
PUBLIC
SAP Data Intelligence
2023-06-24

Modeling Guide

©
 2

02
3

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll

rig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Modeling Guide for SAP Data Intelligence. 7

2 Introduction to the SAP Data Intelligence Modeler. .8
2.1 Log on to SAP Data Intelligence Modeler. 10
2.2 Description of the Modeler Main Screen. 10

3 Using Operators. 14
3.1 Operator Details. 15
3.2 Generation 1 and Generation 2 Operators. 21
3.3 Customizing the List of Operators. .21
3.4 Ports and Port Types. 22

Compatible Port Types. 25
Table Messages. 27
Data Types in Operator Ports. 32
Adding Ports to Operators. 33

3.5 Using Managed Connections in Script Operators. 34
3.6 Creating Operators. 36
3.7 Configuring Operators. 40
3.8 Creating Categories. .41
3.9 Creating Operator Groups. 41
3.10 Viewing Operator Versions. .43

Replacing Deprecated Operators. .44
Editing Operator Versions. 44
Creating Operator Versions. .45

3.11 Editing Operators. 45
3.12 Error Handling in Generation 2 Operators. 46
3.13 Batch Header. 47
3.14 State Management. 48

Examples: Operator States. 50
3.15 Dockerfile Library for Runtime Environment. 55

4 Using Graphs (Pipelines). 56
4.1 Creating Graphs. 57
4.2 Error Recovery with Generation 2 (Gen2) Pipelines. 59
4.3 Graph Snapshots and Operator States. 61
4.4 Delivery Guarantee for Generation 2 (Gen2) Graphs. .66
4.5 Validate Graphs. 69

Graph Validation Warnings and Errors. 70

2 PUBLIC
Modeling Guide

Content

4.6 Running Graphs. 72
Automatic Graph Recovery. 74
Parameterize the Graph Run Process . 78
Debug Graphs. 82
Schedule Graph Executions. 84

4.7 Maintain Resource Requirements for Graphs. 87
Resource Requirements for a Graph in JSON. 88
Configure Resources for a Graph. .90

4.8 Create Data Types in Graph. 91
Use Data Types in Graph. .92
Exporting and Importing Graphs with Data Types. 93

4.9 Groups, Tags, and Dockerfiles. 94
4.10 Execution Model. .99
4.11 Monitoring Graphs . 100

Monitor the Graph Execution Status. 101
Activate Trace Messages. .108
Downloading Diagnostic Information for Graphs. 109

4.12 Native Multiplexing for Gen2 Pipelines. 115
Multiplexing Scenarios. 117

5 Using Git Terminal. 120
5.1 Git Credential Handling Using Standard Git Credential Helper. 121
5.2 Create a Local Git Repository. 122
5.3 Clone a Remote Git Repository. 123

6 Using Scenario Templates. 125
6.1 ABAP with Data Lakes. 125
6.2 Data Processing with Scripting Languages. .126
6.3 ETL from Database. 128
6.4 Loading Data from Data Lake to Database (SAP HANA). 128

7 Using Graph Snippets. 130
7.1 Importing Graph Snippets. 130
7.2 Creating Graph Snippets. 131
7.3 Editing Graph Snippets. 132

8 Working with the Data Workflow Operators. 133
8.1 Workflow Trigger and Workflow Terminator . 136
8.2 Run an SAP BW Process Chain Operator. 137
8.3 Run a HANA Flowgraph Operator. 139
8.4 Run an SAP Data Intelligence Pipeline. 141
8.5 Run an SAP Data Services Job. 143
8.6 Transfer Data . 146

Modeling Guide
Content PUBLIC 3

Transfer Data from SAP BW to Cloud Storage. 146
Transfer Data from SAP HANA to Cloud Storage. 153

8.7 Control Flow of Execution. .156
8.8 Send E-Mail Notifications. 157

9 Working with Structured Data Operators. 159
9.1 Data Transform. 159

Configure the Projection Node. 161
Configure the Join Node. 163
Configure the Aggregation Node. 167
Configure the Union Node. 169
Configure the Case Node. 170

9.2 Structured Consumer Operators. 171
SAP Application Consumer. 171
Structured File Consumer. 172
Structured SQL Consumer. 174

9.3 Structured Producer Operators. .175
SAP Application Producer. 175
Structured File Producer. 176
Structured Table Producer. .177

9.4 Custom Editor. .178
9.5 Resiliency with Structured Data Operators. 179

10 Operator Metrics. 181

11 Replicating Data. 182
11.1 Create a Replication Flow. 183

Create Tasks. 187
11.2 Validate the Replication Flow. 193
11.3 Deploy the Replication Flow. 193
11.4 Run the Replication Flow. 194
11.5 Cloud Storage Target Structure. 195
11.6 Kafka as Target .198
11.7 ABAP Cluster Table Replications with Delta Load. 199
11.8 Edit an Existing Replication Flow. 200
11.9 Undeploy a Replication Flow. 200
11.10 Delete a Replication Flow. .202
11.11 Clean Up Source Artifacts. 202

12 Monitoring SAP Data Intelligence . 204
12.1 Log in to SAP Data Intelligence Monitoring. 205
12.2 Using the Monitoring Application. 205

13 Integrating SAP Cloud Applications with SAP Data Intelligence. 213

4 PUBLIC
Modeling Guide

Content

14 Service-Specific Information. 216
14.1 Alibaba Cloud Object Storage Service (OSS). 216
14.2 Amazon Simple Storage Service (AWS S3). 220
14.3 Google Cloud Storage (GCS). 223
14.4 Hadoop Distributed File System (HDFS). 225
14.5 Microsoft Azure Data Lake (ADL). 226
14.6 Microsoft Azure Blob Storage (WASB). 228
14.7 Local File System (/file). 230
14.8 WebHDFS. 230

15 Changing Data Capture (CDC). 233

16 Subengines. 234
16.1 Working with the C++ Subengine to Create Operators. 235

Getting Started with the C++ Subengine. 237
Creating an Operator. 237
Logging and Error Handling. .239
Port Data. 240
Setting Values for Configuration Properties. 243
Process Handlers. .243
API Reference. 245

16.2 Create Operators with the Python Subengine. .257
Normal Usage. 259
Advanced Usage. 261

16.3 Working with the Node.js Subengine to Create Operators. 274
Node.js Operators and Operating System Processes. 274
Use Cases for the Node.js Subengine. 275
The Node.js Subengine SDK. 276
Node.js Data Types. 279
Node.js Safe and Unsafe Integer Data Types. 279
Create a Node.js Operator . 280
Node.js Project Structure. 282
Node.js Project Files and Resources. .282
Node.js Subengine Logging. .285

16.4 Working with Flowagent Subengine to Connect to Databases. 286

17 Creating Dockerfiles. 291
17.1 Dockerfile Inheritance. 292
17.2 Referencing Parent Docker Images. 294

18 Creating Configuration Types. 298

19 Security and Data Protection. 301

Modeling Guide
Content PUBLIC 5

20 Using Data Types. 302
20.1 Creating Global Data Types. 303
20.2 Creating Local Data Types. 305

6 PUBLIC
Modeling Guide

Content

1 Modeling Guide for SAP Data Intelligence

The Modeling Guide contains information about using the SAP Data Intelligence Modeler.

The SAP Data Intelligence Modeler helps create data processing graphs and provides a runtime and design-
time environment for data-driven scenarios. The tool reuses existing coding and libraries to orchestrate data
processing in distributed landscapes.

