© 2023 SAP SE or an SAP affiliate company. All rights reserved.

PUBLIC
SAP Data Intelligence
2023-06-24

Modeling Guide

THE BEST RUN

Content

21
2.2

31
3.2
3.3
34

35
36
37
3.8
39
3.10

311
312
313
314

3.15

41
4.2
4.3
44
45

2

Modeling Guide for SAP Datalntelligence. i e 7
Introduction to the SAP Data Intelligence Modeler.t nnns 8
Log onto SAP Data Intelligence Modeler. 10
Description of the Modeler Main Screen. 10
UsingOperators.iiit it ittt e e sa s ananaasasanannnsnasaneannnsnsnns 14
Operator Details.o 15
Generationland Generation 2 Operators. 21
Customizing the Listof Operators. 21
Ports and Port Types. o 22
Compatible Port Types. 25
Table Messages. 27
Data Typesin Operator Ports. 32
Adding Portsto Operators. 33
Using Managed Connections in Script Operators. 34
Creating Operators. 36
Configuring Operators. 40
Creating Categories. 41
Creating Operator GroUpS. oo 41
Viewing Operator Versions. 43
Replacing Deprecated Operators. 44
Editing Operator Versions. 44
Creating Operator Versions. 45
Editing Operators. 45
Error Handling in Generation 2 Operators. 46
Batch Header. 47
State Management. 48
Examples: Operator States. 50
Dockerfile Library for Runtime Environment. 55
Using Graphs (Pipelines).o i it i it e st e e man s 56
Creating Graphs. 57
Error Recovery with Generation 2 (Gen2) Pipelines. 59
Graph Snapshots and Operator States. 61
Delivery Guarantee for Generation 2 (Gen2) Graphs. 66
Validate Graphs. 69
Graph Validation Warnings and Errors. 70
Modeling Guide

PUBLIC Content

46

47

4.8

4.9
4.10
411

412

51
52
53

6.1
6.2
6.3
64

71
7.2
73

81
8.2
83
84
85
86

RUNNING Graphs. 72
Automatic Graph Recovery. 74
Parameterize the Graph Run Process 78
Debug Graphs. 82
Schedule Graph Executions. 84

Maintain Resource Requirements for Graphs. 87
Resource Requirements foraGraphin JSON. 88
Configure Resources foraGraph. 90

Create Data Typesin Graph. 91
Use Data Typesin Graph. 92
Exporting and Importing Graphs with Data Types. 93

Groups, Tags, and Dockerfiles. e 94

Execution Model. 99

Monitoring Graphs 100
Monitor the Graph Execution Status. 101
Activate Trace Messages. 108
Downloading Diagnostic Information for Graphs. 109

Native Multiplexing for Gen2 Pipelines. 115
MURtIplEXING SCENANIOS. . . . o . o 117

Using Git Terminal.ttt it et anaasasanannaasanananns 120

Git Credential Handling Using Standard Git Credential Helper. 121

Create a Local Git Repository. 122

Clone aRemote Git Repository. 123

UsingScenarioTemplates. it i i ittt e tasaanannannns 125

ABAP with Data Lakes. 125

Data Processing with Scripting Languages. 126

ETLfrom Database. 128

Loading Data from Data Lake to Database (SAP HANA). 128

Using Graph Snippets. i i i i i it e s e e snsananannnannnn 130

Importing Graph Snippets. 130

Creating Graph Snippets. 131

Editing Graph Snippets. 132

Working with the Data WorkflowOperators. i iiiianannn 133

Workflow Trigger and Workflow Terminator. 136

Runan SAP BW Process Chain Operator. 137

Runa HANA Flowgraph Operator. 139

Runan SAP Data Intelligence Pipeline. 141

Runan SAP Data Services Job. 143

Transfer Data. 146

Modeling Guide

Content

PUBLIC 3

87
88

9.2

9.3

94
9.5

10

11
111

11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10
11.11

12
12.1
12.2

13

4

Transfer Data from SAPBW to Cloud Storage. 146

Transfer Data from SAP HANA to Cloud Storage. 153
Control Flow of Execution. 156
Send E-Mail Notifications. 157
Working with Structured DataOperators. i 159
Data Transform. 159

Configure the Projection Node. 161

Configurethe Join Node. 163

Configure the Aggregation Node. 167

Configurethe Union Node. 169

Configurethe Case Node. 170
Structured Consumer Operators. 171

SAP Application Consumer. 171

Structured File Consumer. 172

Structured SQL CONSUMEL.o o 174
Structured Producer Operators. 175

SAP Application Producer. 175

Structured File Producer. 176

Structured Table Producer. 177
Custom Editor. 178
Resiliency with Structured Data Operators. 179
Operator Metrics.ttt it i it e e ensasasanansasanannnnnnnns 181
ReplicatingData. i i i i ittt e s 182
Create a Replication Flow. 183

Create Tasks. . . . o 187
Validate the Replication Flow. 193
Deploy the Replication Flow. 193
Runthe Replication Flow. 194
Cloud Storage Target Structure. 195
Kafkaas Target 198
ABAP Cluster Table Replications with Deltaload. 199
Edit an Existing Replication Flow. 200
Undeploy aReplication Flow. 200
Delete aReplication Flow. 202
Clean Up Source Artifacts. o 202
Monitoring SAP Datalntelligence it i i i it e et 204
Login to SAP Data Intelligence Monitoring. 205
Using the Monitoring Application. 205
Integrating SAP Cloud Applications with SAP Data Intelligence. 213

Modeling Guide
PUBLIC Content

14 Service-SpecificInformation. i e e
141 Alibaba Cloud Object Storage Service (OSS).
142 Amazon Simple Storage Service (AWS S3).o
14.3 Google Cloud Storage (GCS).
144 Hadoop Distributed File System (HDFS).
145 Microsoft Azure Data Lake (ADL).
146 Microsoft Azure Blob Storage (WASB).
147 Local File System (/file). o
14.8 WebHDFS. . . .
15 ChangingDataCapture (CDC).t ittt it e et s e e a s mmanaannnnnns
16 SUBENGINES. . . it it i e i a e e e e
16.1 Working with the C++ Subengine to Create Operators.
Getting Started with the C++ Subengine.
Creatingan Operator.
Loggingand Error Handling.
Port Data.
Setting Values for Configuration Properties.
Process Handlers.
APIReference.
16.2 Create Operators with the Python Subengine.
Normal Usage. o e
Advanced Usage.
16.3 Working with the Node.js Subengine to Create Operators.
Node.js Operators and Operating System Processes.
Use Cases for the Node.js Subengine.
The Node.js Subengine SDK.
Node.js Data Types.
Node.js Safe and Unsafe Integer Data Types.
CreateaNode.jsOperator.
Node.js Project Structure.
Node.js Project Filesand Resources.
Node.js Subengine Logging.
16.4 Working with Flowagent Subengine to Connectto Databases.
17 Creating Dockerfiles.ttt it it eteseasasanannasananannns
171 Dockerfile Inheritance.
17.2 Referencing Parent Docker Images.
18 Creating Configuration Types.ot i it i i i s s sa s anann s
19 Securityand DataProtection. i i s

Modeling Guide
Content PUBLIC

20 Using Data Types. . . . - ot i it i it ittt e st s s s s a s a s aan s an s anannnnnnns 302
20.1 CreatingGlobal Data Types. 303
20.2 CreatingLocal Data Types. 305

Modeling Guide
6 PUBLIC Content

1 Modeling Guide for SAP Data Intelligence

The Modeling Guide contains information about using the SAP Data Intelligence Modeler.

The SAP Data Intelligence Modeler helps create data processing graphs and provides a runtime and design-
time environment for data-driven scenarios. The tool reuses existing coding and libraries to orchestrate data
processing in distributed landscapes.

The following tasks require some expertise and programming skills:

¢ Creating operators

* Creating types

¢ Creating Dockerfiles

* Working with the subengines in the SAP Data Intelligence Modeler

If you're new to these tasks, or to modeling, we recommend that you start your learning journey by creating
graphs with only the built-in (predefined) operators that the modeler provides.

Related Information

Introduction to the SAP Data Intelligence Modeler [page 8]

Modeling Guide
Modeling Guide for SAP Data Intelligence PUBLIC

2 Introduction to the SAP Data Intelligence
Modeler

The SAP Data Intelligence Modeler application is based on the Pipeline Engine, which uses a flow-based
programming model to run graphs that process your data.

Data Ingestion and Transformation

The Modeler offers advanced data ingestion and transformation capabilities using computation graphs. In
computation graphs, nodes represent operations on the data and edges represent the data flow. The following
are common use cases for data ingestion and transformation in the Modeler:
* Ingest data from source systems like the following:
¢ Database systems, such as SAP HANA.
* Message queues, such as Apache Kafka.

¢ Data storage systems, such as Hadoop Distributed File System (HDFS) or Amazon Simple Storage
Service (Amazon S3).

* (Cleanse data.
¢ Transform data to target schemas.
¢ Store datain target systems for consumption, archiving, or analysis.

* Replicate large datasets.

Modeler Graphical Capabilities

Use the graphical capabilities of the Modeler to create graphs, and use the runtime component to run graphs
in a containerized environment that runs on Kubernetes. Construct graphs in the Modeler using predefined
operators, which provide for many productive business use cases. These operators help define graphs,
including nonterminating, nonconnected, or cyclic graphs.

o Example
A simple interaction with Apache Kafka
The following graph consists of two subgraphs:

* The first subgraph generates data and writes the data into a Kafka message queue.
* The second subgraph reads the data from Kafka, converts it to string, and prints the data to a terminal.

Modeling Guide
8 PUBLIC Introduction to the SAP Data Intelligence Modeler

dataGenerator (W) producer (207b)

> I" ® i 9

consumer (1h7]) toStringConverter (... terminal (z&d)

Also use the Modeler to create generic data processing graphs, as shown in the following example.

o Example

The following graph detects objects in a video stream.

O < 0B 8B @

videoPlayer (bx8) drawRectangles (bli mergeOverlapping (boundingRects (bcz) convexHulls (bmx) findContours (fk1)

. B =2 ® . & J

captureVideo (v0a copylmage (gn1) mog2Subtractor {20 gaussianBlur (8ea threshold (djv) closingEye (1368 closingOnes (1uge

Related Information

Log on to SAP Data Intelligence Modeler [page 10]
Description of the Modeler Main Screen [page 10]

Modeling Guide
Introduction to the SAP Data Intelligence Modeler

PUBLIC

2.1 Log on to SAP Data Intelligence Modeler

You can access the SAP Data Intelligence Modeler from the SAP Data Intelligence Launchpad or launch it
directly with a stable URL.

Prerequisites

Before you log on to SAP Data Intelligence for the first time, familiarize yourself with the Launchpad from which
you open the Modeler application. For details, see the Launchpad guide. Also, read about user types in Manage
Users in the Administration Guide to identify what type of user privileges you have.

Procedure

1. Enter or select the SAP Data Intelligence Launchpad URL in a browser.

2. Enter your log on credentials for the SAP Data Intelligence Launchpad application in the welcome screen:

e TenantID
* Username

* Password

The SAP Data Intelligence Launchpad opens to the home page. The home page displays the applications
available in the tenant based on the policies assigned to you.

3. Choose the Modeler tile.

The Modeler opens to the initial screen.

2.2 Description of the Modeler Main Screen

Use the areas of the SAP Data Intelligence Modeler main screen to perform various tasks, such as configuring a
graph.

The following image shows the various areas of the Modeler main screen.

Modeling Guide
10 PUBLIC Introduction to the SAP Data Intelligence Modeler

https://help.sap.com/docs/data-intelligence-cloud/launchpad-b30545ced5c4407f851847518444222b/logging-into-sap-data-intelligence-launchpad?version=Cloud
https://help.sap.com/docs/data-intelligence-cloud/sap-data-intelligence-administration/manage-users?version=Cloud
https://help.sap.com/docs/data-intelligence-cloud/sap-data-intelligence-administration/manage-users?version=Cloud

Navigation Pane

Sthowng 141/ 210 praph | Exampies, Soenems Ry

> Examples

> Sconario Tomplates.

