
PUBLIC
SAP Lumira
Document Version: 2.4 SP00 – 2020-08-27

Developer Guide: Component SDK

©
 2

02
0

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 About This Guide. 5
1.1 Who Should Read This Guide?. 5
1.2 What is the Component SDK?. 5

2 Introduction to SDK Concepts. 6
2.1 SDK Extensions. 6
2.2 Client-Server Architecture. .6
2.3 Restrictions. 6

3 Creating an SDK Extension. .8
3.1 Getting Started. 8

Prerequisites. .8
Extracting the Component SDK Samples and Templates ZIP File. 8
Installing the Eclipse IDE. 9
Registering the Component SDK XML Schema Definition. 9
Importing a Sample SDK Extension. 10
Setting the Target Platform. 10
Testing a Sample SDK Extension. 11

3.2 Creating a New SDK Extension. 12
3.3 Adding an SDK Extension to an SAP Lumira Designer Installation. .14

Configuring the SDK Extension Plug-In. 15
Creating a Feature Project. 15
Creating a Category. 16
Creating a Deployable Feature. 16
Installing Component SDK Extensions to SAP Lumira Designer. .17

3.4 Removing Extensions from SAP Lumira Designer. 18
3.5 Updating SDK Extensions of an SAP Lumira Designer Installation. 18

4 SDK Extensions. 20
4.1 Contribution XML. 20

Elements of the Contribution XML File. 21
4.2 Component JavaScript. 44

Loading Resources in a Specific Order. 45
Creating the HTML of the Extension Component. 48

4.3 Script Contributions. 60
4.4 Additional Properties Sheet. 62

HTML. 62
JavaScript. 63

2 PUBLIC
Developer Guide: Component SDK

Content

4.5 Exporting an SDK Extension Component. .70

5 SDK Extensions and Data Binding. 71
5.1 Prerequisites. 71
5.2 Result Set Terminology. 71
5.3 Data-Bound Properties. 72

Design Time Property Values. .72
Runtime Property Values. 73
Cell Selection. 79
Column or Row Selection. 81
Columns and Row Selection (Multiple Columns or Rows). .84
Columns and Row Selection ("Checkerboard"). 86
Result Set Selection. .89
Master Data. 92

5.4 Sample Implementation. 95
Configuring the Simple Table. 95
Data Binding in the Simple Table. 96

5.5 Select Data Dialog Box. .102

6 SDK Extensions Using SAPUI5 Controls. 103
6.1 Contribution XML. 103
6.2 Component JavaScript. 104

JavaScript Function Calls. 106
JavaScript Tips. 108

6.3 Events. 109

7 SDK Extensions as Data Sources (Data Source SDK). .112
7.1 Using SDK Data Sources in SAP Lumira Designer. 112
7.2 Implementing an SDK Data Source. 113
7.3 Option 1: Extending the DataSource JavaScript class. .113

JavaScript Function Calls. .114
Script Contributions. 115

7.4 Option 2: Extending the DataBuffer JavaScript Class. 116
JavaScript Function Calls. .117
Script Contributions. 124

8 Sample Components. 125
8.1 Colored Box. 125
8.2 Simple Table. 126
8.3 Simple Crosstab. 128
8.4 Google Maps. .129
8.5 Google Maps with Data. 130
8.6 Timer. 132

Developer Guide: Component SDK
Content PUBLIC 3

8.7 Clock. 132
8.8 JSONGrabber. 133
8.9 KPI Tile. .134
8.10 Sparkline. 139
8.11 Exception Icon. 140
8.12 Audio. 141
8.13 Video. 142
8.14 ApplicationHeader. .143
8.15 ColorPicker. .144
8.16 FormattedTextView. 145
8.17 Paginator. 146
8.18 ProgressIndicator. 147
8.19 RatingIndicator. 148
8.20 Rich Text Editor. 149
8.21 Slider. 151
8.22 ConstantDataSource. 152
8.23 CSVDataSource. 153
8.24 ScalingDataSource. 155
8.25 SAPUI5 List. .157

4 PUBLIC
Developer Guide: Component SDK

Content

1 About This Guide

1.1 Who Should Read This Guide?

This guide is intended for developers.

1.2 What is the Component SDK?

The Component SDK is a software development kit that allows developers to develop 3rd party components,
known as SDK extension components. Application designers can enhance their Lumira documents and
analysis applications using these custom components, as well as the standard palette of components in SAP
Lumira Designer. You can store and provide access to the Lumira documents and analysis applications, which
contain 3rd party components, on the BI platform.

 Note
You can also create new chart types using the Visualization SDK. These chart types are also known as
Visualization SDK extensions. Application designers can use them together with the components created
with the Component SDK and the standard components of SAP Lumira Designer in their Lumira
documents and analysis applications. You can store and provide access to the Lumira documents and
analysis applications containing Visualization SDK extensions on the BI platform.

For more information about creating Visualization SDK extensions using the Visualization SDK, see the
Visualization Extension Plugin for SAP Web IDE Guide on SAP Help Portal.

For more information about deploying extensions to Lumira Designer and BI platform, see “Deploying SDK
Extensions” in the Administrator Guide: SAP Lumira on SAP Help Portal at https://help.sap.com

Developer Guide: Component SDK
About This Guide PUBLIC 5

https://help.sap.com

2 Introduction to SDK Concepts

2.1 SDK Extensions

Component SDK extensions contain extension components, which are custom components developed by
partners and customers.

These extension components integrate seamlessly into Lumira Designer: Like Lumira Designer’s standard
components, extension components appear in the Component view. When placed into an analysis application,
these extension components also appear in the editor area and in the Outline view. Their properties can be
examined and changed in the Properties view. If extension components provide properties for which the
Properties view is not sufficient, they can provide their own Property view; the Additional Properties Sheet.
Extension components can also supply their own Lumira Designer script methods. The visualization of
extension components is based on HTML, JavaScript, and CSS – but can be also based on existing SAPUI5
controls to leverage its look-and-feel. Extension components can be data-bound to consume and visualize data
from SAP BW and SAP HANA systems. Another flavor of extension components can act like data sources,
which produce data for other extension components.

2.2 Client-Server Architecture

Like Lumira Designer standard components, extension components use a client-server architecture. An
extension component contains a JavaScript part that runs in the browser (client), which talks to the SDK
framework on the back end (server). At the heart of an extension component are its properties, which are
stored on the server. The SDK framework provides notification methods to propagate property changes from
the server to the extension component on the client, and in the other direction.

2.3 Restrictions

Extension components behave like standard components with the following restrictions:

● They cannot act as container components.
● They cannot use all available property types; they are restricted to a subset of property types.
● They cannot use large result sets.

 Note
The default limit is 10,000 data cells per data-bound property. You can adjust this limit.

6 PUBLIC
Developer Guide: Component SDK

Introduction to SDK Concepts

● They cannot extend standard components (standard components are technically different from extension
components).

Developer Guide: Component SDK
Introduction to SDK Concepts PUBLIC 7

3 Creating an SDK Extension

3.1 Getting Started

You can create an SDK extension using any XML and JavaScript editor. However, we recommend Eclipse as an
integrated development environment (IDE). This makes SDK extension development much easier. You can
create an SDK extension with the Eclipse IDE and test it by launching SAP Lumira Designer from the Eclipse
IDE. When launched, SAP Lumira Designer will automatically contain the SDK extension that you have
developed.

3.1.1 Prerequisites

● You have installed SAP Lumira Designer (64-bit).
● You have installed the Java Development Kit 7 (or higher) (64-bit). You can download the JDK 7 (64-bit)

from the Oracle Website.
● You have basic knowledge of SAP Lumira Designer concepts.
● You have solid knowledge of HTML and JavaScript. Knowledge of CSS and the jQuery JavaScript

framework is very helpful.

3.1.2 Extracting the Component SDK Samples and Templates
ZIP File

Procedure

1. Download the Component SDK Templates and Samples on SAP Help Portal at http://help.sap.com.
2. Extract the downloaded file to a folder, for example C:\ds_sdk.

8 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

http://help.sap.com

3.1.3 Installing the Eclipse IDE

Procedure

1. Download Eclipse IDE for Java EE Developers (64 bit) from download.eclipse.org.

This edition contains the tools needed to work with the SDK, for example, Plugin Development Tools, XML
Editor and JavaScript tools.

 Caution
Make sure that you only download this Eclipse version. Other versions, especially 32-bit versions, may
not work correctly with the Component SDK.

2. Extract the downloaded file to a folder.
3. Locate and run the file eclipse.exe.

4. Close the welcome page.
5. Create a workspace, for example C:\ds_sdk_workspace.

The workspace will contain all your SDK extension projects and the Eclipse IDE settings.

3.1.4 Registering the Component SDK XML Schema
Definition

Procedure

1. Choose Window Preferences .

2. In the Preferences dialog box, choose XML XML catalog .
3. Choose Add....
4. In the Add XML Catalog Element dialog box, choose File System....
5. Navigate to file sdk.xsd in your SDK Templates and Samples folder, for example C:\ds_sdk\sdk.xsd.

6. Choose OK twice.

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 9

3.1.5 Importing a Sample SDK Extension

Procedure

1. Choose File Import .

2. In the Import dialog box, choose General Existing Projects into Workspace .
3. Choose Next.
4. Under Select root directory, choose Browse....
5. Select the SDK Templates and Samples folder, for example C:\ds_sdk.

6. Select sample SDK extension com.sap.sample.coloredbox.
7. Select the Copy projects into Workspace checkbox.
8. Choose Finish.

3.1.6 Setting the Target Platform

Context

The target platform points to your SAP Lumira Designer installation. This enables your Eclipse IDE to access
the SDK framework included with SAP Lumira Designer.

The default installation path for SAP Lumira Designer is C:\Program Files\SAP Lumira\Lumira
Designer.

● If you have installed SAP Lumira Designer in the default folder, follow these steps:

1. Choose Window Preferences .

2. In the Preferences dialog box, choose Plug-In Development Target Platform .
3. Select the checkbox next to the list entry designstudio.
4. Choose OK.

5. Choose Project Clean .
6. Choose Clean all projects.
7. Choose OK.

This removes all error markers.

● If you have not installed SAP Lumira Designer in the default folder, follow these steps:

1. Choose Window Preferences .

2. In the Preferences dialog box, choose Plug-In Development Target Platform .
3. Select the checkbox next to the list entry designstudio.
4. Choose Edit.
5. Choose the Definition tab.

10 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

6. Choose Add....
7. Choose Directory and then choose Next.
8. Choose Browse... and select the folder of your SAP Lumira Designer installation that contains the file

SapLumiraDesigner.exe.
9. Choose OK.

A new folder appears in the Locations list.
10. Delete the list entry with the red error marker.
11. Save your changes.

12. Choose Project Clean .
13. Choose Clean all projects.
14. Choose OK.

This removes all error markers.

3.1.7 Testing a Sample SDK Extension

Procedure

1. The first time you test a sample SDK extension in your Eclipse IDE, create a Launch Configuration:

a. In the Eclipse IDE, choose menu item Run Run Configurations... .
b. Double-click Eclipse Application on the left.
c. In input field Name, enter SDK.
d. Click the Main tab.
e. In group Program to Run, choose Run a product and verify that the text in the adjacent input field reads

com.sap.ip.bi.zen.
f. Click the Arguments tab.
g. In input field VM arguments, enter:

-Xmx1024m -Xms256m
-XX:PermSize=32m
-XX:MaxPermSize=512m

h. Choose Apply, then choose Close.
i. Choose the Organize Favorites... menu item in the toolbar in the Run popdown (triangle to the right of

the green Play button).
j. Choose Add....
k. Add SDK.
l. Close all dialog boxes with OK.

2. Choose the SDK menu item in the Eclipse IDE toolbar in the Run popdown (triangle to the right of the green
Play button).

SAP Lumira Designer starts. The Components view contains the extension component Colored Box.

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 11

 Note
If a message is displayed after you start SAP Lumira Designer informing you that Internet Explorer does
not have the required version, add the following registry key to your system:

○ Windows (32-bit version):
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN
\FeatureControl\FEATURE_BROWSER_EMULATION] "javaw.exe"=dword:00002328

○ Windows (64-bit version):
[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN
\FeatureControl\FEATURE_BROWSER_EMULATION] "javaw.exe"=dword:00002328

Your system contains registry key Security_HKLM_only. Adding the above registry key forces all
javaw.exe processes on your system (such as SAP Lumira Designer) to run the Internet Explorer
control in the required IE9 mode.

 Note
If you are using Windows 8.x and a 64-bit Eclipse IDE, and the message no sapjco3 in java.library.path
appears when you launch an application from your Eclipse IDE, follow these steps:
1. Navigate to the SAP Lumira Designer installation folder, for example C:\Program Files\SAP

Lumira\Lumira Designer.
2. In the plugins folder, locate the file com.sap.conn.jco.win32.x86_64_XXX.jar.
3. Copy this file to a temporary location.
4. Change the extension from .jar to .zip.
5. Unzip the file.
6. Navigate to the lib folder of the unzipped folder.
7. Copy the file sapjco3.dll to the installation folder of your Eclipse IDE (the folder that contains

eclipse.exe).

3.2 Creating a New SDK Extension

Context

You can create a new SDK extension by copying the sample SDK extension Colored Box and renaming specific
parts of it.

Assume your company name is Sample Company, your reversed Internet domain name is
com.samplecompany and your custom component name is Box. Perform the operations listed below.

 Note
During these operations, Eclipse may ask you for read/write access to some files. Allow access.

12 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

Procedure

1. In the Package Explorer, copy project com.sap.sample.colorbox to com.samplecompany.box.

2. In file MANIFEST.MF, replace the following property values:

○ Bundle-Name Component SDK Extension Sample Colored Box with Sample Company Box
○ Bundle-SymbolicName com.sap.sample.coloredbox with com.samplecompany.box
○ Bundle-Vendor SAP with Sample Company

3. In file .project in element <name>, replace com.sap.sample.coloredbox with com.samplecompany.box.

 Tip
To show the.project file, open the view menu in Package Exporer, choose Filters... and
deselect .*resources.

4. In file contribution.xml, replace the following attribute values in element <sdkExtension>:

○ attribute id com.sap.sample.coloredbox with com.samplecompany.box
○ attribute vendor SAP with Sample Company
○ attribute title Component SDK Extension Sample Colored Box with Sample Company Box

 Note
If you choose a value other than 1.0 for element <sdkExtension>, attribute version, then
adjust the first two numbers of the version number (major and minor version number) in the
Bundle-Version entry in the MANIFEST.MF file accordingly. The first two numbers of the
Bundle-Version and the version of the SDK extension must match.

5. In file contribution.xml, replace the following attribute values in element <component>:

○ attribute id ColoredBox with Box
○ attribute title Colored Box with Box

6. In file contribution.ztl, replace class com.sap.sample.coloredbox.ColoredBox... with
class com.samplecompany.box.Box....

7. In file component.js, after Component.subclass("... replace
com.sap.sample.coloredbox.ColoredBox", ... with com.samplecompany.box.Box", ...

8. In file additional_properties_sheet.html, replace new
com.sap.sample.coloredbox.ColoredBoxPropertyPage() with new
com.samplecompany.box.BoxPropertyPage().

9. In file additional_properties_sheet.js, after
sap.designstudio.sdk.Component.subclass("..., replace
com.sap.sample.coloredbox.ColoredBoxPropertyPage with
com.samplecompany.box.BoxPropertyPage.

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 13

Next Steps

To quickly reload the modified contents of your SDK component's contribution.xml and
contribution.ztl (and JavaScript and CSS files) in Lumira Designer during development, follow these
steps:

1. Activate the debug mode of Lumira Designer by pressing CTRL + SHIFT + ALT + D .

2. Choose Tools Refresh SDK Extensions .
3. Deactivate the debug mode of Lumira Designer by pressing CTRL + SHIFT + ALT + D

3.3 Adding an SDK Extension to an SAP Lumira Designer
Installation

Context

Adding an SDK extension to an SAP Lumira Designer installation enables you to create and execute local
analysis applications, which contain components of this SDK extension.

Procedure

1. Pack the SDK extension into an archive file that can be installed in SAP Lumira Designer. This involves the
following steps:

○ configuring the SDK extension plug-in
○ creating a feature project (wrapping the SDK extension),
○ creating a category (adding texts that represent the SDK extension in the Eclipse installation wizard),

and
○ creating a deployable feature (wrapping the SDK extension and its category into an installable format).

2. Add the archive file containing the SDK extension to an SAP Lumira Designer installation.

Related Information

Configuring the SDK Extension Plug-In [page 15]
Creating a Feature Project [page 15]
Creating a Category [page 16]
Creating a Deployable Feature [page 16]

14 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

3.3.1 Configuring the SDK Extension Plug-In

Context

Procedure

1. Open the plugin.xml file of the SDK extension.

2. Choose the Overview tab.
3. In the Version input field, enter the version number 1.0.0.qualifier.

4. Save your changes by pressing Ctrl + S .

3.3.2 Creating a Feature Project

Procedure

1. In your Eclipse IDE, choose File New Project... .

2. Choose Plug-In Development Feature Project .
3. Choose Next.
4. Under Project name, enter the feature name, for example SampleExtensionFeature.

5. Choose Finish.
6. Select the Included Plug-ins tab and choose Add....
7. Add your SDK extension, for example com.sap.sample.coloredbox.

 Tip
Start typing a part of your SDK extension name in the text field. Your SDK extension appears in the list.

8. Unselect the Unpack the plugin-archive after the installation checkbox.
9. Save your changes (by pressing CTRL + S).

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 15

3.3.3 Creating a Category

Procedure

1. Choose File New Other... .

2. Choose Plug-In Development Category Definition .
3. Choose Next.
4. Enter the feature that you created above, for example SampleExtensionFeature.

5. Choose Finish.
6. Choose New Category.
7. Under ID*, enter the category ID com.sap.ip.bi.zen.sdk. This is the common feature ID of SDK

extensions.
8. Choose Add feature....
9. Select the feature that you created above, for example SampleExtensionFeature.
10. Choose OK.
11. Save your changes (by pressing CTRL + S).

3.3.4 Creating a Deployable Feature

Procedure

1. In the Package Explorer, select the created feature, for example SampleExtensionFeature.

2. Choose File Export... .

3. Choose Plug-in Development Deployable features .
4. Choose Next.
5. Under Available Features, select your feature, for example SampleExtensionFeature.
6. On the Destination tab, choose Archive file and enter the name of the archive file, for example C:

\SampleExtension.zip.

7. On the Options tab, choose Browse... and select the category file of the feature, for example C:
\ds_sdk_workspace\SampleExtensionFeature\category.xml.

8. Choose OK.
9. Choose Finish.

16 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

Results

The archive file is created, for example C:\SampleExtension.zip.

3.3.5 Installing Component SDK Extensions to SAP Lumira
Designer

Context

You can add extensions developed with the Component SDK to your SAP Lumira Designer installation as new
components.

Procedure

1. In SAP Lumira Designer, choose Tools Install Extension to Lumira Designer... .
2. Depending on where the SDK extension is located, proceed as follows:

○ For locally saved extensions, choose Archive... and select the archive file containing the SDK extension,
under C:\SampleExtension.zip, for example.

○ For extensions stored on a Web server, enter the URL of the Web server.
3. Choose OK.
4. Select the required feature, for example, SampleExtensionFeature.
5. Select the Component SDK extensions that you want to install.
6. Choose Finish to proceed with the installation.
7. Choose Next and again Next to confirm the installation.
8. Accept the terms of the license agreement and choose Finish.
9. Choose Yes to allow SAP Lumira Designer to restart.

Results

The SDK extension components appear in the Components view of SAP Lumira Designer as new components.

The components are stored under <user home directory>\LumiraDesigner-config\plugins .

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 17

3.4 Removing Extensions from SAP Lumira Designer

Context

You can remove SDK extensions that you have added to your SAP Lumira Designer installation as follows:

Procedure

1. In SAP Lumira Designer, choose Help About... .
2. Click the Installation Details button.
3. Select the feature containing the SDK extension, for example, SampleExtensionFeature.
4. Choose Uninstall....
5. In the Uninstall wizard, choose Finish.
6. Choose Yes to allow SAP Lumira Designer to restart.

Results

The SDK extension components are removed from the Components view of SAP Lumira Designer. Visualization
SDK extensions are removed from the list in the Additional Charts dialog box.

3.5 Updating SDK Extensions of an SAP Lumira Designer
Installation

Context

You can update SDK extensions in your SAP Lumira Designer installation as follows:

Procedure

1. Remove the old SDK extension.
2. Add the new SDK extension.

18 PUBLIC
Developer Guide: Component SDK

Creating an SDK Extension

Related Information

Removing Extensions from SAP Lumira Designer [page 18]
Adding an SDK Extension to an SAP Lumira Designer Installation [page 14]

Developer Guide: Component SDK
Creating an SDK Extension PUBLIC 19

4 SDK Extensions

An SDK extension contains the following files (any other, more technical files are omitted):

File required/optional Description

Contribution XML file required Defines the SDK extension and its extension components

Component JavaScript file optional Implements an extension component's functional behavior
(this includes creating its visual appearance)

Component CSS file optional Defines a Cascading Style Sheet (CSS) for an extension com­
ponent

Icon file optional Represents an extension component's icon (16 x 16 pixels)

Script Contribution file optional Implements the methods that extension components contrib­
ute to the Lumira Designer script editor

Additional Properties Sheet
HTML file

optional Implements the visual appearance of an extension compo­
nent's Additional Properties Sheet

Additional Properties Sheet
JavaScript file

optional Implements the functional behavior of an extension compo­
nent's Additional Properties Sheet

The following documentation chapters explain these files in detail. The examples are taken from the Sample
SDK Extension Colored Box.

4.1 Contribution XML

The Contribution XML file specifies the SDK extension and all its extension components. SAP provides a
documented XML schema definition file (sdk.xds) that defines the format of the Contribution XML file.

The example below is the Contribution XML of the SDK extension Colored Box. The file specifies the title,
version, vendor name, as well as an extension namespace. The SDK extension contains one extension
component. Its ID is ColoredBox (which is internally combined with the SDK extension's namespace to create
the unique extension component ID com.sap.sample.coloredbox.ColoredBox). The extension
component has a title, an Additional Properties Sheet, it references an icon and so on. The extension
component also references its Component JavaScript file, defines two properties (color and onClick, which
automatically appear in Lumira Designer's Properties view), and various initial values.

20 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Example

(File contribution.xml)

<?xml version="1.0" encoding="UTF-8"?> <sdkExtension xmlns="http://www.sap.com/bi/zen/sdk" title="Component SDK Extension Sample Colored Box"> version="1.0"
 vendor="SAP"
 id="com.sap.sample.coloredbox"
 <component
 id="ColoredBox"
 title="Colored Box"
 icon="res/icon.png"
 handlerType="div"
 modes="commons m"
 propertySheetPath="res/additional_properties_sheet/
additional_properties_sheet.html">
 <requireJs modes="commons m">res/js/component</requireJs>
 <property id="color" type="Color" title="Color" group="Display" />
 <property id="onclick" type="ScriptText" title="On Click" group="Events" />
 <initialization>
 <defaultValue property="LEFT_MARGIN">40</defaultValue>
 <defaultValue property="TOP_MARGIN">40</defaultValue>
 <defaultValue property="WIDTH">100</defaultValue>
 <defaultValue property="HEIGHT">100</defaultValue>
 <defaultValue property="color">red</defaultValue>
 </initialization>
 </component>
</sdkExtension>

4.1.1 Elements of the Contribution XML File

See the XML schema definition file sdk.xsd for full details of what can be defined in the Contribution XML. Its
elements are listed below.

 Note
Element names, attribute names, attribute values, and file paths used in the Contribution XML are case-
sensitive.

 Tip
You see the XML schema definition file when you have downloaded and extracted the Component SDK
Templates and Samples on SAP Help Portal at http://help.sap.com.

Developer Guide: Component SDK
SDK Extensions PUBLIC 21

http://help.sap.com

Element <sdkExtension>

Specifies an SDK extension. Its attributes are:

Attribute Required/Optional Description

title required Title of the SDK extension

version required Version number in major.minor format,
for example "1.0".

vendor required Vendor name

eula optional End user license agreement text

id required Specifies an SDK extension ID to avoid
name conflicts between an SDK exten­
sion (and its extension components)
and other SDK extensions (and their ex­
tension components). The specified
string is combined with extension com­
ponent IDs in this SDK extension, to
create a unique extension component
ID. Use a Java-like package notation, for
example, com.samplecompany. Use
lowercase letters, digits, and a period (.)
as a delimiter.

Child elements are (in the following order):

Element Cardinality Description

license 0..1 License text

group 0..* Custom group (see Element <group>
[page 23])

component 0..* Extension components (see Element
<component> [page 23])

22 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Element <group>

Specifies a custom group in Lumira Designer's views. A custom group in the Component view contains
extension components. A custom group in the Properties view contains properties of an extension component.
Its attributes are:

Attribute Required/Optional Description

id required ID of the custom group

 Note
Lowercase and uppercase letters
are treated the same.

title required Title of the custom group

tooltip optional Tooltip of the custom group

visible optional If true, then the group is visible (default
setting: true).

Element <component>

Specifies an extension component. Its attributes are:

Attribute Required/Optional Description

id required ID of the extension component

 Note
The ID must not end with the string
"Array".

title required Title of the extension component

tooltip optional Tooltip of the extension component

visible optional If true then the extension component
is visible in the Lumira Designer
Components view (default setting:
true).

Developer Guide: Component SDK
SDK Extensions PUBLIC 23

Attribute Required/Optional Description

group optional Group in the Lumira Designer's
Component view, where this extension
component is displayed. Specify a cus­
tom group you have defined in this SDK
extension by the group's ID. If no cus­
tom group is specified, this extension
component is placed in the default
Custom Component group.