The following tasks require some expertise and programming skills:

• Creating operators
• Creating types
• Creating Dockerfiles
• Working with the subengines in the SAP Data Intelligence Modeler

If you’re new to these tasks, or to modeling, we recommend that you start your learning journey by creating
graphs with only the built-in (predefined) operators that the modeler provides.

Related Information

Introduction to the SAP Data Intelligence Modeler [page 8]

Modeling Guide
Modeling Guide for SAP Data Intelligence PUBLIC 7

2 Introduction to the SAP Data Intelligence
Modeler

The SAP Data Intelligence Modeler application is based on the Pipeline Engine, which uses a flow-based
programming model to run graphs that process your data.

Data Ingestion and Transformation

The Modeler offers advanced data ingestion and transformation capabilities using computation graphs. In
computation graphs, nodes represent operations on the data and edges represent the data flow. The following
are common use cases for data ingestion and transformation in the Modeler:

• Ingest data from source systems like the following:
• Database systems, such as SAP HANA.
• Message queues, such as Apache Kafka.
• Data storage systems, such as Hadoop Distributed File System (HDFS) or Amazon Simple Storage

Service (Amazon S3).
• Cleanse data.
• Transform data to target schemas.
• Store data in target systems for consumption, archiving, or analysis.
• Replicate large datasets.

Modeler Graphical Capabilities
Use the graphical capabilities of the Modeler to create graphs, and use the runtime component to run graphs
in a containerized environment that runs on Kubernetes. Construct graphs in the Modeler using predefined
operators, which provide for many productive business use cases. These operators help define graphs,
including nonterminating, nonconnected, or cyclic graphs.

 Example
A simple interaction with Apache Kafka

The following graph consists of two subgraphs:

• The first subgraph generates data and writes the data into a Kafka message queue.
• The second subgraph reads the data from Kafka, converts it to string, and prints the data to a terminal.

8 PUBLIC
Modeling Guide

Introduction to the SAP Data Intelligence Modeler

Also use the Modeler to create generic data processing graphs, as shown in the following example.

 Example
The following graph detects objects in a video stream.

Related Information

Log on to SAP Data Intelligence Modeler [page 10]
Description of the Modeler Main Screen [page 10]

Modeling Guide
Introduction to the SAP Data Intelligence Modeler PUBLIC 9

2.1 Log on to SAP Data Intelligence Modeler

You can access the SAP Data Intelligence Modeler from the SAP Data Intelligence Launchpad or launch it
directly with a stable URL.

Prerequisites

Before you log on to SAP Data Intelligence for the first time, familiarize yourself with the Launchpad from which
you open the Modeler application. For details, see the Launchpad guide. Also, read about user types in Manage
Users in the Administration Guide to identify what type of user privileges you have.

Procedure

1. Enter or select the SAP Data Intelligence Launchpad URL in a browser.
2. Enter your log on credentials for the SAP Data Intelligence Launchpad application in the welcome screen:

• Tenant ID
• User name
• Password

The SAP Data Intelligence Launchpad opens to the home page. The home page displays the applications
available in the tenant based on the policies assigned to you.

3. Choose the Modeler tile.
The Modeler opens to the initial screen.

2.2 Description of the Modeler Main Screen

Use the areas of the SAP Data Intelligence Modeler main screen to perform various tasks, such as configuring a
graph.

The following image shows the various areas of the Modeler main screen.

10 PUBLIC
Modeling Guide

Introduction to the SAP Data Intelligence Modeler

https://help.sap.com/docs/data-intelligence-cloud/launchpad-b30545ced5c4407f851847518444222b/logging-into-sap-data-intelligence-launchpad?version=Cloud
https://help.sap.com/docs/data-intelligence-cloud/sap-data-intelligence-administration/manage-users?version=Cloud
https://help.sap.com/docs/data-intelligence-cloud/sap-data-intelligence-administration/manage-users?version=Cloud

The following table describes the areas of the Modeler main screen.

Pane or Toolbar Description

Graph editor Area in which you add and connect operators for a graph.

Modeling Guide
Introduction to the SAP Data Intelligence Modeler PUBLIC 11

Pane or Toolbar Description

Navigation pane Consists of the tabs described in the following table.

Tab Description

Graphs Access built-in or custom
graphs, and create custom
graphs.

Operators Access built-in or custom
operators, and create cus-
tom operators.

Repository Access and create Modeler
objects, such as graphs, op-
erators, and types in your
repository. Create new fold-
ers, import auxiliary files or
solutions, and export folders
as .tgz files or vSolution
files.

 Note
The Modeler provides
individual Dockerfiles to
create containerized en-
vironments for the op-
erator groups. The Mod-
eler selects the Docker-
files using a tag-match-
ing mechanism.

Configuration Types Access all type definitions or
create new types.

Data Types Create data types that de-
fine structures for input data
streams, which you can use
in further processing steps
in the pipeline.

Bottom pane Consists of the following tabs:

• Status: Monitor the status of the graph.
• Log: Run trace messages based on severity levels.
• Schedule: Monitor graph schedules.
• Validation: Validate your graph to find errors.

12 PUBLIC
Modeling Guide

Introduction to the SAP Data Intelligence Modeler

Pane or Toolbar Description

Editor toolbar • Perform operations on the graph in the graph editor,
such as save and run a graph.

• Define the configuration parameters for the graph,
groups, and operators.

• View details about various operators, including example
graphs that the application provides.

Related Information

Creating Graphs [page 57]
Creating Operators [page 36]
Creating Dockerfiles [page 291]
Monitor the Graph Execution Status [page 101]
Creating Configuration Types [page 298]
Error Recovery with Generation 2 (Gen2) Pipelines [page 59]

Modeling Guide
Introduction to the SAP Data Intelligence Modeler PUBLIC 13

3 Using Operators

Operators represent vertexes in a graph (pipeline) and are components that react to events configured in the
graph environment.

Events are messages delivered to the operator through input ports. An operator interacts with the graph
environment through its output ports. The operator is unaware of the graph in which it's defined and the source
and target of its incoming and outgoing connections.

 Note
Events can also be internal to the operator, such as clock ticks.

The following image shows an operator with input and output ports. Each port has a type. SAP Data Insight
Modeler color codes the ports to indicate compatible port types.

For complete information about operators in SAP Data Intelligence Modeler, see the Repository Objects
Reference.

Operator Details [page 15]
Every operator has an ID (also known as name) and a title (also known as the description). The
operator ID is a unique identifier, with a strict format. The operator title is what the graphical interface
displays.

Generation 1 and Generation 2 Operators [page 21]
SAP Data Insight Modeler offers two generations of operators: Generation 1 (Gen1) and Generation 2
(Gen2).

Customizing the List of Operators [page 21]
Limit the list of operator categories in the Operators tab to include only the operators that you use.

Ports and Port Types [page 22]
The operator uses ports as an interface to communicate between operators in a graph.

Using Managed Connections in Script Operators [page 34]
You can use managed connections in operator configurations of the script operators.

Creating Operators [page 36]
Use the SAP Data Intelligence Modeler to create your own operators to use in graphs (pipelines).

Configuring Operators [page 40]
Each operator has parameters that you can configure based on the business requirements for the
graph (pipeline).

14 PUBLIC
Modeling Guide

Using Operators

Creating Categories [page 41]
Create a custom category for the operators or graphs that you create.

Creating Operator Groups [page 41]
Partition a graph into subgroups so that each subgroup runs in a different Docker container assigned to
different cluster nodes.

Viewing Operator Versions [page 43]
You can view all existing versions, modify existing versions, or create additional versions of an operator.
You can also replace a deprecated operator with the alternative operator and maintain logs for
respective versions of an operator.