Opesators

> SAPVora

> Comnectivity

Reposiony

> Utilitiess
2 BAP Infegration
2 Swearing Analytics

> ML 8o
Examples

rifiguration Types

3 ingastion via Flowagant

> Others

The following table describes the areas of the Modeler main screen.

Pane or Toolbar

Data intelligence Modeler

i Manager Tomplates and

Editor Toolbar

Tats Lo Echoduie Vakamon

Bottom Panc

Description

Graph Editor

Right Pane

Configuration

Prapartics

com sap.cemo. e
Description
Fle Systsm

o He Rame

fladexta

Graph editor

Area in which you add and connect operators for a graph.

Modeling Guide

Introduction to the SAP Data Intelligence Modeler

PUBLIC

1

Pane or Toolbar

Description

Navigation pane

Consists of the tabs described in the following table.

Tab Description

Graphs Access built-in or custom
graphs, and create custom
graphs.

Operators Access built-in or custom
operators, and create cus-
tom operators.

Repository Access and create Modeler

objects, such as graphs, op-
erators, and types in your
repository. Create new fold-
ers, import auxiliary files or
solutions, and export folders
as . tgz files or vSolution
files.

i Note

The Modeler provides
individual Dockerfiles to
create containerized en-
vironments for the op-
erator groups. The Mod-
eler selects the Docker-
files using a tag-match-
ing mechanism.

Configuration Types

Access all type definitions or
create new types.

Data Types

Create data types that de-
fine structures for input data
streams, which you can use
in further processing steps
in the pipeline.

Bottom pane

Consists of the following tabs:

® Status: Monitor the status of the graph.

® Log: Runtrace messages based on severity levels.

® Schedule: Monitor graph schedules.

® \Validation: Validate your graph to find errors.

12

PUBLIC

Modeling Guide

Introduction to the SAP Data Intelligence Modeler

Pane or Toolbar

Description

Editor toolbar

Perform operations on the graph in the graph editor,
such as save and run a graph.

Define the configuration parameters for the graph,
groups, and operators.

View details about various operators, including example
graphs that the application provides.

Related Information

Creating Graphs [page 57]

Creating Operators [page 36]

Creating Dockerfiles [page 291]

Monitor the Graph Execution Status [page 101]
Creating Configuration Types [page 298]

Error Recovery with Generation 2 (Gen2) Pipelines [page 59]

Modeling Guide
Introduction to the SAP Data Intelligence Modeler

PUBLIC

13

3 Using Operators

Operators represent vertexes in a graph (pipeline) and are components that react to events configured in the
graph environment.

Events are messages delivered to the operator through input ports. An operator interacts with the graph
environment through its output ports. The operator is unaware of the graph in which it's defined and the source
and target of its incoming and outgoing connections.

i Note

Events can also be internal to the operator, such as clock ticks.

The following image shows an operator with input and output ports. Each port has a type. SAP Data Insight
Modeler color codes the ports to indicate compatible port types.

Sarg

Input Ports «————¢ ' s Output Ports

SAP HANA Client

For complete information about operators in SAP Data Intelligence Modeler, see the Repository Objects
Reference.

Operator Details [page 15]
Every operator has an ID (also known as name) and a title (also known as the description). The
operator ID is a unique identifier, with a strict format. The operator title is what the graphical interface
displays.

Generation 1 and Generation 2 Operators [page 21]
SAP Data Insight Modeler offers two generations of operators: Generation 1 (Genl) and Generation 2
(Gen2).

Customizing the List of Operators [page 21]
Limit the list of operator categories in the Operators tab to include only the operators that you use.

Ports and Port Types [page 22]
The operator uses ports as an interface to communicate between operators in a graph.

Using Managed Connections in Script Operators [page 34]
You can use managed connections in operator configurations of the script operators.

Creating Operators [page 36]
Use the SAP Data Intelligence Modeler to create your own operators to use in graphs (pipelines).

Configuring Operators [page 40]
Each operator has parameters that you can configure based on the business requirements for the
graph (pipeline).

Modeling Guide
14 PUBLIC Using Operators

Creating Categories [page 41]
Create a custom category for the operators or graphs that you create.

Creating Operator Groups [page 41]

Partition a graph into subgroups so that each subgroup runs in a different Docker container assigned to

different cluster nodes.

Viewing Operator Versions [page 43]

You can view all existing versions, modify existing versions, or create additional versions of an operator.

You can also replace a deprecated operator with the alternative operator and maintain logs for
respective versions of an operator.

Editing Operators [page 45]

You can modify the existing operators and use them in your graph. The Modeler provides a form-based

editor to make changes to the operators.

Error Handling in Generation 2 Operators [page 46]

The SAP Data Intelligent Modeler reports errors to a dedicated operator through an error output port.

Batch Header [page 47]
Operators use batch headers to express information about its output batches in a unified way.

State Management [page 48]
Use the state management feature by implementing a series of functions in the Python3 operator.

Dockerfile Library for Runtime Environment [page 55]
Operators require a certain runtime environment. For example, if an operator executes some
JavaScript code, then the operator requires an environment with a JavaScript engine.

Related Information

Ports and Port Types [page 22]
Graph Execution [page 104]
Creating Operators [page 36]

3.1 Operator Details

Every operator has an ID (also known as name) and a title (also known as the description). The operator ID is a

unique identifier, with a strict format. The operator title is what the graphical interface displays.

Operator Extensions

All the operators available when creating a graph are known as extensions because they “extend” the base
operators.

Modeling Guide
Using Operators PUBLIC

15

Base operators are visible when you create a new operator. The extension is expressed by a file in the Modeler
file system. This file must be named operator . json and its folder hierarchy must match its ID. The Modeler
names the file with the extension when you create the operator.

Example:

ID: "com.sap.foo.bar”
Filepath: *./operators/com/sap/foo/bar/operator.json*

Operator JSON

The operator . json file contains the operator definition, including the graphical interface information. It has
the structure listed in the following table.

Option Required Description
description No The operator title.
icon Yes The operator icon, expressed as a Font

Awesome icon name that is available at
https://fontawesome.com/icons/ #* .

iconsrc Yes The path to the SVG icon file. The path
is relative to the operator . json.

component Yes The base operator ID to be extended.

inports No An array of input ports.

outports No An array of output ports.

config No A map of configuration parameters that

map a configuration parameter ID to its
default value.

config.$type Yes A $type field that points to its
schema.
tags No A map of tags that map each tag ID to

its default value.

enableportextension No A Boolean value that, if set to true,
allows adding additional ports and con-
figurations to the operator through the
ul.

extensible No A Boolean value that, if set to true,
allows a base operator to be extended.

i Note
subenginestags don't exist in the file system. They're included on the operator JSON for Ul purposes.

icon and iconsrc are mutually exclusive; any field can be derived from the base operator (component).

Modeling Guide
16 PUBLIC Using Operators

http://help.sap.com/disclaimer?site=https%3A%2F%2Ffontawesome.com%2Ficons%2F

The operator . json results in the following structure:

{

"description': "<operator-title>",
"icon": "<fontawesome-icon>",
"jconsrc':"<icon-File>",
"‘component': "base-operator-id",
“inports": [

“name': “<inportl-id>",
"type': "<inportl-type>"

"6utports": [
{
"name': "<outportl-id>",
"type': "'<outportl-type>"

1.
“config': {
"<config-id>": "<config-value>",

¥,
“tags': {
"<tag-id>": "'<tag-value>",

“enableportextension': <true/false>,
"extensible": <true/false>,

}

o Example

{
""iconsrc': "'read.svg",
‘'component': “com.sap.storage.read",
"config": {

"$type': "http://sap.com/vFlow/com.sap.storage.read.schema.json#"

"fags": .

}

Documentation

The operator documentation is a README file in markdown format. If the documentation makes sense only for
the extension, the file must be named README . md and saved in the same folder as the operator . json file.

When you have multiple subengine implementations, where there are multiple operator . json files, each
implementation must have a README in the same folder as the operator . json file.

README structure

The following code shows the README file structure:

<operator-title>

<introduction>

Modeling Guide
Using Operators PUBLIC 17

<links-to-examples>
Configuration parameters

- <configuration-parameter-1>
- <configuration-parameter-2>
Input

- <input-port-1>

- <input-port-2>

output

- <output-port-1>

- <output-port-2>

If an item list (parameters or ports) is empty, the word “None” must be listed.
> Example

Configuration parameters

- None

Introduction

The introduction text must have the following content:

- **configuration-id**
(type <configuration-type>, default: <configuration-default>)
<I-- mandatory: only if applicable --> mandatory:
<I-- brief description --> Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.
<I-- if needed, link to document with further description -->
(Details are described here)[<link-to-config-docs>].
- ID: “<configuration-id>"
- Type: ~<configuration-type>"
<I-- Default: a value must be expressed according to its type formatting,
e.g.:
string -> ~“value"",
int -> ~427,
object -> ~{ "k™: ["vi, "v2"] }°,
==
- Default: “<default-configuration-value>"
<!-- Possible values: only valid for "enum" type -->
- Possible values:
- “<value-1>"
- “<value-2>~
<I-- Expected input: only valid when the "pattern" is set -->
- Expected input: ~<pattern-regex>"
<I-- Additional specification fields may be provided -->

The Connection Protocol is mandatory and must have the following protocol in the request to service:

* |D: connProtoco

¢ Type:string

¢ Default: "HTTP"

* Possible values:
* "HTTP"

Modeling Guide
18 PUBLIC Using Operators

* "HTTPS"

Ports

Ports are identified by a unique ID (name). Ports are formatted as follows:

- **<port-id>** (type <port-type>): Express the parameter.
IT further is needed, document it in a separate file, and [1ink](
to it in this sentence. External documentation may be linked.

Configuration Schema

When you name parameters, use the same standard you use to name operators.

You must provide a schema for a configuration. The schema contains parameters and further constraints for
the Ul. You must link a configuration schema in the operator . json file as follows:

{

'-'(-:c-mfig": {
"$type': "<$id-fFrom-schema>"

}

Each parameter in the schema must meet the following criteria:

* Point toits ID with the object's key.

* Have a set title.

* Use the most strict type.

* Have a validation regex in pattern, if applicable.
* Belisted as required, if applicable.

Ether write the schema manually or with the help of the Types panel of the Modeler application. Save the
schema in one of the following ways:

* AsconfigSchema. json in the same operator . json folder.
Consider this method first, and when you use the Modeler application to create.

* Asschema.jsoninthe /types/<operator-id>/schema. json directory.

o Example

The following code shows a brief example of a configuration schema:

{
"$schema': "http://json-schema.org/draft-06/schema#",

"$id": "http://sap.com/vFflow/<operator.id>.schema.json",
"title": "<schema-title>",
"description’: ''<schema-description>",
“type': "object”,
"properties': {
"user': {
"title": "User",
“type': 'string”,
"'secure': true

}

assword": {

Modeling Guide
Using Operators PUBLIC

"title": "Password",
"type'': ''string",
"'secure': true,
"format': "password"

}

¥

}

ooConnectionlID": {

"title": "Foo Connection ID",

"description”: "Connection ID used to connected to Foo",
“type'': "'string",

"format': "com.sap.dh.connection.id"

"isFoo": {

“title": "lIs Foo",
"type': "boolean",
"description”: "Determines if operator is Foo.",

’eqMode": {

"title": "Request Mode",
“type': 'string”,
“"enum™: [

"'Foo",

“Bar"

1

¥
"noOfReqs™": {

“title": "Number of Requests",
“type': "integer",
"description”: "Number of Bar requests to be done.",
"sap_vflow_constraints'": {
“ui_visibility": [

{
"name™: "reqMode",
"value™: "Bar"
}
1
}
3:
“filepath™: {
“title”: "File path"”,
"type': "string",
"description”: "File path to save request. Must start with "/".",
“pattern': "A\/_.*$"
}
}
}
Schema Types

The following are the available types for a configuration parameter:

20

“array"
"boolean"
"integer"
“number™
"object"

"string”

PUBLIC

Modeling Guide
Using Operators

3.2 Generation 1 and Generation 2 Operators

SAP Data Insight Modeler offers two generations of operators: Generation 1 (Genl) and Generation 2 (GenZ2).