 Note
In group IDs, lowercase and upper­
case letters are treated the same.

The group ID
TECHNICAL_COMPONENTS indicates
that this extension component is a
technical component. Unlike non-tech­
nical components, it is displayed in
Lumira Designer's Outline view when
you select the folder Technical
Components and choose Create Child
in the context menu.

Technical components are not intended
to be used for being rendered. Thus, it
does not make sense to use inherited
properties like WIDTH, HEIGHT and
margins with technical components
and there is no need to initialize these
properties in <defaultValue> ele­
ments in the contribution.xml
file. In addition, their Script Contribu­
tion file contribution.ztl should
not extend Component to forbid
Lumira Designer scripts access to
these properties.

propertySheetPath optional References the HTML file of the Addi­
tional Properties Sheet. This file must
be located in the /res folder of the ex­
tension component.

databound optional Indicates that this extension compo­
nent is data-bound (uses data sources)
(default setting: false).

24 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Attribute Required/Optional Description

newInstancePrefix optional Prefix for the name of a newly created
instance of this extension component.
If this attribute is not specified, then a
default name in the form "extension
component type (uppercase) + num­
ber" is used, for example
COLOREDBOX_1.

handlerType optional Specifies the technology that imple­
ments this extension component.
Specify one of the following values:
div, sapui5, datasource (default
setting: div).

 Note
The value datasource marks
this extension component as an
SDK data source (see SDK Exten­
sions as Data Sources (Data
Source SDK) [page 112].

icon optional References an icon (16 x 16 pixels) dis­
played with this extension component
in Lumira Designer's Component and
Outline views. The path is relative to the
root folder of the SDK extension.

Developer Guide: Component SDK
SDK Extensions PUBLIC 25

Attribute Required/Optional Description

modes optional Indicates which SAPUI5 libraries this
extension component supports.

This extension component is only
shown in Lumira Designer's
Component view when you are editing
analysis applications based on sup­
ported SAPUI5 libraries.

This attribute is relevant for extension
components with handlerType of
sapui5. It is not so relevant for div,
unless the components are based on
SAPUI5 libraries.

 Note
This attribute is ignored for exten­
sion components with a
handlerType of datasource
(Lumira Designer SDK Data Sour­
ces)

Specify one or more of the following
values separated by a space:
commons, m (default setting:
commons).

cardinality optional Indicates how many instances of this
extension component can be created.
This only applies to extension compo­
nents that are technical components.
See attribute group.

Specify one of the following values:
0_1 (one instance), 0_n (many instan­
ces) (default setting: 0_n).

supportsExportContent optional If true then the extension component
can be exported by the PDF export
framework (default setting: false).

For more information on exporting ex­
tension components by the PDF export
framework, see Exporting an SDK Ex­
tension Component [page 70].

26 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Attribute Required/Optional Description

loadIncludesOnlyIfVisible optional If true then the extension component
loads the files to be included with this
component when the component be­
comes visible at run time (default set­
ting: true).

includeInBookmarkDialog optional Indicates whether this extension com­
ponent is included in the Edit
Bookmark Definition dialog box (default
setting: true).

Child elements are (in the following order):

Element Cardinality Description

requireJs 0..* References a resource file to be loaded
with this extension component at run­
time. This is typically the Component
JavaScript file, for example
contribution.js of this extension
component. The reference is a path rel­
ative to the root folder of the SDK ex­
tension or a fully qualified URL. This el­
ement combines and replaces the func­
tionality of elements <stdInclude>,
<jsInclude>, and <cssInclude>
(see Element <requireJs> [page 29])

stdInclude 0..* Includes a JavaScript framework at run­
time (see Element <stdInclude> [page
29]). This element is deprecated, see
also: Loading Resources in a Specific
Order [page 45].

Developer Guide: Component SDK
SDK Extensions PUBLIC 27

Element Cardinality Description

jsInclude 0..* References a JavaScript file to be in­
cluded with this extension component
at runtime. It is either a relative path to
the root folder of the SDK extension or
a fully qualified URL.

 Note
It is not necessary to include the
following JavaScript frameworks
with this element:

● jQuery
● underscore

They are already included in the
SDK framework.

 Note
It is not necessary to include the D3
JavaScript framework with this ele­
ment. See Element <stdInclude>
[page 29] for more information.

This element is deprecated, see also:
Element <requireJs> [page 29] .

cssInclude 0..* References a CSS file to be included
with this extension component at run­
time. It is either a relative path to the
root folder of the SDK extension or a
fully qualified URL. This element is dep­
recated, see also: Loading Resources in
a Specific Order [page 45].

property 0..* Property of the extension component
(see Element <property> [page 30])

initialization 0..1 Initialization values of properties (see
Element <initialization> [page 36])

supportedBackend 0..* Specifies which platform this extension
component supports. Specify one of
the following values: LUMX,
BIPLATFORM or LOCAL. If this ele­
ment is not specified, then all platforms
support this extension component.

28 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Element <stdInclude>

Includes a JavaScript framework. Its attributes are:

Attribute Required/Optional Description

kind required JavaScript framework to include at run­
time. Specify one of the following val­
ues: d3, cvom.

This element is deprecated, see also: Loading Resources in a Specific Order [page 45].

Element <requireJs>

References a resource file to be loaded with this extension component at runtime. This is typically the
Component JavaScript file, for example contribution.js, of this extension component. The reference is a
path relative to the root folder of the SDK extension or a fully qualified URL.

This element combines and replaces the functionality of elements <stdInclude>, <jsInclude>, and
<cssInclude>. For more information, see Loading Resources in a Specific Order [page 45].

 Note
When referencing a JavaScript file, omit the .js file extension.

Developer Guide: Component SDK
SDK Extensions PUBLIC 29

Its attributes are:

Attribute Required/Optional Description

modes required Indicates which SAPUI5 libraries this re­
source supports.

This resource is only loaded when the
analysis application that hosts this ex­
tension component is based on sup­
ported SAPUI5 libraries.

Specify one or more of the following
values separated by a space:
commons, m.

Example:

You have two different Component
Javascript files. One of them should be
used with analysis applications based
on the SAPUI5 library, the other one
with the SAPUI5 m library. Specify the
first Component JavaScript file with el­
ement <requireJs
modes="commons">, and the other
one with element <requireJs
modes="m">.

In this example, the Component JavaScript file component.js of the ColoredBox sample is referenced. It is
located in folder res/js of the extension component. It is used with the SAPUI5 and SAPUI5 m libraries.

 Sample Code

<requireJs modes="commons m">res/js/component</requireJs>

Element <property>

Specifies an extension component property. Its attributes are:

Attribute Required/Optional Description

id required ID of the property

 Tip
Use IDs with a lowercase first let­
ter.

title required Title of the property

30 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Attribute Required/Optional Description

tooltip optional Tooltip of the property

visible optional If true then the property is visible in
Lumira Designer (default setting:
true)

Developer Guide: Component SDK
SDK Extensions PUBLIC 31

Attribute Required/Optional Description

type required Type of the property. Specify one of
the following:

● int
● float
● boolean
● String
● ScriptText
● Color
● Url
● ResultCell
● ResultCellList
● ResultCellSet
● ResultSet
● MultiLineText
● Array
● Object

Properties of certain types have a
matching property dialog box (value
help) in Lumira Designer's Properties
view.

 Note
● The type Text marks the

property as a translatable
text.

● The type MultiLineText
marks the property as a
translatable, multi-line text.

● Properties of type Url,
ResultCell,
ResultCellList,
ResultCellSet, and
ResultSet may contain
nested options (see Element
<option> [page 37]).

● The type Array marks the
property as an array of prop­
erties, for example of type
int, String, but also
Object. Arrays are stored
in the property in the usual
JavaScript notation.

32 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Attribute Required/Optional Description

In the following example, the
property names stores an
array of String elements:

 Sample Code
 <property
id="names"
type="Array"
title="Names">
 <property
id="name"
type="String"
title="Name" /
>
</property>

In the following example, the
property persons stores an
array of Object elements
representing a person:

 Sample Code
 <property
id="persons"
type="Array"
title="Persons
">
 <property
id="person"
type="Object"
title="Person"
>
 <property
id="name"
type="String"
title="Name" /
>
 <property
id="age"
type="int"
title="Age" />
 </property>
</property>

Properties nested in an
Array property may con­
tain nested options (see Ele­
ment <option> [page 37])
to enable input validation in
the dialog box (value help) of
Lumira Designer's Properties
view.

Developer Guide: Component SDK
SDK Extensions PUBLIC 33

Attribute Required/Optional Description

● The type Object marks the
property as an object con­
taining a nested structure of
primitive properties like int,
String, and so on, but not
Object, ResultCell,
ResultCellList,
ResultCellSet,
ResultSet, and
ScriptableText. Ob­
jects are stored in the prop­
erty in the usual JavaScript
JSON notation.
In the following example the
property person stores in­
formation about a person:

 Sample Code
 <property
id="person"
type="Object"
title="Person"
>
 <property
id="name"
type="String"
title="Name" /
>
 <property
id="age"
type="int"
title="Age" />
 <property
id="city"
type="String"
title="City" /
>
</property>

Properties nested in an
Object property may con­
tain nested options (see Ele­
ment <option> [page 37])
to enable input validation in
the dialog box (value help) of
Lumira Designer's Properties
view.

34 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Attribute Required/Optional Description

group optional Group in the Lumira Designer's
Properties view where this property is
displayed. Specify a custom group
you have defined in this SDK exten­
sion by the group's ID or one of the
following values: Display,
DataBinding, or Events (default
setting: Display).

bindable optional If true then the property can be
bound in Lumira Designer's Properties
view using property binding (not to be
confused with SDK data-binding) (de­
fault setting: false).

 Note
This does not apply to technical
components (a technical compo­
nent contains the entry
group=TECHNICAL_COMPON
ENTS in its
contribution.xml file).

modes optional Indicates which SAPUI5 libraries this
property supports.

This property is only shown in Lumira
Designer's Properties view when you
are editing analysis applications
based on supported SAPUI5 libraries.

This attribute is relevant for compo­
nents with handlerType of
sapui5. It is not so relevant for div,
unless the components are based on
SAPUI5 libraries.

Specify one or more of the following
values separated by a space:
commons, m (default setting:
commons m).

Child elements are (in the following order):

Element Cardinality Description

property 0..* Nested property of an Array or Object
property (see Element <option> [page
37])

Developer Guide: Component SDK
SDK Extensions PUBLIC 35

Element Cardinality Description

possibleValue 0..* Contains a possible value of this prop­
erty. Use multiple elements to create an
enumeration of possible values for this
property.

option 0..* Contains options for data-bound prop­
erties of type ResultCell,
ResultCellList,
ResultCellSet or ResultSet
(see Element <option> [page 37]).

Contains options for input validation in
Lumira Designer's Properties view dia­
log box (value help), for example, for
properties nested in Array or
Object properties (see Element <op­
tion> [page 37]).

Element <initialization>

Initial values of properties (predefined and custom) for this extension component, when a new instance of this
extension component is created.

Child elements are:

Element Cardinality Description

defaultValue 0..* Default values of properties (see Ele­
ment <defaultValue> [page 36]).

Element <defaultValue>

This element contains a default value of a property (predefined and custom) for the extension component,
when a new instance of this extension component is created. Its attribute values are:

Attribute Required/Optional Description

property required Property ID

36 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Element <possibleValue>

This element contains a possible value of a property. Its attribute values are:

Attribute Required/Optional Description

title optional Title of the possible value displayed in
the Lumira Designer Properties view.

Element <option>

This element contains specific additional information of a property. Its attributes are:

Attribute Required/Optional Description

name required Option name (see table below)

value required Option value (see table below)

The following table lists the available option names of data-bound properties ResultCell, ResultCellList,
ResultCellSet, and ResultSet to fine tune the content and size of the Data Runtime JSON and Metadata
Runtime JSON returned by the SDK framework (see “MetadataRuntime JSON” and “Data Runtime JSON”
under Runtime Property Values [page 73]):

Option Name Description

includeAxesTuples If true then the JSON properties axis_rows and
axis_columns are included in the Data Runtime JSON.
They contain the tuples of the row axis and column axis.

The following table lists the default setting depending on the
data-bound property type:

ResultCell
ResultCell­
List

ResultCell­
Set ResultSet

false false false true

includeTuples If true then the JSON property tuples is included in the
Data Runtime JSON. It contains the tuples of the data (de­
fault setting: true).

includeResults If true then the result values, for example totals, are in­
cluded in the Data Runtime JSON (default setting: true).

presentationDelimiter String that separates presentations of dimension member
values in the text JSON property of dimension members in
the Metadata Runtime JSON (default setting: |).

Developer Guide: Component SDK
SDK Extensions PUBLIC 37

Option Name Description

selectionShape Integer value that indicates the geometry of the data in the
Data Runtime JSON. Possible values: 0 (ResultCell), 1
(ResultCellList), 2 (ResultCellSet or
ResultSet).

The following table lists the default setting depending on the
type of the data-bound property:

ResultCell
ResultCell­
List

ResultCell­
Set ResultSet

0 1 2 2

 Note
The value of selectionShape corresponds to the
type of a data-bound property. By explicitly setting a
value of selectionShape, you basically overrule the
type of the data-bound property.

Possible value: 3 (Master Data)

This is the same as value 2 with additional support of data
from master data data sources. A master data data source
contains dimension member values on one axis (either row
or column axis) and no key figures. For more information on
master data data sources, see Master Data [page 92].

swapAxes If true then the axes (and the relevant data) are swapped
(transposed) in the Data Runtime JSON and Metadata Run­
time JSON (default setting: false).

includeData If true then the JSON property data is included in the
Data Runtime JSON. It contains the data values (float
numbers or null) (default setting: true).

includeFormattedData If true then the JSON property formattedData is in­
cluded in the Data Runtime JSON. It contains the formatted
data values as strings (default setting: false).

includeMetadata If true then the Metadata Runtime JSON is included as a
part of the Data Runtime JSON.

The following table lists the default setting depending on the
data-bound property type:

ResultCell
ResultCell­
List

ResultCell­
Set ResultSet

false false false true

38 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Option Name Description

fillMetadataProperty If true then the SDK component's implicit property
metadata contains the Metadata Runtime JSON.

The following table lists the default setting depending on the
data-bound property type:

ResultCell
ResultCell­
List

ResultCell­
Set ResultSet

true true true false

includeAttributes If true then the JSON properties attributes and
attributeMembers are added to the Metadata Runtime
JSON (default setting: false). They contain information
about the display attributes of a result set. If the result set
does not contain attributes then these JSON properties are
not added, regardless of the value of
includeAttributes.

includeConditionalFormats If true then the JSON property conditionalFormats
is added to the Metadata Runtime JSON and the JSON prop­
erty conditionalFormatValues is added to the Data
Runtime JSON (default setting: false). They contain infor­
mation about conditional formatting of data values of the re­
sult set. If the result set does not contain conditional formats
then these JSON properties are not added, regardless of the
value of includeConditionalFormats.

allDataOnEmptySelection If true then an empty selection string ("" or {}) set to this
data-bound property returns the entire result set in the Met­
adata and Data Runtime JSONs (default setting: true). If
false then an empty selection string ("" or {}) set to this
data-bound property returns a Metadata Runtime JSON with
no dimension information and an empty Data Runtime JSON
("").

Developer Guide: Component SDK
SDK Extensions PUBLIC 39

Option Name Description

maxCells The maximum number of selected result set cells that are
sent to this data-bound property (default setting: 10000). If
the number of selected result set cells is greater than the
maximum number, then no result set cells are sent to this
data-bound property.

 Note
You can also globally set the maximum number of se­
lected result set cells on BW systems (and SAP R/3 sys­
tems in general) with the RSADMIN parameter
AAD_SDK_MAX_CELLS (default value: 50000). If
both a value for the maxCells option and the RSAD­
MIN parameter AAD_SDK_MAX_CELLS have been set,
then the lower value is used.

 Caution
Keep in mind that increasing the maximum number of
selected result set cells that are sent to data-bound
properties can severely degrade the performance of
your application: Not only is the amount of data larger
that is sent over the network to the browser, but also the
memory consumption and processing load of the
browser is increased.

If the performance of your analysis application is too
slow, check if the maximum number of selected result
set cells has been changed - either with the maxCells
option or the RSADMIN parameter
AAD_SDK_MAX_CELLS in the relevant BW system.

40 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Option Name Description

includeDataSourceInfo If true then the JSON property dataSourceInfo is in­
cluded in the Data Runtime JSON (default setting: false).
This property contains the following JSON properties.

Property Name Description Example

dataSourceCo
mponent

Name of the data
source compo­
nent

DS_1

name Name of the data
source. In the
case of a blended
data source, this
is an array con­
taining the names
of all blended data
sources.

FINANCIALS_Q
UERY

connection Name of the con­
nection

AB1

type Type of the data
source, for exam­
ple QUERY or
INFOPROVIDER

QUERY

repeatHierarchyNodes If true and the data source contains an active hierarchy,
then the Metadata Runtime JSON may contain hierarchy
members with the same ID (default setting: false).

useResultWhenUnspecified If true then the SDK framework will pick the aggregate
member of that dimension for unspecified dimensions in an
underspecified selection string (default setting: false).

Developer Guide: Component SDK
SDK Extensions PUBLIC 41

Option Name Description

includeAdditionalResults If true then for each dimension with one or more additional
results, the Metadata Runtime JSON contains specific di­
mension members for these additional results (default set­
ting: false).

These specific dimension members have a type attribute of
"RESULT", the key attribute has one of the values
"COUNT", "SUM", "AVERAGE", "MIN", or "MAX", de­
pending on the aggregation mode of the additional results.

In the following example, a snippet from a Metadata Runtime
JSON shows a dimension member of a country dimension
(with key 8050322), followed by two dimension members
of additional results (with keys “COUNT” and
“AVERAGE”). The first dimension member of additional re­
sults (with key “COUNT”) uses a count of members as its
aggregation mode, the second dimension member of addi­
tional results (with key “AVERAGE”) uses an average as its
aggregation mode.

 Sample Code
 ...
{
 "key": "8050322",
 "text": "Italy"
},
{
 "key": "COUNT",
 "text": "Count",
 "type": "RESULT"
},
{
 "key": "AVERAGE",
 "text": "Average",
 "type": "RESULT"
},
...

Also, the Data Runtime JSON contains the corresponding
data values for the dimension members of the additional re­
sults in the JSON properties tuples, data, and
formattedData.

 Caution
When one of the values "COUNT", "SUM",
"AVERAGE", "MIN", or "MAX" is used as key attrib­
utes in a selection string (see Design Time Property Val­
ues [page 72]), they may not lead to a unique selection

42 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Option Name Description

when your data source has regular dimension members
with the same key attribute.

 Note
The options includeAdditionResults and
includeResults are completely independent from
each other.

includeAllDimensionsAndMeasures If true, then all dimensions and members are included in
the Data Runtime JSON (default setting: false). Dimen­
sions that are neither on the row nor on the column axis but
are on the free axis are appended to the array of dimensions
of the JSON property externalDimensions. Measures
that are not part of the result set are added to the array of
members of the JSON property members. Such members
contain the nested JSON property isExcluded with a
value of true.

keyfield If true and the corresponding property is part of an Array
property, then Lumira Designer checks if the property value
is unique when it is entered in Lumira Designer's Properties
view dialog box (value help). Lumira Designer's value help
does not accept the property value if another property of the
array has the same value (default setting: false).

optional If true then Lumira Designer accepts an empty or no prop­
erty value when entering it in Lumira Designer's Properties
view dialog box (value help) (default setting: false).

kind Indicates the MIME type of properties of type Url so that
Lumira Designer's Properties view dialog box (value help)
can provide the appropriate value help dialog box. Specify
one of the following: GeoJSON, CSS, Image, Font, CSV or
SVG for the value attribute.

minValue Minimum value of a property of type int or float. If you
enter a value for this property (in Lumira Designer's
Properties view) that is less than this value, then an error
message appears in the status bar at the bottom of the
screen in Lumira Designer and the entered value is dis­
carded.

maxValue Maximum value of a property of type int or float. If you
enter a value for this property (in Lumira Designer's
Properties view) that is greater than this value, then an error
message appears in the status bar at the bottom of the
screen in Lumira Designer and the entered value is dis­
carded.

Developer Guide: Component SDK
SDK Extensions PUBLIC 43

Option Name Description

type If true and the corresponding property is of type
ComponentReference, then the value indicates the
component type of referenced component, for example
com.sap.sample.coloredbox.ColoredBox.

4.2 Component JavaScript

You implement a Component JavaScript class for each extension component. You can implement the
Component JavaScript class using both JavaScript and jQuery, as jQuery is included in the Design Studio SDK
framework. The Lumira Component SDK includes jQuery 2.2.3.

The class name of the JavaScript class is the combination of the SDK extension namespace and the extension
component ID, for example com.sap.sample.coloredbox.ColoredBox.

Below is an example; the Component JavaScript class of the extension component Colored Box. Its class
name is com.sap.sample.coloredbox.ColoredBox and subclasses the generic JavaScript class
sap.designstudio.sdk.Component. It implements an init function, which adds a CSS style coloredBox
and attaches an event handler to the click event of the extension component. When clicked, the extension
component executes the script assigned to the extension component property onclick. It also defines a
color function that acts as a combined setter and getter function for the extension component property
color; in other words, the function sets and gets the background color of the extension component.

Example

(File: component.js)

 define(["sap/designstudio/sdk/component", "css!../css/component.css"],
function(Component, css) {
 Component.subclass("com.sap.sample.coloredbox.ColoredBox", function() {

 var that = this;

 this.init = function() {
 this.$().addClass("coloredBox");
 this.$().click(function() {
 that.fireEvent("onclick");
 });
 };

 this.color = function(value) {
 if (value === undefined) {
 return this.$().css("background-color");
 } else {
 this.$().css("background-color", value);
 return this;
 }
 };
 });

44 PUBLIC
Developer Guide: Component SDK

SDK Extensions

});
The code in the Component JavaScript class controls important aspects of an extension component:

● loading resources in a specific order
● creating the HTML of the extension component
● getting and setting extension component properties
● firing events

Related Information

Loading Resources in a Specific Order [page 45]
Creating the HTML of the Extension Component [page 48]
Getting and Setting Extension Component Properties [page 69]
Events [page 55]

4.2.1 Loading Resources in a Specific Order

The SDK framework lets you specify the order in which resource files of your extension component, like
JavaScript and CSS files, are loaded before the Component JavaScript is executed. The SDK framework uses
the loading mechanism of the RequireJS library, which is included with the SDK.

The loading order is defined by the define function of RequireJS. In the SDK, this function is used with the
following syntax:

 define(["sap/designstudio/sdk/component", sResourcePath1, sResourcePath2, ...],
function(Component, ref1, ref2, ...) {
 Component.subclass(sExtensionId.sComponentId, function() {
 ...
 });
});

The first argument of the define function is an array of resource paths. They are loaded in the order in which
they are listed. The first resource path "sap/designstudio/sdk/component" is an alias of the JavaScript
file of the parent class of your SDK component's JavaScript class. It is always present.

You can add zero, one, or multiple resource paths sResourcePath1, sResourcePath2,.... Depending on
the type of resource, certain rules may apply to the resource paths:

● For JavaScript files, see Loading JavaScript Files as Resources [page 46].
● For CSS files, see Loading CSS Files as Resources [page 47].
● For standard JavaScript frameworks, see Loading Standard JavaScript Frameworks as Resources [page

48].

The second argument of the define function is an anonymous function, which extends your SDK component's
JavaScript class as a subclass of its parent JavaScript class.

The SDK framework passes references to the loaded resources as arguments to the anonymous function. The
order of the arguments corresponds to the order of the resource paths in the array. For example, in the first

Developer Guide: Component SDK
SDK Extensions PUBLIC 45

argument Component, the SDK framework passes a reference to the parent class of your SDK component's
JavaScript class.

The actual class extension is achieved by calling the subclass function and passing the fully qualified
component ID of your SDK component and a function that contains the actual Component JavaScript code of
your SDK component.

 Note
When using RequireJS, it is good practice to provide a matching argument in the function signature for
each resource listed in the array. This enables you to access all the loaded resources in the Component
JavaScript body.

4.2.1.1 Loading JavaScript Files as Resources

JavaScript files are loaded using RequireJS by adding the file resource path to the resource path array of the
define function.

 Note
Relative resource paths to a JavaScript file are relative to the folder of the Component JavaScript file.
Relative resource paths must start with ./ or ../.

 Note
At the end of the resource path, omit the .js extension.

In the following example, a JavaScript file sample.js, located in the res/js/folder1 folder of the
ColoredBox sample component, is loaded in the Component JavaScript file contribution.js.

 Sample Code
 define(["sap/designstudio/sdk/component", ..., "./folder1/sample"],
function(Component, ..., sample) {
 Component.subclass("com.sap.sample.coloredbox.ColoredBox", function() {
 // ...
 });
define(["sap/designstudio/sdk/component", ..., "./folder1/sample"],
function(Component, ..., sample) {
 Component.subclass("com.sap.sample.coloredbox.ColoredBox", function() {
 // ...
 });
});
});

 Tip
How to Call Functions of Your JavaScript Resources

In the Component JavaScript of your SDK component, you want to call a function of one of your JavaScript
resources.

46 PUBLIC
Developer Guide: Component SDK

SDK Extensions

The following example shows you how to call the function greet of your JavaScript resource file
sample.js in the Component JavaScript file contribution.js of the ColoredBox sample component.
Note how the resource's path in the resource path array of the define function indicates that the
JavaScript resource file sample.js is located in the folder res/js of the ColoredBox sample
component. Note that the extension .js. is omitted in the resource path. Note also the argument sample
in the anonymous function. This argument receives a reference to the JavaScript resource at runtime,
which is then used in the code to call the greet function.