Editing Operators [page 45]
You can modify the existing operators and use them in your graph. The Modeler provides a form-based
editor to make changes to the operators.

Error Handling in Generation 2 Operators [page 46]
The SAP Data Intelligent Modeler reports errors to a dedicated operator through an error output port.

Batch Header [page 47]
Operators use batch headers to express information about its output batches in a unified way.

State Management [page 48]
Use the state management feature by implementing a series of functions in the Python3 operator.

Dockerfile Library for Runtime Environment [page 55]
Operators require a certain runtime environment. For example, if an operator executes some
JavaScript code, then the operator requires an environment with a JavaScript engine.

Related Information

Ports and Port Types [page 22]
Graph Execution [page 104]
Creating Operators [page 36]

3.1 Operator Details

Every operator has an ID (also known as name) and a title (also known as the description). The operator ID is a
unique identifier, with a strict format. The operator title is what the graphical interface displays.

Operator Extensions

All the operators available when creating a graph are known as extensions because they “extend” the base
operators.

Modeling Guide
Using Operators PUBLIC 15

Base operators are visible when you create a new operator. The extension is expressed by a file in the Modeler
file system. This file must be named operator.json and its folder hierarchy must match its ID. The Modeler
names the file with the extension when you create the operator.

Example:

ID: 'com.sap.foo.bar'

Filepath: './operators/com/sap/foo/bar/operator.json'

Operator JSON

The operator.json file contains the operator definition, including the graphical interface information. It has
the structure listed in the following table.

Option Required Description

description No The operator title.

icon Yes The operator icon, expressed as a Font
Awesome icon name that is available at
https://fontawesome.com/icons/ .

iconsrc Yes The path to the SVG icon file. The path
is relative to the operator.json.

component Yes The base operator ID to be extended.

inports No An array of input ports.

outports No An array of output ports.

config No A map of configuration parameters that
map a configuration parameter ID to its
default value.

config.$type Yes A $type field that points to its
schema.

tags No A map of tags that map each tag ID to
its default value.

enableportextension No A Boolean value that, if set to true,
allows adding additional ports and con-
figurations to the operator through the
UI.

extensible No A Boolean value that, if set to true,
allows a base operator to be extended.

 Note
subenginestags don't exist in the file system. They're included on the operator JSON for UI purposes.

icon and iconsrc are mutually exclusive; any field can be derived from the base operator (component).

16 PUBLIC
Modeling Guide

Using Operators

http://help.sap.com/disclaimer?site=https%3A%2F%2Ffontawesome.com%2Ficons%2F

The operator.json results in the following structure:

{

 "description": "<operator-title>",
 "icon": "<fontawesome-icon>",
 "iconsrc":"<icon-file>",
 "component": "base-operator-id",
 "inports": [
 {
 "name": "<inport1-id>",
 "type": "<inport1-type>"
 },
 ...
],
 "outports": [
 {
 "name": "<outport1-id>",
 "type": "<outport1-type>"
 },
 ...
],
 "config": {
 "<config-id>": "<config-value>",
 ...
 },
 "tags": {
 "<tag-id>": "<tag-value>",
 ...
 },
 "enableportextension": <true/false>,
 "extensible": <true/false>,

}

 Example

{

 "iconsrc": "read.svg",
 "component": "com.sap.storage.read",
 "config": {
 "$type": "http://sap.com/vflow/com.sap.storage.read.schema.json#"
 },
 "tags": {},

}

Documentation

The operator documentation is a README file in markdown format. If the documentation makes sense only for
the extension, the file must be named README.md and saved in the same folder as the operator.json file.

When you have multiple subengine implementations, where there are multiple operator.json files, each
implementation must have a README in the same folder as the operator.json file.

README structure
The following code shows the README file structure:

<operator-title>

===
<introduction>

Modeling Guide
Using Operators PUBLIC 17

<links-to-examples>
Configuration parameters

- <configuration-parameter-1>
- <configuration-parameter-2>
- ...
Input

- <input-port-1>
- <input-port-2>
- ...
Output

- <output-port-1>
- <output-port-2>

- ...

If an item list (parameters or ports) is empty, the word “None” must be listed.

 Example

Configuration parameters

- None

Introduction
The introduction text must have the following content:

- **configuration-id**

 (type <configuration-type>, default: <configuration-default>)
 <!-- mandatory: only if applicable --> mandatory:
 <!-- brief description --> Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.
 <!-- if needed, link to document with further description -->
 (Details are described here)[<link-to-config-docs>].
 - ID: `<configuration-id>`
 - Type: `<configuration-type>`
 <!-- Default: a value must be expressed according to its type formatting,
 e.g.:
 string -> `"value"`,
 int -> `42`,
 object -> `{ "k": ["v1, "v2"] }`,
 ...
 -->
 - Default: `<default-configuration-value>`
 <!-- Possible values: only valid for "enum" type -->
 - Possible values:
 - `<value-1>`
 - `<value-2>`
 <!-- Expected input: only valid when the "pattern" is set -->
 - Expected input: `<pattern-regex>`

 <!-- Additional specification fields may be provided -->

The Connection Protocol is mandatory and must have the following protocol in the request to service:

• ID: connProtocol
• Type: string
• Default: "HTTP"
• Possible values:

• "HTTP"

18 PUBLIC
Modeling Guide

Using Operators

• "HTTPS"

Ports
Ports are identified by a unique ID (name). Ports are formatted as follows:

- **<port-id>** (type <port-type>): Express the parameter.

 If further is needed, document it in a separate file, and [link]()

 to it in this sentence. External documentation may be linked.

Configuration Schema

When you name parameters, use the same standard you use to name operators.

You must provide a schema for a configuration. The schema contains parameters and further constraints for
the UI. You must link a configuration schema in the operator.json file as follows:

{

 ...
 "config": {
 "$type": "<$id-from-schema>"
 },

}

Each parameter in the schema must meet the following criteria:

• Point to its ID with the object's key.
• Have a set title.
• Use the most strict type.
• Have a validation regex in pattern, if applicable.
• Be listed as required, if applicable.

Ether write the schema manually or with the help of the Types panel of the Modeler application. Save the
schema in one of the following ways:

• As configSchema.json in the same operator.json folder.
Consider this method first, and when you use the Modeler application to create.

• As schema.json in the /types/<operator-id>/schema.json directory.

 Example
The following code shows a brief example of a configuration schema:

{

 "$schema": "http://json-schema.org/draft-06/schema#",
 "$id": "http://sap.com/vflow/<operator.id>.schema.json",
 "title": "<schema-title>",
 "description": "<schema-description>",
 "type": "object",
 "properties": {
 "user": {
 "title": "User",
 "type": "string",
 "secure": true
 },
 "password": {

Modeling Guide
Using Operators PUBLIC 19

 "title": "Password",
 "type": "string",
 "secure": true,
 "format": "password"
 },
 "fooConnectionID": {
 "title": "Foo Connection ID",
 "description": "Connection ID used to connected to Foo",
 "type": "string",
 "format": "com.sap.dh.connection.id"
 },
 "isFoo": {
 "title": "Is Foo",
 "type": "boolean",
 "description": "Determines if operator is Foo.",
 },
 "reqMode": {
 "title": "Request Mode",
 "type": "string",
 "enum": [
 "Foo",
 "Bar"
]
 },
 "noOfReqs": {
 "title": "Number of Requests",
 "type": "integer",
 "description": "Number of Bar requests to be done.",
 "sap_vflow_constraints": {
 "ui_visibility": [
 {
 "name": "reqMode",
 "value": "Bar"
 }
]
 }
 },
 "filepath": {
 "title": "File path",
 "type": "string",
 "description": "File path to save request. Must start with '/'.",
 "pattern": "^\/.*$"
 }
 }

}

Schema Types

The following are the available types for a configuration parameter:

• "array"

• "boolean"

• "integer"

• "number"

• "object"

• "string"

20 PUBLIC
Modeling Guide

Using Operators

3.2 Generation 1 and Generation 2 Operators

SAP Data Insight Modeler offers two generations of operators: Generation 1 (Gen1) and Generation 2 (Gen2).