Gen?2 of vFlow operators communicate more efficiently between other Gen2 operators, but can't communicate
with Genl operators. Therefore, when you create graphs in the Modeler, you first select either Genl or Gen2
operators.

Gen2 operators have the following advantages over Genl operators:

* More efficient graph (pipeline) recovery from errors.
* New structured types of native streaming of messages between operators.
¢ Support for statemanagement (snapshot) and auto recovery of failed graphs.

¢ Improved versions of Genl operators, such as the Python3 operator.
The following are the predefined Genl and Gen2 operator classifications:

* Operators that connect to messaging systems, such as Kafka, MQTT, NATS, and WAMP.

* Operators that store and read data, such as files, Hadoop Distributed File System (HDFS) and Amazon
Simple Storage Service (Amazon S3).

¢ Operators that connect databases, such as SAP HANA and SAP Vora.

¢ Operators for the JavaScript engine that manipulate arbitrary data.

* Process operators that run any program (stateful and stateless) for manipulating data in a graph.
* Operators for data type conversion.

¢ Operators for digital signal processing.

* QOperators for machine learning.

* Operators for image processing.

- Remember

Gen?2 operators can't communicate with Genl operators. Therefore, you can create graphs with just one
generation of operators or the other, but not combined.

3.3 Customizing the List of Operators

Limit the list of operator categories in the Operators tab to include only the operators that you use.

Context

The SAP Data Intelligence Modeler groups and displays operators in the navigation pane under specific
categories, and initially lists all categories of operators. To control the categories listed so that you see only the
operators that you use, perform the following steps:

Modeling Guide
Using Operators PUBLIC 21

Procedure

1. Open the Operators tab from the Navigation pane at left.

2. SelectF (Customize Visible Categories) next to the Search text box.

The Customize Category Visibility dialog opens showing a list of operator categories.

3. Deselect Select All.

This step is only necessary if you haven't edited the category list previously.

4. Check each category to view in the list of operator categories.

5. Click away from the list.

The selected categories and their operators appear in the Operators tab.

->Tip

To display the operators in a specific category, enter the name of the category in the Search text box.

To find a specific operator, enter the name of the operator in the Search text box.

3.4 Ports and Port Types

The operator uses ports as an interface to communicate between operators in a graph.

A port definition includes the elements in the following table.

Element Description
Purpose Input or output port.
i Note
There are no specific error ports. Use output ports to
communicate error messages.
Name Unique string that consists of alphanumeric characters only.
Type String with a defined structure. The structure includes
a mandatory base type and an optional semantic type.
The semantic type can have a hierarchical substructure,
separated with periods, and an optional wildcard at the
end. The semantic type has the following form: <base
type>.<semantic type>.
> Example
string.com.sap.base64.*
com.mycompany
Modeling Guide
22 PUBLIC Using Operators

Port types with a wildcard are called incomplete types. The following example shows a general port type
specification:

o Example
int64.com.sap.base64.*
[1blob.com.mycompany
You can use the semantics of the type specification to enrich types with additional information, which

the owner of the types can use. However, the engine doesn't evaluate beyond the compatibility checks as
described in the Is compatible with type “any” column in the following base types table.

The Array column in the table indicates whether the base type can use arrays. For example, []float64 can
use arrays, but not [Jmessage.

i Note

Some subengines don't support all array types.
All port types fall into one of the built-in base types listed in the following table.

Is compatible with type

Type Description "any" Array
any generic type yes no
string character sequence yes yes
blob binary large object yes yes
int64 8-byte signed integer yes yes
float64 8-byte decimal number yes yes
byte single character yes yes
message structure with header and no no
body

stream unstructured data stream no no
Use Cases

The following list describes use cases for pipeline-specific types:

¢ Use the base type “any” when an operator is agnostic of the type and helps to avoid the redefinitions of the
operator for each type. An example is the multiplexer operators.

* The base type “message” consists of a message header and the payload stored in the body. Messages
have a size limit of 10 MB. The size limit means that larger payloads have to be split into chunks.
«* Example

In the “Read File"” operator, the header of the response messages contains the information to interpret
the content of the body.

Modeling Guide
Using Operators PUBLIC 23

In other scenarios, such as for the “Copy File” operator, the input message triggers an operator to
transfer data that is specified by the message, and the output message transfers the result of this
operation. The header information can then be used to match the requests with the results. Therefore,
it doesn't make sense to include arrays of messages themselves. However, arrays in the body are
possible.

* The base type “stream” is special because the other types, including “any” or “message”, have a fixed
structure at execution time (elementary type and length). Streams, in general, are unstructured. Typical
examples are the 10 streams stdin, stdout, stderr of the operating system or data streams generated
by sensors.

Conversions

In general, there are no implicit type conversions or propagations. If the port types are incompatible according
to the rules, you can't run a graph. However, there are two exceptions to the rule: Input ports of type “message”
and output ports of type “message”.

Input ports of type “message”

In a graph that flows from left to right, if the output port of the operator feeding into the input portis a
nonstream base type, the engine transforms the output into a message automatically. For “message” types,
this behavior is obvious and for all other types, the engine generates a minimal message storing the output
result in its body.

Output ports of type “message”
The engine handles the incoming message automatically, but the outgoing message triggers an action in the
Modeler application when you try to connect the ports.

o Example

* Output portis of type “message”, “incomplete”, or “generic” that allows for a message to be passed.

* Input port of the receiving operator is of type “string”.

In these exception cases, select one of the following two methods to transform the outgoing message to a
string:

* Concatenate the string from the serialized header and body of the message.

* Use only the body of the message and output it as a string.

i Note

If this body itself is a message, then it's handled as in the first case.

The choice depends on the semantics of the receiving operator. Therefore, there's no one recommended
approach.

Compatible Port Types [page 25]
You can connect two operators only if the output port of the first operator and the input port of the
second operator are compatible.

Table Messages [page 27]

Modeling Guide
24 PUBLIC Using Operators

A table message is an SAP Data Intelligence Modeler message that represents tabular data. The port
type for table messages is message . table.

Data Types in Operator Ports [page 32]
Before you choose a data type for a new port, consider the type of connection and what the
downstream or upstream operator accepts.

Adding Ports to Operators [page 33]
Add additional ports to JavaScript, Python, Multiplexer, and other extensible operators.

Related Information

3.4.1 Compatible Port Types

You can connect two operators only if the output port of the first operator and the input port of the second
operator are compatible.

The engine performs compatibility checks when you run the graph and when the engine loads the graph. If the
port types aren't compatible, the engine fails the graph with a corresponding message in the trace.

The engine checks for compatibility in two steps as follows:

1. For the base types, the engine ensures that one of the following rules is true:
* The base types of the operators are identical or

* One of the base types is of type any and the other base type is one of the compatible types listed in the
table in Ports and Port Types [page 22].
2. The semantic type of one port type is a specialization of the semantic type of the other port type. The
semantic type, including the empty one, is a specialization of *.

i Note

Omitting the semantic type or empty semantic type, yields a complete type. This type is different from
<base type>.*, which is anincomplete type.

The following table shows the compatibility of output and input port types.

Output Port Types Input Port Types Compatible Reason

any any yes Identical base type. No se-
mantic type.

any any.* yes Identical base type. Here,

* can be substituted by
the empty semantic type.
Therefore, any is a spe-
cialization of any . *.

Modeling Guide
Using Operators PUBLIC 25

Output Port Types Input Port Types Compatible Reason

any string yes Compatible base types
and no semantic type.

stream any no Incompatible base types.

float64.* int64.* no Incompatible base types.

any.* string.* yes Compatible base types
and identical semantic
type.

any.* string.com.sap yes Compatible base types.
com.sap is a specializa-
tion of *.

any.* string.com.sap.* yes Compatible base types.
com.sap-*is aspeciali-
zation of *.

any.com.sap any.com.sap yes Identical base and seman-
tic types.

string.com.* string.com.sap.* yes Identical base type.

com.* is a specialization
of com.sap.*.

any any.com no Identical base type, but
comisn't a specialization
of the empty semantic
type. However, both sides
are specializations of .*.

any any.com.* no Identical base type, but,
com.*isn't a specializa-
tion of the empty seman-
tic type.

Related Information

Ports and Port Types [page 22]

Modeling Guide
26 PUBLIC Using Operators

3.4.2 Table Messages

A table message is an SAP Data Intelligence Modeler message that represents tabular data. The port type for

table messages is message . table.

Attributes

All table messages have an attribute named “table” with a value that's an object. The object has the properties

described in the following table.

Property Description
version (required) Version of the table message type expressed as an integer.
name Name of the table expressed as a string, such as the name of

the database from which it came. If the name is case-insen-
sitive, you must enter it in all uppercase letters. Otherwise,
you must use the actual casing.

columns Objects that describe each column of the table, expressed in
an array. Each object has the following properties:

Name: String containing the name of the column. If the
name is unknown, can be the empty string. If the name
is case-insensitive, you must enter it in all uppercase
letters. Otherwise, you must use the actual casing.
Class: String containing the type class of the column.
If the type is unknown, must be an empty string or one
of the Supported types [page 28]. Class names are
always lowercase.

Type: Object containing database-specific type infor-
mation. The keys in this object must be the lower-case
name of the database management system (DBMS),
and each value a string with the type name.

Size: Integer that specifies the column size limit, where
applicable.

Precision and scale: Integers specifying precision and
scale of a decimal column.

Nullable: Boolean indicating whether the column ac-
cepts NULL values.

primaryKey Name of the primary key column expressed as a string, or an
array of column names for a compound key.

Body

The message body must be an array of arrays of generic elements using Go language: [][]Jinterface{}. The
data in the body must always be row based. All rows must contain the same number of values.

Modeling Guide
Using Operators

PUBLIC 27

Supported Types

The term “class” refers to a group of similar column types commonly found in database management systems
and file formats. For example, the string class can be found in the form of SQL types, such as VARCHAR and

ALPHANUM.

The following table contains correspondence that is established between classes and the concrete data types

used to hold their values.

i Note

In the Data type column of the following table, “int” refers to these data types:

° int8
®* uint8
* intl6
* uintlé
°* Int32
* uint32
* iInt64
* uint64
° int
* uint
Type Class Data Type String Format
timestamp string RFC 3339
RFC 3339 includes a numeric time zone
(or Z for UTC) and an optional value of
nanoseconds.
< Example
2006-01-02T15:04:05.999
999999707:00
Columns that store only part of a time-
stamp must leave the unused portion
at the zero value (midnight for the time
and 0000-01-01 for the date).
integer int integer
Modeling Guide
28 PUBLIC Using Operators

Type Class Data Type

String Format

decimal int / float64/ string

Decimal number with a dot as the
separator or a fraction (numerator/
denominator). You can suffix the int
with the letter e followed by an expo-
nent.

< Example

“1.43e-1" for the value 0.143.

Provide the value for a decimal by di-
rect integer/float representation or as a
string encapsulating a valid number.

> Example

® Fraction: "numerator/
denominator" (for exam-
ple, "'3/4™).

® Integer: ""integer" (for ex-
ample, "'50™").

® Floating-point: "floating-
point" (for example,
"2.5""1.43e-1").

float float64

Decimal number with a dot as the
separator or a fraction (numerator/
denominator). You can suffix the int
with the letter e followed by an expo-
nent.

< Example

“1.43e-1"’ for the value 0.143.

string string

N/A

binary [Jbyte

Base 64 (RFC 4648, padded)

bool bool

1,t T, TRUE, true, True, O, f F,
FALSE, false, or False

When a column's class is unknown, the engine can leave the operators' values as strings. Later in the graph,

if a particular class is expected for that column, it's possible to choose to convert its values. In this case, the
operator engine understands that the string is in the format specified under the String format column in the
table. For example, when the operator is reading from a CSV file to insert its data into an existing database
table: Column classes are unknown when parsing CSV, but some database operators require the table schema

from the server and treat each column accordingly.