File contribution.js

 Sample Code
 define(["sap/designstudio/sdk/component", ..., "./sample"],
function(Component, ..., sample) {
 Component.subclass("com.sap.sample.coloredbox.ColoredBox", function() {
 // ...
 this.init = function() {
 sample.greet("Hello, world!");
 // ...
 }
 // ...
 });
});

This is the implemetation of the greet function in the JavaScript resource file sample.js.

File sample.js

 Sample Code
 defined([], function() {
 var result = {};
 result.greet = function(message) {
 alert(message);
 }
 return result;
});

4.2.1.2 Loading CSS Files as Resources

CSS files are loaded using RequireJS by prepending the file resource path with the string "css!" in the
resource path array of the define function.

 Note
Relative resource paths to a CSS file are relative to the folder of the Component JavaScript file. Relative
resource paths must start with ./ or ../.

In the following example, a CSS file is loaded in the Component JavaScript file contribution.js of the
ColoredBox sample component. Note the resource path of the CSS file. A css argument was added to the
signature of the anonymous function, as it is good practice with RequireJS (although it is not used in this
JavaScript code).

Developer Guide: Component SDK
SDK Extensions PUBLIC 47

 Sample Code
 define(["sap/designstudio/sdk/component", "css!../css/component.css"],
function(Component, css) {
 Component.subclass("com.sap.sample.coloredbox.ColoredBox", function() {
 ...
 });
});

4.2.1.3 Loading Standard JavaScript Frameworks as
Resources

The d3 JavaScript library is included with the SDK and is loaded with the resource path "d3" using RequireJS.

In the following example, the d3 JavaScript library is loaded in the Component JavaScript file
contribution.js of the Sparkline sample component.

 Sample Code
 define(["sap/designstudio/sdk/component", "d3"], function(Component, d3) {
 Component.subclass("com.sap.sample.sparkline.Sparkline", function() {
 // ...
 var graph = d3.select(...)....
 // ...
 });
});

4.2.2 Creating the HTML of the Extension Component

You create the HTML of the extension component in the Component JavaScript.

At runtime the SDK framework provides a <div> element, which acts as a root element. The HTML of the
extension component can then be placed into this element. You access this root element as a jQuery object
with this.$().

 Caution
Ensure that your extension component does not rely on HTML DOM content outside the provided <div>
element and only modifies HTML DOM content inside the provided <div> element. Otherwise your
extension component may not work in future Lumira Designer versions as the HTML DOM outside the
provided <div> element is subject to change without further notice.

48 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Extension Component Lifecycle

When the extension component is rendered for the first time, the SDK framework performs the following
sequence of JavaScript function calls:

● init()
● beforeUpdate()
● Update all extension component properties using their setter/getter functions (see next section)
● afterUpdate()

When the extension component is only updated (after it has already been rendered once), the SDK framework
performs the following sequence of JavaScript function calls:

● beforeUpdate()
● Update all extension component properties using their setter/getter functions (see next section)
● afterUpdate()

When the extension component is deleted from the application, the SDK framework calls JavaScript function

● componentDeleted()

 Note
If you want to run certain parts of JavaScript code of your extension component only when the extension
component is in the Lumira Designer canvas (as opposed to an analysis application in a browser), then nest
your code in the following JavaScript condition:

 if (window.sap && sap.zen && sap.zen.designmode) {
 // ...
}

 Tip
If you want to find out if Authoring mode is enabled, then use the following function:

sap.zen.designmode.isRuntimeAuthoringMode()

The function returns true if all of the following checks are met:

● The function sap.zen.designmode.isEmbeddedDesignMode() returns false
● The property Authoring Area on the Authoring component is set
● The property Enabled on the Authoring component is set to true

A component can be outside the authoring area and thus not in Authoring mode when the above
function returns true. This can be checked by passing the component to the
isRuntimeAuthoringMode() function:

sap.zen.designmode.isRuntimeAuthoringMode(component)

The function returns true if all the following checks are met:

● The function sap.zen.designmode.isEmbeddedDesignMode() returns false
● The property Authoring Area on the authoring component is set
● The property Enabled on the Authoring component is set to true

Developer Guide: Component SDK
SDK Extensions PUBLIC 49

● The passed in component is a child of the composite set in the property Authoring Area

Related Information

JavaScript Function Calls [page 50]

4.2.2.1 JavaScript Function Calls

Function init

Syntax: init()

Implement this function to execute JavaScript code after the extension component's root <div> element has
been created.

 Note
If your extension component is a technical component (it contains the entry
group=TECHNICAL_COMPONENTS in its contribution.xml file), use the following init function to avoid
rendering the extension component:

 this.init = function() {
 this.$().css("display", "none");
}

Function beforeUpdate

Syntax: beforeUpdate()

Implement this function to execute JavaScript code before the properties of the extension component are
updated.

Property Getter and Setter Functions

For each extension property, you can implement a function that acts as a combined setter and getter function.

● The function name is the property's name.
● The function's setter clause must return this to allow function calls to be chained, thus creating a fluent

interface.

50 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Example: (File component.js)

 this.color = function(value) {
 if (value === undefined) {
 return this.$().css("background-color");
 } else {
 this.$().css("background-color", value);
 return this;
 }
};
● Properties of type Array can be accessed like normal JavaScript arrays.

In the following example, a property containing an array of city names is defined in the Contribution XML:

 <property id="cities" type="Array" title="Cities">
 <property id="city" type="String" title="City"/>
</property>

The following excerpt of a Component JavaScript shows how to implement the property getter and setter
for the array property cities. When setting the property cities, the passed array, for example ["Cairo",
"Moscow", "New York", "Sydney", "Tokyo"], is stored in the variable aCities in the browser.

 var aCities;

this.cities = function(value) {
 if (value === undefined) {
 return this.aCities;
 } else {
 this.aCities = value;
 return this;
 }
};

With the following functions you can get or set a city name within the Component JavaScript. Note that
setCity changes the value in the browser only but not yet in the runtime.

 function getCity(index) {
 return this.aCities[index];
}

function setCity(value, index) {
 this.aCities[index] = value;
}

● Properties of type Object can be accessed like normal JavaScript objects.
In the following example, a property containing an object with information about a person is defined in the
Contribution XML:

 <property id="person" type="Object" title="Person">
 <property id="name" type="String" title="Name" />
 <property id="age" type="int" title="Age" />
 <property id="city" type="String" title="City" />
</property>

The following excerpt of a Component JavaScript shows how to implement the property getter and setter
for the object property person. When setting the property person, the passed JSON, for example
{"name": "John", "age": "35", "city": "London"}, is stored in the variable oPerson in the browser.

 var oPerson;

this.person = function(value) {

Developer Guide: Component SDK
SDK Extensions PUBLIC 51

 if (value === undefined) {
 return this.oPerson;
 } else {
 this.oPerson = value;
 return this;
 }
};

With the following functions you can get or set an element of the object, the person's name, within the
Component JavaScript. Note that setName changes the value in the browser only but not yet in the
runtime.

 function getName() {
 return this.oPerson.name;
}

function setName(value) {
 this.oPerson.name = value;
}

Function afterUpdate

Syntax: afterUpdate()

Implement this function to execute JavaScript code after all properties of the extension component have been
updated.

Function componentDeleted

Syntax: componentDeleted()

Implement this function to execute JavaScript code after your extension component has been deleted from the
analysis application (for cleanup operations, for example). Next, the extension component's root <div>
element and its children are removed from the HTML DOM.

Function Function sap.zen.createStaticSdkMimeUrl Syntax:
sap.zen.createStaticSdkMimeUrl(sExtensionId, sMimePath)

This function returns a URL to a MIME resource, for example an image or a CSS file, that is contained in the
SDK extension.

The argument sExtensionId is the extension ID of your SDK component. The argument sMimePath is the
path to the MIME resource relative to the root folder of your SDK extension.

In the example below, when this code is added to the init function of the Colored Box, an icon appears within
this component:

52 PUBLIC
Developer Guide: Component SDK

SDK Extensions

var url = sap.zen.createStaticSdkMimeUrl("com.sap.sample.coloredbox", "res/
icon.png"); this.$().append($(""));

Function callZTLFunction

Syntax: callZTLFunction(sMethodname, function, arg1, arg2, ...)

Call this function to execute a method of the Lumira Designer Script contribution file contribution.ztl.

The argument sMethodname is the name of the method.

The argument function is a JavaScript function that is executed after the method call and the result of the
method call is passed.

The arguments arg1, arg2, ... are arguments of the method. Arguments should be strings, JSONs, or
arrays.

 Note
You can also call private Lumira Designer Script contribution methods.

 Caution
Do not modify data sources during a call of callZTLFunction, for example by calling setFilter. This
adds an error message to the Lumira Designer error log.

In the example below, the private Lumira Designer Script contribution method getDimension is called
(without arguments). The result is passed to a component setter.

Example:

(contribution.ztl)

 Sample Code
 @Visibility(private)
String getDimensions() {*
 //...
 return ...;
*}

(contribution.js)

 Sample Code
 //...
that.callZTLFunction("getDimensions", function(result) {
 that.setItems(result);
});

For more information on how to optimize your application's roundtrip performance using this function see
Roundtrip Optimization [page 59].

Developer Guide: Component SDK
SDK Extensions PUBLIC 53

Function callZTLFunctionNoUndo

Syntax: callZTLFunctionNoUndo(sMethodname, function, arg1, arg2, ...)

This is similar to the callZTLFunction function but it doesn't record the resulting state changes made by the
application's undo stack.

Function showMessage

Syntax: showMessage(sText, bSuppressible)

Implement this function to replace the standard error notification of the SDK framework (see also hideMessage
[page 54]).

The argument sText contains the error message provided by the SDK framework.

The optional argument bSuppressible indicates to your implementation of the error notification whether the
user is able to close the error notification.

The function must return a non-null value to replace the standard error notification with your own
implementation. It is up to your implementation what value to return as long as it is not null. The return value
of this function is later passed to the hideMessage function. This can be used to identify corresponding
showMessage and hideMessage function calls.

When the SDK framework detects error situations, especially in combination with data-bound properties of an
SDK component, it renders a standard error notification on top of your SDK component. You can replace this
error notification by implementing your own visualization of the error visualization: Implement the function
showMessage to display the error visualization and the function hideMessage to remove the error
visualization.

Function hideMessage

Syntax: hideMessage(value)

Implement this function to replace the standard error notification of the SDK framework (see also function
showMessage [page 54]).

The argument value is the return value of the previous showMessage function call. This can be used to identify
corresponding showMessage and hideMessage function calls.

When the SDK framework detects error situations, especially in combination with data-bound properties of an
SDK component, it renders a standard error notification on top of your SDK component. You can replace this
error notification by implementing your own visualization of the error visualization: Implement the function
showMessage to display the error visualization and the function hideMessage to remove the error
visualization.

54 PUBLIC
Developer Guide: Component SDK

SDK Extensions

4.2.2.2 Events

The following functions trigger execution of JavaScript code (events):

Function firePropertiesChanged

Syntax: firePropertiesChanged([sPropertyname1, sPropertyname2, ...])

Call this function to inform the SDK framework when one or more properties of your extension component
have changed in the browser.

 Caution
Do not confuse the firePropertiesChanged function of the Component JavaScript with the
firePropertiesChanged function of the Additional Properties Sheet JavaScript.

Example

this.firePropertiesChanged(["color"]);

This performs the following steps in detail:

1. The runtime is informed that the property color (maintained by the runtime) needs to be updated with
the new property value now available in the Component JavaScript.

2. The runtime retrieves the new property value by calling the color() getter function of the Component
JavaScript.

3. The runtime stores this property value in the property color.

 Note
Calling firePropertiesChanged triggers a server roundtrip. Therefore, frequent use of this function may
decrease the performance of your analysis application. We recommend that this function should only be
called upon user interaction. We do not recommend calling this function to implement implicit changes to
properties (so-called event cascading), as this may lead to a large number of (or even infinite) server
roundtrips. Lumira Designer's standard components only trigger server roundtrips upon user interaction.
This ensures efficient use of server roundtrips, which leads to better performance and avoids the threat of
indeterministic (or even infinite) server roundtrips through event cascading.

For more information on how to optimize your application's roundtrip performance using this function see
Roundtrip Optimization [page 59].

Function fireEvent

Syntax: fireEvent(sPropertyname)

Developer Guide: Component SDK
SDK Extensions PUBLIC 55

Call this function to execute the Lumira Designer script that is stored in a property of type ScriptText of this
extension component.

Example: (File component.js)

this.fireEvent("onclick");

 Note
Calling fireEvent triggers a server roundtrip. Therefore, frequent use of this function may decrease the
performance of your analysis application. We recommend that this function should only be called upon
user interaction. We do not recommend calling this function to implement implicit changes to properties
(so-called event cascading), as this may lead to a large number of (or even infinite) server roundtrips.
Lumira Designer's standard components only trigger server roundtrips upon user interaction. This ensures
efficient use of server roundtrips, which leads to better performance and avoids the threat of
indeterministic (or even infinite) server roundtrips through event cascading.

 Tip
Using Default Values of Properties of Type ScriptText

With the fireEvent function, you can execute a Lumira Designer script that was assigned to a property of
type ScriptText at design time. However, you can also assign a default value to this property as a string
that contains the Lumira Designer script.

If you set the visibility of this property to false, then you can use the keyword this in this string to refer to
the "current" component to which this Lumira Designer script is applied.

Example:

The Contribution XML file contribution.xml of your component contains a property onclick with a
default value of this.doSomething():

 <sdkExtension ...>
 <component ...
 <jsInclude>res/js/component.js</jsInclude>
 <property
 id="onclick"
 type="ScriptText"
 visible="false" .../>
 <initialization>
 <defaultValue property="onclick">this.doSomething();</defaultValue>
 </initialization>
 </component>
</sdkExtension>

The Script Contribution file contribution.ztl of your component contains the method doSomething.
The method is marked as private and does not show up in the content assistance of the Lumira Designer
script editor:

 @Visibility(private)
void doSomething() {*
 // ...
*}

56 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Whenever you fire an event on the property onclick in one of the functions of the Component JavaScript
file component.js with

fireEvent("onclick");

then this will execute the Lumira Designer script stored in the property onclick. This is the default value
this.doSomething();. This in turn executes the doSomething() Lumira Designer script method of
your component.

 Tip
Using the Implicit Property onBeforeRender

SDK components have an implicit property onBeforeRender of type ScriptText. The Lumira Designer
script assigned to this property is always executed before the SDK component is rendered in the browser.
This makes this property an ideal place for initialization code.

The property onBeforeRender is not editable in Lumira Designer. However you can assign a default
value, a string containing a Lumira Designer script, to this property in the SDK component's Contribution
XML.

Example:

In the following example, the Contribution XML file contribution.xml of your component defines a
property myDimension, as well as the property onclick of type ScriptText. Both properties are not
visible in the Properties view of Lumira Designer. The default value of the onclick property is
this.myHandleClick();. The default value of the onBeforeRender property is
this.myOnBeforeRender();:

 <sdkExtension ...>
 <component ...>
 ...
 <property
 id="myDimension"
 type="String"
 visible="false" .../>
 <property
 id="onclick"
 type="ScriptText"
 visible="false" .../>
 <initialization>
 <defaultValue property="onBeforeRender">this.myOnBeforeRender();</
defaultValue>
 <defaultValue property="onClick">this.myHandleClick();</defaultValue>
 </initialization>
 </component>
</sdkExtension>

The Script Contribution file contribution.ztl of your component contains the Lumira Designer script
methods myOnBeforeRender and myHandleClick. Both methods are marked as private and do not
appear in the content assistance of the Lumira Designer script editor:

 @Visibility(private)
void myOnBeforeRender() {*
 this.myDimension = this.getDataSource().getDimensions()[0].name;
*}
@Visibility(private)
void myHandleClick() {*
 this.getDataSource().setFilter(this.myDimension, ...);

Developer Guide: Component SDK
SDK Extensions PUBLIC 57

*}

Every time your SDK component is rendered, the Lumira Designer script method myOnBeforeRender is
executed beforehand. This method retrieves the dimensions of the data source of the component, picks the
name of the first dimension, and stores it in property myDimension. Now, whenever you fire an event in the
Component JavaScript of your SDK component by calling fireEvent("onclick");, the Lumira Designer
script stored as the default value of the onlick property is executed: this.myHandleClick();. This
script sets a filter on the dimension that was retrieved before the rendering of your SDK component was
started.

 Tip
You can retrieve the data source alias (the Lumira Designer script

DataSourceAlias object) of your data-bound SDK component with
<componentname>.getDataSource().

For more information on how to optimize your application's roundtrip performance using this function see
Roundtrip Optimization [page 59].

Function firePropertiesChangedAndEvent

Syntax: firePropertiesChangedAndEvent([sPropertyname1, sPropertyname2, ...],
sPropertyname);

This function is equivalent to

 firePropertiesChanged([sPropertyname1, sPropertyname2, ...]);
fireEvent(sPropertyname);

Function firePropertiesChangedAndEvent a faster implementation of this frequent combination of
function calls and requires only one server round-trip.

 Note
Calling firePropertiesChangedAndEvent triggers a server roundtrip. Therefore, frequent use of this
function may decrease the performance of your analysis application. We recommend that this function
should only be called upon user interaction. We do not recommend calling this function to implement
implicit changes to properties (so-called event cascading), as this may lead to a large number of (or even
infinite) server roundtrips. Lumira Designer's standard components only trigger server roundtrips upon
user interaction. This ensures efficient use of server roundtrips, which leads to better performance and
avoids the threat of indeterministic (or even infinite) server roundtrips through event cascading.

For more information on how to optimize your application's roundtrip performance using this function see
Roundtrip Optimization [page 59].

58 PUBLIC
Developer Guide: Component SDK

SDK Extensions

4.2.2.3 Roundtrip Optimization

To optimize roundtrip performance, the number of server roundtrips has reduced by a queuing mechanism.

In previous releases of Lumira Designer, calling one of the following SDK JavaScript functions executed a
server roundtrip immediately:

● firePropertiesChanged
● fireEvent
● firePropertiesChangedAndEvent
● callZTLFunction

However, too many server roundtrips reduce the performance of the application. The queuing mechanism that
optimizes roundtrip performance works by queuing (holding back) changes caused by calls of the above
functions in the browser. These changes are sent with a roundtrip to the server only when necessary to keep
the application's state on the server consistent.

Roundtrip optimization affects the roundtrip behavior of the SDK JavaScript functions as follows:

Function Roundtrip Behavior

firePropertiesChanged Queued

fireEvent Immediate

firePropertiesChangedAndEvent Immediate

callZTLFunction Immediate

 Note
For best performance, use function firePropertiesChanged.

To continue to force a roundtrip on a property change, use function firePropertiesChangedAndEvent
instead of function firePropertiesChanged. You can pass a dummy text for the required event name to
function firePropertiesChangedAndEvent.

Roundtrip optimization can be configured by administrators and application designers. By default it is
activated.

For more information, see the following chapters on SAP Help Portal at http://help.sap.com:

● “Configuring Roundtrip Optimization for Analysis Applications on the BI Platform” and “Configuring
Roundtrip Optimization for Analysis Applications in Lumira Designer” in the Administrator Guide: SAP
Lumira

● “Using Roundtrip Optimization” in the Application Designer Guide: Designing Analysis Applications

Developer Guide: Component SDK
SDK Extensions PUBLIC 59

http://help.sap.com

4.3 Script Contributions

In analysis applications and in the Lumira Designer script editor, you can access the properties of an extension
component with Lumira Designer scripts by adding a Script Contribution file contribution.ztl to the same
folder as the Contribution XML.

● The content of contribution.ztl is a mix of Java syntax (script method signatures) and JavaScript
syntax (script method bodies).

 Tip

To open this file in Eclipse with the Java Editor, right-click on contribution.ztl, and choose Open
with Other . In the Editor Selection dialog box choose Java Editor.

● The JavaScript parts (script method bodies) are executed in the Lumira Designer script engine on the
server and not in the browser. This means you are restricted to "sand-boxed" JavaScript, without access to
the HTML DOM.

● Enclose script method bodies in {**} pairs.
● Enclose method blocks within script body methods in regular braces ({}).
● Access properties defined in the Contribution XML file with the notation this.<propertyName>.
● The following types are available:

○ String
○ int
○ float
○ boolean
○ Array
○ Object

 Caution
When you change a property of type Array or Object in a Lumira Designer script method, you need to
explicity assign the changed property value to the property after the change.

In the following example, a property of type Array is defined in the Contribution XML:

 Sample Code
 <property id="cities" type="Array" title="Cities">
 <property id="city" type="String" title="City" />
</property>

The following Lumira Designer script method adds a new city name to the property cities. Note how
the changed value current is assigned to the property cities at the end of the method body.

 void add(String name) {*
 var current = this.cities || [];
 current.push(name);
 this.cities = current;
*}

60 PUBLIC
Developer Guide: Component SDK

SDK Extensions

● Comments are automatically included in content assistance and tooltips of the Lumira Designer script
editor.

● By extending your SDK component class in the Lumira Designer contribution file with extends
Component your SDK component automatically inherits Lumira Designer script methods that are common
to all SDK components, for example:

 void setWidth(int width)
int getWidth()
void setHeight(int height)
int getHeight()
void setBottomMargin(int bottomMargin)
int getBottomMargin()
void setTopMargin(int topMargin)
int getTopMargin()
void setLeftMargin(int leftmargin)
int getLeftMargin()
void setRightMargin(int rightMargin)
int getRightMargin()
void setCSSClass(String className)
String getCSSClass()
void setVisible(boolean isVisible)
boolean isVisible()
void showLoadingState()
void hideLoadingState()

 Tip
By extending your class with extends DataBoundComponent your SDK component automatically
aditionally inherits the following Lumira Designer script methods:

 DataSourceAlias getDataSource() void setDataSource(DataSourceAlias dataSourceAlias);

● The Script contribution file can contain script contributions of multiple extension components.

The example below is the Script Contribution file of the extension component Colored Box.

Example: (File contribution.ztl)

class com.sap.sample.coloredbox.ColoredBox extends Component {
 /* Returns the current color of the box */
 String getColor() {*
 return this.color;
 *}
 /* Sets the current color of the box */
 void setColor(/* the new color */ String newColor) {*
 this.color = newColor;
 *}
}

 Tip
No Script Contibution file vs. Script Contribution file without methods

Although excluding the Script Contribution file completely hides your SDK component in the content
assistance of the Lumira Designer Script editor, you may find it useful to provide a Script Contribution file
without any methods. In this case, the SDK extension component automatically inherits Lumira Designer
script methods that are common to all SDK extension components, for example setWidth(),
getWidth(), etc.

Developer Guide: Component SDK
SDK Extensions PUBLIC 61

This example shows the empty Script Contribution file of the extension component Colored Box:

class com.sap.sample.coloredbox.ColoredBox extends Component { }

4.4 Additional Properties Sheet

In Lumira Designer you can provide an extension component with an interactive Additional Properties Sheet,
which allows users to set and get extension component property values. The Additional Properties Sheet of the
extension component is displayed in Lumira Designer's Additional Properties view.

An Additional Properties Sheet consists of:

● an HTML file to specify the visual appearance
● a JavaScript file to implement the functional behavior

 Note
Once your SDK extension has been deployed to BI platform, all HTML and JavaScript files that you package
with your SDK extension are available on the BI Platform at runtime. It might happen that application users
accidentally open an Additional Properties Sheet HTML page in their Web browser. It would not work, but
might be confusing. In addition, such files could be a security risk.

Therefore we recommend that you provide two extension packages:

● one package with Additional Properties Sheet content that you install on Lumira Designer only
● one package without that content that you deploy to BI platform

4.4.1 HTML

The HTML file specifies the visual appearance of the Additional Properties Sheet.

1. Place the Additional Properties Sheet HTML file in SDK extension's res folder or subfolder.
2. Reference the Additional Properties Sheet HTML file in the propertySheetPath attribute of the

<component> element in the Contribution XML file.

The example below is the Additional Properties Sheet HTML file of the extension component Colored Box. It
defines the visual appearance using <form> and <fieldset> elements. It also uses an <input> element - an
input field that allows users to enter a color value.

 Note
● Here two JavaScript files are referenced: the generic Additional Properties Sheet JavaScript file of the

SDK framework and the JavaScript file of this Additional Properties Sheet (see JavaScript [page 63]).
● The Additional Properties Sheet JavaScript class is instantiated here (new

com.sap.sample.coloredbox.ColoredBoxPropertyPage();)

62 PUBLIC
Developer Guide: Component SDK

SDK Extensions

.

Example

(File additional_properties_sheet.html)

<html> <head>
 <title>Colored Box Property Sheet</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <script src="/aad/zen.rt.components.sdk/resources/js/
sdk_propertysheets_handler.js"></script>
 <script src="additional_properties_sheet.js"></script>
 </head>
 <script>
 new com.sap.sample.coloredbox.ColoredBoxPropertyPage();
 </script>
 <body>
 <form id="form">
 <fieldset>
 <legend>Colored Box Properties</legend>
 <table>
 <tr>
 <td>Color</td>
 <td><input id="aps_color" type="text" name="color" size="40"
maxlength="40"></td>
 </tr>
 </table>
 </fieldset>
 </form>
 </body>
</html>

4.4.2 JavaScript

For each Additional Properties Sheet HTML file, you can implement a complementing Additional Properties
Sheet JavaScript class to make the extension component's Additional Properties Sheet interactive. You can
implement this JavaScript class using both JavaScript and jQuery, as jQuery is included in the Design Studio
SDK framework. The Lumira Component SDK includes jQuery 2.2.3.

1. Place the Additional Properties Sheet JavaScript file in the SDK extension's res folder or subfolder.
2. Reference this file in the complementing Additional Properties Sheet HTML file (see HTML [page 62]).

