXXX

out boolean bool & org.omg.CORBA.Boo
leanHolder

com.kxen.KxMo
delJni.BooleanHolder

N/A

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 237



API Type C++ Type Java CORBA Type JNI Type Python Type

out string char* & org.omg.CORBA.String
Holder

com.kxen.KxMo
delJni.StringHolder

N/A

out Object void *& org.omg.CORBA.Ob
jectHolder

com.kxen.KxMo
delJni.ObjectHolder

N/A

out unsigned long unsigned long & org.omg.CORBA.In
tHolder

com.kxen.KxMo
delJni.IntHolder

N/A

out IKxenXXX KXModel::IKxenXXX* 
&

com.kxen.KxModel.IK
xenXXXHolder

com.kxen.KxMo
delJni.IKxenXXXHolder

N/A

Example: C++

void printParameter( KxModel::IKxenModel* iModel,                      const char* iParamPath ) {
    KxModel::IKxenParameter*    lParam;
    HRESULT hr = iModel->getParameter( iParamPath, lParam );
    myProcessKxenResult( hr, "getParameter" );
    // result containers
    KxenString  lName = 0;
    KxenString  lValue = 0;
    KxenBool  lReadOnly;
    hr = lParam->getNameValue( lName, lValue, lReadOnly );
    myProcessResult( hr, "getNameValue");
    printf( "[%s] = [%s]\n", lName, lValue );
    KxModel::KxDelete( lName );
    KxModel::KxDelete( lValue );
    KxModel::KxDelete( lParam ); }

Example: C++ common Interface

void printParameter(KxCommonInterf::IkxenModel& iModel,                      const char* iParamPath ) {
    KxCommonInterf::IKxenParameter * lParam = 
        iModel.getParameter(iParamPath);
    // result containers
    KxCommonInterf::NameValue lNameValue = lParam->getNameValue();
    printf("[%s] = [%s]\n", lNameValue.mName, lNameValue.mValue);
    KxCommonInterf::KxDelete(lParam);
} 

or

void printParameter(KxCommonInterf::IkxenModel& iModel,                      const char* iParamPath ) {
    KxCommonInterf::cAutoPointer<KxCommonInterf::IKxenParameter>
        lParam(iModel.getParameter(iParamPath);

238 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



    // result containers
    KxCommonInterf::NameValue lNameValue = lParam->getNameValue();
    printf("[%s] = [%s]\n", lNameValue.mName, lNameValue.mValue);
} 

Example: Java/CORBA

import org.omg.CORBA.StringHolder; import org.omg.CORBA.IntHolder;
import org.omg.CORBA.BooleanHolder;
import com.kxen.KxModel.*;
void printParameter(IKxenClassFactory iFactory,
                     IKxenModel iModel,
                     String iParamPath) {
    IKxenParameterHolder lParam = new IKxenParameterHolder();
    int hr = iModel.getParameter(iParamPath, lParam);
    myProcessKxenResult(hr, "getParameter");
    // result containers
    StringHolder lName = new StringHolder();
    StringHolder lValue = new StringHolder();
    BooleanHolder lReadOnly = new BooleanHolder();
    hr = lParam.value.getNameValue(lName, lValue, lReadOnly);
    myProcessResult(hr, "getNameValue");
    System.out.println("[" + lName.value + "] = [" + lValue.value + "]\n");
    iFactory.deleteInstance(lParam.value); }

Example: Java/JNI

import com.kxen.KxModelJni.*; void printParameter(IKxenClassFactory iFactory,
                    IKxenModel iModel,
                    String iParamPath) {
    IKxenParameterHolder lParam = new IKxenParameterHolder();
    int hr = iModel.getParameter(iParamPath, lParam);
    myProcessKxenResult( hr, "getParameter" );
    // result containers
    StringHolder lName = new StringHolder();
    StringHolder lValue = new StringHolder();
    BooleanHolder lReadOnly = new BooleanHolder();
    hr = lParam.value.getNameValue(lName, lValue, lReadOnly);
    myProcessResult(hr, "getNameValue");
    System.out.println("[" + lName.value + "] = [" + lValue.value + "]\n");
    iFactory.deleteInstance(lParam.value); }

Example: Java Common Interface

import com.kxen.CommonInterf.*; import com.kxen.CommonInterf.KxenParameter.NameValue;
void printParameter( KxenModel iModel, String iParamPath ) {

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 239



    KxenParameter lParam = iModel.getParameter(iParamPath);
    NameValue lNameValue = lParam.getNameValue();
    System.out.println("[" + lNameValue.getName()
                        + "] = [" + lNameValue.getValue() + "]\n");
    lParam.release(); }

Example: Python

import aalib def printParameter(model, paramPath):
    param = model.getParameter(paramPath)
    name_value = param.getNameValue()
    print("[%s] = [%s]" % (name_value.name, name_value.value)) 

10.2 File Format Specifications

The format of the internal files used in the modeling phases (space description, model space, and model 
description space). You can use it for setting up the database to support SAP Predictive Analytics features.