Modeling Guide
Using Operators

PUBLIC 29

Encoding

Even if an operator input is a general type of message.* or any . *, you must set the encoding to table so that
operators can detect a table message.

Examples

Parsing CSV
> Example
The following CSV data has a header for the first line (the column names):

1D,NAME,BIRTH, INTERNAL
0,John Doe,15-04-1982,n0
1,Nancy Milburn,24-11-1991,yes

The CSV parser outputs the following table message (represented in JSON):

"Attributes": {
“"table™: {
"version': 1,
“columns™: [
{"name": "ID"},
{"'name™: "NAME"},
{"name™: "BIRTH"},
{""'name': "INTERNAL"},

1
}
S
"Encoding": "table",
"Body'': [
[0, "John Doe™, "15-04-1982", "no"],
[*1", “Nancy Milburn™, "24-11-1991", "yes"]
1

}

Because the formats for timestamp and Boolean don't comply with the formats expected for a table
message, you can use an intermediate operator to adapt the format into the following:

"Attributes”: {
“"table":{

"'version: 1,

“columns™: [
{"name™: "ID"},
{""name™: "NAME"},
{""'name™: "BIRTH", "class": "timestamp'},
{"'name™: "INTERNAL", *"class': "bool"}

]
b
S
"Encoding": "table",
"Body"': [
[0, "John Doe'", "1982-04-15T00:00:00z", false],
["1", "Nancy Milburn'™, "1991-11-24T00:00:00Z", true]
]

Modeling Guide
30 PUBLIC Using Operators

I }
Querying Database

»» Example

The following table exists on an SAP HANA database:

ID (BIGINT) SALARY (DECIMAL(10,2)) HIRED (DATE)
0 4560.50 '2003-01-14'
1 8740.50 '2001-07-28'

If an operator runs a SELECT statement on this table and outputs the values in a table message, the
following format is expected:

“"Attributes”: {
“table": {
"version': 1,
“columns™: [
{'name™: "ID", "class™": "integer™, "type": {"hana’:
"BIGINT"}},
{"name": "SALARY", "class': "decimal', "precision": 10,
"scale™: 2, "type": {"hana': "DECIMAL"}},
{'name™: "HIRED"™, *class™: "timestamp™, "type': {hana’:

"DATE"}},
"6rimaryKey": "ID"
}
},
"Encoding": "table",
"Body'': [

[0, 4560.50, *2003-01-14T00:00:002"],
[1, 8740.50, "2001-07-28T00:00:00Z"]

}

When there's a fraction (string) as decimal output format, such as in the 456 0.50 and 8740.50 in the
sample code, the values are represented as ''9121/2" and ""17481/2", respectively.

Modeling Guide
Using Operators PUBLIC 31

3.4.3 Data Types in Operator Ports

Before you choose a data type for a new port, consider the type of connection and what the downstream or
upstream operator accepts.

Data Type of None

In addition to the other data types of Global, Local, and Dynamic, you can also select None when you add a
port to an operator. The None data type indicates a message with headers and no body. The None data type is
meant for transmitting metadata and not data.

Any Port Type

The Modeler has provided port types that have input and output ports without any defined Data Type and Data
Type ID. We call this type of port “any”. When you view the port details for the Terminal, Wiretap, and Graph
Terminator operators, the Data Type and the Data Type ID options have an asterisk (*) as a value.

The Modeler doesn't allow you to create an “any” port type.

Port Compatibility

The Modeler allows only certain types of ports to connect. The target port has to be at least as general as the
source port.

A port with a defined Type ID can't receive a Dynamic type.

i Note

A port with a Dynamic scope has an asterisk (*) as the Data Type ID. Dynamic ports are created during
runtime and exist only in memory.

The Modeler doesn't allow you to connect ports that have specific Data Type IDs. If you ever require connecting
incompatible port types, SAP recommends that you implement a custom solution with a script operator to
receive data as one type and send it as another data type.

The following table lists characteristics of an output port with the compatible port characteristics of the input
port.

Output port Compatible input port

Port type: Dynamic Data Type ID: Any

Data Type ID: Any

Modeling Guide
32 PUBLIC Using Operators

Output port

Compatible input port

Data Type ID: Any

Port type: Dynamic

Data Type ID: Any

Port type: Dynamic

Data Type ID: Any

Data Type ID: Any

Port type: None

Data Type ID: Any

Port type: None

Port type: Dynamic

Data Type ID: Any

Data Type ID: Any

Port type: Dynamic

Data Type ID: Any

Port type: Dynamic

Port type: Dynamic

Keep in mind that, in all cases with dynamic port type, the data type of the connected ports have to match.

o Example

You can connect an operator with a table type port and a dynamic scope to one of the following table ports:
any, none, or dynamic.

3.4.4 Adding Ports to Operators

Add additional ports to JavaScript, Python, Multiplexer, and other extensible operators.

Prerequisites

Before you can configure operators, create a new graph or edit an existing graph.

For more information about data types, see Using Data Types [page 302] and Data Types in Operator Ports

[page 32].

Modeling Guide
Using Operators

PUBLIC

33

Context

To add additional ports to operators in graphs, perform the following steps in the Modeler:

Procedure

1. Right-click the operator in the graph editor workspace and select Add Port.

The Add Port dialog box opens.
2. Enter a name in the Name text box.
3. Select either Input Port or Output Port as applicable.
4. Select (@ (Browse) in the Data Type ID text box.

The Select Data Type dialog box opens.
5. Choose a data type ID and click Select.
6. Select OK.

Results

The new port appears on the operator. Hover your mouse pointer over the ports to view the port details.

3.5 Using Managed Connections in Script Operators

You can use managed connections in operator configurations of the script operators.

Context

For this task, we use the Python3 operator as an example.

Procedure

1. Create a new Python3 operator.

For instruction, see Creating Operators [page 36].

2. Add a new configuration parameter for the operator.

Modeling Guide
34 PUBLIC Using Operators

3. Add anew property and switch to JSON view.
4. Add a definition of an object-type parameter.

Copy and paste the following script in the JSON view:

i Note

This script is applicable only for the Pytho3 operator. In this example, we

use the OPENAPI connection type as shown in the connection list. To return
different connection types, change the value of the connectionTypes parameter in
properties.connection.connectionlD.sap_vflow_valuehelp.url

"$schema™: "http://json-schema.org/draft-06/schema#",
"$id": "http://sap.com/vflow/demos.conn.testme.configSchema.json™,
"type": "object”,
"properties': {
"codelanguage™: {
"type': “string”

“"script': {
“type': "string"
¥
"connection': {
"title": "Connection",
“type'': "object",
“properties’: {
"configurationType': {
"title": "Configuration Type",
“type'': "string",
“enum™: [

"Coﬁfiguration Manager"*

}

onnectionlID": {

"title": "Connection ID",

“type'': "string",

“format': "com.sap.dh.connection.id”,
"sap_vflow_valuehelp": {

“url": "/app/datahub-app-connection/connections?
connectionTypes=0PENAPI",

“valuepath™: *"id",
"displayStyle": "autocomplete™

"éap_vflow_constraints": {
“ul_visibility": [

"name': "configurationType",
"value™: "Configuration Manager"
}
1
}
}
}
}
|
“required”: [
**connection™
1

}

5. To use the connection properties, copy and paste the following code in the Script tab of the Python3
operator editor.

Modeling Guide

Using Operators PUBLIC

35

«» Example

In the following code snippet, the host is read from managedConnectionProperties, which is
chosen in the operator configuration at design-time.

def t1():
managedConnection = api.config.connection
managedConnectionProperties = managedConnection["connectionProperties™]
host = managedConnectionProperties[“host"]
output = api .Message(host, {})
api.send(out™, output)
api.add_timer(*'1s", tl)

6. Include the Python3 operator in a graph, and choose the managed connection.

3.6 Creating Operators

Use the SAP Data Intelligence Modeler to create your own operators to use in graphs (pipelines).

Prerequisites

Before you create a new operator, ensure that you choose an existing folder in the repository or create a new
folder. Create a new folder in the Modeler as follows:

1. Open the Repository tab in the Navigation pane at left.
2. Expand the Operators folder.
3. Right-click the operators folder and choose Create Folder.

Context

The Modeler provides a form-based editor to create operators. An operator is a reactive component, which
means that it reacts to events from the environment. It isn't intended to terminate. The operators that you
create in the Modeler are derived from the base operators that the application provides.

Procedure

1. Right-click the applicable folder choose Create Operator.

The Create Operator dialog box opens.

2. Enter the fully qualified path and file name in Name.

Modeling Guide
36 PUBLIC Using Operators

3. Enter a name by which the operator is listed in Display Name.
The Modeler lists the operator by this name in the Operators tab. Also, use the name to search for the
operator in the Modeler.

4. Choose the applicable base operator from the Base Operator list.

The base operators listed are derived from the built-in base operators provided by SAP Data Intelligence.
5. Choose the category in which to create the operator from the Category list and select OK.

Use the category as a search tool in the navigation pane.

The Modeler opens the operator editor in the main pane. There are several tabs in which you create the

operator properties: Ports, Tags, Configuration, Script, and

6. Define the operator using the various tabs in the operator editor. The following table describes actions for

each tab.

Action Steps

Define ports 1. Open the Ports tab.
2. Select+ (Add input port or Add output port).
3. Enter aport namein Name.
4. Choose a type in Data Type.
5. Continue adding input or output ports in this manner as neces-

sary.
Define tags Tags describe the runtime requirements of operators and are the

annotations of Dockerfiles that the application provides. If multiple
implementations exist for the operator, the application displays the
different subengines in which you can execute the operator. For
each subengine, you can further associate them with tags from the
database.

1. Open the Tags tab.

Select+ (Add Tag).

Choose a tag from Tags.
Choose a version from Version.

ok wn

Continue adding tags in this manner as necessary.

Modeling Guide
Using Operators PUBLIC 37

38

Action

Steps

Define configurations

The options in the Configuration tab vary based on the type of
operator you're creating.

1.

Open the Configuration tab.

The original schema name appears under Schema File. You
can change the parameters of the schema file by automatic
generation or by importing. To enable the automatic or import
feature, select @ (Delete).

For automatic generations, select Generate Config Schema.
To import, select Import.

To edit the schema, select & (Edit Schema).to open the Edit
type dialog box.

Types allow you to enable semantic type validations on top of
the configuration parameters and to define conditions. Create
new types or edit existing type definitions in the repository.
Reuse existing types to define the operator configuration.

i Note

By default, the type definition of script-based operators
such as JavaScript, Python, Go operators, and so on,
include a Script property. Use this property to view or
modify the operator script when creating a graph. To hide
the script from users working with this operator, edit the
Script property in the type schema. Select the property
and set the Visibility value to Hidden.

Select a property to edit and view the parameters to the right.
Add additional parameters by selecting + (Add Parameter).
Provide the configuration parameter name, select the parame-
ter type, and provide a parameter value.

-> Remember

For some base operators, the application doesn't allow
you to define new configuration parameters. If you aren't
allowed to define new parameters, + (Add Parameter).
is disabled, and you can only edit the existing parameter
values.

Add scripts In graphs, use operators that help run script snippets when the
graph runs. To include script snippets in the operator definition,
perform the following steps:

1. Open the Script tab.

2. Enter the script snippet in the Inline Editor.

3. Tochange the default programming language of the editor,
choose a different language in the upper right. This option isn't
always available.

4. To upload a script file from your system, choose Upload
File from the list in the top-left corner of the editor and se-
lect™ (Upload file) at right.

Modeling Guide
PUBLIC Using Operators

Action Steps

Add operator documentation Maintain or modify documentation for operators in the
Documentation tab. Documentation contains information about the
operator configuration parameters, input ports, output ports, and
more. Adding documentation helps other users when working with
this operator.

1. Open the Documentation tab.
2. Enter the required documentation in the text area.

- Tip

SAP recommends that you use the Markdown format to
maintain the operator documentation.