Gen2 of vFlow operators communicate more efficiently between other Gen2 operators, but can't communicate
with Gen1 operators. Therefore, when you create graphs in the Modeler, you first select either Gen1 or Gen2
operators.

Gen2 operators have the following advantages over Gen1 operators:

• More efficient graph (pipeline) recovery from errors.
• New structured types of native streaming of messages between operators.
• Support for statemanagement (snapshot) and auto recovery of failed graphs.
• Improved versions of Gen1 operators, such as the Python3 operator.

The following are the predefined Gen1 and Gen2 operator classifications:

• Operators that connect to messaging systems, such as Kafka, MQTT, NATS, and WAMP.
• Operators that store and read data, such as files, Hadoop Distributed File System (HDFS) and Amazon

Simple Storage Service (Amazon S3).
• Operators that connect databases, such as SAP HANA and SAP Vora.
• Operators for the JavaScript engine that manipulate arbitrary data.
• Process operators that run any program (stateful and stateless) for manipulating data in a graph.
• Operators for data type conversion.
• Operators for digital signal processing.
• Operators for machine learning.
• Operators for image processing.

 Remember
Gen2 operators can't communicate with Gen1 operators. Therefore, you can create graphs with just one
generation of operators or the other, but not combined.

3.3 Customizing the List of Operators

Limit the list of operator categories in the Operators tab to include only the operators that you use.

Context

The SAP Data Intelligence Modeler groups and displays operators in the navigation pane under specific
categories, and initially lists all categories of operators. To control the categories listed so that you see only the
operators that you use, perform the following steps:

Modeling Guide
Using Operators PUBLIC 21

Procedure

1. Open the Operators tab from the Navigation pane at left.

2. Select  (Customize Visible Categories) next to the Search text box.

The Customize Category Visibility dialog opens showing a list of operator categories.
3. Deselect Select All.

This step is only necessary if you haven't edited the category list previously.
4. Check each category to view in the list of operator categories.
5. Click away from the list.

The selected categories and their operators appear in the Operators tab.

 Tip
To display the operators in a specific category, enter the name of the category in the Search text box.

To find a specific operator, enter the name of the operator in the Search text box.

3.4 Ports and Port Types

The operator uses ports as an interface to communicate between operators in a graph.

A port definition includes the elements in the following table.

Element Description

Purpose Input or output port.

 Note
There are no specific error ports. Use output ports to
communicate error messages.

Name Unique string that consists of alphanumeric characters only.

Type String with a defined structure. The structure includes
a mandatory base type and an optional semantic type.
The semantic type can have a hierarchical substructure,
separated with periods, and an optional wildcard at the
end. The semantic type has the following form: <base
type>.<semantic type>.

 Example
string.com.sap.base64.*

com.mycompany

22 PUBLIC
Modeling Guide

Using Operators

Port types with a wildcard are called incomplete types. The following example shows a general port type
specification:

 Example
int64.com.sap.base64.*

[]blob.com.mycompany

You can use the semantics of the type specification to enrich types with additional information, which
the owner of the types can use. However, the engine doesn't evaluate beyond the compatibility checks as
described in the Is compatible with type “any” column in the following base types table.

The Array column in the table indicates whether the base type can use arrays. For example, []float64 can
use arrays, but not []message.

 Note
Some subengines don't support all array types.

All port types fall into one of the built-in base types listed in the following table.

Type Description
Is compatible with type
"any" Array

any generic type yes no

string character sequence yes yes

blob binary large object yes yes

int64 8-byte signed integer yes yes

float64 8-byte decimal number yes yes

byte single character yes yes

message structure with header and
body

no no

stream unstructured data stream no no

Use Cases

The following list describes use cases for pipeline-specific types:

• Use the base type “any” when an operator is agnostic of the type and helps to avoid the redefinitions of the
operator for each type. An example is the multiplexer operators.

• The base type “message” consists of a message header and the payload stored in the body. Messages
have a size limit of 10 MB. The size limit means that larger payloads have to be split into chunks.

 Example
In the “Read File” operator, the header of the response messages contains the information to interpret
the content of the body.

Modeling Guide
Using Operators PUBLIC 23

In other scenarios, such as for the “Copy File” operator, the input message triggers an operator to
transfer data that is specified by the message, and the output message transfers the result of this
operation. The header information can then be used to match the requests with the results. Therefore,
it doesn't make sense to include arrays of messages themselves. However, arrays in the body are
possible.

• The base type “stream” is special because the other types, including “any” or “message”, have a fixed
structure at execution time (elementary type and length). Streams, in general, are unstructured. Typical
examples are the IO streams stdin, stdout, stderr of the operating system or data streams generated
by sensors.

Conversions

In general, there are no implicit type conversions or propagations. If the port types are incompatible according
to the rules, you can't run a graph. However, there are two exceptions to the rule: Input ports of type “message”
and output ports of type “message”.

Input ports of type “message”

In a graph that flows from left to right, if the output port of the operator feeding into the input port is a
nonstream base type, the engine transforms the output into a message automatically. For “message” types,
this behavior is obvious and for all other types, the engine generates a minimal message storing the output
result in its body.

Output ports of type “message”

The engine handles the incoming message automatically, but the outgoing message triggers an action in the
Modeler application when you try to connect the ports.

 Example
• Output port is of type “message”, “incomplete”, or “generic” that allows for a message to be passed.
• Input port of the receiving operator is of type “string”.

In these exception cases, select one of the following two methods to transform the outgoing message to a
string:

• Concatenate the string from the serialized header and body of the message.
• Use only the body of the message and output it as a string.

 Note
If this body itself is a message, then it's handled as in the first case.

The choice depends on the semantics of the receiving operator. Therefore, there's no one recommended
approach.

Compatible Port Types [page 25]
You can connect two operators only if the output port of the first operator and the input port of the
second operator are compatible.

Table Messages [page 27]

24 PUBLIC
Modeling Guide

Using Operators

A table message is an SAP Data Intelligence Modeler message that represents tabular data. The port
type for table messages is message.table.

Data Types in Operator Ports [page 32]
Before you choose a data type for a new port, consider the type of connection and what the
downstream or upstream operator accepts.

Adding Ports to Operators [page 33]
Add additional ports to JavaScript, Python, Multiplexer, and other extensible operators.

Related Information

3.4.1 Compatible Port Types

You can connect two operators only if the output port of the first operator and the input port of the second
operator are compatible.

The engine performs compatibility checks when you run the graph and when the engine loads the graph. If the
port types aren't compatible, the engine fails the graph with a corresponding message in the trace.

The engine checks for compatibility in two steps as follows:

1. For the base types, the engine ensures that one of the following rules is true:
• The base types of the operators are identical or
• One of the base types is of type any and the other base type is one of the compatible types listed in the

table in Ports and Port Types [page 22].
2. The semantic type of one port type is a specialization of the semantic type of the other port type. The

semantic type, including the empty one, is a specialization of *.