The example below is the Additional Properties Sheet JavaScript class of the extension component Colored
Box. Its class name is com.sap.sample.coloredbox.ColoredBoxPropertyPage and subclasses the
generic JavaScript class sap.designstudio.sdk.PropertyPage. It implements an init function, which
attaches an event handler for the submit event to the <form> element with ID form. When the coloured box
has been clicked, the SDK framework is notified that the extension component's color property has changed
in the browser. Furthermore, the JavaScript defines a color function, which acts as a combined setter and
getter function for the input field with ID aps_color. This enables the SDK framework to get and set the value
of the input entered in the Additional Properties Sheet HTML.

Developer Guide: Component SDK
SDK Extensions PUBLIC 63

Example

(File additional_properties_sheet.js)

sap.designstudio.sdk.PropertyPage.subclass("com.sap.sample.coloredbox.ColoredBoxP
ropertyPage", function() { var that = this;
 this.init = function() {
 $("#form").submit(function() {
 that.firePropertiesChanged(["color"]);
 return false;
 });
 };
 this.color = function(value) {
 if (value === undefined) {
 return $("#aps_color").val();
 } else {
 $("#aps_color").val(value);
 return this;
 }
 };
});

Related Information

JavaScript Functions for the Additional Properties Sheet [page 65]
Getting and Setting Extension Component Properties [page 69]

4.4.2.1 Additional Properties Sheet Lifecycle

When the Additional Properties Sheet is rendered, the SDK framework executes the following sequence of
Additional Properties Sheet JavaScript function calls:

● init()

 Note
This function is called only once when the Additional Properties Sheet is rendered for the first time.

● beforeUpdate()
● Update all extension component properties using their setter/getter functions (see Getting and Setting

Extension Component Properties [page 69])

 Note
First, all the getter functions are called, then the setter functions (of properties that have changed).

64 PUBLIC
Developer Guide: Component SDK

SDK Extensions

 Caution
In a getter or setter function, do not call Additional Properties Sheet JavaScript function
firePropertiesChanged. This can lead to infinite invocations of getter or setter functions (so-called
"event cascading") and can bring your application to a halt.

● afterUpdate()

4.4.2.2 JavaScript Functions for the Additional Properties
Sheet

Function init

Syntax: init()

Implement this function to execute JavaScript code after the Additional Properties Sheet HMTML page is
associated with the extension component.

Function beforeUpdate

Syntax: beforeUpdate()

Implement this function to execute JavaScript code before the extension component properties are updated
from the Additional Properties Sheet.

 Caution
Do not confuse the beforeUpdate function of the Additional Properties Sheet JavaScript with the
beforeUpdate function of the Component JavaScript!

Function afterUpdate

Syntax: afterUpdate()

Implement this function to execute JavaScript code after the extension component properties have been
updated from the Additional Properties Sheet.

 Caution
Do not confuse the afterUpdate function of the Additional Properties Sheet JavaScript with the
afterUpdate function of the Component JavaScript!

Developer Guide: Component SDK
SDK Extensions PUBLIC 65

Function firePropertiesChanged

Syntax: firePropertiesChanged([sPropertyname1, sPropertyname2, ...])

Call this function to inform the SDK framework when one or more properties of the extension component have
changed in the Addtional Properties Sheet.

 Caution
Do not confuse the firePropertiesChanged function of the Additional Properties Sheet JavaScript with
the firePropertiesChanged function of the Component JavaScript.

Example

this.firePropertiesChanged(["color"]);

This performs the following steps in detail:

1. The Runtime is informed that the property color (maintained by the Runtime) needs to be updated with
the new property value now available in the Additional Properties Sheet JavaScript.

2. The Runtime retrieves the new property value by calling the color() getter function of the Additional
Properties Sheet JavaScript.

3. The Runtime stores this property value in the property color.
4. The Runtime updates the extension component in the browser by calling the color() setter function of

the Component JavaScript and passing the new property value of property color.

 Note
Calling firePropertiesChanged triggers a server roundtrip. Therefore, frequent use of this function may
decrease the performance of your analysis application. We recommend that this function should only be
called upon user interaction. We do not recommend calling this function to implement implicit changes to
properties (so-called event cascading), as this may lead to a large number of (or even infinite) server
roundtrips. Lumira Designer's standard components only trigger server roundtrips upon user interaction.
This ensures efficient use of server roundtrips, which leads to better performance and avoids the threat of
indeterministic (or even infinite) server roundtrips through event cascading.

Function callRuntimeHandler

Syntax: callRuntimeHandler(sFunctionname, sArgument1, sArgument2, ...)

Call this function to execute a JavaScript function located in the Component JavaScript file. The argument
functionName is a string with the name of the JavaScript function to be called. The optional arguments
sArgument1, sArgument2, etc. are passed to the JavaScript function.

66 PUBLIC
Developer Guide: Component SDK

SDK Extensions

Example

(File additional_properties_sheet.js)

this.callRuntimeHandler("getMetadataAsString");

Example

You can pass arguments to the JavaScript function located in the Component JavaScript file by adding them to
the call of function callRuntimeHandler().

this.callRuntimeHandler("sampleFunction", "arg1", "arg2");

Function componentSelected

Syntax: componentSelected()

Implement this function to execute JavaScript code when the extension component has been selected in
Lumira Designer.

Function openPropertyDialog

Syntax: openPropertyDialog(sPropertyname)

Call this function to open a property dialog box (value help) to select a property value. Property dialog boxes
are supported for properties of the following types:

● Color
● ScriptText
● ResultCell
● ResultCellList
● ResultCellSet
● ResultSet

Example

this.openPropertyDialog("color");

Developer Guide: Component SDK
SDK Extensions PUBLIC 67

Function callZTLFunction

Syntax: callZTLFunction(sMethodname, function, arg1, arg2, ...)

Call this function to execute a method of the Lumira Designer Script contribution file contribution.ztl.

The argument sMethodname is the name of the method.

The argument function is a JavaScript function that is executed after the method call and the result of the
method call is passed.

The arguments arg1, arg2, ... are arguments of the method. Arguments should be strings, JSONs, or
arrays.

 Note
You can also call private Lumira Designer Script contribution methods.

 Caution
Do not modify data sources during a call of callZTLFunction, for example by calling setFilter. This
adds an error message to the Lumira Designer error log.

In the example below, the private Lumira Designer Script contribution method getDimension is called
(without arguments). The result is passed to a component setter.

Example:

(contribution.ztl)

 Sample Code
 @Visibility(private)
String getDimensions() {*
 //...
 return ...;
*}

 Sample Code
 //...
that.callZTLFunction("getDimensions", function(result) {
 that.setItems(result);
});

Function log

Syntax: log(sMessage, sSeverity)

Call this function to add a log message to the Lumira Designer Error Log view.

The argument sMessage is the log message.

68 PUBLIC
Developer Guide: Component SDK

SDK Extensions

The argument sSeverity indicates the severity of the message. Supported values are: "info", "warn",
"error", and "log".

 Note
Whether the log message is actually displayed in the Lumira Designer Error Log view, depends on the
configured log level of Lumira Designer. To display the configured log level, choose Tools Preferences
Application Design Support Settings and locate the dropdown box Log Level.

Example:

 Sample Code

this.log("Variable is undefined", "error");

4.4.2.3 Getting and Setting Extension Component
Properties

For each extension component property, you can implement a function that acts as a combined setter and
getter function.

● The function name is the property's name.
● The function's setter clause must return this to allow function calls to be chained, thus creating a fluent

interface.

Example

(File additional_properties_sheet.js)

Note the jQuery notation $("#aps_color") to access the <input> element.

this.color = function(value) { if (value === undefined) {
 return $("#aps_color").val();
 } else {
 $("#aps_color").val(value);
 return this;
 }
};

Properties of type Array can be accessed like normal JavaScript arrays.

Properties of type Object can be accessed like normal JavaScript objects in JSON notation.

 Caution
In a getter or setter function, do not call Additional Properties Sheet JavaScript function
firePropertiesChanged. This can lead to infinite invocations of getter or setter functions (so-called
"event cascading") and can bring your application to a halt.

Developer Guide: Component SDK
SDK Extensions PUBLIC 69

4.5 Exporting an SDK Extension Component

You can enable your extension component for export by the PDF export framework.

Extension components enabled for export can be selected in the Edit Report Selection dialog box of the Export
component.

To enable your extension component for export, add the following attribute to your extension component's
<component> element in the Contribution XML:

supportsExportContent="true"

Example

The following example shows how to enable export for the sample Component SDK extension Colored Box.
The attribute supportsExportContent was added in the Contribution XML to the <component> element of
the Colored Box:

(File contribution.xml)

 Sample Code
 <component id="ColoredBox"
 // ...
 supportsExportContent="true">
 //...
</component>

70 PUBLIC
Developer Guide: Component SDK

SDK Extensions

5 SDK Extensions and Data Binding

You can create SDK extensions with extension components that retrieve and display data from the result set of
a data source on an SAP BW or SAP HANA system (data binding).

SDK extension components can also retrieve data from result sets of an SDK data source.

5.1 Prerequisites

To enable data binding between an extension component and a data source, add the following attribute to the
extension component's <component> element in the Contribution XML:

databound="true"

 Note
● This automatically adds the Data Source property to the extension component. It is displayed in the

Properties view of the extension component in SAP Lumira Designer.
● This automatically adds the metadata property to the extension component.

Related Information

Runtime Property Values [page 73]

5.2 Result Set Terminology

To simplify discussion about data binding, here is a quick review of result set terminology.

The result set of a data source is a two-dimensional table with a column axis and a row axis.

● Each axis has a list of dimensions.
● One dimension can contain measures.
● Each dimension has dimension members (or simply "members").
● The dimension members on an axis form an axis tuple at each axis position.
● The intersection of each row and column contains a data value.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 71

Example

The table below has two column dimensions (DATE and Measures) and one row dimension (CITY). The
dimension CITY has the members Berlin, Rio de Janeiro, Tokyo, and Overall Result. The dimension DATE has
the members 2010-01-01 and 2012-01-01. The dimension Measures has the members SALESREVENUE and
QUANTITYSOLD. The column axis tuple [2010-01-01, SALESREVENUE] specifies the first column of the result
set.

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

5.3 Data-Bound Properties

Several types of data-bound properties allow you to restrict the selection of data values from a result set. Data-
bound property types also help the SDK framework to check the feasability of your selection and restrict the
available selections in the Select Data dialog box (value help of data-bound properties in Lumira Designer).

The following data-bound property types are available:

Property Type Data Values

ResultCell A single data value

ResultCellList A single row or column of data values

ResultCellSet A complex selection of data values from rows and columns
(a Cartesian selection)

ResultSet All data values of the result set

 Note
A Cartesian selection contains data points in the multidimensional cube that form a connected space.

5.3.1 Design Time Property Values

At design time, you assign a selection string to a data-bound property. It specifies which data values of the
result set are received by the property. It is expressed in JSON notation and is called the Design time JSON.

72 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

Example

Selection string to select the cell containing the quantity sold in 2010 in Tokyo, in the result set example under
Data-Bound Properties [page 72] (used with a ResultCell property):

{"DATE": "2010-01-01", "(MEASURES_DIMENSION)": "QUANTITYSOLD", "CITY": "Tokyo"}

Example

Selection string to select the second column of the result set, in the result set example under Data-Bound
Properties [page 72] (used with a ResultList property):

{"DATE": "2010-01-01", "(MEASURES_DIMENSION)": "QUANTITYSOLD"}

The design time JSON contains a list of dimension-member pairs for selecting a subset of the result set. The
dimension-member pairs can be in any order. If a dimension is omitted, then all its members, including
aggregate members, are selected.

 Note
Use "(RESULT_MEMBER)" as member to select the aggregate member of a dimension.

 Note
Use "(MEASURES_DIMENSION)" as dimension to select a measure structure. It is converted internally into
the correct name of the measure structure.

5.3.2 Runtime Property Values

At runtime, the SDK framework retrieves the selected data values and stores them in the data-bound property
in JSON format called Data Runtime JSON. The Data Runtime JSON contains mostly data value information.
To complement this information, the SDK framework automatically creates a metadata property and assigns
the metadata of the data values to it in a JSON format called Metadata Runtime JSON to this property. The
Metadata Runtime JSON contains additional, helpful information about the data values. Data-bound extension
components can examine the values of both the Metadata Runtime JSON and Data Runtime JSONs in order to
create appropriate output.

 Note
For a data-bound property of type ResultSet, the Metadata Runtime JSON content is part of the Data
Runtime JSON. There is no implicit metadata property and thus no separate Metadata Runtime JSON
available.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 73

 Note
If an extension component contains multiple data-bound properties, the metadata property contains a
merged version of the Metadata Runtime JSONs of all data-bound properties.

74 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

Metadata Runtime JSON

Here you see a formal representation of the Metadata Runtime JSON:

{ "dimensions": [
 {
 "key": <string>,
 "text": <string>,
 "axis": "COLUMNS"|"ROWS",
 "axis_index": <integer>,
 "containsMeasures": true|false,
 "attributes": [
 {
 "key": <string>,
 "text": <string>
 }, ...
],
 "hierarchy" : {
 "key": <string>,
 "text": <string>,
 "nodeAlignment":
"top"|"bottom"
 },
 "members": [
 {
 "key": <string>,
 "text": <string>,
 "formatString": <string>,
 "unitOfMeasure": <string>,
 "scalingFactor": <integer>,
 "type": "RESULT",
 "nodeState":
"COLLAPSED"|"EXPANDED",
 "level": <integer>
 "attributeMembers": [
 {
 "key": <string>,
 "text": <string>
 } | null, ...
]
 "parent": <string>
 "unixTimeMillis": <integer>
 "timeSpanMillis": <integer>
 "isExcluded": true|false
 "valueType":
<string>
 }, ...
],
 }, ...
],
 "externalDimensions": [
 ...
],
 "conditionalFormats": [
 {
 "key": <string>,
 "text": <string>,
 <customObject>
 }, ...
],
 "locale": <string>
}

Array of dimensions; column dimensions first, then row di­
mensions

Dimension key

Dimension text

Axis on which the dimension is located

Axis tuple index of the dimension, > = 0

Does dimension contain measures? (omitted when false)

Array of attributes (omitted when result set has no attrib­
utes)

Attribute key

Attribute text

Hierarchy info (omitted when hierarchy inactive or not as­
signed)

Hierarchy key

Hierarchy text

Where child nodes are placed (bottom: below parent node,
top: above parent node)

Array of dimension's members

Member key

Member text (text may contain "|" separator depending on
used presentation)

Format string, in Java DecimalFormat format (only with
measures members)

Unit of measure string (only with measures members)

Scaling factor as exponent to base 10 (omitted when 0, only
with measures members)

Member is an aggregate value (omitted when not)

Node state (only with hierarchy members)

Indent level, > 0 (only with hierarchy members)

Array of attribute members (omitted when result set has no
attributes)

Attribute member key

Attribute member text

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 75

Attribute member is null for members of type "RESULT"

Key of parent member (omitted when hierarchy inactive, not
assigned, or member has no parent)

Timestamp of member in milliseconds since January 1, 1970
(only with members representing a date)

Time span of member in milliseconds (only with members
representing a time span)

Member is not part of the result set (omitted when false,
only with measures members)

Type of member

Array of external dimensions

(optional) Array element has same structure as an array ele­
ment of JSON property dimensions. Currently only one ele­
ment is supported.

Array of conditional formats

Key of conditional format

Text of conditional format

(optional) Custom object containing custom parameters

Browser locale string

 Note
The dimension array contains the column dimensions first (sorted by increasing axis_index), then the
row dimensions (sorted by increasing axis_index).

JSON property externalDimensions

If the result set contains a measures dimension, but this dimension is not contained in the row or the column
dimensions of the dimensions JSON property, then this measures dimension is stored in the
externalDimensions JSON property. It is an array, which can contain the measures dimension as its only
element.

A result set can contain one measure dimension. It can be a dimension of the dimensions JSON property or
the externalDimension JSON property. A measure has the isMeasureDimension JSON property set to
true.

JSON property attributes

Contains information (key and text) about each attribute of a dimension. It is only present if the result set
actually contains attributes and the data-bound property option includeAttributes is true.

JSON property attributeMembers

Contains information (key and text) about each attribute member of a dimension attribute. Is is only present if
the result set actually contains attributes and the data-bound property option includeAttributes is true.

76 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

JSON property conditionalFormats

Contains information about the conditional formats that have been applied to the result set. It is only present if
the result set actually contains conditional formats and the data-bound property option
includeConditionalFormats is true.

JSON property unixTimeMillis

Contains a timestamp of the member in milliseconds since January 1, 1970 00:00:00 UTC. It is only present if
the member represents a date.

JSON property timeSpanMillis

Contains a time span of the member in milliseconds. It is only present if the member represents a time span.

JSON property isExcluded

True if the member (it is a measure member) is not part of the result set. Requires the data-bound property's
option includeAllDimensionsAndMeasures (see Elements of the Contribution XML File [page 21]) to be
true.

JSON property valueType

Indicates the type of the value, for example, DOUBLE, PERCENT, CALENDAR_DAY, and so on.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 77

Data Runtime JSON

Here you see a formal representation of the Data Runtime JSON:

{ "selection": [<integer>, ...],
 "data": [<float>|null, ...]
 "formattedData": [<String>, ...]
 "tuples": [[<integer>, ...], ...
 "axis_columns":
[[<integer>, ...], ...],
 "axis_rows":
[[<integer>, ...], ...],
 "conditionalFormatValues": [
 {
 <string>: <integer>,
 ...
 } | null, ...
],
 "columnCount": <integer>,
 "rowCount": <integer>
 "dataSourceInfo": {
 "dataSourceComponent": "DS_1",
 "name": "FINANCIALS_QUERY",
 "connection": "AB1",
 "type": "QUERY"
 }

}

Array of selection dimension member indexes, index = -1 (unspe­
cified by selection)

Array of data values in left-to-right, first-to-last row order, may
contain null value

Array of formatted data values in left-to-right, first-to-last row or­
der

Array of tuple arrays, one tuple for each data value. Tuple ele­
ment = -1 (tuple element unspecified by selection)

Array of tuple arrays, one tuple per column axis position specify­
ing the column axis tuple elements. Tuple element = -1 (dimen­
sion is not on the column axis (only with properties of type Re­
sultSet))

Array of tuple arrays, one tuple per row axis position specifying
the row axis tuple elements. Tuple element = -1 (dimension is not
on the row axis (only with properties of type ResultSet))

Array of conditional format maps, one map for each data value

Array element is a map of conditional formats

String contains key of conditional format, integer contains alert
level (1..9)

Array element is null if data value has no conditional format

Number of columns of the data

Number of rows of the data

Data source information

Name of data source component

Name of data source

Name of connection

Type of query

JSON property formattedData

Contains the data as an array of formatted strings in left-to-right, first-to-last row order.

JSON property columnCount

Contains the number of columns of the data.

JSON property rowCount

Contains the number of rows of the data.

JSON property conditionalFormatValues

78 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

Contains information about which conditional formats are applied to each data value of the result set. This
JSON property contains an array of conditional format maps - one map for each data value of the result set or
null if a data value has no conditional format. The conditional format maps contain one or more sets of key-
value pairs. The key is the key of the conditional format in JSON property conditionalFormats in the
Metadata Runtime JSON. The value is an integer between 1..9 that indicates the alert level (specifically: the
highest alert level of this conditional format applied to this data value).

This JSON property is only present if the result set actually contains conditional formats and the data-bound
property option includeConditionalFormats is true.

JSON property dataSourceInfo

Contains information about the data source that provides the data. It contains the JSON properties
dataSourceComponent, name, connection, and type.

This JSON property is only present if the data-bound property option includeDataSourceInfo is true.

You can find fully-executed examples in the following chapters.

Related Information

Cell Selection [page 79]
Column or Row Selection [page 81]
Columns and Row Selection (Multiple Columns or Rows) [page 84]
Columns and Row Selection ("Checkerboard") [page 86]
Result Set Selection [page 89]

5.3.3 Cell Selection

To get the data value of a single cell in a result set, use a data-bound property of type ResultCell.

For example, you have the following result set:

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

To select the highlighted cell (with value 1,471) of this result set, use the following selection string:

{"DATE": "2010-01-01", "(MEASURES_DIMENSION)": "QUANTITYSOLD", "CITY": "Tokyo"}

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 79

The SDK framework returns the following Data Runtime and Metadata Runtime JSONs:

Data Runtime JSON

{ "selection": [0, 0, 0],
 "data": [1471],
 "tuples": [[0, 0, 0]],
 "columnCount": 1,
 "rowCount": 1
}

The selection JSON property reflects the selection. It contains an array of three indexes, corresponding to
the three dimensions of the result set, in the order DATE, Measures, and CITY (see Metadata Runtime JSON
below). The index values point at the selected dimension members (see Metadata Runtime JSON below):

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Tokyo for dimension CITY

The data JSON property contains an array with the single data value of the selected result set cell.

For each data value, the tuples JSON property contains a tuple of indexes for the selected dimension
members (see Metadata Runtime JSON below):

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Tokyo for dimension CITY

The columnCount and the columnCount JSON properties contain the number of rows and columns of the
data, respectively.

Metadata Runtime JSON

{ "dimensions": [
 {
 "key": "DATE",
 "text": "DATE",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "01/01/2010"
 }
]
 },
 {
 "key": "Measures",
 "text": "Measures",
 "axis": "COLUMNS",
 "axis_index": 1,

80 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

 "containsMeasures": true,
 "members": [
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#.##0;'-'#.##0"
 }
]
 },
 {
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "Tokyo",
 "text": "Tokyo"
 }
]
 }
],
 "locale": "en_US"
}

The dimensions JSON property contains dimension and member information for each dimension relevant for
the selection.

The locale JSON property contains the browser's locale string.

5.3.4 Column or Row Selection

To get the data values of a single result set column or row, use a data-bound property of type
ResultCellList.

For example, you have the following result set:

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

To select the highlighted column (QUANTITYSOLD) of this result set, use the following selection string:

{"DATE": "2010-01-01", "(MEASURES_DIMENSION)": "QUANTITYSOLD"}

 Note
Row selection works in the same way.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 81

The SDK framework returns the following Data Runtime and Metadata Runtime JSONs:

Data Runtime JSON

{ "selection": [0, 0, -1],
 "data": [
 1479,
 1104,
 1471,
 4054
]
 "tuples": [
 [0, 0, 0],
 [0, 0, 1],
 [0, 0, 2],
 [0, 0, 3]
],
 "columnCount": 1,
 "rowCount": 4
}

The selection JSON property reflects the selection. It contains an array of three indexes corresponding to
the three dimensions of the result set in the order DATE, Measures, and CITY (see Metadata Runtime JSON
below). The index values point at the selected dimension members (see Metadata Runtime JSON below):

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● -1 = This dimension was not specified by the selection string.

The data JSON property contains an array with the data values of the selected result set column.

For each data value, the tuples JSON property contains a tuple of indexes of the selected dimensions
members. For example, the first tuple [0, 0, 0] points at the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY

The second tuple [0, 0, 1] points at the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 1 = Rio de Janeiro for dimension CITY (see Metadata Runtime JSON below).

The columnCount and the columnCount JSON properties contain the number of rows and columns of the
data, respectively.

Metadata Runtime JSON

{ "dimensions": [

82 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

 {
 "key": "DATE",
 "text": "DATE",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "2010-01-01"
 }
]
 },
 {
 "key": "Measures",
 "text": "Measures",
 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true,
 "members": [
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#.##0;'-'#.##0"
 }
]
 },
 {
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "Berlin",
 "text": "Berlin"
 },
 {
 "key": "Rio de Janeiro",
 "text": "Rio de Janeiro"
 },
 {
 "key": "Tokyo",
 "text": "Tokyo"
 },
 {
 "key": "Result",
 "text": "Overall Result",
 "type": "RESULT"
 }
]
 }
],
 "locale": "en_US"
}

The dimensions JSON property contains dimension and member information for each dimension relevant for
the selection.

The locale JSON property contains the browser's locale string.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 83

5.3.5 Columns and Row Selection (Multiple Columns or
Rows)

To get the data values of multiple columns or rows, use a data-bound property of type ResultCellSet.

For example, you have the following result set:

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

To select the highlighted columns (both QUANTITYSOLD columns) of this result set, use the following
selection string:

{"DATE": ["2010-01-01", "2012-01-01"], "(MEASURES_DIMENSION)": "QUANTITYSOLD"}

 Note
Multiple row selection works in the same way.

The SDK framework returns the following Data Runtime and Metadata Runtime JSONs:

Data Runtime JSON

{ "selection": [[0, 1], 0, -1],
 "data": [
 1479,
 2721,
 1104,
 1752,
 1471,
 2700,
 4054,
 7173
]
 "tuples": [
 [0, 0, 0],
 [1, 0, 0],
 [0, 0, 1],
 [1, 0, 1],
 [0, 0, 2],
 [1, 0, 2],
 [0, 0, 3],
 [1, 0, 3]
],
 "columnCount": 2,
 "rowCount": 4

84 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

}

The selection JSON property [[0, 1], 0, -1] reflects the selection. It contains an array of three
elements corresponding to the three dimensions of the result set in the order DATE, Measures, and CITY (see
Metadata Runtime JSON below). The index values point to the selected dimension members (see Metadata
Runtime JSON below):

● 0, 1 = 2010-01-01, 2012-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● -1 = This dimenson was not specified by the selection string.

If your code assumes that the elements of the selection JSON property are always integer numbers, this
may lead to incompatible changes.

The data JSON property contains an array with the data values of the selected result set columns in the
following order: left-to-right cell, first-to-last row.

For each data value, the tuples JSON property contains a tuple of indexes to the selected dimensions
members. For example, the first tuple [0, 0, 0] points at the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY

The second tuple [1, 0, 0] points at the following dimension members:

● 1 = 2012-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY (see Metadata Runtime JSON below)

The columnCount and the columnCount JSON properties contain the number of rows and columns of the
data, respectively.