7. Optional: Select a display icon for the operator.

In the operator editor, the Modeler displays the operator name with a generic icon. You can replace the
display icon with any of other icons that the application provides, or you can upload your own icon in
Scalable Vector Graphics (SVG) format and use it for the operator display.

a. Select the operator default icon that is to the left of the operator name.
b. Select I (Operator icon/image).

The Upload Operator Icon dialog box opens.
c. Select one of the following options based on the location of the icon file:

* Select Fromicon list and choose an icon from the list.

* Select Upload SVG and select . (Upload File).
d. Select OK.

The application uses the new icon for the operator on the graph editor.

i Note

The size of the icon tile in the operator editor is 80 px x 80 px. To ensure that the uploaded SVG
file fits within the icon tile, define the viewbox property for the SVG file accordingly.

8. Optional: Upload auxiliary files.

You can upload auxiliary files to the repository that the operator can access or execute at runtime. This file
can be any type, for example, binary executables such as a JAR file that the application must execute when
executing the operator.

a. Inthe operator editor toolbar, choose . (Upload Auxiliary File).

These files are stored along with the operators in the operator directory. You can access these files
from the SAP Data Intelligence System Management application. Alternatively, you can also upload
files from the Repository tab.

9. Optional: Select JSON in the upper right of the Modeler.

The JSON file opens showing the parameters for the new operator.

Related Information

Creating Configuration Types [page 298]

Modeling Guide
Using Operators PUBLIC 39

Creating Configuration Types [page 298]

3.7 Configuring Operators

Each operator has parameters that you can configure based on the business requirements for the graph
(pipeline).

Prerequisites

Ensure that the operator to configure is in a graph.

Context

Procedure

1. Select the applicable operator in your graph.

2. Select*Z (Open Configuration).
The Configuration pane opens at right. The parameters in the Configuration pane have default settings
based on the operator. To customize the operator, enter new values to the parameters. Based on the
operator type, you can specify values to the subengines configuration parameters.

i Note

If multiple implementations exist for the operator, select the applicable subengine in which to run the
operator. The default value is Main (Pipeline Engine). To select the applicable engine, choose + (Add
subengine) and choose a subengine from the list.

3. To define new configuration parameters for the selected operator, perform the following substeps:

a. Select+ (Add Parameter) in the Configuration pane.

i Note

You can define configuration parameters only for some base operators. Therefore, + (Add
Parameter) is available only for applicable operators.

b. Enter a name for the new configuration parameter in Add Property.
c. Choose the property type.
d. Enter avaluein Value.

Modeling Guide
40 PUBLIC Using Operators

e. Select OK.

3.8 Creating Categories

Create a custom category for the operators or graphs that you create.

Procedure

1. Open the Repository tab in the navigation pane at left.
2. Expand the folder named “general” and then expand the subfolder named “ui”.

3. Double-click settings. json.

The JSON file opens in the main pane.

4. Add the category information to the array of categories listed.

The category name follows the same operator title naming constraints.
«* Example

{

“name': "Category Name',

“"entities": [
"‘com.sap.foo.bar",
"‘com.sap.operator.test"

3.9 Creating Operator Groups

Partition a graph into subgroups so that each subgroup runs in a different Docker container assigned to
different cluster nodes.

Prerequisites

Before you perform the following task, open the applicable graph (pipeline) in which to create operator groups.

For complete information about creating and using operator groups, see Groups, Tags, and Dockerfiles [page
941].

Modeling Guide
Using Operators PUBLIC 41

Context

An operator group can consist of one or many operators. Like individual operators, each group, called a
subgraph, is associated with configuration parameters. Provide custom values for the parameters, and define
additional configuration parameters for the group.

To create operator groups (subgraphs), open SAP Data Intelligence Modeler and perform the following steps in
the applicable graph:

Procedure

1. Pressthe key and select each operator to include in the operator group.
2. Right-click and choose Group.

The Modeler shows the subgraph in a shaded box.
3. Select 2z (Show Configuration) in the editor bar.

The Modeler lists the predefined configuration parameters applicable for the group. The following table
describes the parameters that you can define with custom values.

Parameter Description
Description Provides a description for the operator group.
Restart Policy Determines the behavior of the cluster scheduler when a

group execution results in a crash. Choose a value from
the list. If you don't select a value, the Modeler uses the
default value of never:
® never: The cluster scheduler doesn't restart the
crashed group and the crash results in the final state
of the graph as “dead".
® restart: The cluster scheduler restarts the group ex-
ecution. The restart changes the state of the graph
from dead to pending and then to running.

A Caution

When you restart a group, a single message per
inbound connection can be lost.

Tags Describes the runtime requirement of groups. To define
tags for the group, select + (Add Tags) and select the
required tag and version.

You can assign more than one tag to a group.

Modeling Guide
42 PUBLIC Using Operators

Parameter Description

Multiplicity Determines the number of executions for this group at
runtime.

Specify the value as an integer. For example, set to 3 to
have the Modeler execute 3 instances of this group at
runtime.

When the Multiplicity is set to greater than 1, the Modeler
sends the data arriving at the group in a round-robin fash-
ion.

4. Optional: To define new configuration parameters for the group, select + (Add Parameter).
a. Enter a name for the property in the Add Property dialog box.
b. Select the property type.

Select Text, JSON, or Boolean based on whether the property value is a string, JSON, or Boolean value.
c. Enteravaluein Value.
d. Select OK.

3.10 Viewing Operator Versions

You can view all existing versions, modify existing versions, or create additional versions of an operator. You can
also replace a deprecated operator with the alternative operator and maintain logs for respective versions of an
operator.

Context

See all existing versions of an operator by starting in the navigation pane or the graph editor.

* Navigation pane: Open the Operators tab, right-click the applicable operator, and choose Show all
versions.

¢ Graph editor: Right-click the applicable operator and choose Operator versions.

Related Information

Replacing Deprecated Operators [page 44]
Editing Operator Versions [page 44]
Creating Operator Versions [page 45]

Modeling Guide
Using Operators PUBLIC 43

3.10.1 Replacing Deprecated Operators

You can update a deprecated operator to the replacement operator available.

Procedure

1. Toreplace a deprecated operator, in the graph editor, right-click the deprecated operator and choose the
Update menu option.

2. Inthe Replace Operator dialog, click Continue to replace the deprecated operator with the suggested
operator.

3.10.2 Editing Operator Versions

You can edit an existing version of an operator.

Procedure

1. You can view the operator versions through the navigation pane or the graph editor:

In the navigation pane, choose the Operators tab, right-click the operator, and choose Show all versions
menu option.

In the graph editor, right-click the operator and choose Operator versions menu option.

2. Inthe Operator versions dialog, choose the & (Edit) option.

The operator version editor opens.
3. To modify the existing configuration of the operator.
a. To provide the replacement operator if it's a deprecated operator,
1. Inthe version editor of a deprecated operator, choose & (Enter Replacement Info).

2. Enter the operator name with which you want to replace the deprecated operator.

b. To delete a version of the operator, in the Operator Versions dialog, select a version and click
W (Delete).

i Note

When you try to delete an operator version that is used in multiple graphs, you will encounter a
warning message, as the deletion would result in failure of the graphs in which that version of the

operator is used.
c. Toview logs of a version of an operator, in the version editor, choose View Change Log.

4. When the changes are complete, in the editor toolbar, choose [@ (Save) to save the changes to the current
version of the operator.

Modeling Guide
44 PUBLIC Using Operators

3.10.3 Creating Operator Versions

You can create a new version of an operator.

Procedure

1. You can view the operator versions through the navigation pane or the graph editor:

In the navigation pane, choose the Operators tab, right-click the operator, and choose Show all versions
menu option.

In the graph editor, right-click the operator and choose Operator versions menu option.
2. Inthe Operator versions dialog, choose the & (Edit) option.

The operator version editor opens.
3. Modify the existing configuration of the operator.

4. When the changes are complete, in the editor toolbar, choose @ (Save As New Version) to create a new
version of the operator.

5. Inthe dialog that follows, enter the required details for the new version.
6. Click Save.

A new version of the operator is created.

3.11 Editing Operators

You can modify the existing operators and use them in your graph. The Modeler provides a form-based editor
to make changes to the operators.

Procedure

To edit an existing operator, in the navigation pane, choose the Operators tab.
Right-click the operator that you want to edit and choose Edit menu option.

Modify the existing configuration of the operator.

AW

When the changes are complete, in the editor toolbar, choose [@ (Save) to save the operator.

Modeling Guide

Using Operators PUBLIC 45

3.12 Error Handling in Generation 2 Operators

The SAP Data Intelligent Modeler reports errors to a dedicated operator through an error output port.

Error handling operators, whether generic or graph specific, are usually scripted. Generally, the errors
communicated to an error operator are for internal use only.

The following table describes the options for error handling.

Option Description

Terminate on error Unexpected exceptions are logged and the graph is termi-
nated.

Log and ignore Unexpected exceptions are logged and the operator contin-
ues torun.

Propagate to error port Unexpected exceptions are sent to an error port thatis

generated at runtime.

This port is of type structure (com.sap.error), which
contains the following fields:

® code: an error code (INt32) that is local to the opera-
tor.

® operatorlD: astring with the ID of the
operator outputting this error (for example,
com.sap.system.terminal).

®* processlD: astring with the ID in the graph
of the process outputting this error (for example,
terminall).

® text: astring corresponding to the main error mes-
sage.

* details:atable type, whichis composed of the
fields key and vallue (both of type string), which
can be used to provide further information about the
exception.

The operator continues to run.

Error Output Port

Add an error output port to the operator that outputs to the specific error operator. When you create the
port, make sure to include “error” in the name, such as com.sap.error or com.sap.error.details. Error
output ports can be either structure or table types.

Modeling Guide
46 PUBLIC Using Operators

3.13 Batch Header

Operators use batch headers to express information about its output batches in a unified way.
The batch header consists of the following elements:

* Kind: structure
* Type ID: com.sap.headers.batch

The following table describes the batch header fields.

Field Description
index Integer with the zero-based index of the batch.
isLast Boolean that indicates whether the batch is the last

in the sequence, for example, if batchlndex ==
batchCount-1.

count Total number of batches in the sequence. If the operator
can't obtain the count because of technical restrictions or
because the sequence is open-ended (a stream), for exam-
ple, operators can omit count.

Number indicating the magnitude that delimits one batch
from the next. For example, the number of bytes or the
number of lines of text the batch contains. When you use
other criteria, such as a timeout for the accumulation of

each batch, you can omit size.

Size doesn't express the size of an individual batch. Rather,
size expresses the intended size for batches in general.
Size is usually specified by the user.

unit String containing the unit in which batchSize is meas-
ured. If present, uniitis expressed as one of the following
measures:
* bytes.
®* rows, for table-related operators (including CSV, data-
bases, and so on).

* lines, for text files.

Example

o Example

You configure a Read File operator to read files in 10-byte chunks. If the file has a total of 87 bytes, the
operator outputs the following values for the batch attributes:

* indexinthe range [0,8]

Modeling Guide
Using Operators PUBLIC 47

* islLast: false in all but the ninth and last output (index 8)
°* count:9

* size: 10

® unit: bytes

3.14 State Management

Use the state management feature by implementing a series of functions in the Python3 operator.

Use the functions in the following table to support recovery and to store states. SAP Data Intelligence doesn't
require that you implement all of the functions to store states.

Function Description

api. SeF_i n itia!_sna_lpshot_i nfo(initial_pr geis the initial information for state management before the
ocess_info: api.InitProcessinfo) operator starts. You can call the initial information outside

callback functions.

The parameter initial_process_info has two attrib-
utes:

* Is_stateful: Boolean that specifies that the opera-
tor persists states.

* outports_info: Map of port names to
api .Outportinfo.
api .Outportinfoisaclass of one attribute:
is_generator. The parameter outports_info
indicates whether output ports of the script operator
are generators.

api.set_restore_callback(callback) Register function that restores the operator state.

Arguments: cal Iback (func[str, bytes] ->
None]).

The function expects the following input parameters:

® Epoch, which uniquely identifies the state that is being
recovered.

® Serialized operator state.

api.set_serialize_callback Register function that returns the operator state.
Arguments: cal Iback (func[str] -> bytes).