 Note
Omitting the semantic type or empty semantic type, yields a complete type. This type is different from
<base type>.*, which is an incomplete type.

The following table shows the compatibility of output and input port types.

Output Port Types Input Port Types Compatible Reason

any any yes Identical base type. No se-
mantic type.

any any.* yes Identical base type. Here,
* can be substituted by
the empty semantic type.
Therefore, any is a spe-
cialization of any.*.

Modeling Guide
Using Operators PUBLIC 25

Output Port Types Input Port Types Compatible Reason

any string yes Compatible base types
and no semantic type.

stream any no Incompatible base types.

float64.* int64.* no Incompatible base types.

any.* string.* yes Compatible base types
and identical semantic
type.

any.* string.com.sap yes Compatible base types.
com.sap is a specializa-
tion of *.

any.* string.com.sap.* yes Compatible base types.
com.sap.* is a speciali-
zation of *.

any.com.sap any.com.sap yes Identical base and seman-
tic types.

string.com.* string.com.sap.* yes Identical base type.
com.* is a specialization
of com.sap.*.

any any.com no Identical base type, but
com isn't a specialization
of the empty semantic
type. However, both sides
are specializations of .*.

any any.com.* no Identical base type, but,
com.* isn't a specializa-
tion of the empty seman-
tic type.

Related Information

Ports and Port Types [page 22]

26 PUBLIC
Modeling Guide

Using Operators

3.4.2 Table Messages

A table message is an SAP Data Intelligence Modeler message that represents tabular data. The port type for
table messages is message.table.

Attributes

All table messages have an attribute named “table” with a value that's an object. The object has the properties
described in the following table.

Property Description

version (required) Version of the table message type expressed as an integer.

name Name of the table expressed as a string, such as the name of
the database from which it came. If the name is case-insen-
sitive, you must enter it in all uppercase letters. Otherwise,
you must use the actual casing.

columns Objects that describe each column of the table, expressed in
an array. Each object has the following properties:

• Name: String containing the name of the column. If the
name is unknown, can be the empty string. If the name
is case-insensitive, you must enter it in all uppercase
letters. Otherwise, you must use the actual casing.

• Class: String containing the type class of the column.
If the type is unknown, must be an empty string or one
of the Supported types [page 28]. Class names are
always lowercase.

• Type: Object containing database-specific type infor-
mation. The keys in this object must be the lower-case
name of the database management system (DBMS),
and each value a string with the type name.

• Size: Integer that specifies the column size limit, where
applicable.

• Precision and scale: Integers specifying precision and
scale of a decimal column.

• Nullable: Boolean indicating whether the column ac-
cepts NULL values.

primaryKey Name of the primary key column expressed as a string, or an
array of column names for a compound key.

Body

The message body must be an array of arrays of generic elements using Go language: [][]interface{}. The
data in the body must always be row based. All rows must contain the same number of values.

Modeling Guide
Using Operators PUBLIC 27

Supported Types
The term “class” refers to a group of similar column types commonly found in database management systems
and file formats. For example, the string class can be found in the form of SQL types, such as VARCHAR and
ALPHANUM.

The following table contains correspondence that is established between classes and the concrete data types
used to hold their values.

 Note
In the Data type column of the following table, “int” refers to these data types:

• int8

• uint8

• int16

• uint16

• int32

• uint32

• int64

• uint64

• int

• uint

Type Class Data Type String Format

timestamp string RFC 3339

RFC 3339 includes a numeric time zone
(or Z for UTC) and an optional value of
nanoseconds.

 Example
2006-01-02T15:04:05.999

999999Z07:00

Columns that store only part of a time-
stamp must leave the unused portion
at the zero value (midnight for the time
and 0000-01-01 for the date).

integer int integer

28 PUBLIC
Modeling Guide

Using Operators

Type Class Data Type String Format

decimal int / float64/ string Decimal number with a dot as the
separator or a fraction (numerator/
denominator). You can suffix the int
with the letter e followed by an expo-
nent.

 Example
“1.43e-1” for the value 0.143.

Provide the value for a decimal by di-
rect integer/float representation or as a
string encapsulating a valid number.

 Example
• Fraction: "numerator/

denominator" (for exam-
ple, "3/4").

• Integer: "integer" (for ex-
ample, "50").

• Floating-point: "floating-
point" (for example,
"2.5","1.43e-1").

float float64 Decimal number with a dot as the
separator or a fraction (numerator/
denominator). You can suffix the int
with the letter e followed by an expo-
nent.

 Example
“1.43e-1” for the value 0.143.

string string N/A

binary []byte Base 64 (RFC 4648, padded)

bool bool 1, t, T, TRUE, true, True, 0, f, F,
FALSE, false, or False

When a column's class is unknown, the engine can leave the operators' values as strings. Later in the graph,
if a particular class is expected for that column, it's possible to choose to convert its values. In this case, the
operator engine understands that the string is in the format specified under the String format column in the
table. For example, when the operator is reading from a CSV file to insert its data into an existing database
table: Column classes are unknown when parsing CSV, but some database operators require the table schema
from the server and treat each column accordingly.

Modeling Guide
Using Operators PUBLIC 29

Encoding

Even if an operator input is a general type of message.* or any.*, you must set the encoding to table so that
operators can detect a table message.

Examples

Parsing CSV

 Example
The following CSV data has a header for the first line (the column names):

ID,NAME,BIRTH,INTERNAL

0,John Doe,15-04-1982,no

1,Nancy Milburn,24-11-1991,yes

The CSV parser outputs the following table message (represented in JSON):

{

 "Attributes": {
 "table": {
 "version": 1,
 "columns": [
 {"name": "ID"},
 {"name": "NAME"},
 {"name": "BIRTH"},
 {"name": "INTERNAL"},
]
 }
 },
 "Encoding": "table",
 "Body": [
 ["0", "John Doe", "15-04-1982", "no"],
 ["1", "Nancy Milburn", "24-11-1991", "yes"]
]

}

Because the formats for timestamp and Boolean don't comply with the formats expected for a table
message, you can use an intermediate operator to adapt the format into the following:

{

 "Attributes": {
 "table":{
 "version": 1,
 "columns": [
 {"name": "ID"},
 {"name": "NAME"},
 {"name": "BIRTH", "class": "timestamp"},
 {"name": "INTERNAL", "class": "bool"}
]
 }
 },
 "Encoding": "table",
 "Body": [
 ["0", "John Doe", "1982-04-15T00:00:00Z", false],
 ["1", "Nancy Milburn", "1991-11-24T00:00:00Z", true]
]

30 PUBLIC
Modeling Guide

Using Operators

}

Querying Database

 Example
The following table exists on an SAP HANA database:

ID (BIGINT) SALARY (DECIMAL(10,2)) HIRED (DATE)

0 4560.50 '2003-01-14'

1 8740.50 '2001-07-28'

If an operator runs a SELECT statement on this table and outputs the values in a table message, the
following format is expected:

{

 "Attributes": {
 "table": {
 "version": 1,
 "columns": [
 {"name": "ID", "class": "integer", "type": {"hana":
"BIGINT"}},
 {"name": "SALARY", "class": "decimal", "precision": 10,
"scale": 2, "type": {"hana": "DECIMAL"}},
 {"name": "HIRED", "class": "timestamp", "type": {"hana":
"DATE"}},
],
 "primaryKey": "ID"
 }
 },
 "Encoding": "table",
 "Body": [
 [0, 4560.50, "2003-01-14T00:00:00Z"],
 [1, 8740.50, "2001-07-28T00:00:00Z"]
]

}

When there's a fraction (string) as decimal output format, such as in the 456 0.50 and 8740.50 in the
sample code, the values are represented as "9121/2" and "17481/2", respectively.