Metadata Runtime JSON

{ "dimensions": [
 {
 "key": "DATE",
 "text": "DATE",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "01/01/2010"
 },
 {
 "key": "2012-01-01",
 "text": "01/01/2012"
 }
]
 },
 {
 "key": "Measures",
 "text": "Measures",

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 85

 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true,
 "members": [
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#,##0;'-'#,##0"
 }
]
 },
 {
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "Berlin",
 "text": "Berlin"
 },
 {
 "key": "Rio de Janeiro",
 "text": "Rio de Janeiro"
 },
 {
 "key": "Tokyo",
 "text": "Tokyo"
 },
 {
 "key": "Result",
 "text": "Result",
 "type": "RESULT"
 }
]
 }
],
 "locale": "en_US"
}

The dimensions JSON property contains dimension and member information for each dimension relevant for
the selection.

The locale JSON property contains the browser's locale string.

5.3.6 Columns and Row Selection ("Checkerboard")

To get the data values of multiple sub columns and rows (also known as a "checkerboard"), use a data-bound
property of type ResultCellSet.

For example, you have the following result set:

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

86 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

To select the highlighted sub columns and rows (with cells 1,479 , 1,471 , 2,721 and 2,700) of this result set, use
the following selection string:

{"DATE": ["2010-01-01", "2012-01-01"], "(MEASURES_DIMENSION)": "QUANTITYSOLD",
"CITY": ["Berlin", "Tokyo"]}

The SDK framework returns the following Data Runtime and Metadata Runtime JSONs:

Data Runtime JSON

{ "selection": [[0, 1], 0, [0, 1]],
 "data": [
 1479,
 2721,
 1471,
 2700
]
 "tuples": [
 [0, 0, 0],
 [1, 0, 0],
 [0, 0, 1],
 [1, 0, 1]
],
 "columnCount": 2,
 "rowCount": 2
}

The selection JSON property [[0, 1], 0, [0, 1]] reflects the selection. It contains an array of three
elements corresponding to the three dimensions of the result set in the order DATE, Measures, and CITY (see
Metadata Runtime JSON below). The index values point at the selected dimension members (see Metadata
Runtime JSON below):

● 0, 1 = 2010-01-01, 2012-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0, 1 = Berlin, Tokyo for dimension CITY

If your code assumes that the elements of the selection JSON property are always integer numbers this may
lead to incompatible changes.

The data JSON property contains an array with the data values of the selected result set sub-columns in this
order: left-to-right cell, first-to-last row.

For each data value, the tuples JSON property contains a tuple of indexes to the selected dimensions
members. For example, the first tuple [0, 0, 0] points at the following dimension members:

● 0 = 2010-01-01 for dimension DATE

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 87

● 0 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY

The second tuple [1, 0, 0] points at the following dimension members:

● 1 = 2012-01-01 for dimension DATE
● 0 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY (see Metadata Runtime JSON below)

The columnCount and the columnCount JSON properties contain the number of rows and columns of the
data, respectively.

Metadata Runtime JSON

{ "dimensions": [
 {
 "key": "DATE",
 "text": "DATE",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "01/01/2010"
 },
 {
 "key": "2012-01-01",
 "text": "01/01/2012"
 }
]
 },
 {
 "key": "Measures",
 "text": "Measures",
 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true,
 "members": [
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#,##0;'-'#,##0"
 }
]
 }
 ,{
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "Berlin",
 "text": "Berlin"
 },
 {
 "key": "Tokyo",
 "text": "Tokyo"
 }
]

88 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

 }
],
 "locale": "en_US"
}

The dimensions JSON property contains dimension and member information for each dimension relevant for
the selection.

The locale JSON property contains the browser's locale string.

5.3.7 Result Set Selection

To get the data values of the entire result set, use a data-bound property of type ResultSet.

For example, you have the following result set:

2010-01-01 2012-01-01

SALESREVENUE QUANTITYSOLD SALESREVENUE QUANTITYSOLD

Berlin 190,958.00 1,479 393,902.00 2,721

Rio de Janeiro 139,410.00 1,104 259,345.00 1,752

Tokyo 194,392.00 1,471 412,279.00 2,700

Overall Result 524,760.00 4,054 1,065,526.00 7,173

To select the entire result set, use the following selection string:

{}

or an empty string.

The SDK framework returns the following Data Runtime JSON:

Data Runtime JSON

{ "selection": [-1, -1, -1],
 "data": [
 190958,
 1479,
 393902,
 2721,
 139410,
 1104,
 ...
 7173
],
 "tuples": [
 [0, 0, 0],
 [0, 1, 0],
 [1, 2, 0],
 [1, 3, 0],

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 89

 [0, 0, 1],
 [0, 1, 1],
 ...
 [1, 3, 3]
],
 "dimensions": [
 {
 "key": "DATE",
 "text": "DATE",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "01/01/2010"
 },
 {
 "key": "2012-01-01",
 "text": "01/01/2012"
 }
]
 },
 {
 "key": "Measures",
 "text": "Measures",
 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true,
 "members": [
 {
 "key": "SALESREVENUE",
 "text": "SALESREVENUE",
 "formatString": "#.##0,00;'-'#.##0,00"
 },
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#.##0;'-'#.##0"
 },
 {
 "key": "SALESREVENUE",
 "text": "SALESREVENUE",
 "formatString": "#.##0,00;'-'#.##0,00"
 },
 {
 "key": "QUANTITYSOLD",
 "text": "QUANTITYSOLD",
 "formatString": "#.##0;'-'#.##0"
 }
]
 },
 {
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "Berlin",
 "text": "Berlin"
 },
 {
 "key": "Rio de Janeiro",
 "text": "Rio de Janeiro"
 },
 {
 "key": "Tokyo",
 "text": "Tokyo"

90 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

 },
 {
 "key": "Result",
 "text": "Overall Result",
 "type": "RESULT"
 }
]
 }
],
 "axis_columns": [
 [0, 0, -1],
 [0, 1, -1],
 [1, 2, -1],
 [1, 3, -1]
],
 "axis_rows": [
 [-1, -1, 0],
 [-1, -1, 1],
 [-1, -1, 2],
 [-1, -1, 3]
],
 "locale": "en_US"
 "columnCount": 4,
 "rowCount": 4
}

The selection JSON property reflects the selection. It contains an array of three indexes, corresponding to
the three dimensions of the result set, in the order DATE, Measures, and CITY. An index value of -1 indicates
that the respective dimension member is unspecified.

The data JSON property contains an array with the data values of all result set cells in the following order: left-
to-right cell, first-to-last row.

For each data value, the tuples JSON property contains a tuple of indexes of the selected dimensions
members. For example, the first tuple [0, 0, 0] points to the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 0 = SALESREVENUE for dimension Measures
● 0 = Berlin for dimension CITY

The second tuple [0, 1, 0] points to the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 1 = QUANTITYSOLD for dimension Measures
● 0 = Berlin for dimension CITY

The axis_columns JSON property specifies the column header cells. For each column axis position, this
JSON property contains a tuple of indexes of the appropriate dimension members. The indexes are in the order
DATE, Measures, and CITY. An index value of -1 indicates that the respective dimension is not on the column
axis. For example, the last tuple [1, 3, -1] (representing the last column axis tuple) points to the following
dimension members:

● 1 = 2012-01-01 for dimension DATE
● 3 = QUANTITYSOLD for dimension Measures
● -1 = Dimension CITY is not on the column axis

The axis_rows JSON property specifies the row header cells. For each row axis position, this JSON property
contains a tuple of indexes of the appropriate dimension members. The indexes are in the order DATE,
Measures, and CITY. An index value of -1 indicates that the respective dimension is not on the row axis. For

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 91

example, the last tuple [-1, -1, 3] (representing the last column row tuple) points to the following
dimension members:

● -1 = Dimension DATE is not on the axis
● -1 = Dimension Measures is not on the axis
● 3 = Overall Result for dimension CITY

Metadata Runtime JSON

 Note
For a data-bound property of type ResultSet, the Metadata Runtime JSON content is part of the Data
Runtime JSON. There is no separate Metadata Runtime JSON.

5.3.8 Master Data

Data-bound properties also support data from master data data sources (see option selectionShape in
“Element <option>” under Elements of the Contribution XML File [page 21]). A master data data source
contains dimension member values on one axis (either row or column axis) and no key figures.

For example, you have the following result set representing data from a master data data source. It has two row
dimensions DATE and CITY and no key figures. The dimension DATE has the members 2010-01-01,
2012-01-01, and Overall Result. The dimension CITY has the members Berlin, Rio de Janeiro,
Tokyo, and Result.

Date City

2010-01-01 Berlin

2010-01-01 Rio de Janeiro

2010-01-01 Tokyo

2010-01-01 Result

2012-01-01 Berlin

2012-01-01 Rio de Janeiro

2012-01-01 Tokyo

2012-01-01 Result

Overall Result Result

92 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

To select the result set, use the following selection string:

{}

or an empty string ("").

The Component SDK framework returns the following Data Runtime JSON:

Data Runtime JSON

 Sample Code
 {
 "selection": [-1, -1],
 "data": [
 null,
 null,
 null,
 null,
 null,
 null,
 null,
 null,
 null
],
 "tuples": [
 [0, 0],
 [0, 1],
 [0, 2],
 [0, 3],
 [1, 0],
 [1, 1],
 [1, 2],
 [1, 3],
 [2, 3]
],
 "dimensions": [
 {
 "key": "DATE",
 "text": "DATE",
 "axis":"COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2010-01-01",
 "text": "01/01/2010"
 },
 {
 "key": "2012-01-01",
 "text": "01/01/2012"
 },
 {
 "key": "SUMME",
 "text": "Overall Result",
 "type": "RESULT"
 }
]
 },
 {
 "key": "CITY",
 "text": "CITY",
 "axis": "ROWS",
 "axis_index": 1,
 "members": [
 {
 "key": "Berlin",

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 93

 "text": "Berlin"
 },
 {
 "key": "Rio de Janeiro",
 "text": "Rio de Janeiro"
 },
 {
 "key": "Tokyo",
 "text": "Tokyo"
 },
 {
 "key": "SUMME",
 "text": "Result",
 "type": "RESULT"
 }
]
 }
],
 "axis_columns": [],
 "axis_rows": [
 [0, 0],
 [0, 1],
 [0, 2],
 [0, 3],
 [1, 0],
 [1, 1],
 [1, 2],
 [1, 3],
 [2, 3]
],
 "locale": "en_US",
 "columnCount": 0,
 "rowCount": 9
}

The selection JSON property reflects the selection. It contains an array of two indexes corresponding to the
two dimensions of the result set in the order DATE and CITY. An index value of -1 indicates that the respective
dimension member is unspecified.

The data JSON property contains null values.

For each data value, the tuples JSON property contains a tuple of indexes of the selected dimensions
members. For example, the first tuple [0, 0] points to the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 0 = Berlin for dimension CITY

The second tuple [0, 1] points to the following dimension members:

● 0 = 2010-01-01 for dimension DATE
● 1 = Rio de Janeiro for dimension CITY

The axis_rows JSON property contains the same tuples as the tuples JSON property.

The axis_columns JSON property contains an empty array.

The rowCount JSON property contains the number of dimension members on the row axis.

The columnCount JSON property contains the value 0.

In general, the following rules apply:

94 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

● If the dimension members are located on the row axis then the axis_rows JSON property and the
tuples JSON property contain the same tuples. The axis_columns JSON property is empty. The
rowCount JSON property contains the number of dimension members on the row axis. The columnCount
JSON property contains the value 0.

● If the dimension members are located on the column axis then the axis_columns JSON property and the
tuples JSON property contain the same tuples. The axis_rows JSON property is empty. The
columnCount JSON property contains the number of dimension members on the columns axis. The
rowCount JSON property contains the value 0.

Metadata Runtime JSON

 Note
The Metadata Runtime JSON content is part of the Data Runtime JSON. There is no separate Metadata
Runtime JSON.

5.4 Sample Implementation

To learn about data binding with a real, simple data-bound extension component, you can import the Simple
Table SDK extension. It is contained in the sample project com.sap.sample.simpletable in the SDK
Templates and Samples folder. This is located, for example, under C:\ds_sdk (see Importing a Sample SDK
Extension [page 10]).

The Simple Table displays up to three columns of data from columns (or rows) of a result set. The top cell of
each column displays a column header text. An additional (first) column displays row header texts for each
row.

Example: Simple Table

01/01/2010 SALESREVENUE 01/01/2010 QUANTITYSOLD 01/01/2012 SALESREVENUE

Berlin 190,958.00 1,479 393,902.00

Rio de Janeiro 139,410.00 1,104 259,345.00

Tokyo 194,392.00 1,471 412,279.00

Result 524,760.00 4,054 1,065,526.00

5.4.1 Configuring the Simple Table

Procedure

1. To fill a Simple Table with data, assign a data source to the table.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 95

 Note
You can assign a data source by dragging and dropping a data source from the Outline view onto the
data-bound extension component on the canvas.

2. In the Properties view of the Simple Table, you will see the properties Column 1, Column 2, and Column 3.
3. Click the button ... to the right of Column 1.

The Select Data dialog box appears.
4. Select a column and close the dialog box.
5. Repeat steps 3 to 5 for Column 2 and Column 3.

Results

The system displays the selection strings in the Properties view.

5.4.2 Data Binding in the Simple Table

In the Simple Table implementation, there are two locations relevant for data binding:

● Contribution XML
● Component JavaScript

5.4.2.1 Contribution XML

In the contribution.xml file, there are two locations relevant for data binding:

● Attribute databound
● Data-bound properties

Attribute databound

The databound attribute in the <component> element enables data binding for the Simple Table:

<component ... databound="true">

 Note
● This automatically adds the Data Source property to the Simple Table. It is displayed in the Properties

view of the extension component in SAP Lumira Designer.
● This automatically adds the metadata property to the Simple Table.

96 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

Data-Bound Properties

The Simple Table uses three data-bound properties to provide data cell values of three result set columns at
runtime:

<property id="column1"type="ResultCellList"title="Column 1"group="DataBinding"> <option name="includeFormattedData"value="true"/>
 <option name="includeData"value="false"/>
</property>
<property id="column2"type="ResultCellList"title="Column 2"group="DataBinding">
 <option name="includeFormattedData"value="true"/>
 <option name="includeData"value="false"/>
</property>
<property id="column3"type="ResultCellList"title="Column 3"group="DataBinding">
 <option name="includeFormattedData"value="true"/>
 <option name="includeData"value="false"/> </property>

The three properties column1, column2, and column3 are displayed as Column 1, Column 2, and Column 3
under Data Binding in the Properties view of the Simple Table. As they are properties of type ResultCellList,
each property receives the data values of a single column (or row) from the result set at runtime. The selected
column (or row) is specified at design time by the selection string (see Design Time Property Values [page 72]).

The properties column1, column2, and column3 use options to include the formattedData JSON property
and to remove the data JSON property in the Data Runtime JSON object. Therefore the properties only
provide formatted data and not the float number data.

5.4.2.2 Component JavaScript

The Component JavaScript creates the visual appearance of the Simple Table component. This involves
creating an HTML table and filling it with appropriate result set data.

Function init

The init() function of the Simple Table component adds a CSS style class and a vertical scrollbar to the
<div> element provided by the SDK framework. Then it creates a <table> element (which holds the HTML
table) and adds it to the <div> element.

this.init = function() { this.$().addClass(CSS_CLASS_DIV);
 this.$().css("overflow-y", "scroll");
 this.jqTable = $("<table class=\"" + CSS_CLASS_TABLE + "\"/>");
 this.$().append(this.jqTable);
};

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 97

Property Setter and Getter Functions

Three property setter/getter functions store and return values of the Simple Table's data-bound properties
column1, column2, and column3. The setter clauses store the property values provided by the SDK
framework in local variables column1_data, column2_data, and column3_data and the getter clauses
return these values. The JavaScript code, which is executed after the property values have been set by the SDK
framework using the setter clauses, can access these values. This especially applies to JavaScript code in
function afterUpdate().

 Note
A fourth setter/getter function this.metadata() stores and returns the value of the metadata property in
the local variable meta_data. The property is implicitly added when declaring a property of type
ResultCell, ResultCellList, or ResultCellSet in the Contribution XML.

var column1_data = null; var column2_data = null;
var column3_data = null;
var meta_data = null;
this.column1 = function(value) {
 if (value === undefined) {
 return column1_data;
 } else {
 column1_data = value;
 return this;
 }
};
this.column2 = function(value) {
 if (value === undefined) {
 return column2_data;
 } else {
 column2_data = value;
 return this;
 }
};
this.column3 = function(value) {
 if (value === undefined) {
 return column3_data;
 } else {
 column3_data = value;
 return this;
 }
};
this.metadata = function(value) {
 if (value === undefined) {
 return meta_data;
 } else {
 meta_data = value;
 return this;
 }
};

98 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

Function afterUpdate

 Note
Most extension components place their visualization code in this function, because it is executed after all
extension component property values have been updated by the SDK framework.

Function afterUpdate() fills the HTML table.

this.afterUpdate = function() { this.jqTable.empty();
 var column_data = getAnySetColumn_Data();
 if (column_data) {
 var jqHeader = $("<thead/>").appendTo(this.jqTable);
 var jqHeaderRow = $("<tr class=\"" + CSS_CLASS_TR_HEADER +
 "\"/>").appendTo(jqHeader);
 jqHeaderRow.append($("<td class=\"" + CSS_CLASS_TD_HEADER + "\"/>"));
 appendColumnHeaderCell(jqHeaderRow, column1_data);
 appendColumnHeaderCell(jqHeaderRow, column2_data);
 appendColumnHeaderCell(jqHeaderRow, column3_data);
 for (var i = 0; i < column_data.formattedData.length; i++) {
 var jqRow = $("<tr/>");
 this.jqTable.append(jqRow);
 appendRowHeaderCell(jqRow, i);
 appendCell(jqRow, column1_data, i);
 appendCell(jqRow, column2_data, i);
 appendCell(jqRow, column3_data, i);
 }
 } };

First, nested elements are removed from the <table> element.

Then, the code checks if any of the column variables contain a value with the following helper function:

function getAnySetColumn_Data() { if (column1_data && column1_data.formattedData) {
 return column1_data;
 } else if (column2_data && column2_data.formattedData) {
 return column2_data;
 } else if (column3_data && column3_data.formattedData) {
 return column3_data;
 }
 return null;
}

If a column variable does contain a value, the table header is composed. First, a <thead> (table header)
element is created and added to the table. Then a <tr> (table row) element is added to the table header. Next,
a <td> (table cell) element, which is an empty header cell, is added to the table row. The helper function
appendColumnHeaderCell() is called three times to add the remaining three column header table cells.

A loop adds a <tr> (table row) element for each row in the result set to the table. Helper functions
appendRowHeaderCell() and appendCell() add four table cells (one row header table cell and three data
table cells) to each table row.

Note how the number of rows is determined in the loop: Variable column_data contains the Data Runtime
JSON of one the properties column1, column2 or column3. The JavaScript expression
column_data.formattedData returns the value of the formattedData JSON property of the Data Runtime

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 99

JSON, which is an array of string values. Adding .length to this expression returns the number of data values
in this array, which is the number of rows of the result set.

Function appendCell

Helper function appendCell() adds a cell to a table row. The cell contains the appropriate value from the
result set. The passed arguments are a <tr> (table row) element, the Data Runtime JSON of a property of type
ResultCellList and a row index.

After various safety checks (Is data available, in other words, does a Data Runtime JSON of the property
actually exist? Is the row index in the correct range?), the JavaScript expression
column_data.formattedData[i] picks the appropriate formatted data value from the Data Runtime JSON
using the row index. The cell text is placed into a <td> (table cell) element, which is added to the table row.

function appendCell(jqRow, column_data, i) { if (column_data && column_data.formattedData && (i <
column_data.formattedData.length)) {
 var cellText = column_data.formattedData[i];
 jqRow.append($("<td class=\"" + CSS_CLASS_TD_DEFAULT + "\">" + cellText + "</
td>"));
 }
}

Function appendRowHeaderCell

Helper function appendRowHeaderCell() adds a row header cell to each table row. A row header cell
contains a text concatenation of all row dimension member values in that row. The passed arguments are a
<tr> (table row) element and a row index.

function appendRowHeaderCell(jqRow, i) { var column_data = getAnySetColumn_Data();
 if (meta_data && column_data && column_data.formattedData && (i <
column_data.tuples.length)) {
 var tuple = column_data.tuples[i];
 var headerText = "";
 for (var j = 0; j < tuple.length; j++) {
 if (column_data.selection[j] == -1) {
 headerText += " " + meta_data.dimensions[j].members[tuple[j]].text;
 }
 }
 headerText = headerText.replace("|", " "); // Delimiter used for multiple
presentations
 jqRow.append($("<td class=\"" + CSS_CLASS_TD_HEADER + "\">" + headerText +
"</td>"));
 }
}

After various safety checks (Is metadata available, in other words, does a Metadata Runtime JSON actually
exist? Is data available, in other words, does a Data Runtime JSON of one of the properties column1, column2
or column3 actually exist? Is the row index in the correct range?), the JavaScript expression
column_data.tuples[i] picks the appropriate tuple from the Data Runtime JSON using the row index. The
tuple contains dimension member indexes for each dimension.

100 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

An empty row header text is defined.

A loop over the number of dimensions (equal to the number of tuple elements tuples.length) combines the
row header text. Only row dimension members are combined to make the row header text. This is achieved by
checking if the appropriate dimension member is flagged as unspecified (= -1) in the selection JSON
property of the Data Runtime JSON. Since we made a column selection, this means column dimension
member indexes in the selection JSON property are unequal to -1 and row dimension member indexes are
equal to -1. If a row dimension member is found, its dimension information is picked from the Metadata
Runtime JSON with expression meta_data.dimension[j] and the corresponding dimension member is
retrieved with .members[tuple[j]]. This member returns the dimension member text with .text. Finally,
the combined row header text is placed into a <td> (table cell) element, which is added to the table row.

Function appendColumnHeaderCell

Helper function appendColumnHeaderCell() adds a column header cell to the table header row. A column
header cell contains a text concatenation of all column dimension member values in that column. The passed
arguments are a <tr> (table header row) element and the Data Runtime JSON of the property representing
that column.

function appendColumnHeaderCell(jqHeaderRow, column_data) { if (column_data && column_data.formattedData) {
 var headerText = "";
 for (var i = 0; i < column_data.selection.length; i++) {
 var selectionIndex = column_data.selection[i];
 if (selectionIndex != -1) {
 headerText += " " + meta_data.dimensions[i].members[selectionIndex].text;
 }
 }
 $("<td class=\"" + CSS_CLASS_TD_HEADER + "\">" + headerText + "</
td>").appendTo(jqHeaderRow);
 }
}

After a safety check (Is data available, in other words, does a Data Runtime JSON of the property representing
that column actually exist?), an empty column header text is defined.

A loop over the number of dimensions (equal to the number of elements of the Data Runtime JSON
selection JSON property) combines the column header text.

Only column dimension members are combined to make the column header text. This is achieved by checking
if the appropriate dimension member is not flagged as unspecified (!= -1) in the selection JSON property
of the Data Runtime JSON. Since we made a column selection, this means column dimension member indexes
in the selection JSON property are unequal to -1 and row dimension member indexes are equal to -1. If a
column dimension member is found, its dimension information is picked from the Metadata Runtime JSON
with expression meta_data.dimensions[i] and the corresponding dimension member is retrieved
with .members[selectionIndex]. This member returns the dimension member text with .text. Finally, the
combined column header text is placed into a <td> (table cell) element, which is added to the table header
row.

Developer Guide: Component SDK
SDK Extensions and Data Binding PUBLIC 101

5.5 Select Data Dialog Box

In the Properties view of Lumira Designer, the following properties are displayed with an input field (into which
you can type a selection string) and a value help button:

● ResultCell
● ResultCellList
● ResultCellSet
● ResultSet

Using the value help button makes creating a selection string easier. The Select Data dialog box appears. In this
dialog box, you can create your selection based on the result set data. Your selection is automatically restricted
by the property type.

Example

You can only select a single cell for a property of type ResultCell, whereas you can select a single row or column
of cells for a property of type ResultCellList.

When you close the dialog box, the relevant selection string is displayed in the Properties view.

 Restriction
● The Select Data dialog box does not support all types of queries.
● The Select Data dialog box only supports selections of multiple rows or columns for properties of type

ResultCellSet.

102 PUBLIC
Developer Guide: Component SDK

SDK Extensions and Data Binding

6 SDK Extensions Using SAPUI5 Controls

The SDK also allows you to create SDK extension components based on SAPUI5 controls. The SDK uses the
SAPUI5 extension mechanism of SAPUI5 to first extend an SAPUI5 control and then modify it. An SDK
component inherits all the properties of the extended SAP UI5 component.

For more information, see the SAPUI5 Developer Guide at https://sapui5.hana.ondemand.com/sdk/#docs/
guide/OnTheFlyControlDefinition.html.

The following sections describe the modifications that can be made to SDK extensions and extension
components when creating SDK extension components based on SAPUI5 controls. The necessary
modifications are described using the RatingIndicator component of the UI5 SDK sample extension as an
example.

SAPUI5 comes in two flavors: SAPUI5 and SAPUI5 m. Both flavors provide a set of SAPUI5 controls, many of
them with the same or similar functionality. When you develop an SDK component based on an SAPUI5
control, you must decide which SAPUI5 flavor your SDK component will be based on. Note, however, that with a
litte extra effort, you can base your SDK compont on both flavors, as the RatingIndicator SDK component
example shows.