The function expects the epoch as a parameter. Epoch
uniquely identifies the state that is being recovered. It re-
turns the serialized operator state.

Modeling Guide
48 PUBLIC Using Operators

Operators with support to state management can have two extra classes: generator and writer.
Generator

A generator is a port that produces outputs independent of input port data. All graphs that have data flowing
have at least one generator output port. Examples of generators include the following:

* operators reading files with no input connected

¢ Kafka consumers
Writers

A writer is an operator that has effects outside the graph (for example, operators writing into databases, or
operators writing to a publisher or subscriber queue). If an operator is a writer and it's stateful, it offers an
“at-least-once” guarantee. An “at-least-once” guarantee means that there's a guarantee that no data is lost,
even though it can be written twice. Being stateful requires implementing the restore and serialize functions.
It's also possible to have an exactly once guarantee, which requires the writer to be idempotent and stateful.
Idempotency means equivalency when writing the same data several times.

Keep in mind the following information regarding state management:

* To avoid deadlocks, don't block a port callback while it waits for another port callback.

* Before saving a state, the Modeler doesn't pause the shutdown function. Therefore, the shutdown function
doesn't change the operator state.

* If the operator has asynchronous behavior, the operator must support pause and resume.

For more information about these functions, see the Python3 Operator V2 section of the Repository Objects
Reference guide.

Example

=, Sample Code

counter = 0
def on_input(msg_id, header, body):

global counter

counter += 1

api.outputs.output.publish(str(counter))
api.set_port_callback("input™, on_input)
api.set_initial_snapshot_info(api.InitialProcessinfo(is_stateful=True))
def serialize(epoch):

return pickle.dumps(counter)
api.set_serialize_callback(serialize)
def restore(epoch, state bytes):

global counter

counter = pickle.loads(state_bytes)
api.set_restore_cal lback(restore)
def complete_callback(epoch):

api . logger.info(f'epoch {epoch} is completed!!!')
api.set_epoch_complete_cal lback(complete_cal lback)

Modeling Guide
Using Operators PUBLIC 49

Related Information

Examples: Operator States [page 50]
Error Recovery with Generation 2 (Gen2) Pipelines [page 59]

3.14.1 Examples: Operator States

This section contains examples illustrating the use of state management functions in the Python3 operator for
graph snapshots and operator states for Gen2 graphs.

Exactly Once Graph Structure

The following example uses this exactly-once graph structure:
|\ PythonOperator Generator » Deterministic Processing ¥ Idempotent Writer 3

Assumptions:

* The example doesn't include instances of the processing operator because the processing operator can
perform any operation, stateful or not, as long as it's deterministic. Therefore, if the graph is fed with the
same inputs, the same outputs are expected.

® The graph has a linear topology, which means that the operators don't have to fan in or out messages.

* The PythonOperator Generator accesses an SAP HANA table to which the system appended its content
during the graph execution.

o Example

The following code snippet shows the script:

""" python

from hdbcli import dbapi
offset = 0
c = None

api.set_initial_snapshot_info(api.InitialProcessinfo(is_stateful=True,outports

_info={"output®: api.Outportinfo(is_generator=True)}))

Operator will have batches and it will be Replayable

def prestart():

conn = dbapi .connect(

address=api .config.connection["connectionProperties®]["host"],
port=api.config.connection[“connectionProperties®][“port],
user=api.config.connection["connectionProperties™][“user"],
password=api .config.connection["connectionProperties"]["password"],
sslHostNamelnCertificate="*",
sslValidateCertificate=False

)
global c
c = conn.cursor()

def time_callback():
global offset
The order by guarantees the same order when replaying

Modeling Guide
50 PUBLIC Using Operators

c.execute(f'SELECT * FROM test ORDER BY x LIMIT 2 OFFSET {offset};")

test_data = c.fetchall()

c.close()

offset += 2

if len(test_data) > O:
t = [[[entry for entry in row] for row in test_data]
api.outputs.output.publish(api-Table(t))

return O

api.add_timer(time_callback)

api.set_prestart(prestart)
Since we assume new entries will go to the end of the table, we can only
save the offset
and not the table.
def serialize(epoch):
return pickle.dumps(offset)
api.set_serialize_callback(serialize)
def restore(epoch, state bytes):
global offset
offset = pickle.loads(state_bytes)
api.set_restore_cal lback(restore)

Idempotent Writer Script
* Example

Continuing with Example 1, the idempotent writer also writes to an SAP HANA table through the following
script:

from hdbcli import dbapi

offset = 0

c = None

def prestart():

conn = dbapi .connect(

address=api .config.connection["connectionProperties"]["host"],
port=api.config.connection["connectionProperties"]["port"],
user=api.config.connection["connectionProperties®][“user®],
password=api .config.connection[“connectionProperties™][“password"],
sslHostNamelnCertificate="*",
sslValidateCertificate=False

)
global c
c = conn.cursor()

def on_input(msg_id, header, body):
data = body.get() -body

Upsert guarantees idempotency
sql = "UPSERT test (X, y, z) VALUES (?, ?, ?) where x=?"
for row in data:
row.append(row[0])
c.execute(sql, row)
c.close()

api.set_port_callback("input™, on_input)
api.set_prestart(prestart)

Modeling Guide
Using Operators PUBLIC

51

No Idempotent Guarantee

o Example

The following example uses the same setup as the Exactly Once Graph Structure example, but the writer
isn't guaranteed to be idempotent. To have the exactly once guarantees, the graph has to avoid writing
duplicate batches through an auxiliary table in the same SAP HANA database.

The auxiliary table can be another persistence structure. In this example, the auxiliary table is a Write-
Ahead Log (WAL). To preserve already seen batches, the table has to survive multiple-graph runs.
Therefore, create and delete the WAL outside the graph context.

The following script shows the implementation of the generator and writers as Python Operators:

python
from hdbcli import dbapi
import pickle

offset = 0

ID=0

c = None

Table is broken into messages of 100 rows, and each made of 10 batches fo
10 rows

batch_size = 10
message_size = 100
api.set_initial_snapshot_info(api.InitialProcessinfo(is_stateful=True,outports
_info={"output®: api.Outportinfo(is_generator=True)}))
def prestart():
conn = dbapi -connect(
address=api .config.connection["connectionProperties®]["host"],
port=api.config.connection["connectionProperties"]["port"],
user=api.config.connection["connectionProperties"][“user®],
password=api .config.connection["connectionProperties™][“password"],
sslHostNamelnCertificate="*",
sslValidateCertificate=False

)
global c
c = conn.cursor()

final = False
def time_callback():
global offset, ID
The order by guarantees the same order when replaying
c.execute(f"SELECT * FROM test ORDER BY x LIMIT {batch_size} OFFSET
{offset};")
test _data = c.fetchall()
c.close()
global final
if len(test_data) > 0 and not final:
api . logger.info("sendingl®)
t = [[entry for entry in row] for row in test_data]
h ={}
if len(test_data) < batch_size:
h["isFinal®] = [True]
final = True
else:
h["isFinal®] = [False]
h["batchNum®] = [offset // batch_size]
h["messageNum®] = [offset // message _size]
The last batch has the flag set to true, this is important so the
writer operator can clean up the WAL
iT (offset + batch_size) % message_size == 0 and offset > 1:
h["isFinal®] = [True]

h[*1D"] = [1D]

Modeling Guide
52 PUBLIC Using Operators

api.outputs.output.publish(api.Table(t), h)
api - logger.info("after")
ID += 1
offset += batch_size
return O
api.add_timer(time_callback)

api .set_prestart(prestart)
Since we assume new entries will go to the end of the table, we can only
save the offset
and not the table.
def serialize(epoch):
return pickle.dumps([offset, ID])
api.set_serialize_callback(serialize)
def restore(epoch, state bytes):
global offset, ID
offset, ID = pickle.loads(state_bytes)

api.set_restore_cal lback(restore)

Idempotent Guarantee That Accesses SAP HANA Table
o Example
The writer also accesses an SAP HANA table in the following script:

python

import pickle

from hdbcli import dbapi

offset = 0

messages_done = {}

c = None

api.set_initial_snapshot_info(api.InitialProcessinfo(is_stateful=True))

def prestart():

conn = dbapi .connect(
address=api .config.connection["connectionProperties"]["host"],
port=api.config.connection["connectionProperties"]["port"],
user=api.config.connection[“connectionProperties®][“user™],
password=api .config.connection[“connectionProperties™][“password"],
sslHostNamelnCertificate="*",
sslValidateCertificate=False

)
global c
c = conn.cursor()

def insert_wal(ID, batch_num, message_num):
sql = "INSERT INTO WAL VALUES(?,?,?)"
c.execute(sql, [ID, batch_num, message num])
c.close()

def i1s_batch_new(batch_num, message num):

c.execute(F"SELECT ID FROM WAL WHERE BATCH={batch_num} AND
MESSAGE={message_num}")

test _data = c.fetchall()

c.close()

return len(test_data) == 0

def on_input(msg_id, header, body):
api - logger.info(“Receiving®)
data = body.get() .body

batch_num = header[“batchNum®][0]
message_num = header["messageNum®][O]

if header["isFinal"][0]:
api.logger.info("Final message®)

Modeling Guide
Using Operators PUBLIC

53

global messages_done
messages_done[message_num] = None

1t will check if messagelD and batchID do not exist in the WAL table,
if they do, message is ignored
if not is_batch_new(batch_num, message_num):
return

api.logger.info("Inserting into test2%)
sql = "INSERT INTO test2 (X, y, z) VALUES (?, ?, ?)°
for row in data:
row.append(row[0])
c.execute(sql, row)
c.close()

api - logger.info("Inserting into wal™)
Insert into WAL table, and if message is done, insert accordingly
insert_wal (header["ID"][0], batch_num, message_num)

api - logger.info("sending to output®)
api .outputs.output.publish(str(data))

api.set_port_callback("input™, on_input)
api .set_prestart(prestart)
Any messages that have been finished by this point are eligible to be
removed from
WAL when the epoch is completed.
def serialize(epoch):

global messages_done

api . logger.info(f"setting epochs {messages_done}")

for messagelD, val in messages_done.items():

if val is None:
messages_done[messagelD] = epoch

The writer has to keep as state the map, since finished messages may
not have had their epochs processed
return pickle.dumps(messages_done)
api.set_serialize_callback(serialize)
def restore(epoch, state bytes):
global messages_done
messages_done = pickle. loads(state_bytes)
api.set_restore_cal lback(restore)
Any message whose corresponding epoch existing could
be removed as we know the epoch has finished
def complete_callback(epoch):
global messages_done
api.logger.info(f"removing from wal {messages_done}")
for messagelD, e in messages_done.items():
if e == epoch:
api.logger.info(f"removing message {messagelD}")
c.execute(f"DELETE FROM WAL WHERE MESSAGE=?", [messagelD])
c.close()
cleaning up ended epochs
del messages_done[messagelD]
api.set_epoch_complete_cal lback(complete_cal lback)

Modeling Guide
54 PUBLIC Using Operators

3.15 Dockerfile Library for Runtime Environment

Operators require a certain runtime environment. For example, if an operator executes some JavaScript code,
then the operator requires an environment with a JavaScript engine.

The Modeler provides predefined environments for operators, and these environments are available as a library
of Dockerfiles.

When you execute a graph, the application translates each operator in the graph into processes. It then
searches the Dockerfiles for an environment suitable for the operator execution and instantiates a Docker
image.

i Note

The Docker image with the environment and the operator process is executed on a Kubernetes cluster.

Modeling Guide
Using Operators PUBLIC 55

4 Using Graphs (Pipelines)

Graphs, also known as pipelines, are a network of operators connected by typed input and output ports for
data transfer.

There are two types of graphs based on the type of operators you choose to build the graph. When you create
a graph, you must select to use either Generation 1 (Genl) or Generation 2 (Gen2) operators. Graphs can't
contain a combination of Genl and Gen2 operators. A graph created with Genl operators is a Genl graph. A
graph created with Gen2 operators is a Gen2 graph.