Modeling Guide
Using Operators PUBLIC 31

3.4.3 Data Types in Operator Ports

Before you choose a data type for a new port, consider the type of connection and what the downstream or
upstream operator accepts.

Data Type of None

In addition to the other data types of Global, Local, and Dynamic, you can also select None when you add a
port to an operator. The None data type indicates a message with headers and no body. The None data type is
meant for transmitting metadata and not data.

Any Port Type

The Modeler has provided port types that have input and output ports without any defined Data Type and Data
Type ID. We call this type of port “any”. When you view the port details for the Terminal, Wiretap, and Graph
Terminator operators, the Data Type and the Data Type ID options have an asterisk (*) as a value.

The Modeler doesn't allow you to create an “any” port type.

Port Compatibility

The Modeler allows only certain types of ports to connect. The target port has to be at least as general as the
source port.

A port with a defined Type ID can't receive a Dynamic type.

 Note
A port with a Dynamic scope has an asterisk (*) as the Data Type ID. Dynamic ports are created during
runtime and exist only in memory.

The Modeler doesn't allow you to connect ports that have specific Data Type IDs. If you ever require connecting
incompatible port types, SAP recommends that you implement a custom solution with a script operator to
receive data as one type and send it as another data type.

The following table lists characteristics of an output port with the compatible port characteristics of the input
port.

Output port Compatible input port

Port type: Dynamic

Data Type ID: Any

Data Type ID: Any

32 PUBLIC
Modeling Guide

Using Operators

Output port Compatible input port

Data Type ID: Any Port type: Dynamic

Data Type ID: Any

Port type: Dynamic

Data Type ID: Any

Data Type ID: Any

Port type: None Data Type ID: Any

Port type: None Port type: Dynamic

Data Type ID: Any

Data Type ID: Any Port type: Dynamic

Data Type ID: Any

Port type: Dynamic Port type: Dynamic

Keep in mind that, in all cases with dynamic port type, the data type of the connected ports have to match.

 Example
You can connect an operator with a table type port and a dynamic scope to one of the following table ports:
any, none, or dynamic.

3.4.4 Adding Ports to Operators

Add additional ports to JavaScript, Python, Multiplexer, and other extensible operators.

Prerequisites

Before you can configure operators, create a new graph or edit an existing graph.

For more information about data types, see Using Data Types [page 302] and Data Types in Operator Ports
[page 32].

Modeling Guide
Using Operators PUBLIC 33

Context

To add additional ports to operators in graphs, perform the following steps in the Modeler:

Procedure

1. Right-click the operator in the graph editor workspace and select Add Port.

The Add Port dialog box opens.
2. Enter a name in the Name text box.
3. Select either Input Port or Output Port as applicable.

4. Select  (Browse) in the Data Type ID text box.

The Select Data Type dialog box opens.
5. Choose a data type ID and click Select.
6. Select OK.

Results

The new port appears on the operator. Hover your mouse pointer over the ports to view the port details.

3.5 Using Managed Connections in Script Operators

You can use managed connections in operator configurations of the script operators.

Context

For this task, we use the Python3 operator as an example.

Procedure

1. Create a new Python3 operator.

For instruction, see Creating Operators [page 36].
2. Add a new configuration parameter for the operator.

34 PUBLIC
Modeling Guide

Using Operators

3. Add a new property and switch to JSON view.
4. Add a definition of an object-type parameter.

Copy and paste the following script in the JSON view:

 Note
This script is applicable only for the Pytho3 operator. In this example, we
use the OPENAPI connection type as shown in the connection list. To return
different connection types, change the value of the connectionTypes parameter in
properties.connection.connectionID.sap_vflow_valuehelp.url.

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "$id": "http://sap.com/vflow/demos.conn.testme.configSchema.json",
 "type": "object",
 "properties": {
 "codelanguage": {
 "type": "string"
 },
 "script": {
 "type": "string"
 },
 "connection": {
 "title": "Connection",
 "type": "object",
 "properties": {
 "configurationType": {
 "title": "Configuration Type",
 "type": "string",
 "enum": [
 " ",
 "Configuration Manager"
]
 },
 "connectionID": {
 "title": "Connection ID",
 "type": "string",
 "format": "com.sap.dh.connection.id",
 "sap_vflow_valuehelp": {
 "url": "/app/datahub-app-connection/connections?
connectionTypes=OPENAPI",
 "valuepath": "id",
 "displayStyle": "autocomplete"
 },
 "sap_vflow_constraints": {
 "ui_visibility": [
 {
 "name": "configurationType",
 "value": "Configuration Manager"
 }
]
 }
 }
 }
 }
 },
 "required": [
 "connection"
]
}

5. To use the connection properties, copy and paste the following code in the Script tab of the Python3
operator editor.

Modeling Guide
Using Operators PUBLIC 35

 Example
In the following code snippet, the host is read from managedConnectionProperties, which is
chosen in the operator configuration at design-time.

def t1():
 managedConnection = api.config.connection
 managedConnectionProperties = managedConnection['connectionProperties']

 host = managedConnectionProperties['host']
 output = api.Message(host, {})
 api.send("out", output)
api.add_timer("1s", t1)

6. Include the Python3 operator in a graph, and choose the managed connection.

3.6 Creating Operators

Use the SAP Data Intelligence Modeler to create your own operators to use in graphs (pipelines).

Prerequisites

Before you create a new operator, ensure that you choose an existing folder in the repository or create a new
folder. Create a new folder in the Modeler as follows:

1. Open the Repository tab in the Navigation pane at left.
2. Expand the Operators folder.
3. Right-click the operators folder and choose Create Folder.

Context

The Modeler provides a form-based editor to create operators. An operator is a reactive component, which
means that it reacts to events from the environment. It isn't intended to terminate. The operators that you
create in the Modeler are derived from the base operators that the application provides.

Procedure

1. Right-click the applicable folder choose Create Operator.

The Create Operator dialog box opens.
2. Enter the fully qualified path and file name in Name.

36 PUBLIC
Modeling Guide

Using Operators

3. Enter a name by which the operator is listed in Display Name.

The Modeler lists the operator by this name in the Operators tab. Also, use the name to search for the
operator in the Modeler.

4. Choose the applicable base operator from the Base Operator list.

The base operators listed are derived from the built-in base operators provided by SAP Data Intelligence.
5. Choose the category in which to create the operator from the Category list and select OK.

Use the category as a search tool in the navigation pane.

The Modeler opens the operator editor in the main pane. There are several tabs in which you create the
operator properties: Ports, Tags, Configuration, Script, and

6. Define the operator using the various tabs in the operator editor. The following table describes actions for
each tab.

Action Steps

Define ports 1. Open the Ports tab.
2. Select  (Add input port or Add output port).
3. Enter a port name in Name.
4. Choose a type in Data Type.
5. Continue adding input or output ports in this manner as neces-

sary.

Define tags Tags describe the runtime requirements of operators and are the
annotations of Dockerfiles that the application provides. If multiple
implementations exist for the operator, the application displays the
different subengines in which you can execute the operator. For
each subengine, you can further associate them with tags from the
database.
1. Open the Tags tab.
2. Select  (Add Tag).
3. Choose a tag from Tags.
4. Choose a version from Version.
5. Continue adding tags in this manner as necessary.

Modeling Guide
Using Operators PUBLIC 37

Action Steps

Define configurations The options in the Configuration tab vary based on the type of
operator you're creating.
1. Open the Configuration tab.