6.1 Contribution XML

Example: File contribution.xml of the SAPUI5 SDK extension

 <?xml version="1.0" encoding="UTF-8"?>
<sdkExtension ...
 id="com.sap.sample.ui5">
 ...
 <component ...
 id="RatingIndicator"
 handlerType="sapui5"
 modes="commons m"
 group="sapui5">
 <requireJs modes="commons">res/js/components</requireJs>
 <requireJs modes="m">res/js/components_m</requireJs>
 ...
 <property ...
 id="value"
 type="float"/>
 <property ...
 id="onChange"
 type="ScriptText"/>
 </component>
</sdkExtension>

The component ID RatingIndicator (ID does not have to match the name of the extended SAPUI5 control)
is combined with the extension ID com.sap.sample.ui5, to create the unique extension component ID
com.sap.sample.ui5.RatingIndicator for the RatingIndicator SDK extension component.

The component handler type must be sapui5.

Developer Guide: Component SDK
SDK Extensions Using SAPUI5 Controls PUBLIC 103

https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html
https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html

To provide access to the property value of the SAPUI5 RatingIndicator control, define a property with the
same name and type for the SDK component.

The modes attribute of the element <component> indicates which SAPUI5 library this SDK component
supports (see Element <component> [page 23]). The value "commons m" indicates that the RatingIndicator
SDK component supports both the SAPUI5 and the SAPUI5 m libraries and can therefore be used with analysis
applications created from a template based on the SAPUI5 or SAPUI5 m library.

Each <requireJs> element references a Component JavaScript file for the RatingIndicator SDK component
(see Element <requireJs> [page 29]). The first Component JavaScript file is used for the RatingIndicator SDK
component in analysis applications based on the SAPUI5 library. The second Component JavaScript file is
used for the RatingIndicator SDK component in analysis applications based on the SAPUI5 m library.

To provide access to a property of the SAPUI5 RatingIndicator control, define a property of the same name and
type for the RatingIndicator SDK component. For example, see the definition of the property value in the
example above.

6.2 Component JavaScript

The component JavaScript of an SAPUI5-based SDK extension component uses a different syntax than a
normal SDK extension component, because it has to follow SAPUI5 rules.

The SDK framework lets you specify the order in which resource files of your extension component, like
JavaScript and CSS files, are loaded before the Component JavaScript is executed. This also applies for
SAPUI5-based SDK extension components, as is the case with normal SDK extension components. Just nest
the content of the Component Javascript in the define function as described in Loading Resources in a
Specific Order [page 45].

The following example shows the Contribution JavaScript of the RatingIndicator SDK component that is
supported by the SAPUI5 library. Note that the RatingIndicator SDK component with ID
com.sap.sample.ui5.RatingIndicator extends the SAPUI5 control
sap.ui.commons.RatingIndicator.

Example: File contribution.js of the SAPUI5 Component SDK extension for SDK components based on the
SAPUI5 library

 Sample Code
 define([], function() {
 //...
 sap.ui.commons.RatingIndicator.extend("com.sap.sample.ui5.RatingIndicator",
{
 initDesignStudio: function() {
 this.attachChange(function() {
 this.fireDesignStudioPropertiesChanged(["value"]);
 this.fireDesignStudioEvent("onChange");
 });
 },
 renderer: {}
 });
 //...
});

104 PUBLIC
Developer Guide: Component SDK

SDK Extensions Using SAPUI5 Controls

The define function is provided by the RequireJS library. It lets you specify the order in which resource files
are loaded by passing elements to the array and by passing arguments to the anonymous function (see
Loading Resources in a Specific Order [page 45]). The RatingIndicator SDK component has no additional
resource files, so the array is empty and the function has no arguments.

Incidentally, the define function is used in the same way by regular SDK components (with
handlerType=div). In that case, however, both a first array element and a first function argument must be
present (see Loading Resources in a Specific Order [page 45]).

The following example shows the Contribution JavaScript of the RatingIndicator SDK component that is
supported by the SAPUI5 m library. Note that the RatingIndicator SDK component with ID
com.sap.sample.ui5.RatingIndicator extends the SAPUI5 m control sap.m.RatingIndicator.

Example: File contribution_m.js of the SAPUI5 Component SDK extension for SDK components based on the
SAPUI5 m library

 Sample Code
 define([], function() {
 sap.m.RatingIndicator.extend("com.sap.sample.ui5.RatingIndicator", {
 initDesignStudio: function() {
 this.attachChange(function() {
 this.fireDesignStudioPropertiesChanged(["value"]);
 this.fireDesignStudioEvent("onChange");
 });
 },
 renderer: {}
 });
});

Extension Component Lifecycle

SAPUI5-based SDK extension components also use the concept of a rendering lifecycle with functions that you
can override, similar to normal SDK extension components. The following functions are called in the specified
sequence during the rendering lifecycle:

● initDesignStudio()
● beforeDesignStudioUpdate()
● Property Setter and Getter Functions
● afterDesignStudioUpdate()
● renderer()

Related Information

JavaScript Function Calls [page 106]
Events [page 109]

Developer Guide: Component SDK
SDK Extensions Using SAPUI5 Controls PUBLIC 105

6.2.1 JavaScript Function Calls

Function initDesignStudio

Syntax: initDesignStudio()

Implement this function to execute JavaScript code when the SAPUI5-based SDK extension component is
rendered for the first time, after the SAPUI5-based SDK extension component has been created. Usually you
attach event listeners in this function.

Function beforeDesignStudioUpdate

Syntax: beforeDesignStudioUpdate()

Implement this function to execute JavaScript code before the properties of the SAPUI5-based SDK extension
component are updated.

Property Setter and Getter Functions

For SDK extension component properties that map to SAPUI5 control properties, no explicit getter/setter
functions are necessary. The mapping is configured automatically by the SDK framework.

For SDK extension component properties that do not map to SAPUI5 control properties, you can implement a
getter and a setter function. Their names follow this convention (note the uppercase and lowercase letters): For
the property fooProp, the getter function is named getFooProp, and the setter function is named
setFooProp.

Example: The SDK component in the following example has a property copyrightText of type String. It is
defined in the file contribution.xml of the SDK component as follows:

... <property
 id="copyrightText"
 title="Copyright Text"
 type="String"/> ...

Since this property is not a property of the SAPUI5 component, which the SDK component is based on, you
need to define explicit getter and setter functions in the component's JavaScript file (unlike the properties of
the SAPUI5 component, which are available automatically). Note that the first letter after get and set is in
uppercase:

... getCopyrightText: function() {
 returnthis.copyrightText;
},
setCopyrightText: function(copyrightText) {
 this.copyrightText = copyrightText;
}

106 PUBLIC
Developer Guide: Component SDK

SDK Extensions Using SAPUI5 Controls

...

Function afterDesignStudioUpdate

Syntax: afterDesignStudioUpdate()

Implement this function to execute JavaScript code after the properties of the SAPUI5-based SDK extension
component have been updated.

Function renderer

Syntax: renderer()

If this SAPUI5 function is not empty, it contains renderer code. Usually it is empty. This is because you want to
leverage the rendering of the SAPUI5 control, which this SAPUI5-based SDK extension component is based on.
For more information, see the SAPUI5 Developer Guide at https://sapui5.hana.ondemand.com/sdk/#docs/
guide/OnTheFlyControlDefinition.html.

Function callZTLFunction

Syntax: callZTLFunction(sMethodname, function, arg1, arg2, ...)

Call this function to execute a method of the Lumira Designer Script contribution file contribution.ztl.

The argument sMethodname is the name of the method.

The argument function is a JavaScript function that is executed after the method call and the result of the
method call is passed.

The arguments arg1, arg2, ... are arguments of the method. Arguments should be strings, JSONs, or
arrays.

 Note
You can also call private Lumira Designer Script contribution methods.

 Caution
Do not modify data sources during a call of callZTLFunction, for example by calling setFilter. This
adds an error message to the Lumira Designer error log.

In the example below, the private Lumira Designer Script contribution method getDimension is called
(without arguments). The result is passed to a component setter.

Example:

(contribution.ztl)

Developer Guide: Component SDK
SDK Extensions Using SAPUI5 Controls PUBLIC 107

https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html
https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html

 Sample Code
 @Visibility(private)
String getDimensions() {*
 //...
 return ...;
*}

(contribution.js)

 Sample Code
 //...
that.callZTLFunction("getDimensions", function(result) {
 that.setItems(result);
});

Function callZTLFunctionNoUndo

Syntax: callZTLFunctionNoUndo(sMethodname, function, arg1, arg2, ...)

This is similar to the callZTLFunction function but it doesn't record the resulting state changes made by the
application's undo stack.

6.2.2 JavaScript Tips

How can I add my own function to the JavaScript of an SAPUI5-based SDK
component?

Example: To implement the function myFunction(arg1, arg2), add the following:

... myFunction: function(arg1, arg2) {
 // method body
}, ...

How can I share variables in my functions in the JavaScript of an SAPUI5-
based SDK component?

Use this. with the variable name.

108 PUBLIC
Developer Guide: Component SDK

SDK Extensions Using SAPUI5 Controls

 Note
Choose a variable name that does not conflict with the variable names of the SAPUI5 component, which
your SDK component is based on.

Example: To get and set the value of variable myVariable in function myFunction, add the following:

... myFunction1: function() {
 // ...
 this.myVariable = x; // set the shared variable value
 // ...
},
myFunction2: function() {
 // ...
 var x = this.myVariable; // get the shared variable value
 // ...
}, ...

6.3 Events

SAPUI5-based SDK extension components also have event methods, similar to normal SDK extension
components:

Function fireDesignStudioPropertiesChanged

Syntax: fireDesignStudioPropertiesChanged([sPropertyname1, sPropertyname2, ...])

Call this function to inform the SDK framework that one or more properties of this SAPUI5-based SDK
extension component have changed in the browser.

 Note
Calling fireDesignStudioPropertiesChanged triggers a server roundtrip. Therefore, frequent use of
this function may decrease the performance of your analysis application. We recommend that this function
should only be called upon user interaction. We do not recommend calling this function to implement
implicit changes to properties (so-called event cascading), as this may lead to a large number of (or even
infinite) server roundtrips. Lumira Designer's standard components only trigger server roundtrips upon
user interaction. This ensures efficient use of server roundtrips, which leads to better performance and
avoids the threat of indeterministic (or even infinite) server roundtrips through event cascading.

Function fireDesignStudioEvent

Syntax: fireDesignStudioEvent(sPropertyname)

Developer Guide: Component SDK
SDK Extensions Using SAPUI5 Controls PUBLIC 109

Call this function to execute the Lumira Designer script that is stored in a property of type ScriptText of this
SAPUI5-based SDK extension component.

 Note
Calling fireDesignStudioEvent triggers a server roundtrip. Therefore, frequent use of this function may
decrease the performance of your analysis application. We recommend that this function should only be
called upon user interaction. We do not recommend calling this function to implement implicit changes to
properties (so-called event cascading), as this may lead to a large number of (or even infinite) server
roundtrips. Lumira Designer's standard components only trigger server roundtrips upon user interaction.
This ensures efficient use of server roundtrips, which leads to better performance and avoids the threat of
indeterministic (or even infinite) server roundtrips through event cascading.

Example

File components.js of the SAPUI5 SDK extension

... sap.ui.commons.RatingIndicator.extend("com.sap.sample.ui5.RatingIndicator", {
 initDesignStudio: function() {
 this.attachChange(function() {
 this.fireDesignStudioPropertiesChanged(["value"]);
 this.fireDesignStudioEvent("onChange");
 });
 },
 renderer: {}
}); ...

In the first line, the RatingIndicator SDK extension component is extended from the SAPUI5 RatingIndicator
control using the unique extension component ID com.sap.sample.ui5.RatingIndicator.

Function initDesignStudio() implements initialization tasks. Event listeners are usually attached to the
SAPUI5 control here in order to map SAPUI5 event listening to SDK event listening. Note the SAPUI5 naming
convention: The name of the function starts with attach, followed by the SAPUI5 event name with the first
letter in uppercase. For more information, see the SAPUI5 Developer Guide at https://
sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html.

In the event listener code you can trigger:

● the update of SDK component properties with the fireDesignStudioPropertiesChanged() method
(value is an SDK extension component property of type float defined in contribution.xml)

● the execution of Lumira Designer scripts with the fireDesignStudioEvent() methods (onChange is an
SDK extension component property of type ScriptText defined in contribution.xml)

Function renderer() implements the actual rendering of the component. If this is left empty, then the
renderer of the SAPUI5 parent class sap.ui.commons.RatingIndicator renders the SDK component.

110 PUBLIC
Developer Guide: Component SDK

SDK Extensions Using SAPUI5 Controls

https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html
https://sapui5.hana.ondemand.com/sdk/#docs/guide/OnTheFlyControlDefinition.html

Function fireDesignStudioPropertiesChangedAndEvent

Syntax: fireDesignStudioPropertiesChangedAndEvent([sPropertyname1,
sPropertyname2, ...], sPropertyname);

This function is equivalent to

 fireDesignStudioPropertiesChanged([sPropertyname1, sPropertyname2, ...]);
fireDesignStudioEvent(sPropertyname);

Function fireDesignStudioPropertiesChangedAndEvent is a faster implementation of this frequent
combination of function calls requiring only one server round-trip.

 Note
Calling fireDesignStudioPropertiesChangedAndEvent triggers a server roundtrip. Therefore,
frequent use of this function may decrease the performance of your analysis application.

We recommend that this function should only be called upon user interaction. We do not recommend
calling this function to implement implicit changes to properties (event cascading), as this may lead to a
large number of (or even infinite) server roundtrips. Lumira Designer's standard components only trigger
server roundtrips upon user interaction. This ensures efficient use of server roundtrips, which leads to
better performance and avoids the threat of indeterministic (or even infinite) server roundtrips through
event cascading.

Developer Guide: Component SDK
SDK Extensions Using SAPUI5 Controls PUBLIC 111

7 SDK Extensions as Data Sources (Data
Source SDK)

In addition to creating SDK components that simply visualize data from a data source, you can also create SDK
components that act as data sources for SDK components (SDK data sources). In other words, not only can
you create SDK components that consume data but also SDK components that produce data.

This enables SDK components to use SDK data sources, in order to access a broad range of data sources, for
example, a local file, a Web service or a new type of back end system. When you implement an SDK data
source, you implement the actual access to the data and supply the data to SDK components using the APIs of
the Data Source SDK, which is a part of the Component SDK.

Restrictions

SDK data sources can be consumed by SDK components and standard components, with the exception of the
standard Crosstab component and standard filter components such as Dimension Filter and Filter Panel.

7.1 Using SDK Data Sources in SAP Lumira Designer

SDK data sources are added to and removed from a SAP Lumira Designer installation like any other SDK
component.

SDK data sources do not appear in Lumira Designer's Components view. In order to add an installed SDK data
source to your application, follow these steps:

1. In Lumira Designer, right-click the Data Sources folder in the Outline view.
2. Choose Add Custom Data Source.... A submenu appears with a list of installed SDK data sources.
3. Choose one of the listed SDK data sources.

Restrictions

● In general, an SDK data source operates on the provided data. It has no built-in concept of background
dimensions, which can be used for filtering data, like normal data sources. However, you can implement
SDK data sources that provide this background dimension-like behavior.

● The Select Data dialog box in the Properties view does not currently support SDK data sources.

112 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

7.2 Implementing an SDK Data Source

SDK data sources have the same project structure as any other SDK component. The following sections list
and explain the differences.

Prerequisites

You have understood sections SDK Extensions [page 20] and SDK Extensions and Data Binding [page 71].

Contribution XML

The handler type of an SDK data source component is

handlerType="datasource"

Component JavaScript

There are two ways of implementing the Component JavaScript part of an SDK data source:

● You can extend your SDK data source from the DataSource JavaScript class, which is provided by the
SDK framework. This is the most basic way to implement an SDK data source. It offers you the most
control over your SDK data source implementation but requires you to create the potentially intricate
Metadata Runtime JSON and Data Runtime JSON objects.

● You can extend your SDK data source from the DataBuffer JavaScript class, which is provided by the
SDK framework. This class sits on top of, or in other words, extends the basic DataSource JavaScript
class. It offers you a more convenient way of implementing an SDK data source.

The two implementation options are transparent to application designers working with your SDK data source.
They will not be able to recognize which option you used to implement your SDK data source.

7.3 Option 1: Extending the DataSource JavaScript class

The most basic way to implement an SDK data source is to extend it from the DataSource JavaScript class,
which is provided by the SDK framework. The API that you need to implement consists of only two methods. In
a nutshell, both methods return the Metadata Runtime JSON and the Data Runtime JSON objects, as specified
in the sections on the “Metadata Runtime JSON” and “Data Runtime JSON” under Runtime Property Values
[page 73]. If you find it challenging to create JSON objects that conform to these specifications you might want
to try Option 2.

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 113

The example below shows an extract of the Component JavaScript of the SDK data source component
Constant Data Source that extends the DataSource JavaScript class:

Example

(File component.js)

sap.designstudio.sdk.DataSource.subclass("com.sap.sample.constantdatasource.Const
antDataSource", function() { var oMetadataRuntimeJson = ...;
 var oFullDataRuntimeJson = ...;
 this.fetchData = function(oSelection, oOptions) {
 return oFullDataRuntimeJson;
 };
 this.metadata = function(value) {
 if(value === undefined) {
 return JSON.stringify(oMetadataRuntimeJson);
 } else{
 return this;
 }
 } });

7.3.1 JavaScript Function Calls

SDK data sources that extend from the DataSource JavaScript class share the same Component JavaScript
API as other SDK extension components, implementing or calling JavaScript functions like init,
beforeUpdate, afterUpdate, firePropertiesChanged, or fireEvent. However, there are a few
additional JavaScript functions that are specific to SDK data sources that extend from the DataSource
JavaScript class. They are listed in the following sections.

Function fetchData

Syntax: fetchData(oSelection, oOptions)

Implement this function to return the Data Runtime JSON object as specified in “Data Runtime JSON” under
Runtime Property Values [page 73]. The argument oSelection is the Design Time JSON object ("selection
string") (see Design Time Property Values [page 72]). The argument oOptions is a JSON object that contains
property options for data-bound properties (see “Element <Option>” under Elements of the Contribution XML
File [page 21]).

With your implementation of this function, you may want to evaluate the Design Time JSON object and the
property options before constructing and returning the appropriate Data Runtime JSON object.

114 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

The example below shows the implementation of this function in the SDK data source component Constant
Data Source. It ignores the passed selection string and the options, and always returns a constant Data
Runtime JSON object (hence the component's name):

Example: (File component.js)

this.fetchData = function(oSelection, oOptions) { return oFullDataRuntimeJson; };

Note that in this SDK data source component, the Metadata Runtime JSON part is always included in the Data
Runtime JSON object for simplicity reasons. In a more elaborate implementation, you would decide (based on
the Metadata Runtime and Data Runtime JSON specification in combination with the passed options) what
properties to include in the Metadata Runtime JSON and Data Runtime JSON objects.

Getter and setter function for property metadata

Implement this function as a combined getter and setter function for the property metadata. When called as a
getter function, it must return the Metadata Runtime JSON object as a string. When called as a setter function,
it must return this to allow function calls to be chained, thus creating a fluent interface.

The example below shows the implementation of this function in the SDK data source component Constant
Data Source. This function always returns a constant Metadata Runtime JSON object (hence the component's
name). If the metadata property is set, it is ignored:

Example: (File component.js)

this.metadata = function(value) { if(value === undefined) {
 returnJSON.stringify(oMetadataRuntimeJson);
 } else{
 return this;
 } }

Function fireUpdate

Syntax: fireUpdate(bWillUpdateServer)

Call this function to notify the SDK framework that your SDK data source contains updated data. If the optional
argument bWillUpdateServer is true, then the SDK framework also notifies the server on the back end of
the change. This may lead to back end roundtrips.

7.3.2 Script Contributions

SDK data sources, like other SDK components, can contribute Lumira Designer script methods, which are
defined in their contribution.ztl file. Even if your SDK data source does not contribute any Lumira

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 115

Designer script methods, you may find it useful to add an empty Script Contribution file, which extends from
the DataSource JavaScript class but which does not contain any Lumira Designer script methods.

The example below shows the empty Script Contribution file of the SDK data source Constant Data Source:

Example (File contribution.ztl)

class com.sap.sample.constantdatasource.ConstantDataSource extends SdkDataSource
{ // needed to inherit parent class methods }

This will let your SDK data source automatically inherit the following Lumira Designer script methods (similar
to a normal data source):

String getDataAsString(Measure measure, MultiDimFilter selection) DataCell getData(Measure measure, MultiDimFilter selection)
DimensionArray getDimensions(optional AxisEnum axis)
String getDimensionText(Dimension dimension)
Dimension getMeasuresDimension()
MemberArray getMembers(Dimension dimension, int maxNumber)
void setFilter(Dimension dimension, FilterArray value)
void clearAllFilters()
void clearFilter(Dimension dimension) String getFilterText(Dimension dimension)

Calling these methods in a Lumira Designer script may lead to calls of the fetchData method, which has to
evaluate the passed arguments and return the appropriate Metadata Runtime and Data Runtime JSON objects.

7.4 Option 2: Extending the DataBuffer JavaScript Class

A more convenient way to implement an SDK data source is to extend it from the DataBuffer JavaScript
class, which is provided by the SDK framework. The DataBuffer JavaScript class extends the more basic
DataSource JavaScript class and takes care of the potentially intricate details of creating the appropriate
Metadata Runtime JSON and Data Runtime JSON objects.

The example below shows an extract from the Component JavaScript class of the SDK data source component
CSV Data Source that extends the DataBuffer JavaScript class:

Example

(File component.js)

 sap.designstudio.sdk.DataBuffer.subclass("com.sap.sample.csvdatasource.CsvDataSou
rce", function() {
 ... });

116 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

7.4.1 JavaScript Function Calls

SDK data sources that extend from the DataBuffer JavaScript class share the same Component JavaScript
API as other SDK extension components, which implement or call JavaScript functions like init,
beforeUpdate, afterUpdate, firePropertiesChanged, fireEvent. However, there are a few additional
JavaScript functions that are specific to SDK data sources, which extend from the DataBuffer JavaScript
class. These additional functions are listed in the following sections.

7.4.1.1 Function defineDimensions

Syntax: defineDimensions(aoDimensions, oExternalMeasuresDimension)

You must call this function to set the dimensions of your SDK data source.

The argument aoDimensions contains an array of JSON objects, each JSON object defining a dimension. This
argument is the value of the dimensions JSON property of the Metadata Runtime JSON object (see
“Metadata Runtime JSON” under Runtime Property Values [page 73]).

The optional argument oExternalMeasuresDimension contains a JSON object, defining an external
dimension. This argument is equivalent to the single element of the array externalDimensions, a JSON
property of the Metadata Runtime JSON object (see link above).

The example below shows an extract of the Component JavaScript class of the SDK data source component
CSV Data Source that extends the DataBuffer JavaScript class. It defines a column dimension cols, a row
dimension rows, and an external dimension measures.

The example specifies dimension members directly with the the members JSON property (for the external
dimension measures). The example leaves other dimension members unspecified (for column dimension
cols and row dimension rows); those dimensions' members are created automatically when data is added
with setData later.

Example

(File component.js)

 this.defineDimensions([{
 "key": "cols",
 "text": "Columns",
 "axis": "COLUMNS",
 "axis_index": 0
}, {
 "key": "rows",
 "text": "Rows",
 "axis": "ROWS",
 "axis_index": 0
}], {
 "key": "measures",
 "text": "Measures",
 "containsMeasures": true,
 "members": [{

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 117

 "key": "Measure",
 "text": "Measure",
 }] });

Typically, you call this function in the init function of the Component JavaScript of your SDK data source.

The example below shows an extract of the Component JavaScript class of the SDK data source component
CSV Data Source that extends the DataBuffer JavaScript class:

Example: (File component.js)

 this.init = function() {
 this.defineDimensions(...); };

7.4.1.2 Function setDataCell

Syntax: setDataCell(aCoordinates, value)

Call this function to set the value of a single data cell of your SDK data source.

The argument aCoordinates contains either an array of dimension names (provided that dimension
members were specified in the previous call of defineDimensions) or dimension member indexes. Either
way, the array specifies the coordinates of the data cell.

The argument value contains the new value of the data cell. It is a float number, a string, or null.

If the value is a float number then it is added to the data JSON property (an array) of the Data Runtime JSON.
Then, the value is converted to a string and added to the formattedData JSON property (an array) of the
Data Runtime JSON.

If the value is a string then it is added to the formattedData JSON property (an array) of the Data Runtime
JSON. Then, the SDK framework attempts to convert the value to a float number, which is added to the data
JSON property (an array) of the Data Runtime JSON.

If the value is null then it is added to both the data JSON property (an array) of the Data Runtime JSON and
the formattedData JSON property (an array) of the Data Runtime JSON.

 Caution
When populating your data source with data cells, you must strictly follow this sequence: Set the data cells
left-to-right first, then top-to-bottom. Adding data cells randomly (with respect to their coordinates) may
lead to an unexpected arrangement of data cells.