For more information about operators, see Using Operators [page 14]. For more information about Genl and
Gen2 operators, see Generation 1 and Generation 2 Operators [page 21].

56

Creating Graphs [page 57]
A graph (pipeline) consists of operators that you configure to form a specific process and connect
using input and output ports.

Error Recovery with Generation 2 (Gen2) Pipelines [page 59]
Gen?2 pipelines (graphs) make it possible to recover from errors using specific runtime features.

Graph Snapshots and Operator States [page 61]
You can configure Generation 2 (Gen?2) graphs to take snapshots of their state at regular time intervals
so that the operators of the graph send small pieces of data (status) to a central data store.

Delivery Guarantee for Generation 2 (Gen2) Graphs [page 66]
When you enable automatic graph recovery and snapshots for a Gen2 graph (pipeline), your graphs
can outlast system failures and system maintenance events.

Validate Graphs [page 69]
Graph validation is an automatic or manual process that analyzes a graph for correct structure and
components, such as operators, ports, groups, and configuration.

Running Graphs [page 72]
After creating a graph, you can run the graph based on the configuration defined for the graph. The
Modeler application runs the operators in the graph as individual processes.

Maintain Resource Requirements for Graphs [page 87]
Specify compute resource requirements, such as CPU and memory limits, for graph groups in SAP
Data Intelligence Modeler.

Create Data Types in Graph [page 91]
You can create graph-level data types and use them in the graph along with the automatically
generated data types.

Groups, Tags, and Dockerfiles [page 94]
Groups, tags, and Dockerfiles are essential parts of the SAP Data Intelligence environment for running
graphs (pipelines) more efficiently. Therefore, you must understand how they work together.

Execution Model [page 99]
To avoid problems, such as back pressure and deadlocks, SAP Data Intelligence Modeler executes
graphs following an execution model.

Monitoring Graphs [page 100]
After creating and running graphs, monitor graphs and view statistics.

Modeling Guide
PUBLIC Using Graphs (Pipelines)

Native Multiplexing for Gen2 Pipelines [page 115]
Connect to multiple ports in a pipeline, such as one to many or many to one, without having to
implement multiplexing with a script operator or other predefined operator.

Related Information

4.1 Creating Graphs

A graph (pipeline) consists of operators that you configure to form a specific process and connect using input
and output ports.

Prerequisites

SAP Data Intelligence Modeler provides Generation 1 (Genl) and Generation 2 (Gen2) operators. Before you
create a graph, determine which group of operators to use. You can build a graph using either Genl or Gen2
operators, but you can't combine them in a single graph. For complete information about Genl and Gen2
operators, see Generation 1 and Generation 2 Operators [page 21].

A graph can contain a single operator, or a network of operators based on the purpose of the graph.

Context

To create a basic graph, open the Modeler application and perform the following steps:

Procedure

1. Inthe navigation pane at left, open the Graphs tab.
2. Select the down arrow next to + (Create Graph) and choose either Use Generation 1 Operators or Use

Generation 2 Operators.

The Modeler opens the Operators tab. The tab lists only the operators belonging to the generation you
selected. The Modeler also opens an empty graph editor to the right of the navigation pane. Use the graph
editor area to create the graph.

->Tip

The Modeler groups the operators in the Operators tab under specific categories. To customize the list
of operators, use the ¥ (Customize Visible Categories) icon or use the Search bar.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 57

58

I For more information about operator types and categories, see the Repository Objects Reference.

Double-click the first operator for your graph in the Operators tab.
The Modeler adds the operator to the graph editor workspace. Add additional operators as necessary in
the same manner.

Each operator has default configuration settings. You can change default settings or create additional
configuration parameters. To configure each operator based on its purpose, perform the following
substeps:

a. Select the operator in the graph editor workspace.
b. Select 3& (Show Configuration) next to the operator.

The Modeler opens a Configuration pane at right. Based on the operator type, you can also specify
values for the subengine configuration parameters.

c. Configure each operator in your graph in the same manner.

For more information about operator configuration settings, see the Repository Objects Reference.
Optional: Select Validate in the Configuration pane.
If the operator has a type scheme associated with it, then validate the configuration parameters' values

against the conditions defined in the schema. For example, validate mandatory fields, minimum or
maximum length, value formats, regular expression, and so on.

i Note

The validation is based on the constraints defined in the scheme. The Modeler validates all
configuration parameter values and displays validation errors, if any.

Connect the operators: Drag and drop your cursor from the output port of one operator to an input port of
another operator.

Continue connecting the operators in your graph so that all operators are connected in the order in which
to process the data. The Modeler helps you select the allowable input port type by highlighting all input
ports based on the output port type.

Optional: To configure the graph, perform the following substeps:

a. Ensure that no individual object in the graph is selected, then select 22 (Show Configuration).
b. Complete the parameters as described in the following table.

Parameter Description

Description Enter a description of the graph.

Icon file name Enter the icon name, such as kafka.png.

Icon Enter the Font Awesome icon name, or choose an op-

tion from the list.

The Modeler uses the icon for display only when you
don't provide a value for Icon file name.

Modeling Guide
PUBLIC Using Graphs (Pipelines)

Parameter Description

Disable lineage Slide the toggle to ON or OFF.

Applicable only for graphs that contain certain opera-
tors that support lineage extraction. You can use the
Metadata Explorer tool to view data lineage.

8. Choose Save from the [® (Save) list.

9. Enter the fully qualified path and file name for the graph in Name, and optionally enter a description in
Description.

10. Choose the applicable value from the Category list, or enter a new category.
11. Select OK.
The Modeler saves the graph and operators in a folder structure in the modeler repository, such

as . ..com/sap/others/<graphname>. To save another instance of the graph, in the editor bar, choose
Save As from the [® (Save) list and provide the applicable information in the Save dialog box.

12. Optional: To export the graph to the JSON definition after you create and save the graph, perform the
following substeps:

a. Open the Graphs tab in the navigation pane at left.
b. Right-click the applicable graph and choose Export.

The Modeler creates the JSON file and places it in your Downloads folder.

Related Information

SAP Data Intelligence Operators
Creating Operators [page 36]
Monitor the Graph Execution Status [page 101]

4.2 Error Recovery with Generation 2 (Gen2) Pipelines

Gen?2 pipelines (graphs) make it possible to recover from errors using specific runtime features.
Configure the following features at runtime for your Gen2 graphs to aid in pipeline recovery when errors occur:

¢ Auto Restart: Graphs restart automatically when the pipeline fails or is evicted.
* Snapshots: Graphs create periodic snapshots of the current operation. Benefits of snapshots include the
following:
* Recover the operation when there are failures, pauses, or system upgrades.
* Save information about individual tasks, such as row last read, so that you can view task information
when you recover the pipeline.

* Restart a pipeline at the point of error. Script operators implement an API for saving and restoring the
state, which allows you to implement more complex use cases.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 59

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/acd32810819a4b2893c9f8698e2ec55c.html

i Note
For more information about snapshots and limitations, see Graph Snapshots and Operator States

[page 61].

* Streaming API: Use streaming APl during data transfor. Loads small chunks of data into system memory
instead of data from the entire pipeline. Streaming API has the following benefits:

* Reduce overall memory usage: Operators send and consume data in small chunks inside the same
stream, which reduces memory usage.

* Combine with batch: Operators send each batch as a stream, and include the metadata for each batch
inside the headers.

- Tip
When you implement runtime features for Gen2 graphs, use standardized error handling so that each

operator uses the same methods for processing errors.

To design and operate recoverable Gen2 graphs, use the following methods:

* Gen2 Runtime:

Option Description

Auto Restart Configure graphs to restart automatically on failure or eviction. Set the Automatic
Recovery options in the Run As dialog box.

Snapshots Configure graphs to save a snapshot of the current operation periodically. The
snapshot allows recovery of the operation when the graph fails, pauses, or when
there are system upgrades. Operators save information about individual tasks, such
as which row in a table was last updated, and receive that information on recovery,
avoiding the need to restart the whole operation from the beginning. There are also
functions for script operators that implement an API for saving and restoring state as
well, allowing users to implement more complex use cases.

¢ Streaming: Operators support a streaming API for data transfer that doesn't require loading all information
into memory. Operators can send and consume data in small chunks inside the same stream, reducing
overall memory usage. Sending data through batches is still possible but it can be combined with streams.
Operators can send each batch as a stream with the metadata for each batch being sent inside the
headers.

* Error Handling: Each operator has a standardized way of handling errors.

Related Information

Graph Snapshots and Operator States [page 61]
State Management [page 48]

Modeling Guide
60 PUBLIC Using Graphs (Pipelines)

4.3 Graph Snapshots and Operator States

You can configure Generation 2 (Gen2) graphs to take snapshots of their state at regular time intervals so that
the operators of the graph send small pieces of data (status) to a central data store.

If the graph fails or pauses, SAP Data Intelligence Modeler uses the last status data to reinitialize to the last
state before the failure or pause happened.

» Example

If a graph is processing a large database table, its operator regularly saves which rows it has already
processed. When recovering from a failure, the operator reads its last used state and continues processing
from the specific row instead of starting over from the beginning of the table.

If you also enable the snapshot feature, recovery of stateful graphs is more efficient than running with recovery
only. Enable snapshots only when the Gen2 graph is conceptually stateful. If a graph doesn't have any state to
save, it's more efficient to not capture snapshots.

Keeping State Size Small

To keep the status data per operator small, design a computation method that incrementally maintains a
small state size. Ensure that you design a computation method when you design the operator and before you
implement the operator.

i Note

The size of the stored state depends on the stateful computation by the operator, and not by the snapshot
frequency.

> Example

Calculate the total sales by city and send sales records to the operator in the graph through its input port,
and manage the state size. There are two methods to achieve this goal.

Method 1

1. Group all records received by each city.
2. After the last record is received, compute the sum of sales in each city group.
3. Return the result.

For Method 1, the size of the state is roughly the size of all records received by the operator, no matter the
snapshot frequency.

Method 2
Design an incremental version of the Method 1 computation:

1. Maintain a state where, for each city, you compute the current sum of sales amount.
2. After all records are received, the state contains the result that is returned.

For Method 2, the size of the state is roughly the number of cities with their sum, independent of the
snapshot frequency.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 61

Operators That Support Snapshots

Not every Gen2 operator supports the snapshot feature. When you configure and run a Gen2 graph, but
some of the operators in the graph don't support the snapshot feature, the graph can't reinitialize to the state
before a failure or a pause, and it can lose data. Therefore, ensure that a graph that you run with the Capture
Snapshots option enabled contains only operators that support snapshots.

The following table lists all Gen2 operators, whether they support snapshots, and any conditions that apply.

Category

Operator

Operator ID

Supports Snapshots

Conditions and Re-
marks

ABAP

Read Data From SAP
System

com.sap.abap.reader

Yes

Stores state: list of
package IDs in proc-
ess.

Connectivity

Kafka Consumer

com.sap.kafka.con-
sumer2.v2

With conditions

For details about con-
ditions, see the section
Snapshot Supportin
Kafka Consumer V2.

Connectivity

Kafka Producer

com.sap.kafka.pro-
ducer.v2

With conditions

For details about con-
ditions, see the section
Snapshot Supportin
Kafka Producer V2.

Connectivity

REST API Client

com.sap.restapi.client

Yes

For details about con-
ditions, see the section
Snapshot Supportin
Rest API Client.

Connectivity (via Flow-
agent)

Flowagent SQL Execu-

tor

com.sap.dh.ds.sql.ex-
ecutor.v?

No

None

Data Quality

Validation Rule

com.sap.dh.dq.valida-
tionrule.v2

No

None

Files

Binary File Consumer

com.sap.file.read.v2

With conditions

Stores state: index of
the part file last read.

For details about con-
ditions, see the section
Snapshot Supportin
Binary File Consumer.

Files

Binary File Producer

com.sap.file.write.v2

With conditions

Stores state: See the
section State Manage-
ment Support in Bi-
nary File Producer.

Files

List Files

com.sap.file.list.v2

With conditions

Stores state: index of
file in the files list.