The original schema name appears under Schema File. You
can change the parameters of the schema file by automatic
generation or by importing. To enable the automatic or import
feature, select  (Delete).

2. For automatic generations, select Generate Config Schema.
3. To import, select Import.
4. To edit the schema, select  (Edit Schema).to open the Edit

type dialog box.
Types allow you to enable semantic type validations on top of
the configuration parameters and to define conditions. Create
new types or edit existing type definitions in the repository.
Reuse existing types to define the operator configuration.

 Note
By default, the type definition of script-based operators
such as JavaScript, Python, Go operators, and so on,
include a Script property. Use this property to view or
modify the operator script when creating a graph. To hide
the script from users working with this operator, edit the
Script property in the type schema. Select the property
and set the Visibility value to Hidden.

5. Select a property to edit and view the parameters to the right.
6. Add additional parameters by selecting  (Add Parameter).

Provide the configuration parameter name, select the parame-
ter type, and provide a parameter value.

 Remember
For some base operators, the application doesn't allow
you to define new configuration parameters. If you aren't
allowed to define new parameters,  (Add Parameter).
is disabled, and you can only edit the existing parameter
values.

Add scripts In graphs, use operators that help run script snippets when the
graph runs. To include script snippets in the operator definition,
perform the following steps:
1. Open the Script tab.
2. Enter the script snippet in the Inline Editor.
3. To change the default programming language of the editor,

choose a different language in the upper right. This option isn't
always available.

4. To upload a script file from your system, choose Upload
File from the list in the top-left corner of the editor and se-
lect (Upload file) at right.

38 PUBLIC
Modeling Guide

Using Operators

Action Steps

Add operator documentation Maintain or modify documentation for operators in the
Documentation tab. Documentation contains information about the
operator configuration parameters, input ports, output ports, and
more. Adding documentation helps other users when working with
this operator.
1. Open the Documentation tab.
2. Enter the required documentation in the text area.

 Tip
SAP recommends that you use the Markdown format to
maintain the operator documentation.

7. Optional: Select a display icon for the operator.
In the operator editor, the Modeler displays the operator name with a generic icon. You can replace the
display icon with any of other icons that the application provides, or you can upload your own icon in
Scalable Vector Graphics (SVG) format and use it for the operator display.
a. Select the operator default icon that is to the left of the operator name.
b. Select  (Operator icon/image).

The Upload Operator Icon dialog box opens.
c. Select one of the following options based on the location of the icon file:

• Select From icon list and choose an icon from the list.
• Select Upload SVG and select  (Upload File).

d. Select OK.
The application uses the new icon for the operator on the graph editor.

 Note
The size of the icon tile in the operator editor is 80 px x 80 px. To ensure that the uploaded SVG
file fits within the icon tile, define the viewbox property for the SVG file accordingly.

8. Optional: Upload auxiliary files.
You can upload auxiliary files to the repository that the operator can access or execute at runtime. This file
can be any type, for example, binary executables such as a JAR file that the application must execute when
executing the operator.

a. In the operator editor toolbar, choose  (Upload Auxiliary File).
These files are stored along with the operators in the operator directory. You can access these files
from the SAP Data Intelligence System Management application. Alternatively, you can also upload
files from the Repository tab.

9. Optional: Select JSON in the upper right of the Modeler.

The JSON file opens showing the parameters for the new operator.

Related Information

Creating Configuration Types [page 298]

Modeling Guide
Using Operators PUBLIC 39

Creating Configuration Types [page 298]

3.7 Configuring Operators

Each operator has parameters that you can configure based on the business requirements for the graph
(pipeline).

Prerequisites

Ensure that the operator to configure is in a graph.

Context

Procedure

1. Select the applicable operator in your graph.

2. Select  (Open Configuration).
The Configuration pane opens at right. The parameters in the Configuration pane have default settings
based on the operator. To customize the operator, enter new values to the parameters. Based on the
operator type, you can specify values to the subengines configuration parameters.

 Note
If multiple implementations exist for the operator, select the applicable subengine in which to run the
operator. The default value is Main (Pipeline Engine). To select the applicable engine, choose  (Add
subengine) and choose a subengine from the list.

3. To define new configuration parameters for the selected operator, perform the following substeps:

a. Select  (Add Parameter) in the Configuration pane.

 Note
You can define configuration parameters only for some base operators. Therefore,  (Add
Parameter) is available only for applicable operators.

b. Enter a name for the new configuration parameter in Add Property.
c. Choose the property type.
d. Enter a value in Value.

40 PUBLIC
Modeling Guide

Using Operators

e. Select OK.

3.8 Creating Categories

Create a custom category for the operators or graphs that you create.

Procedure

1. Open the Repository tab in the navigation pane at left.
2. Expand the folder named “general” and then expand the subfolder named “ui”.
3. Double-click settings.json.

The JSON file opens in the main pane.
4. Add the category information to the array of categories listed.

The category name follows the same operator title naming constraints.

 Example

{

 "name": "Category Name",
 "entities": [
 "com.sap.foo.bar",

 "com.sap.operator.test"

3.9 Creating Operator Groups

Partition a graph into subgroups so that each subgroup runs in a different Docker container assigned to
different cluster nodes.

Prerequisites

Before you perform the following task, open the applicable graph (pipeline) in which to create operator groups.

For complete information about creating and using operator groups, see Groups, Tags, and Dockerfiles [page
94].

Modeling Guide
Using Operators PUBLIC 41

Context

An operator group can consist of one or many operators. Like individual operators, each group, called a
subgraph, is associated with configuration parameters. Provide custom values for the parameters, and define
additional configuration parameters for the group.

To create operator groups (subgraphs), open SAP Data Intelligence Modeler and perform the following steps in
the applicable graph:

Procedure

1. Press the Shift key and select each operator to include in the operator group.
2. Right-click and choose Group.

The Modeler shows the subgraph in a shaded box.

3. Select  (Show Configuration) in the editor bar.

The Modeler lists the predefined configuration parameters applicable for the group. The following table
describes the parameters that you can define with custom values.

Parameter Description

Description Provides a description for the operator group.

Restart Policy Determines the behavior of the cluster scheduler when a
group execution results in a crash. Choose a value from
the list. If you don't select a value, the Modeler uses the
default value of never:
• never: The cluster scheduler doesn't restart the

crashed group and the crash results in the final state
of the graph as “dead”.

• restart: The cluster scheduler restarts the group ex-
ecution. The restart changes the state of the graph
from dead to pending and then to running.

 Caution
When you restart a group, a single message per
inbound connection can be lost.

Tags Describes the runtime requirement of groups. To define
tags for the group, select  (Add Tags) and select the
required tag and version.

You can assign more than one tag to a group.

42 PUBLIC
Modeling Guide

Using Operators

Parameter Description

Multiplicity Determines the number of executions for this group at
runtime.

Specify the value as an integer. For example, set to 3 to
have the Modeler execute 3 instances of this group at
runtime.

When the Multiplicity is set to greater than 1, the Modeler
sends the data arriving at the group in a round-robin fash-
ion.

4. Optional: To define new configuration parameters for the group, select  (Add Parameter).
a. Enter a name for the property in the Add Property dialog box.
b. Select the property type.

Select Text, JSON, or Boolean based on whether the property value is a string, JSON, or Boolean value.
c. Enter a value in Value.
d. Select OK.

3.10 Viewing Operator Versions

You can view all existing versions, modify existing versions, or create additional versions of an operator. You can
also replace a deprecated operator with the alternative operator and maintain logs for respective versions of an
operator.