There are several files or tables that are directly read by Predictive Analytics for OEM components. Everything 
has been designed in the components to be saved/restored under column tables formats. Three specific space 
formats are predefined, these are:

Variable Description Space Format

This format is used to save a variable description. A description contains the information to describe from a 
meta-model point of view the variables contained into a a dataset. These spaces are generally saved under a 
name KxDesc. This default name can be overloaded through a loadConfigurationFile of a store.

Each line of the KxDesc file contains information about one variable.

The different columns of these specific spaces are the following:

Name Storage Value Key Level
Order 
Level Comment

Rank number ordinal 1 0 Rank of the variable in the data file.

Name string nominal 0 0 The name of the variable of the as
sociated dataset.

Storage string nominal 0 0 The storage of the variable. This 
string can only be: number, string, 
or date.

240 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



Name Storage Value Key Level
Order 
Level Comment

Value string nominal 0 0 The value type of this variable. This 
string can only be: nominal, ordinal 
or continuous.

KeyLevel number ordinal 0 0 Put a number different from 0 here 
if the variable can be considered as 
a key. Our convention is to put 1 for 
the primary key, 2 for the secon
dary key, and so on. This is used by 
the model when new values are 
generated, they are associated with 
all variables with a key not null. If no 
variable in a descritpion file is de
clared with a key, KXEN Compo
nents automatically generates an 
KxIndex variable with the row index 
and declares it as a key.

OrderLevel number ordinal 0 0 Put a number different from 0 here 
if the variable can be considred as a 
natural sort order for the cases. Ex
ample of such a variable is a date, 
or sometimes a customer id. When 
such variable is present, the final 
version of the KXEN components 
should be able to use this informa
tion to better cut training datasets 
into estimation, validation and test 
datasets.

MissingString string nominal 0 0 This string indicates a specific code 
for missing value. the default value 
is the null length string, which is 
used most of the times. Even if 
ODBC access can return empty val
ues as such, sometimes, there is a 
specific code for missing values in 
old data base systems or architec
ture such as 99 for two digit num
bers, or "unknown" for some cate
gorical information.

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 241



Name Storage Value Key Level
Order 
Level Comment

Group string nominal 0 0 Sometimes, some variables be
longs to a single semantic group. 
Think of disjunctive coding of a cat
egorical variables for example, all of 
these variables can take boolean 
values, but when one of these col
umns is activated all the others are 
de-activated: in this case, make all 
these variables belong to the same 
group. This would forbid trans
forms (and thus models) to take 
into account cross studies between 
variables belonging to the same 
group.

Description string nominal 0 0 The comment describes this varia
ble.

Model Description Space Format

This format is used to save description of models that are saved into a single store (a store is either an ODBC 
source or a file directory). These descriptions contain all information that could be wanted by a user to restore 
a previously saved model in this store.

Each line of the KxAdmin file contains one model description.

One model can be associated with several lines (one for each saved version).

Name Storage Value KeyLevel
OrderLe
vel Comment

Name string nominal 1 0 The name of model associated 
with this model description.

Class string nominal 0 0 The name of the class of the 
model. In the current release, 
there is only one possible model 
class name which is Kxen.Sim
pleModel, but there will be very 
soon two other classes: 
Kxen.Classification and 
Kxen.Regression. The main dif
ferences between these three 
classes is the packaging of the 
results of the different trans
forms.

Class version number ordinal 0 0 The version of the class of the 
saved model. This can be used 
internally to restore very old for
mats

242 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



Name Storage Value KeyLevel
OrderLe
vel Comment

Space Name string nominal 0 0 The name of the space in which 
this version of the model has 
been saved. Of course the space 
name is relative to the store in 
which this KxAdmin is found (be 
it a ODBC source or a direc
tory). All versions of a model are 
saved into a single space (this 
constraint could be removed in 
the next KXEN Components 
version).