The example below shows the correct sequence for setting the data cells of an SDK data source, in order to
provide the data of the following result set: The result set has 3 dimensions, with the first dimension
(products) in the rows and the remaining two dimensions (year and City) in the columns, with 2 x 2 x 3
member values:

118 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

2013 2014

Berlin Sydney Tokyo Berlin Sydney Tokyo

Product 1 1 2 3 4 5 6

Product 2 7 8 9 10 11 12

Define the dimensions (in function init) with:

 this.defineDimensions({
 [
 {
 "key": "year",
 "text": "Year",
 "axis": "COLUMNS",
 "axis_index": 0,
 "members": [
 {
 "key": "2013",
 "text": "2013"
 }, {
 "key": "2014",
 "text": "2014"
 }
]
 }, {
 "key": "City",
 "text": "city",
 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true,
 "members": [
 {
 "key": "berlin",
 "text": "Berlin"
 }, {
 "key": "sydney",
 "text": "Sydney"
 }, {
 "key": "tokyo",
 "text": "Tokyo"
 }
]
 }, {
 "key": "products",
 "text": "Products",
 "axis": "ROWS",
 "axis_index": 0,
 "members": [
 {
 "key": "product1",
 "text": "Product 1"
 }, {
 "key": "product2",
 "text": "Product 2"
 }
]
 }
],
 "locale": "en"
});

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 119

Add the data (in method afterUpdate) using dimension members names. Note the particular sequence in
which data are added:

 this.setDataCell(["2013", "berlin", "product1"], 1);
this.setDataCell(["2013", "sydney", "product1"], 2);
this.setDataCell(["2013", "tokyo", "product1"], 3);
this.setDataCell(["2014", "berlin", "product1"], 4);
this.setDataCell(["2014", "sydney", "product1"], 5);
this.setDataCell(["2014", "tokyo", "product1"], 6);
this.setDataCell(["2013", "berlin", "product2"], 7);
this.setDataCell(["2013", "sydney", "product2"], 8);
this.setDataCell(["2013", "tokyo", "product2"], 9);
this.setDataCell(["2014", "berlin", "product2"], 10);
this.setDataCell(["2014", "sydney", "product2"], 11); this.setDataCell(["2014", "tokyo", "product2"], 12);

An alternative way to add the data is using dimension member indexes instead of dimension member names:

 this.setDataCell([0, 0, 0], 1);
this.setDataCell([0, 1, 0], 2);
this.setDataCell([0, 2, 0], 3);
this.setDataCell([1, 0, 0], 4);
this.setDataCell([1, 1, 0], 5);
this.setDataCell([1, 2, 0], 6);
this.setDataCell([0, 0, 1], 7);
this.setDataCell([0, 1, 1], 8);
this.setDataCell([0, 2, 1], 9);
this.setDataCell([1, 0, 1], 10);
this.setDataCell([1, 1, 1], 11); this.setDataCell([1, 2, 1], 12);

 Note
In case, you do not specify dimension members, you can proceed like this:

You defined the dimensions without members, for example, with

 this.defineDimensions({
 [
 {
 "key": "year",
 "text": "Year",
 "axis": "COLUMNS",
 "axis_index": 0
 }, {
 "key": "City",
 "text": "city",
 "axis": "COLUMNS",
 "axis_index": 1,
 "containsMeasures": true
 }, {
 "key": "products",
 "text": "Products",
 "axis": "ROWS",
 "axis_index": 0
 }
],
 "locale": "en"
 });

You can add data using dimension member indexes only (as no dimension member names are available):

 this.setDataCell([0, 0,0], 1);
this.setDataCell([0, 1,0], 2);

120 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

this.setDataCell([0, 2,0], 3);
this.setDataCell([1, 0,0], 4);
this.setDataCell([1, 1,0], 5);
this.setDataCell([1, 2,0], 6);
this.setDataCell([0, 0,1], 7);
this.setDataCell([0, 1,1], 8);
this.setDataCell([0, 2,1], 9);
this.setDataCell([1, 0, 1], 10);
this.setDataCell([1, 1,1], 11); this.setDataCell([1, 2,1], 12);

This is the resulting result set (note the dimension member indexes, which were created automatically):

0 1

0 1 2 0 1 2

0 1 2 3 4 5 6

1 7 8 9 10 11 12

7.4.1.3 Function fillWithArray

Syntax: fillWithArray(aData, bHasHeaderRow, bHasHeaderColumn)

If your SDK data source contains 2-dimensional data (arranged like a spreadsheet), and you defined a single
row and column dimension with defineDimensions you can use this function to initialize the data cells in one
go from an array of data. The necessary dimension members are created automatically.

The argument aData contains the data arranged as a nested 2-dimensional array. For example, an array of 3
columns x 2 rows containing data is expressed as [[1, 2, 3], [4, 5,6]].

The argument bHasHeaderRow indicates whether the data also contains the column header titles. If set to
true then the first array element of the data contains the column header titles. They are used to name the
column dimension members, which are created automatically.

 Note
To work properly, all column header titles must differ from each other, as they serve as dimension member
names of the column dimension.

If set to false the column dimension members, which are created automatically, are named using letters A, B,
C, and so on.

The argument bHasHeaderColumn indicates whether the data also contain the row header titles. If set to true
then the first element of each array element of the data contains a row header title. They are used to name the
row dimension members, which are created automatically.

 Note
To work properly, all row header titles must differ from each other, as they serve as dimension member
names of the row dimension.

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 121

If set to false the row dimension members, which are created automatically, are named using numbers 0, 1, 2,
and so on.

Example

The example below shows the initialization of the data cells of an SDK data source from an array of 3 columns x
3 rows, with the first row containing the column header titles:

 fillWithArray([[1, 2, 3], [4, 5, 6], [7, 8, 9]], false, false);

This is the resulting result set (note the titles of the column and row dimension members, which were
generated automatically):

A B C

1 1 2 3

2 4 5 6

3 7 8 9

Example

The example below shows the initialization of the data cells of an SDK data source from an array of 3 columns x
3 rows with the first row containing the column header titles:

 fillWithArray([["Column1", "Column2", "Column3"], [1, 2, 3], [4, 5, 6]], true,
false);

This is the resulting result set (note the titles of the row dimension members, which were generated
automatically):

Column1 Column2 Column3

3

3

4 5 6

2 1 2 3

122 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

Example

The example below shows the initialization of the data cells of an SDK data source from an array of 3 columns x
3 rows with the first column containing the row header titles:

 fillWithArray([["Row1", 1, 2], ["Row2", 3, 4], ["Row3", 5, 6]], false, true);

This is the resulting result set (note the titles of the row dimension members, which were generated
automatically):

B C

Row1 1 2

Row2 3 4

Row3 5 6

Example

The example below shows the initialization of the data cells of an SDK data source from an array of 3 columns x
3 rows with the first row containing the column header titles and the first column containing the row header
titles:

 fillWithArray([["Column 0", "Column1", "Column2"], ["Row 1", 1, 2], ["Row 2", 3,
4]], true, true);

This is the resulting result set (note that the first element of the first element of the array is ignored):

Column1 Column2

Row 1 1 2

Row 2 3 4

7.4.1.4 Function clear

Syntax: clear(bClearMembers)

Call this function to reset the SDK data source to its initial state. In particular, this function clears all previously
set data information. If the optional argument bClearMembers is true then the member information is also
cleared . This is useful if function setDataCell is used with dimension member names (and not dimension
member indexes) that automatically create dimension members. Note that the JSON property
externalDimensions is never cleared.

Developer Guide: Component SDK
SDK Extensions as Data Sources (Data Source SDK) PUBLIC 123

7.4.1.5 Function fireUpdate

Syntax: fireUpdate(bWillUpdateServer)

Call this function to notify the SDK framework that your SDK data source contains updated data. If the optional
argument bWillUpdateServer is true, then the SDK framework also notifies the server on the back end of
the change. This may lead to back end roundtrips.

 Note
This method is inherited from the DataSource JavaScript class, as SDK data sources extending from the
DataBuffer JavaScript class (which in turn extends from DataSource JavaScript class) also inherit the
methods of DataSource.

7.4.2 Script Contributions

SDK data sources, like other SDK components, may contribute Lumira Designer script methods, which are
defined in their contribution.ztl file. Even if your SDK data source does not contribute any Lumira
Designer script methods, you may find it useful to add an empty Script Contribution file extending from the
DataBuffer JavaScript class but containing no Design Script methods.

The example below shows the empty Script Contribution file of the SDK data source CSV Data Source:

Example

(File contribution.ztl)

 classcom.sap.sample.csvdatasource.CsvDataSource extendsSdkDataBuffer {
 // needed to inherit parent class methods }

This will let your SDK data source automatically inherit the following Lumira Designer script methods (similar
to a normal data source):

 String getDataAsString(Measure measure, MultiDimFilterselection)
DataCell getData(Measure measure, MultiDimFilter selection)
DimensionArray getDimensions(optional AxisEnum axis)
String getDimensionText(Dimension dimension)
Dimension getMeasuresDimension()
MemberArray getMembers(Dimension dimension, intmaxNumber)
void setFilter(Dimension dimension, FilterArray value)
void clearAllFilters()
void clearFilter(Dimension dimension)
String getFilterText(Dimension dimension)

124 PUBLIC
Developer Guide: Component SDK

SDK Extensions as Data Sources (Data Source SDK)

8 Sample Components

In this section, you will find information about the available sample components, in particular the prerequisites,
usage, properties, and Lumira Designer script API methods.

 Note
You can download the sample components under Component SDK Templates and Samples on SAP Help
Portal at http://help.sap.com.

8.1 Colored Box

Sample component that displays a colored rectangle.

This component is an example of a minimal SDK extension component.

How To Proceed

Drag and drop a Colored Box into the editor area.

Properties

Name Type Description

Color Color The color of the Colored Box

On Click Script Text The Lumira Designer script that is exe­
cuted when the user clicks the Colored
Box

Lumira Designer Script API

● void setColor(String newColor)
Sets the color of the Colored Box.

Developer Guide: Component SDK
Sample Components PUBLIC 125

http://help.sap.com

Parameters

Name Type Description

newColor String The new color of the Colored Box. All
CSS-like color values can be used, for
example "red" or "#FF0000".

● String getColor()
Returns a string containing the color of the Colored Box.

8.2 Simple Table

Sample component that displays up to three columns of key figures from a data source in a table.

This component is an example of a data-bound SDK extension component.

Prerequisites

You need a data source, which contains three key figure columns.

How to Proceed

1. Drag and drop a Simple Table into the editor area.
2. Assign a data source to the Data Source property.
3. Assign columns of key figures from the data source to the properties Column1, Column2, and Column3.

When you assign a column of key figures to this Simple Table for the first time, an additional column is
displayed on the left of this column. The additional column contains the dimension member values of the
rows.

 Note
You can also assign rows of key figures from the data source. However, when you mix columns and rows
of key figures, the resulting table may look unexpected.

Properties

Name Type Description

DataSource DataSource The data source of the Simple Table

126 PUBLIC
Developer Guide: Component SDK

Sample Components

Name Type Description

Column 1 ResultCellList The first column of key figures dis­
played in the Simple Table

Column 2 ResultCellList The second column of key figures dis­
played in the Simple Table

Column 3 ResultCellList The third column of key figures dis­
played in the Simple Table

Lumira Designer Script API

● void setColumn1Selection(ResultCellListSelection selection)
Sets the column of key figures to be displayed in the first column of key figures in the Simple Table. When
you set columns of this Simple Table for the first time, an additional column is displayed on the left of this
column. The additional column contains the dimension member values of the rows.

Parameters

Name Type Description

selection ResultCellListSelection A selection that specifies a single col­
umn (or row) of key figures from a
data source

● void setColumn2Selection(ResultCellListSelection selection)
Sets the column of key figures to be displayed in the second column of key figures in the Simple Table.
When you set columns of this Simple Table for the first time, an additional column is displayed on the left of
this column. The additional column contains the dimension member values of the rows.

Parameters

Name Type Description

selection ResultCellListSelection A selection that specifies a single col­
umn (or row) of key figures from a
data source

● void setColumn3Selection(ResultCellListSelection selection)
Sets the column of key figures to be displayed in the third column of key figures in the Simple Table. When
you set columns of this Simple Table for the first time, an additional column is displayed on the left of this
column. This additional column contains the dimension member values of the rows.

Parameters

Name Type Description

selection ResultCellListSelection A selection that specifies a single col­
umn (or row) of key figures from a
data source

Developer Guide: Component SDK
Sample Components PUBLIC 127

8.3 Simple Crosstab

Sample component that display the data of a data source in a crosstab.

This component is an example of a data-bound SDK extension component.

Prerequisites

You need a data source.

How to Proceed

1. Drag and drop a Simple Crosstab into the editor area.
2. Assign a data source to the Data Source property.

Properties

Name Type Description

DataSource DataSource The data source of the Simple Crosstab

Data Selection ResultSet The displayed result set

On Select ScriptText The Lumira Designer script that is exe­
cuted after the user makes a selection
in the Simple Crosstab

Lumira Designer Script API

● void setDataSelection(ResultSetSelection selection)
Sets a data selection for to the Simple Crosstab. This filters the displayed result set so that only the data
selection is displayed.

Parameters

Name Type Description

selection ResultSetSelection A data selection from a data source

● String getVisualSelection()
Returns a string; a specification of the data cells in the Simple Crosstab currently visually selected by the
user.

128 PUBLIC
Developer Guide: Component SDK

Sample Components

● void setVisualSelection(ResultSetSelection selection)
Visually selects data cells in the Simple Crosstab.

Parameters

Name Type Description

selection ResultSetSelection A selection that specifies the visually
selected data cells in the Simple
Crosstab.

● Member getSelectedMember(Dimension dimension)
Returns a member; the visually selected dimension member of the Simple Crosstab. Member is null if the
dimension has no visually selected dimension member.

Parameters

Name Type Description

dimension Dimension The dimension of the selected mem­
ber

8.4 Google Maps

Sample component that displays a Google map.

This component is an example of an SDK extension component, which uses a third party JavaScript API.

Prerequisites

You need a Google API key (learn more about how to obtain a Google API Key on https://
developers.google.com/maps/documentation/javascript/tutorial#api_key)

1. In the file contribution.xml of this SDK component extension, locate the <component> element with
an id of GoogleMaps.

2. Add the Google API key after the keyword key in element <jsInclude>http://
maps.googleapis.com/maps/api/js?key=...
This enables the SDK extension component to use the Google Maps JavaScript API.

How to Proceed

Drag and drop a Google Maps into the editor area.

Developer Guide: Component SDK
Sample Components PUBLIC 129

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdevelopers.google.com%2Fmaps%2Fdocumentation%2Fjavascript%2Ftutorial%23api_key
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdevelopers.google.com%2Fmaps%2Fdocumentation%2Fjavascript%2Ftutorial%23api_key

Properties

Name Type Description

Map Type String The map type. Possible val­
ues:"hybrid", "roadmap",
"satellite", "terrain" (default
setting: "roadmap").

Zoom int The zoom factor. Possible values: 0 and
greater. The value 0 shows the world
map (default setting: 14).

On Zoom ScriptText The Lumira Designer script that is exe­
cuted when the user zooms the Google
map.

Lumira Designer Script API

● void setZoom(int value)
Sets the zoom factor of the Google map.

Parameters

Name Type Description

value int The zoom factor. Possible values: inte­
gers of 0 and greater. The value 0
shows the world map.

● int getZoom()
Returns an integer; the zoom factor of the Google map. Possible values: integers of 0 and greater. The value
0 shows the world map.

8.5 Google Maps with Data

Sample component that displays a Google map overlaid with vertical bar charts at specific geographical
locations. The values and geographical locations of the bar charts are retrieved from a data source.

This component is as an example of an SDK extension component, which uses a third party JavaScript API.

Prerequisites

● You need a data source that contains a dimension with adresses (city names are sufficent) and two key
figures in the columns.

130 PUBLIC
Developer Guide: Component SDK

Sample Components

● You need a Google API key (learn more about how to obtain a Google API Key on https://
developers.google.com/maps/documentation/javascript/tutorial#api_key)

1. In the file contribution.xml of this SDK component extension, locate the <component> element with
an id of GoogleMaps.

2. Add the Google API key after the keyword key in element <jsInclude>http://
maps.googleapis.com/maps/api/js?key=...
This enables the SDK extension component to use the Google Maps JavaScript API to map addresses to
geographical locations on the Google map.

How to Proceed

1. Drag and drop a Google Maps with Data into the editor area.
2. Assign the data source to the Data Source property.
3. Assign the dimension containing the addresses to the Address Dimension property.
4. Assign a column of key figures to the Red Markers property.
5. Optional: assign a column of key figures to the Blue Markers property.
6. Optional: assign values to the Red Scaling Factor and Blue Scaling Factor properties to scale the bar charts.
7. Hide the result row of the data source. Its dimension member - and the corresponding bar charts - cannot

be correctly mapped to a geographical location.

Properties

Name Type Description

DataSource DataSource The data source of the Google Maps
with Data component

Address Dimension String The column dimension of the data
source that contains addresses (city
names are sufficient)

Red Markers ResultCellList A column of key figures from the data
source

Red Scaling Factor int Red marker key figures are divided by
this value before being displayed on the
Google map (default setting: 10000).

Blue Markers ResultCellList A column of key figures from the data
source

Blue Scaling Factor int Blue marker key figures are divided by
this value before being displayed on the
Google map (default setting: 10000).

Developer Guide: Component SDK
Sample Components PUBLIC 131

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdevelopers.google.com%2Fmaps%2Fdocumentation%2Fjavascript%2Ftutorial%23api_key
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdevelopers.google.com%2Fmaps%2Fdocumentation%2Fjavascript%2Ftutorial%23api_key

8.6 Timer

Sample component that executes a Lumira Designer script periodically.

This component is an example of an SDK extension component without visualisation.

How To Proceed

1. In Lumira Designer's Outline view, right-click Technical Components and select Create Timer .
2. Assign a Lumira Designer script to the On Timer property.
3. Assign a time interval in milliseconds to the Interval in Milliseconds property.
4. Start and stop the Timer sing the Timer's start() and stop() Lumira Designer script commands.

Properties

Name Type Description

Interval in Milliseconds int The time interval of the Timer (default setting: 1000)

On Timer ScriptText The Lumira Designer script that is executed periodically,
each time the time interval elapses.

Lumira Designer Script API

● void start()
Starts the Timer. This executes the Lumira Designer script of the On Timer property periodically, each time
the time interval elapses.

● void stop()
Stops the Timer. This stops the Lumira Designer script of the On Timer property.

● boolean isRunning()
Returns true if the Timer has been started or false if the Timer has been stopped.

8.7 Clock

Sample component that displays an animated clock.

This component is an example of an animated SDK extension component.

132 PUBLIC
Developer Guide: Component SDK

Sample Components

How To Proceed

Drag and drop a Clock into the editor area.

Properties

Name Type Description

Railway Clock boolean If set to true, the Clock is displayed as
a railway clock. If set to false, the
clock is displayed as a regular clock
(default setting: false).

8.8 JSONGrabber

Sample component that displays the Metadata Runtime JSON and Data Runtime JSON strings of data-bound
property types. This allows you to examine the format and content of these strings.

Prerequisites

You need a data source.

How To Proceed

1. Drag and drop a JSONGrabber into the editor area.
2. Assign a data source to the Data Source property.
3. Assign an appropriate data selection from the data source to one of the properties Selection Shape 0

(ResultCell), Selection Shape 1 (ResultCellList), Selection Shape 2 (ResultCellSet and ResultSet), or
Selection Shape 3 (ResultCellSet and ResultSet with master data support).

4. Select the property whose JSON strings you want to display in the JSONGrabber with the Show Data-
Bound Property property.

5. Optional: set the PrettyPrint property to true to pretty print the JSON strings.

Developer Guide: Component SDK
Sample Components PUBLIC 133

Properties

Name Type Description

Data Source DataSource The data source of the JSONGrabber

Selection Shape 0 (ResultCell) ResultCell The data-bound property that holds a result set of selection
shape 0 (ResultCell)

Selection Shape 1 (ResultCell­
List)

ResultCellList The data-bound property that holds a result set of selection
shape 1 (ResultCellList)

Selection Shape 2 (ResultCell­
Set and ResultSet)

ResultSet The data-bound property that holds a result set of selection
shape 2 (ResultCellSet and ResultSet)

Selection Shape 3 (ResultCell­
Set and ResultSet with Master
Data support)

ResultSet The data-bound property that holds a result set of selection
shape 3 (ResultCellSet and ResultSet with Master Data support)

Show Data-Bound Property String Displays the selected data-bound property. Possible values:
"SelectionShape0", "SelectionShape1", "SelectionShape2", and
"SelectionShape3" (default setting: "SelectionShape2").

Pretty Print boolean If set to true, the JSON strings are pretty-printed (default set­
ting: false).

8.9 KPI Tile

Sample component that displays a single key figure from a data source in a highly customizable tile-like box.

Prerequisites

You need a data source that contains a key figure.

How To Proceed

1. Drag and drop a KPI Tile into the editor area.
2. Assign a data source to the Data Source property.
3. Assign a key figure from the data source to the Data Value property.
4. Optional: configure other properties of the KPI Tile.

134 PUBLIC
Developer Guide: Component SDK

Sample Components

Properties

Name Type Description

Data Source DataSource The data source of the KPI Tile

Data Value ResultCell The result cell that contains the key figure displayed in the KPI
Tile

Header String The header text (default setting: "Header")

Header Visible boolean If set to true, the header is visible. If set to false,the header is
hidden (default setting: true)

Header CSS Class String The header CSS class

Title Text String The title text (default setting: "Title")

Title CSS Class String The title CSS class

Value Prefix Text String The value prefix text

Value Prefix Position String The value prefix position. Possible values: "superscript", "normal",
"subscript" (default setting: "subscript").

Value Prefix CSS Class String The value prefix CSS class

Value Text String The value text (default setting: "Value")

Value CSS Class String The value CSS class

Value Horizontal Alignment String The value horizontal alignment. Possible values: "left", "right" (de­
fault setting: "left").

Value Decimal Places int The number of decimal places of the displayed value. Possible
values range from 0 to 9 (default setting: 0).

Value Suffix Text String The value suffix text (default setting: "M$")

Value Suffix Position String The value suffix position. Possible values: "superscript", "normal",
"subscript" (default setting: "subscript").

Value Suffix CSS Class String The value suffix CSS class

Footer String The footer text (default setting: "Footer")

Footer CSS Class String The footer CSS class

Footer Horizontal Alignment String The footer horizontal alignment. Possible values: "left", "right"
(default setting: "left").

On Click ScriptText The Lumira Designer script that is executed when the user clicks
the KPI Tile

Lumira Designer Script API

● void setHeaderText(String text)
Sets the header text.

Developer Guide: Component SDK
Sample Components PUBLIC 135

Parameters

Name Type Description

text String The header text

● String getHeaderText()
Returns a string containing the header text.

● void setHeaderVisible(boolean isHeaderVisible)
Shows or hides the header.

Parameters

Name Type Description

isHeaderVisible Boolean If set to true, the header is shown. If
set to false,the header is hidden

● boolean isHeaderVisible()
Returns true if the header is shown or false if the header is hidden.

● void setHeaderCssClass(String cssClass)
Sets the header CSS class.

Parameters

Name Type Description

cssClass String The header CSS class

● String getHeaderCssClass()
Returns a string containing the header CSS class.

● void setTitleText(String text)
Sets the title text.

Parameters

Name Type Description

text String The title text

● String getTitleText()
Returns a string containing the title text.

● void setTitleCssClass(String cssClass)
Sets the title CSS class.

Parameters

Name Type Description

cssClass String The title CSS class

● String getTitleCssClass()
Returns a string containing the title CSS class.

● void setValuePrefixText(String text)
Sets the value prefix text.

136 PUBLIC
Developer Guide: Component SDK

Sample Components

Parameters

Name Type Description

text String The value prefix text

● String getValuePrefixText()
Returns a string containing the value prefix text.

● void setValuePrefixCssClass(String cssClass)
Sets the value prefix CSS class.

Parameters

Name Type Description

cssClass String The value prefix CSS class

● String getValuePrefixCssClass()
Returns a string containing the value prefix CSS class.

● void setValueText(String text)
Sets the value text.

Parameters

Name Type Description

text String The value text

● String getValueText()
Returns a string containing the value text.

● void setValueCssClass(String cssClass)
Sets the value CSS class.

Parameters

Name Type Description

cssClass String The value CSS class

● String getValueCssClass()
Returns a string containing the value CSS class.

● void setValueHAlign(String hAlign)
Sets the value horizontal alignment.

Parameters

Name Type Description

hAlign String The value horizontal alignment. Possi­
ble values: "left", "right".

● String getValueHAlign()
Returns a string containing the value horizontal alignment. Possible values: "left", "right".

● void setValueDecimalPlaces(int decimalPlaces)
Sets the number of decimal places of the value.

Developer Guide: Component SDK
Sample Components PUBLIC 137

Parameters

Name Type Description

decimalPlaces int The number of decimal places of the
value. Valid values are between 0 and
9.

● int getValueDecimalPlaces()
Returns an integer, the number of decimal places of the value. Valid returned values are between 0 and 9.

● void setValueSuffixText(String text)
Sets the value suffix text.

Parameters

Name Type Description

text String The value suffix text

● String getValueSuffixText()
Returns a string containing the value suffix text.

● void setValueSuffixCssClass(String cssClass)
Sets the value suffix CSS class.

Parameters

Name Type Description

cssClass String The value suffix CSS class

● String getValueSuffixCssClass()
Returns a string containing the value suffix CSS class.

● void setFooterText(String text)
Sets the footer text.

Parameters

Name Type Description

text String The footer text

● String getFooterText()
Returns a string containing the footer text.

● void setFooterCssClass(String cssClass)
Sets the footer CSS class.

Parameters

Name Type Description

cssClass String The footer CSS class

● String getFooterCssClass()
Returns a string containing the footer CSS class.

● void setFooterHAlign(String hAlign)
Sets the footer horizontal alignment.

138 PUBLIC
Developer Guide: Component SDK

Sample Components

Parameters

Name Type Description

hAlign String The footer horizontal alignment. Pos­
sible values: "left", "right".

● String getFooterHAlign()
Returns a string containing the footer horizontal alignment. Possible values returned:"left", "right".

● void setDataSelection(ResultCellSelection cellSelection)
Sets the result cell whose value is displayed by the KPI Tile.

Parameters

Name Type Description

cellSelection ResultCellSelection The result cell that contains the value
displayed by the KPI Tile

8.10 Sparkline

Sample component that displays a series of key figures from a data source in a simple line chart.

Prerequisites

You need a data source that contains a series of key figures.

How To Proceed

1. Drag and drop a Sparkline into the editor area.
2. Assign a data source to the Data Source property.
3. Assign a row or column of key figures from the data source to the property Data Series.
4. Optional: configure the visualization of the line chart by modifying the property CSS Style.