For details about con-
ditions, see the section
Snapshot Supportin
List Files V2.

62 PUBLIC

Modeling Guide
Using Graphs (Pipelines)

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6d4be1097f8d4df0b18e3a606ae9b607.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/e22d0e5f8f564a76a1fe0486845b0303.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/36aa260d17f54d738071b9c7a716faea.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/1faddfa3f3e14bcb98049e90ece74f1f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/64d01ad02e39499594b1eb103974443e.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/64d01ad02e39499594b1eb103974443e.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/4d4da2140f354ba09fa4a280527f6e07.html

Conditions and Re-

Category Operator Operator ID Supports Snapshots marks
Processing Python3 Operator com.sap.system.py- Yes Stores state: depends
thon30perator.v2 on user script.
Remote Dataflow Data Services Trans- com.sap.dataservi- No None
form ces.transform.v2
SAP HANA Initialize HANA Table com.sap.hana.initTa- Yes None
ble.v2
SAP HANA Read HANA Table com.sap.hana.readTa- With conditions Stores state: row in-
ble.v2 dex.
For details about con-
ditions, see the section
State Management
Support in Read HANA
Table V2.
SAP HANA Run HANA SQL com.sap.hana.runSQL. With conditions Stores state: last state-
v2 ment executed and the
batch index.
For details about con-
ditions, see the section
State Management
Support in Run HANA
SQL V2.
SAP HANA Write HANA Table com.sap.hana.writeTa- Yes None
ble.v2
Structured Data Oper- SAP Application Con- com.sap.applica- No None

ators

sumer

tion.consumer.v3

Structured Data Oper-
ators

SAP Application Pro-
ducer

com.sap.applica-
tion.producer.v2

With conditions

Operator supports
running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
snapshots when you
use it with other con-
sumer operators, like
ABAP Readers.

Modeling Guide
Using Graphs (Pipelines)

PUBLIC 63

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/b51adedc86404c79afda7bbca3b958aa.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/b51adedc86404c79afda7bbca3b958aa.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/5796f97071ac44b386172f686fdaf015.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/5796f97071ac44b386172f686fdaf015.html

Category

Operator

Operator ID

Supports Snapshots

Conditions and Re-
marks

Structured Data Oper-
ators

SQL Consumer

com.sap.data-
base.sgl.consumer.v3

With conditions

Stores state: partition
of input data.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

Structured Data Oper-
ators

Table Consumer

com.sap.database.ta-
ble.consumer.v3

With conditions

Stores state: partition
of database table.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

Structured Data Oper-
ators

Table Producer

com.sap.database.ta-
ble.producer.v4

With conditions

Operator supports
running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
shapshots when you
use it with other con-
sumer operators, like
ABAP Readers.

Structured Data Oper-
ators

Data Transform

com.sap.datatrans-
form.v2

No

None

Structured Data Oper-
ators

Structured File Con-
sumer

com.sap.storage.con-
sumer.v3

With conditions

Stores state: partition
of file groupings.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

64 PUBLIC

Modeling Guide
Using Graphs (Pipelines)

Category

Operator

Operator ID

Supports Snapshots

Conditions and Re-
marks

Structured Data Oper-

Structured File Pro-

com.sap.storage.pro-

With conditions

Operator supports

ators ducer ducerv3 running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
snapshots when you
use it with other con-
sumer operators, like
ABAP Readers.
Utilities Binary to Table com.sap.table.de- Yes None
code.v?2
Utilities Table to Binary comsaap.table.encode Yes None
Utilities Graph Terminator com.sap.util.graphTer- Yes None
minator.v2
Utilities Terminal com.sap.util.termi- With conditions Data that entered the
nal.v2 terminal can be lost
when it wasn't proc-
essed downstream be-
fore a pause or restart.
Utilities Wiretap com.sap.util.wiretap.v2 Yes None
Limitations

SAP Data Intelligence doesn't support the following scenarios with the snapshot feature:

¢ Circular pipelines: You can't have a pipeline that has a circular connection, which is when the last operator
outputs data to the first operator.

* Debug mode: You can't run graphs in debug mode with snapshots enabled.

¢ Group multiplicity: You can't have snapshot generation on graphs with groups that have multiplicity.

* Subgraphs: You can't create subgraphs for Gen2 pipelines.

Related Information

State Management [page 48]

Examples: Operator States [page 50]

Modeling Guide
Using Graphs (Pipelines)

PUBLIC 65

4.4 Delivery Guarantee for Generation 2 (Gen2) Graphs

When you enable automatic graph recovery and snapshots for a Gen2 graph (pipeline), your graphs can outlast
system failures and system maintenance events.

SAP Data Intelligence doesn't persist snapshots continually. Therefore, some already-processed information
can be lost, and the Modeler has to reprocess some of the same information after restoring a graph.
Regardless, SAP Data Intelligence provides guarantees on the data consistency when there's a chance of losing
data or duplicating data when the Modeler recovers the graph.

The following table lists the guarantees that Gen2 graphs with automatic graph recovery and snapshots
provide. For descriptions of terms, see Terminology [page 66].

Source Batch Writer Other Conditions Guarantee

Replayable No Idempotent Pipeline is determinis- Exactly once
tic

Replayable Yes Idempotent Pipeline is determinis- Exactly once
tic

Discard duplicate mes-
sages after source

Any No Transactional None Exactly once

Replayable Yes Transactional None Exactly once

Nonreplayable No None Any At most once

Nonreplayable Yes Any Any At most once

Replayable Any Any Any At least once
Terminology

The terms in this section define the content of the values in the guarantee table.

Source

A source is an operator that generates data independently of any signal from an input port or ports. The
following table describes the values in the Source column.

Modeling Guide
66 PUBLIC Using Graphs (Pipelines)

Replayable Data generated at time “T + x” always contains the data that
was generated previously, at moment “T", and in the same
order.

The following scenarios apply to replayable generators with-
out batches:

® Reading immutable file.

®* Query SELECT ...FROM SALESORDER WHERE
ORDERDATE <"10-02-2010" ORDER BY
ORDERDATE"", where the comparison guarantees to al-
ways include previous information.

® Reading from an event queue starting from an offset.

®* Query"SELECT ...FROM
SALESORDER. . .ORDER BY ORDERDATE", where
the table is append-only and records can be ordered.

Nonreplayable Data generated when replayable conditions aren't met.

i Note

SAP Data Intelligence reads from a directory of files so
that when there's a recovery, it doesn't have to start
from the beginning.

Any Either replayable or nonreplayable.

Batch

Data generated and broken into batches. You configure batches typically in the operator configuration.

Yes Data is broken into batches.

No Dataisn't broken into batches.

Any Data is either broken into batches or not.
Writer

The writer column contains information about operators that send data outside the graph. The following table
describes values in the Writer column.

Idempotent Writing data multiple times has the same effect as writing
data once. An idempotent writer can be guaranteed by the
operator's operation, such as an UPSERT or a write-ahead
log (WAL).

Modeling Guide
Using Graphs (Pipelines) PUBLIC 67

Transactional Writing data only when an epoch is finished, where an
epoch is the interval between the snapshots. During
an epoch to snapshot the graph, the operator doesn't
write any data. Applicable only for the Python Opera-
tor (*api .set_epoch_complete_callback®)and
Kafka Consumer.

i Note

Failure happens when the epoch completes, but before
persisting data. The data recovery is from the com-
pleted epoch, so the writer requires a WAL to determine
that the epoch hasn't saved the state yet.

Can discard duplicates The operator has to guarantee by an independent log that it

discards repeated batches before they're propagated to the
graph. Discarding repeated batches before propagating to
the graph is guaranteed by several operators in the graph.
An operator that is directly connected to the generators can
have the independent log. Alternately, the source operator
can have the independent log.

The Discard duplicate messages after source condition is
necessary for operators whose internal states are affected
by duplicate input messages. Otherwise, there's no risk of
having the operators process the data again, and the idem-
potent writers is enough to prevent external side effects.

Other Conditions
Pipeline is deterministic

The graph always produces the same data to write and the same internal state for a given set of messages
provided by the generators.

Recovering a graph with replayable sources has the same effect as the original run. The generators create the
same data of the latest persisted snapshot, which in turn produces the same effects.
Guarantees

The following table describes the values that appear in the Guarantees column.

Exactly once Execution is equivalent to failure-free execution.

At most once If there's a failure, data is lost but not duplicated.

At least once If there's a failure, data isn't lost and is duplicated.
i Note

The guarantees are for cases with a single generator or writer, such as a graph that contains the following

construction: |» Read File » Python Operator » Write HANA. 7 The listed guarantees are also applicable to
any other configuration, excluding cycles.

Modeling Guide
68 PUBLIC Using Graphs (Pipelines)

4.5 Validate Graphs

Graph validation is an automatic or manual process that analyzes a graph for correct structure and
components, such as operators, ports, groups, and configuration.

The results of a graph validation show that the graph analyses are successful. Graph validation checks the
following components of a graph:

¢ Graph configuration

* QOperator connections

* Tag configuration for groups defined in a graph

¢ Graph resource requests and limits

Validation doesn't build the graph with the corresponding resources and dependencies. Therefore, validation
doesn't take as long as running the graph.

Types of Graph Validation

There are two types of graph validation based on when the validation is performed:

* Implicit validation: Performed when you save or run a graph. Implicit validation is also known as automatic
validation.

* Explicit validation: Performed when you start graph validation manually. Explicit validation is also known
as manual validation.
Start an explicit validation by selecting the @ (Validate) icon in the Data Intelligence Modeler editor toolbar.

View Validation Results

To view graph validation results, open the Validation tab in the bottom pane of the Data Intelligence Modeler. It
displays either a success message or a list of errors and warnings.

® Success: The graph doesn't have any warnings or errors.

* Warning: There's a problem with the graph. This problem won't cause the graph to fail, but it can result in
other issues later.

* Error: There's an issue with the graph. This problem will cause the graph to fail and needs to be fixed.

i Note

If validation finds any errors or warnings, you can fix some of the issues by selecting the @ (help) icon
located to the right of the error or warning message.

When the validation results in errors, you can't run the graph until you fix the errors and revalidate the graph.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 69

Related Information

Graph Validation Warnings and Errors [page 70]

4.5.1 Graph Validation Warnings and Errors

When a graph validation isn't successful, the Data Intelligence Modeler creates a list of warnings and errors,
with a link to additional information about the warning or error.

The following table describes some of the warnings and errors from a graph validation.

Message Component Severity Quick Fix

There are no operators inthe isGraphEmpty Warning Add operators to the graph.

graph.

Invalid graph description. Validate Graph Description Error Check graph . json for

Special characters are not al- special characters in the de-

lowed. scription.

Group name is either missing Validate Single Group Error Check graph.jsonto

or not unique. add missing group names,
and modify identical group
names.

The tagdatabase of graph Check tags Error Check your repository or

<graph_name> is empty. Tags - json files for er-
rors. Errors occur in the
<graph_name> file.

Matching Dockerfile couldn't Check tags Error Check your repository

be found. Tags - json files, or other
resources, for errors. Also
check for missing or incor-
rect tags in the group config-
uration.

The graph <graph_name> Check Operator Connections Warning This graph can execute with

has a single operator. current configuration. How-
ever, consider adding more
operators to the graph based
on your requirement.

Incompatible ports are con- Check Connection Types Error Provide connection between

nected (source: port %s of compatible ports only.

operator %s, target: port %s

of operator %s).

Operator Validate Operator Versions Warning This graph can execute with

<operator_name> either
deprecated or beta.

current configuration. How-
ever, consider using nonde-
precated or nonbeta opera-
tors.

70 PUBLIC

Modeling Guide
Using Graphs (Pipelines)

Message Component Severity Quick Fix

Operator Validate Port Names Warning Check that the operator
<operator_name> does <operator_name> is cor-
not exist in the registry. rect and saved sucessfully.
Some groups are missing re- Validate Graph Resources Error Without selecting any part of

source definitions. If the re-
source request is missing
and the limit is set, the re-
quest shall use the smaller
value from either the limit set
or the default request value.

The mes