Version number ordinal 2 0 The version of the model. This is 
initialized with 1 for the first ini
tal save order of this model, and 
then increased by one for every 
commit of the model into the 
same store (and as explained 
earlier in the same space).

CreationDate string nominal 0 0 The date at which the model 
has been saved in this version.

Comment string nominal 0 0 The comment describing this 
version of the model.

Model Parameter Space Format

This format is used to save models. In order to perform this operation, models are first converted into their 
parameter hierarchy counterpart and then saved into a flat parameter file that is described here. This basic 
architecture would allow us to save individual transforms into seperate spaces, but we do not allow this from a 
user perspective in order to ease the process of re-building a model (and internal dependencies) from different 
sources. It must be noted that this allow to have a self-contained view of the model.

Each line of this space contains information about one parameter in the parameter hierarchy of one model.

Name Storage Value KeyLevel
OrderLe
vel Comment

Name string nominal 1 0 The name of model in which be
longs this parameter.

Version number ordinal 2 0 The version number of the 
model in which belongs this pa
rameter.

Id number ordinal 3 0 The identifier of this parameter 
in the hirearchical structure. Is 
is filled using a breadth-first 
mechanism.

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 243



Name Storage Value KeyLevel
OrderLe
vel Comment

Parent Id number ordinal 0 0 The identifier of the parent pa
rameter for the current parame
ter. This isused to reconstruct 
the hierarchy when restoring a 
previously saved model. A pa
rameter with a parent id 0 is a 
model root parameter.

Enum Flag string nominal 0 0 This flag indicates if the children 
of this parameter must be con
sidered as enumerated values 
(one child parameter for each 
possible value), or as sub-direc
tory parameters. Possible val
ues are "TRUE" or "FALSE". We 
recognize that this can take ex
tra space and could be opti
mized in a future release.

Param Name string nominal 0 0 The name of the current param
eter.

Param Type string nominal 0 0 The type of the current parame
ter.

In the current release, all inter
nal parametrs are saved as 
strings, so the only possible 
value here is "string", future re
lease could accept also "num
ber" or "date".

Param Value string nominal 0 0 The value of the current param
eter.

 Note
A parameter is defined, in this release, by both its model name, its model version, and its id. The read-only 
flag is not saved in the model space, is each model class can rebuild this information internally.

10.3 Language ISO Codes

ISO 639-1 Language Name

ab Abkhazian

aa Afar

244 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



af Afrikaans

ak Akan

sq Albanian

sq Albanian

am Amharic

ar Arabic

an Aragonese

hy Armenian

as Assamese

av Avaric

ae Avestan

ay Aymara

az Azerbaijani

bm Bambara

ba Bashkir

eu Basque

be Belarusian

bn Bengali

bh Bihari

bi Bislama

bs Bosnian

br Breton

bg Bulgarian

my Burmese

ca Catalan; Valencian

ch Chamorro

ce Chechen

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 245



ny Chichewa; Chewa; Nyanja

zh Chinese

cu Church Slavic; Old Slavonic; Church Slavonic; Old Bulgarian; 
Old Church Slavonic

cv Chuvash

kw Cornish

co Corsican

cr Cree

hr Croatian

cs Czech

da Danish

dv Divehi

nl Dutch; Flemish

dz Dzongkha

en English

eo Esperanto

et Estonian

ee Ewe

fo Faroese

fj Fijian

fi Finnish

fr French

fy Frisian

ff Fulah

gd Gaelic; Scottish Gaelic

gl Gallegan

lg Ganda

246 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



ka Georgian

de German

el Greek, Modern (1453-)

gn Guarani

gu Gujarati

ht Haitian; Haitian Creole

ha Hausa

he Hebrew

hz Herero

hi Hindi

ho Hiri Motu

hu Hungarian

is Icelandic

io Ido

ig Igbo

id Indonesian

ia Interlingua (International Auxiliary)