Properties

Name Type Description

Data Source DataSource The data source of the Sparkline

Developer Guide: Component SDK
Sample Components PUBLIC 139

Name Type Description

Data Series ResultCellList The result cell list, which represents the
series of key figures displayed by the
Sparkline

CSS Style String The CSS style used to configure the vis­
ualization of the line chart (default set­
ting:
"stroke:steelblue;stroke-
width:1;fill:none;")

On Click Script Text The Lumira Designer script, which is
executed when the user clicks the
Sparkline

8.11 Exception Icon

Sample component that displays an icon, whose image changes depending on the value of a key figure cell
from a data source. You can use this component to create a traffic-light status icon with three different states:
green, yellow, and red.

Prerequisites

You need a data source that contains a key figure.

How To Proceed

1. Drag and drop an Exception Icon into the editor area.
2. Assign a data source to the Data Source property.
3. Assign a key figure from the data source to the property Data Value.
4. Assign an image to each of these properties: Icon Green, Icon Yellow, and Icon Red.
5. Assign decreasing threshold values to each of the properties Value Icon Green, Value Icon Yellow, and Value

Icon Red.

Properties

Name Type Description

Data Source DataSource The data source of the Exception Icon

140 PUBLIC
Developer Guide: Component SDK

Sample Components

Name Type Description

Data Value ResultCell The result cell, which contains the key
figure for selecting the Exception Icon's
image.

Icon Green Url The URL of the image (16 x 16 pixels)
for the green icon. It is either a fully
qualified URL or a local file path. The
root of the local file path is the folder of
the analysis application.

Icon Yellow Url The URL of the image (16 x 16 pixels)
for the yellow icon. It is either a fully
qualified URL or a local file path. The
root of the local file path is the folder of
the analysis application.

Icon Red Url The URL of the image (16 x 16 pixels)
for the red icon. It is either a fully quali­
fied URL or a local file path. The root of
the local file path is the folder of the
analysis application.

Value Icon Green float The lower threshold value for the green
icon. It must be the largest of the three
threshold values, in order to work cor­
rectly.

Value Icon Yellow float The lower threshold value for the yellow
icon. It must lie between the other two
threshold values, in order to work cor­
rectly.

Value Icon Red float The lower threshold value for the red
icon. It must be the smallest of the
three threshold values, in order to work
correctly.

Exact Match boolean If set to true, the appropriate icon im­
age is displayed - provided that the cor­
responding, rounded threshold value
matches the key figure value exactly
(default setting: false).

On Click ScriptText The Lumira Designer script, which is
executed when the user clicks the
Exception Icon

8.12 Audio

Sample component that plays an audio file.

Developer Guide: Component SDK
Sample Components PUBLIC 141

How To Proceed

1. Drag and drop an Audio into the editor area.
2. Play an audio file using the Audio's play() Lumira Designer script command.

Lumira Designer Script API

● void play(String audioUrl)
Plays the audio file located at the URL.

Parameters

Name Type Description

audioUrl Url The audio file URL. It is either a fully
qualified URL or a local file path. The
root of the local file path is the folder
of the analysis application.

 Note
Audio uses HTML5 to play audio.
Not all browsers fully support
HTML5. For best results, use Goo­
gle Chrome.

8.13 Video

Sample component that plays a video file.

How To Proceed

1. Drag and drop a Video into the editor area.
2. Play a video file using the Video's play() Lumira Designer script command.

Lumira Designer Script API

void play(String videoUrl)

Plays the video file located at the URL.

142 PUBLIC
Developer Guide: Component SDK

Sample Components

Parameters

Name Type Description

videoUrl Url The video file URL. It is either a fully
qualified URL or a local file path. The
root of the local file path is the folder of
the analysis application.

 Note
Video uses HTML5 to play the
video. Not all browsers fully sup­
port HTML5 completely. For best
results, use Google Chrome.

8.14 ApplicationHeader

Sample component that provides an SAP UI5 ApplicationHeader control as an SDK component.

For more information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/ApplicationHeader.html.

 Note
This sample component is only available in applications created from a template based on SAPUI5 (not
SAPUI5 m).

Properties

Name Type Description

Display Logoff boolean If set to true, the logoff area is displayed on the right of the ap­
plication header. If set to false, the logoff area is not displayed.

Display Welcome boolean If set to true, the welcome text is displayed. If set to false, the
welcome text is not displayed. (default setting: true)

User Name String The user name that is displayed beside the welcome text

Logo Source Url The URI to the logo icon that is displayed in the application
header

Logo Text String The text that is displayed beside the logo in the application
header

On Logoff ScriptText The Lumira Designer script that is executed when the user logs
off from the application

Developer Guide: Component SDK
Sample Components PUBLIC 143

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ApplicationHeader.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ApplicationHeader.html

Lumira Designer Script API

● void setUserName(String userName)
Sets the user name that is displayed beside the welcome text.

Parameters

Name Type Description

userName String The user name

● String getHeaderText()
Returns a string containing the user name that is displayed beside the welcome text.

● void setLogoText(String logoText)
Sets the text that is displayed beside the logo in the application header.

Parameters

Name Type Description

logoText String The logo text

● String getLogoText()
Returns a string containing the text that is displayed beside the logo in the application header.

8.15 ColorPicker

Sample component that provides an SAP UI5 ColorPicker control as an SDK component.

For more information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/ColorPicker.html.

 Note
This sample component is only available in applications created from a template based on SAPUI5 (not
SAPUI5 m).

Properties

Name Type Description

Color Color Picked color (default setting: red)

On Color Change ScriptText The Lumira Designer script that is executed when the user clicks
the ColorPicker

144 PUBLIC
Developer Guide: Component SDK

Sample Components

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ColorPicker.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ColorPicker.html

Lumira Designer Script API

● void setColor(String colorString)
Sets the picked color.

Parameters

Name Type Description

colorString String The color string. It can be a hexadeci­
mal string (for example "#FF0000"),
an RGB string ("rgb(255,0,0)"), an
HSV string ("hsv(360,100,100)"), or a
CSS color name ("red").

● String getColor()
Returns a string containing the picked color.

8.16 FormattedTextView

Sample component that provides an SAP UI5 FormattedTextView control as an SDK component.

For more information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/FormattedTextView.html.

 Note
A similar component is available as a basic component in the design tool. For more information, see the
“User Interface Reference” in the Application Designer Guide: Designing Analysis Applications under Help

Help Contents in the design tool.

Properties

Name Type Description

HTML Text String HTML text

Lumira Designer Script API

● void setHtmlText(String htmlText)
Sets the HTML text.

Developer Guide: Component SDK
Sample Components PUBLIC 145

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/FormattedTextView.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/FormattedTextView.html

Parameters

Name Type Description

htmlText String HTML text

● String getHtmlText()
Returns a string containing the HTML text.

8.17 Paginator

Sample component that provides an SAP UI5 Paginator control as an SDK component.

For more information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/Paginator.html.

 Note
This sample component is only available in applications created from a template based on SAPUI5 (not
SAPUI5 m).

Properties

Name Type Description

Current Page int The current page number

Number of Pages int The total number of pages that are embedded into the parent
control (default setting: 3)

On Page Change ScriptText The Lumira Designer script that is executed when the user navi­
gates to another page by selecting it directly, or by jumping for­
ward or backward

Lumira Designer Script API

● void setCurrentPage(int currentPage)
Sets the current page number.

Parameters

Name Type Description

currentPage int The current page number

● String getHtmlText()
Returns an integer containing the current page number.

146 PUBLIC
Developer Guide: Component SDK

Sample Components

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/Paginator.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/Paginator.html

● void setNumberOfPages(int numberOfPages)
Sets the total number of pages embedded into the parent control.

Parameters

Name Type Description

numberOfPages int Total number of pages

● int getNumberOfPages()
Returns an integer containing the total number of pages that are embedded into the parent control.

8.18 ProgressIndicator

Sample component that provides an SAP UI5 ProgressIndicator control as an SDK component. For more
information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/
ProgressIndicator.html

Properties

Name Type Description

Bar Color String
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

The color of the bar; one of the following values: CRITICAL,
NEGATIVE, NEUTRAL, POSITIVE (default setting: NEUTRAL

State String
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

The state (color) of the bar. Possible values are: "None",
"Success", "Warning", "Error" (default setting:
"None"

Display Value String The text value displayed in the bar.

Enabled boolean If set to true, the progress indicator is enabled. If set to false, the
progress bar is disabled.

Percent Value int The numerical value for the displayed length of the progress bar.

Show Value boolean If set to true, the value is shown inside the bar. If set to false, the
value is not shown (default setting: true).

Developer Guide: Component SDK
Sample Components PUBLIC 147

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ProgressIndicator.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/ProgressIndicator.html

Lumira Designer Script API

● void setPercentValue(int percentValue)
Sets the percentage value of the progress bar.

Parameters

Name Type Description

percentValue int The percent value

● int getPercentValue()
Returns an integer containing the percentage value of the progress bar.

● void setDisplayValue(String displayValue)
Sets the text value displayed in the bar.

Parameters

Name Type Description

displayValue String The display value

● String getDisplayValue()
Returns a string containing the display value.

8.19 RatingIndicator

Sample component that provides an SAP UI5 RatingIndicator control as an SDK component.

For more information, seehttps://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/RatingIndicator.html.

Properties

Name Type Description

Editable boolean
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

If set to true, the rating indicator is enabled. If set to false,
the rating indicator is disabled. The value true is required for
changes on the rating symbols (default setting:true).

148 PUBLIC
Developer Guide: Component SDK

Sample Components

https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/RatingIndicator.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/RatingIndicator.html

Name Type Description

Icon Hovered Url The URI to the image that is displayed when the mouse hovers
over a rating symbol. If this is used, then all custom icons must
have the same size. Note that when this attribute is set, the other
icon attributes also need to be set.

Icon Selected Url The URI to the image which shall be displayed for all selected rat­
ing symbols. If this is used, then all custom icons must have the
same size. Note that when this attribute is set, the other icon at­
tributes also need to be set.

Icon Unselected Url The URI to the image which shall be displayed for all unselected
rating symbols. If this is used, then all custom icons must have
the same size. Note that when this attribute is set, the other icon
attributes also need to be set.

Max Value int The number of displayed rating symbols (default setting: 5)

Value float The number of displayed rating symbols.

On Change ScriptText The Design Studo script that is executed when the user selects a
rating.

Lumira Designer Script API

● void setValue(float value)
Sets a rating value.

Parameters

Name Type Description

value float The rating value

● float getValue()
Returns a float containing the rating value.

8.20 Rich Text Editor

Sample component that provides an SAP UI5 m RichTextEditor control as an SDK component. For more
information see https://wiki.wdf.sap.corp/wiki/display/zen/Design+Studio+SDK
+Documentation#DesignStudioSDKDocumentation-RichTextEditor .

Developer Guide: Component SDK
Sample Components PUBLIC 149

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.wdf.sap.corp%2Fwiki%2Fdisplay%2Fzen%2FDesign%2BStudio%2BSDK%2BDocumentation%23DesignStudioSDKDocumentation-RichTextEditor
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.wdf.sap.corp%2Fwiki%2Fdisplay%2Fzen%2FDesign%2BStudio%2BSDK%2BDocumentation%23DesignStudioSDKDocumentation-RichTextEditor

Properties

Name Type Description

HTML Text String The HTML content. Ensure content is well formed if tags are in­
cluded.

Wrapped Boolean If set to true, the text in the editor will be wrapped.

Editable Boolean If set to true, the menus in the editor will be set to enabled.

Lumira Designer Script API

● void setHtmlText(String htmlText)
Set HTML content. Can be a plain string or HTML content with Tags. Please ensure content is well formed
and can be rendered by the target component (Example FeedListComponent).

Parameters

Name Type Description

htmlText String The editor content

● String getHtmlText()
Returns a string containing HTML content. May not match content in the DOM as the editor may do some
transformations.

● void setEditable(boolean editable)
Enable menus in the Rich Text Editor. Calls to ZTL method setHtmlText(String) will be accepted even if the
control is not editable.

Parameters

Name Type Description

editable Boolean Enable editor menus

● boolean isEditable()
Returns a boolean indicating the editors current state.

 Note
When working with the RichTextEditor sample, you should be aware that it is configured to output an
unrestricted set of tags. Some components, such as the Feed List component only supports a subset of
tags. All of these transformations happen on the client side in JavaScript. It is recommended that the editor
output is compatible with the intended input control. If the editor output is not compatible with the input
control, there may be some situations where the API method getHtmlText() will return content that is
not in agreement with the actual content in the editor. This happens because the server state is updated by
ZTL script. Once the state is changed, the client receives a delta, and may or may not transform that input.
In this scenario, the server will not be in agreement with the client HTML content. A simple DOM inspection
in the browser will confirm this. To avoid incompatibility issues, take the following steps:

150 PUBLIC
Developer Guide: Component SDK

Sample Components

● Ensure the HTML content set using the API is well formed. Do not allow the Caja HTML sanitizer built
into TinyMCE to change your input, by making sure your HTML is well formed.

● Ensure that the HTML content contains tags that can be consumed by the components that accept a
restricted set of HTML tags. For the list of supported tags, you can refer to https://
openui5.hana.ondemand.com/#/api/sap.m.FormattedText.

8.21 Slider

Sample component that provides an SAP UI5 Slider control as an SDK component.

For more information, see https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/
demokit/Slider.html.

Properties

Name Type Description

Min float The minimum value of the Slider (default setting: 0)

Max float The maximum value of the Slider (default setting: 100)

Value float The current value of the Slider (default setting: 0)

TotalUnits int
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

The number of units that are displayed by ticks (default setting:
10)

Vertical boolean
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

If set to true, the Slider is oriented vertically. If set to false,
the Slider is oriented horizontally (default setting: false).

SmallStepWidth float
 Note
This property is only available in analysis applications cre­
ated from a template based on SAPUI5 (not SAPUI5m).

The grip can only be moved in steps of this width (default setting:
10) .

Developer Guide: Component SDK
Sample Components PUBLIC 151

https://openui5.hana.ondemand.com/#/api/sap.m.FormattedText
https://openui5.hana.ondemand.com/#/api/sap.m.FormattedText
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/Slider.html
https://sapui5.hana.ondemand.com/sdk/#test-resources/sap/ui/commons/demokit/Slider.html

Name Type Description

On Change ScriptText The Lumira Designer script that is executed when the user has
changed the position of the grip.

Lumira Designer Script API

● void setMin(float min)
Sets the minimum value.

Parameters

Name Type Description

min float Minimum value

● float getMin()
Returns a float containing the minimum value.

● void setMax(float max)
Sets the maximum value.

Parameters

Name Type Description

max float Maximum value

● float getMax()
Returns a float containing the maximum value.

● void setValue(float value)
Sets the value.

Parameters

Name Type Description

totalUnits int Total units value

● float getValue()
Returns a float containing the value.

8.22 ConstantDataSource

Sample component that acts as a data source providing constant data.

This component is an example of an SDK data source extension component. It is based on the DataSource
JavaScript class, which is provided by the SDK framework.

152 PUBLIC
Developer Guide: Component SDK

Sample Components

How to Proceed

1. In the Outline view, right-click the Data Sources icon.

2. Choose Add Custom Data Source Constant Data Source .
3. Drag and drop a Simple Crosstab into the editor area.
4. Assign the new data source to the Data Source property of the Simple Crosstab.

Properties

Name Type Description

On Result Set Changed ScriptText The Lumira Designer script that is executed after the result set
has been changed.

Selection Strings

SDK components with data-bound properties can reference data values of a data source with a selection string.
A selection string can contain zero, one or multiple dimension-member pairs.

For a ConstantDataSource SDK data source, selection strings are not honored; data-bound properties
referencing the SDK data source are always assigned the full result set.

8.23 CSVDataSource

Sample component that acts as a data source providing data from a CSV file.

This component is an example of an SDK data source extension component. It is based on the DataBuffer
JavaScript class, which is provided by the SDK framework.

Prerequisites

● You need a CSV file (a file containing one or more rows with each row containing comma-separated
values).

Developer Guide: Component SDK
Sample Components PUBLIC 153

How to Proceed

1. Create a new analysis application.

2. Choose Application Open Repository Folder .
3. Place your CSV file into this folder.
4. In the Outline view, right-click the Data Sources icon.

5. Choose Add Custom Data Source CSV Data Source .
6. In the Properties view of the added data source, enter the name of your CSV file.
7. Drag and drop a Simple Crosstab into the editor area.
8. Assign the new data source to the Data Source property of the Simple Crosstab.

Properties

Name Type Description

CSV File Url The URL of the CSV file. It is either a fully qualified URL or a local
file path. The root of the local file path is the folder of the analysis
application.

Has Header Row boolean If set to true, the first line of the CSV file contains the column
header titles (default setting: false).

Has Header Column boolean If set to true, the first element of each line of the CSV file con­
tains the row header titles (default setting: false).

On Result Set Changed ScriptText The Lumira Designer script that is executed after the result set
has been changed.

Selection Strings

SDK components with data bound properties can reference data values of a data source with a selection string.
A selection string can contain zero, one, or multiple dimension-member pairs.

For a CSVDataSource SDK data source, the dimension part of the dimension-member pair is "cols" to
reference a column or "rows" to reference a row. The member part of the dimension-member pair, the
member name, depends on whether the member is already contained in the CSV data:

● For column references: If the property Has Header Row is false, then the column member names are not
part of the CSV data. Use member names "A", "B", "C", ... (like in Microsoft Excel) to reference the first,
second, third, ... columns. If the property Has Header Row is true, then the column member names are part
of the CSV data. Use the relevant values in the first line of the CSV data to reference the required columns.

● For row references: If the property Has Header Column is false, then the row member names are not part of
the CSV data. Use member names "1", "2", "3", ... (like in Microsoft Excel) to reference the first, second,
third, ... row. If the property Has Header Column is true, then the row member names are part of the CSV
data. Use the relevant values in the first column of the CSV data to reference the required rows.

154 PUBLIC
Developer Guide: Component SDK

Sample Components

Example

You have assigned a CSVDataSource SDK data source to a Simple Table SDK component. To display the first
column of the CSV data in the Simple Table SDK component, set the Column 1 property of the Simple Table
SDK component to {"cols":"A"} and the Has Header Row property of the CSVDataSource SDK data source
to false.

Example

You have assigned a CSVDataSource SDK data source to a Simple Table SDK component. To display the second
row of the CSV data in the Simple Table component, set the Column 1 property of the Simple Table component
to {"rows":"2"} and the Has Header Row property of the CSVDataSource SDK data source to false.

Example

The Simple Table SDK component has data-bound properties of type ResultCellList, each referencing a
single row or column. A data-bound property of type ResultCellSet is able to reference, for example,
multiple columns or rows. To reference the second and third column of the CSV data for such a data-bound
property, for example, you can use the selection string {"cols":["B", "C"]}.

8.24 ScalingDataSource

Sample component that acts like a data source, whose data can be scaled at runtime.

This component is an example of an SDK data source extension component. It is based on the DataBuffer
JavaScript class, which is provided by the SDK framework.

Prerequisites

● You need SAP Lumira Designer 1.5 (or higher)..
● You need a data source to be scaled.

How to Proceed

1. Create a new analysis application.

Developer Guide: Component SDK
Sample Components PUBLIC 155

2. Add a data source as DS_1 to the application.
3. Drag and drop a Chart to the analysis application.
4. In the Outline view, right-click the Data Sources icon.

5. Choose Add Custom Data Source Scaling Data Source .
6. In the Properties view of the Scaling Data Source, click the Binding icon of the Data property.

This automatically binds the data source DS_1 to this property.
The entire result set of data source DS_1 is used as a source for scaling data cells.

7. In the Properties view of the Scaling Data Source, click the Binding icon of the Data Range to Scale property.
This automatically binds the data source DS_1 to this property.
The entire result set of data source DS_1 is to be scaled.

8. Assign the Scaling Data Source as DS_2 to the Chart.
9. Drag and drop a Button to the analysis application.
10. Add the following script to the On Click event of the Button:

DS_2.setScalingFactor(5);

11. Save and execute the analysis application.
12. Click the Button.

The values in the chart are multiplied by a factor of 5.

Properties

Name Type Description

Data ResultCellSet Source result set

Data Range to Scale ResultCellSet Selection of data cells of the source result set to be scaled by the
scaling factor

Scaling Factor float Factor to scale data cells of the source result set

Lumira Designer Script API

void setScalingFactor(float factor)

Sets the factor to scale data from the source result set.

Parameters

Name Type Description

factor float The scaling factor

156 PUBLIC
Developer Guide: Component SDK

Sample Components

8.25 SAPUI5 List

Sample component that displays a SAPUI5 List component.

 Note
This component is only visible in analysis applications that use the SAPUI5 m library.

It demonstrates how to use the Array and Object property type.

How to Proceed

1. Drag and drop a SAPUI5 List into the editor area.
2. In the Properties view of the SAPUI5 List, click the Items property, and add items.

Properties

Name Type Description

Items Array An array of items, each consisting of a text, a key, and an image
URL

Developer Guide: Component SDK
Sample Components PUBLIC 157

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

158 PUBLIC
Developer Guide: Component SDK

Important Disclaimers and Legal Information

Developer Guide: Component SDK
Important Disclaimers and Legal Information PUBLIC 159

www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Developer Guide: Component SDK
	Content
	1 About This Guide
	1.1 Who Should Read This Guide?
	1.2 What is the Component SDK?

	2 Introduction to SDK Concepts
	2.1 SDK Extensions
	2.2 Client-Server Architecture
	2.3 Restrictions

	3 Creating an SDK Extension
	3.1 Getting Started
	3.1.1 Prerequisites
	3.1.2 Extracting the Component SDK Samples and Templates ZIP File
	3.1.3 Installing the Eclipse IDE
	3.1.4 Registering the Component SDK XML Schema Definition
	3.1.5 Importing a Sample SDK Extension
	3.1.6 Setting the Target Platform
	3.1.7 Testing a Sample SDK Extension

	3.2 Creating a New SDK Extension
	3.3 Adding an SDK Extension to an SAP Lumira Designer Installation
	3.3.1 Configuring the SDK Extension Plug-In
	3.3.2 Creating a Feature Project
	3.3.3 Creating a Category
	3.3.4 Creating a Deployable Feature
	3.3.5 Installing Component SDK Extensions to SAP Lumira Designer

	3.4 Removing Extensions from SAP Lumira Designer
	3.5 Updating SDK Extensions of an SAP Lumira Designer Installation

	4 SDK Extensions
	4.1 Contribution XML
	4.1.1 Elements of the Contribution XML File

	4.2 Component JavaScript
	4.2.1 Loading Resources in a Specific Order
	4.2.1.1 Loading JavaScript Files as Resources
	4.2.1.2 Loading CSS Files as Resources
	4.2.1.3 Loading Standard JavaScript Frameworks as Resources

	4.2.2 Creating the HTML of the Extension Component
	4.2.2.1 JavaScript Function Calls
	4.2.2.2 Events
	4.2.2.3 Roundtrip Optimization

	4.3 Script Contributions
	4.4 Additional Properties Sheet
	4.4.1 HTML
	4.4.2 JavaScript
	4.4.2.1 Additional Properties Sheet Lifecycle
	4.4.2.2 JavaScript Functions for the Additional Properties Sheet
	4.4.2.3 Getting and Setting Extension Component Properties

	4.5 Exporting an SDK Extension Component

	5 SDK Extensions and Data Binding
	5.1 Prerequisites
	5.2 Result Set Terminology
	5.3 Data-Bound Properties
	5.3.1 Design Time Property Values
	5.3.2 Runtime Property Values
	5.3.3 Cell Selection
	5.3.4 Column or Row Selection
	5.3.5 Columns and Row Selection (Multiple Columns or Rows)
	5.3.6 Columns and Row Selection ("Checkerboard")
	5.3.7 Result Set Selection
	5.3.8 Master Data

	5.4 Sample Implementation
	5.4.1 Configuring the Simple Table
	5.4.2 Data Binding in the Simple Table
	5.4.2.1 Contribution XML
	5.4.2.2 Component JavaScript

	5.5 Select Data Dialog Box

	6 SDK Extensions Using SAPUI5 Controls
	6.1 Contribution XML
	6.2 Component JavaScript
	6.2.1 JavaScript Function Calls
	6.2.2 JavaScript Tips

	6.3 Events

	7 SDK Extensions as Data Sources (Data Source SDK)
	7.1 Using SDK Data Sources in SAP Lumira Designer
	7.2 Implementing an SDK Data Source
	7.3 Option 1: Extending the DataSource JavaScript class
	7.3.1 JavaScript Function Calls
	7.3.2 Script Contributions

	7.4 Option 2: Extending the DataBuffer JavaScript Class
	7.4.1 JavaScript Function Calls
	7.4.1.1 Function defineDimensions
	7.4.1.2 Function setDataCell
	7.4.1.3 Function fillWithArray
	7.4.1.4 Function clear
	7.4.1.5 Function fireUpdate

	7.4.2 Script Contributions

	8 Sample Components
	8.1 Colored Box
	8.2 Simple Table
	8.3 Simple Crosstab
	8.4 Google Maps
	8.5 Google Maps with Data
	8.6 Timer
	8.7 Clock
	8.8 JSONGrabber
	8.9 KPI Tile
	8.10 Sparkline
	8.11 Exception Icon
	8.12 Audio
	8.13 Video
	8.14 ApplicationHeader
	8.15 ColorPicker
	8.16 FormattedTextView
	8.17 Paginator
	8.18 ProgressIndicator
	8.19 RatingIndicator
	8.20 Rich Text Editor
	8.21 Slider
	8.22 ConstantDataSource
	8.23 CSVDataSource
	8.24 ScalingDataSource
	8.25 SAPUI5 List

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