ie Interlingue

iu Inuktitut

ik Inupiaq

ga Irish

it Italian

ja Japanese

kl Kalaallisut; Greenlandic

kn Kannada

kr Kanuri

ks Kashmiri

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 247



kk Kazakh

km Khmer

ki Kikuyu; Gikuyu

rw Kinyarwanda

ky Kirghiz

kv Komi

kg Kongo

ko Korean

kj Kuanyama; Kwanyama

ku Kurdish

lo Lao

la Latin

lv Latvian

li Limburgan; Limburger; Limburgish

ln Lingala

lt Lithuanian

lu Luba-Katanga

lb Luxembourgish; Letzeburgesch

mk Macedonian

mg Malagasy

ms Malay

ml Malayalam

mt Maltese

gv Manx

mi Maori

mi Maori

mr Marathi

248 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



mh Marshallese

mo Moldavian

mn Mongolian

na Nauru

nv Navajo; Navaho

nr Ndebele, South; South Ndebele

ng Ndonga

ne Nepali

se Northern Sami

no Norwegian

nn Norwegian Nynorsk; Nynorsk, Norwegian

oc Occitan (post 1500); Provençal

oj Ojibwa

or Oriya

om Oromo

os Ossetian; Ossetic

pi Pali

pa Panjabi; Punjabi

fa Persian

pl Polish

pt Portuguese

ps Pushto

qu Quechua

rm Raeto-Romance

ro Romanian

rn Rundi

ru Russian

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 249



sm Samoan

sg Sango

sa Sanskrit

sc Sardinian

sr Serbian

sn Shona

ii Sichuan Yi

sd Sindhi

si Sinhalese

sk Slovak

sl Slovenian

so Somali

st Sotho, Southern

es Spanish; Castilian

su Sundanese

sw Swahili

ss Swati

sv Swedish

tl Tagalog

ty Tahitian

tg Tajik

ta Tamil

tt Tatar

te Telugu

th Thai

bo Tibetan

ti Tigrinya

250 PUBLIC
SAP Predictive Analytics Developer Guide

Appendix



to Tonga (Tonga Islands)

ts Tsonga

tn Tswana

tr Turkish

tk Turkmen

tw Twi

ug Uighur

uk Ukrainian

ur Urdu

uz Uzbek

ve Venda

vi Vietnamese

vo Volapük

wa Walloon

cy Welsh

wo Wolof

xh Xhosa

yi Yiddish

yo Yoruba

za Zhuang; Chuang

zu Zulu

SAP Predictive Analytics Developer Guide
Appendix PUBLIC 251



Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your 
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any 

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such 
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this 
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any 
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within 
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by 
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use 
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your 
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax 
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of 
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

252 PUBLIC
SAP Predictive Analytics Developer Guide

Important Disclaimers and Legal Information



SAP Predictive Analytics Developer Guide
Important Disclaimers and Legal Information PUBLIC 253



www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form 
or for any purpose without the express permission of SAP SE or an SAP 
affiliate company. The information contained herein may be changed 
without prior notice.

Some software products marketed by SAP SE and its distributors 
contain proprietary software components of other software vendors. 
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for 
informational purposes only, without representation or warranty of any 
kind, and SAP or its affiliated companies shall not be liable for errors or 
omissions with respect to the materials. The only warranties for SAP or 
SAP affiliate company products and services are those that are set forth 
in the express warranty statements accompanying such products and 
services, if any. Nothing herein should be construed as constituting an 
additional warranty.

SAP and other SAP products and services mentioned herein as well as 
their respective logos are trademarks or registered trademarks of SAP 
SE (or an SAP affiliate company) in Germany and other countries. All 
other product and service names mentioned are the trademarks of their 
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for 
additional trademark information and notices.

THE BEST RUN  

https://www.sap.com/about/legal/trademark.html

	SAP Predictive Analytics Developer Guide
	Content
	1 Overview
	2 What's New in This Release
	3 What You Can Do as an Administrator or Developer
	4 What is Predictive Analytics for OEM?
	4.1 Main Concepts
	4.1.1 Model
	4.1.1.1 Regression
	4.1.1.2 Classification
	4.1.1.3 Segmentation (Clustering)
	4.1.1.4 Forecasting
	4.1.1.5 Data Representation

	4.1.2 Transform
	4.1.2.1 Classification and Regression
	4.1.2.2 Data Encoding

	4.1.3 Protocol
	4.1.4 Context
	4.1.5 Factory
	4.1.6 Store
	4.1.7 Space
	4.1.8 Case Iterator

	4.2 Class Diagrams
	4.2.1 Control API
	4.2.2 Data Access API

	4.3 Implementations
	4.3.1 Differences between Schemes

	4.4 Distributed Computing
	4.4.1 Internationalization

	4.5 Usage Scenarios
	4.5.1 Preparing the Data
	4.5.2 Training a Model
	4.5.3 Applying a Trained Model
	4.5.4 Using a Model for Simulation

	4.6 Features Recapitulation

	5 Using the Automated Analytics API
	5.1 Import
	5.2 Configuration
	5.2.1 Loading a Configuration File
	5.2.2 Performing Direct Calls
	5.2.3 Configuration Keys
	5.2.4 Licensing Your Program with the C++ API

	5.3 Common Operation Workflow
	5.3.1 Declaring the Java Variables
	5.3.2 Getting the Class Factory
	5.3.3 Loading a License File
	5.3.4 Building a Model
	5.3.5 Setting Datasets
	5.3.6 Setting Parameters
	5.3.6.1 Variable Roles
	5.3.6.2 Getting Variable Values

	5.3.7 Training a Model
	5.3.8 Displaying the Results
	5.3.8.1 Getting Variable Statistics
	5.3.8.2 Getting Variable Contributions

	5.3.9 Using a Model
	5.3.10 Saving a Model
	5.3.11 Loading a Model
	5.3.12 Releasing the Current Model
	5.3.13 Deleting a Model

	5.4 Message Management
	5.4.1 Progress Report Messages
	5.4.2 Message Translation

	5.5 Sample Scripts
	5.5.1 Prerequisites
	5.5.2 Java Sample Scripts
	5.5.2.1 Running the Java Sample Scripts on Microsoft Windows
	5.5.2.2 Running the Java Sample Scripts on Linux

	5.5.3 Python Sample Scripts
	5.5.3.1 Running the Python Sample Scripts on Microsoft Windows
	5.5.3.2 Running the Python Sample Scripts on Linux


	5.6 Integration
	5.6.1 In-Process Integration
	5.6.2 Client/Server Integration

	5.7 Segmented Modeling in the Automated Analytics Engine
	5.7.1 Filter Syntax


	6 Integrating Generated Code
	6.1 What's New in Integrating Generated Codes
	6.2 About Code Generation
	6.3 Available Implementations of Code Generation
	6.4 Generated Codes
	6.4.1 AWK Code
	6.4.2 C Code
	6.4.3 CCL Code
	6.4.4 C++ Code
	6.4.4.1 C++ Code Generator Framework Presentation
	6.4.4.2 C++ Framework Detail
	6.4.4.2.1 KxCppRTModel
	6.4.4.2.2 KxCppRTCase
	6.4.4.2.3 KxCppRTModelManager
	6.4.4.2.4 KxCppRTValue

	6.4.4.3 Using the Generated Models

	6.4.5 HTML Code
	6.4.6 Java Code
	6.4.7 PMML Code (3.2 version)
	6.4.7.1 Code Generation Using PMML and DB2 IM Scoring
	6.4.7.1.1 DB2 IM Scoring for DB2 and Oracle
	6.4.7.1.1.1 Installing DB2
	6.4.7.1.1.2 Installing Oracle

	6.4.7.1.2 DB2 IM Scoring V7.1 for DB2 and Oracle
	6.4.7.1.2.1 Installing IMScoring DB2 UDF on an Existing Database
	6.4.7.1.2.2 Installing IMScoring Oracle Packages on the Default Database


	6.4.7.2 Inserting PMML in the Database
	6.4.7.3 Score Generation

	6.4.8 SAS Code
	6.4.9 SQL Code
	6.4.9.1 SQL ANSI
	6.4.9.2 SQL Generation Options
	6.4.9.3 Other SQL Codes

	6.4.10 UDF Code
	6.4.10.1 SQL UDF
	6.4.10.1.1 Installing the SQL UDF
	6.4.10.1.2 Using the SQL UDF
	6.4.10.1.3 SQL UDF Generation Options
	6.4.10.1.4 DBMS Dependent Options on Generated SQL UDF

	6.4.10.2 Teradata C UDF
	6.4.10.2.1 Installing the Teradata UDF
	6.4.10.2.2 Using the Teradata UDF
	6.4.10.2.3 Obtaining help on the Teradata UDF

	6.4.10.3 Frequent Problems when Using UDF
	6.4.10.4 Performances of Automated Analytics SQL and UDF

	6.4.11 VB Code


	7 Model Parameter Reference
	7.1 Model Generation Parameters
	7.2 Infos
	7.3 Protocols
	7.3.1 Variables
	7.3.1.1 Variable Parameters
	7.3.1.2 Variable Statistics
	7.3.1.2.1 Targets
	7.3.1.2.2 Categories

	7.3.1.3 Data Structure

	7.3.2 Protocol Parameters
	7.3.3 Transforms
	7.3.3.1 Transform Information
	7.3.3.2 Kxen.RobustRegression
	7.3.3.2.1 Thresholds
	7.3.3.2.2 SelectionProcess
	7.3.3.2.3 Transform Parameters
	7.3.3.2.3.1 IDBScoreDevConfig
	7.3.3.2.3.2 GainChartConfig
	7.3.3.2.3.3 VariableExclusionSettings
	7.3.3.2.3.4 VariableSelection
	7.3.3.2.3.5 RiskMode
	7.3.3.2.3.6 DecisionTree
	7.3.3.2.3.7 ApplySettings

	7.3.3.2.4 Results
	7.3.3.2.4.1 DataSets
	7.3.3.2.4.2 GainChartResults
	7.3.3.2.4.3 Coefficients
	7.3.3.2.4.4 SmartCoefficients
	7.3.3.2.4.5 MaxCoefficients
	7.3.3.2.4.6 Rule
	7.3.3.2.4.7 Correlations
	7.3.3.2.4.8 AutoCorrelations

	7.3.3.2.5 AdditionalResults

	7.3.3.3 Kxen.SmartSegmenter
	7.3.3.3.1 Parameters
	7.3.3.3.1.1 EnginesConfiguration
	7.3.3.3.1.2 ApplySettings

	7.3.3.3.2 Results

	7.3.3.4 Kxen.ConsistentCoder
	7.3.3.4.1 Parameters
	7.3.3.4.2 Results

	7.3.3.5 Kxen.SocialNetwork
	7.3.3.5.1 Parameters
	7.3.3.5.1.1 LoadSettings
	7.3.3.5.1.1.1 PostProcessing
	7.3.3.5.1.1.2 FromModelLoadSettings

	7.3.3.5.1.2 GraphApplySettings

	7.3.3.5.2 Results

	7.3.3.6 Kxen.DateCoder
	7.3.3.6.1 Variables Used

	7.3.3.7 Kxen.AssociationRules
	7.3.3.7.1 Parameters
	7.3.3.7.2 Results

	7.3.3.8 Kxen.EventLog
	7.3.3.8.1 Parameters
	7.3.3.8.2 Results

	7.3.3.9 Kxen.SequenceCoder
	7.3.3.9.1 Parameters
	7.3.3.9.2 Results

	7.3.3.10 Kxen.TimeSeries
	7.3.3.10.1 Parameters
	7.3.3.10.2 Results
	7.3.3.10.3 Infos

	7.3.3.11 Kxen.TextCoder
	7.3.3.11.1 Parameters



	7.4 DataSets
	7.4.1 Parameters
	7.4.1.1 MappingResults
	7.4.1.2 Locale
	7.4.1.3 Parameters Specific to File Spaces


	7.5 Plan
	7.6 External Executables
	7.6.1 ExternalExecutableAvailable
	7.6.2 External_Executable_Name
	7.6.3 Other Parameters


	8 KxShell: SAP Predictive Analytics Command Line Interpreter
	8.1 Overview
	8.2 Regression and Classification
	8.2.1 Basic Script Using Text Files
	8.2.2 Basic Script Using an ODBC Source
	8.2.3 Using the Default Cutting Strategy: Random
	8.2.4 Changing the Cutting Strategy: Periodic
	8.2.5 Changing the Compression Parameter
	8.2.6 Excluding a Variable and Changing the Target
	8.2.7 Applying a Model Using Text Files (Scoring)
	8.2.8 Applying a Model in an ODBC Source (Scoring)

	8.3 Segmentation
	8.3.1 Basic Script Using Text Files
	8.3.2 Basic Script Using an ODBC Source
	8.3.3 Using a Classification Model to Characterize a Cluster
	8.3.4 Applying a Model Using Text Files
	8.3.5 Applying a Model in an ODBC Source

	8.4 KxCORBAShell

	9 Integrating with the Data Access API
	9.1 Architecture Elements
	9.2 Integration of a User-Defined Data Storage
	9.3 Minimum Implementation
	9.3.1 Space
	9.3.2 Store
	9.3.3 Case Iterator
	9.3.4 Refinement Steps
	9.3.5 Compilation Process

	9.4 Library Installation
	9.5 Declaration of a New User Class Name

	10 Appendix
	10.1 Data Type Mapping
	10.2 File Format Specifications
	10.3 Language ISO Codes

	Important Disclaimers and Legal Information
	Copyright / Legal Notice