Context

See all existing versions of an operator by starting in the navigation pane or the graph editor.

• Navigation pane: Open the Operators tab, right-click the applicable operator, and choose Show all
versions.

• Graph editor: Right-click the applicable operator and choose Operator versions.

Related Information

Replacing Deprecated Operators [page 44]
Editing Operator Versions [page 44]
Creating Operator Versions [page 45]

Modeling Guide
Using Operators PUBLIC 43

3.10.1 Replacing Deprecated Operators

You can update a deprecated operator to the replacement operator available.

Procedure

1. To replace a deprecated operator, in the graph editor, right-click the deprecated operator and choose the
Update menu option.

2. In the Replace Operator dialog, click Continue to replace the deprecated operator with the suggested
operator.

3.10.2 Editing Operator Versions

You can edit an existing version of an operator.

Procedure

1. You can view the operator versions through the navigation pane or the graph editor:

• In the navigation pane, choose the Operators tab, right-click the operator, and choose Show all versions
menu option.

• In the graph editor, right-click the operator and choose Operator versions menu option.

2. In the Operator versions dialog, choose the  (Edit) option.

The operator version editor opens.
3. To modify the existing configuration of the operator.

a. To provide the replacement operator if it’s a deprecated operator,

1. In the version editor of a deprecated operator, choose  (Enter Replacement Info).
2. Enter the operator name with which you want to replace the deprecated operator.

b. To delete a version of the operator, in the Operator Versions dialog, select a version and click
 (Delete).

 Note
When you try to delete an operator version that is used in multiple graphs, you will encounter a
warning message, as the deletion would result in failure of the graphs in which that version of the
operator is used.

c. To view logs of a version of an operator, in the version editor, choose View Change Log.

4. When the changes are complete, in the editor toolbar, choose  (Save) to save the changes to the current
version of the operator.

44 PUBLIC
Modeling Guide

Using Operators

3.10.3 Creating Operator Versions

You can create a new version of an operator.

Procedure

1. You can view the operator versions through the navigation pane or the graph editor:

• In the navigation pane, choose the Operators tab, right-click the operator, and choose Show all versions
menu option.

• In the graph editor, right-click the operator and choose Operator versions menu option.

2. In the Operator versions dialog, choose the  (Edit) option.

The operator version editor opens.
3. Modify the existing configuration of the operator.

4. When the changes are complete, in the editor toolbar, choose  (Save As New Version) to create a new
version of the operator.

5. In the dialog that follows, enter the required details for the new version.
6. Click Save.

A new version of the operator is created.

3.11 Editing Operators

You can modify the existing operators and use them in your graph. The Modeler provides a form-based editor
to make changes to the operators.

Procedure

1. To edit an existing operator, in the navigation pane, choose the Operators tab.
2. Right-click the operator that you want to edit and choose Edit menu option.
3. Modify the existing configuration of the operator.

4. When the changes are complete, in the editor toolbar, choose  (Save) to save the operator.

Modeling Guide
Using Operators PUBLIC 45

3.12 Error Handling in Generation 2 Operators

The SAP Data Intelligent Modeler reports errors to a dedicated operator through an error output port.

Error handling operators, whether generic or graph specific, are usually scripted. Generally, the errors
communicated to an error operator are for internal use only.

The following table describes the options for error handling.

Option Description

Terminate on error Unexpected exceptions are logged and the graph is termi-
nated.

Log and ignore Unexpected exceptions are logged and the operator contin-
ues to run.

Propagate to error port Unexpected exceptions are sent to an error port that is
generated at runtime.

This port is of type structure (com.sap.error), which
contains the following fields:

• code: an error code (int32) that is local to the opera-
tor.

• operatorID: a string with the ID of the
operator outputting this error (for example,
com.sap.system.terminal).

• processID: a string with the ID in the graph
of the process outputting this error (for example,
terminal1).

• text: a string corresponding to the main error mes-
sage.

• details: a table type, which is composed of the
fields key and value (both of type string), which
can be used to provide further information about the
exception.

The operator continues to run.

Error Output Port

Add an error output port to the operator that outputs to the specific error operator. When you create the
port, make sure to include “error” in the name, such as com.sap.error or com.sap.error.details. Error
output ports can be either structure or table types.

46 PUBLIC
Modeling Guide

Using Operators

3.13 Batch Header

Operators use batch headers to express information about its output batches in a unified way.

The batch header consists of the following elements:

• Kind: structure
• Type ID: com.sap.headers.batch

The following table describes the batch header fields.

Field Description

index Integer with the zero-based index of the batch.

isLast Boolean that indicates whether the batch is the last
in the sequence, for example, if batchIndex ==
batchCount-1.

count Total number of batches in the sequence. If the operator
can't obtain the count because of technical restrictions or
because the sequence is open-ended (a stream), for exam-
ple, operators can omit count.

size Number indicating the magnitude that delimits one batch
from the next. For example, the number of bytes or the
number of lines of text the batch contains. When you use
other criteria, such as a timeout for the accumulation of
each batch, you can omit size.

Size doesn't express the size of an individual batch. Rather,
size expresses the intended size for batches in general.
Size is usually specified by the user.

unit String containing the unit in which batchSize is meas-
ured. If present, unit is expressed as one of the following
measures:

• bytes.
• rows, for table-related operators (including CSV, data-

bases, and so on).
• lines, for text files.

Example

 Example
You configure a Read File operator to read files in 10-byte chunks. If the file has a total of 87 bytes, the
operator outputs the following values for the batch attributes:

• index in the range [0,8]

Modeling Guide
Using Operators PUBLIC 47

• isLast: false in all but the ninth and last output (index 8)
• count: 9
• size: 10
• unit: bytes

3.14 State Management

Use the state management feature by implementing a series of functions in the Python3 operator.

Use the functions in the following table to support recovery and to store states. SAP Data Intelligence doesn't
require that you implement all of the functions to store states.

Function Description

api.set_initial_snapshot_info(initial_pr

ocess_info: api.InitProcessInfo)
Sets the initial information for state management before the
operator starts. You can call the initial information outside
callback functions.

The parameter initial_process_info has two attrib-
utes:

• is_stateful: Boolean that specifies that the opera-
tor persists states.

• outports_info: Map of port names to
api.OutportInfo.
api.OutportInfo is a class of one attribute:
is_generator. The parameter outports_info
indicates whether output ports of the script operator
are generators.

api.set_restore_callback(callback) Register function that restores the operator state.

Arguments: callback (func[str, bytes] ->
None]).

The function expects the following input parameters:

• Epoch, which uniquely identifies the state that is being
recovered.

• Serialized operator state.

api.set_serialize_callback Register function that returns the operator state.

Arguments: callback (func[str] -> bytes).

The function expects the epoch as a parameter. Epoch
uniquely identifies the state that is being recovered. It re-
turns the serialized operator state.

48 PUBLIC
Modeling Guide

Using Operators

Operators with support to state management can have two extra classes: generator and writer.

Generator

A generator is a port that produces outputs independent of input port data. All graphs that have data flowing
have at least one generator output port. Examples of generators include the following:

• operators reading files with no input connected
• Kafka consumers

Writers

A writer is an operator that has effects outside the graph (for example, operators writing into databases, or
operators writing to a publisher or subscriber queue). If an operator is a writer and it's stateful, it offers an
“at-least-once” guarantee. An “at-least-once” guarantee means that there's a guarantee that no data is lost,
even though it can be written twice. Being stateful requires implementing the restore and serialize functions.
It's also possible to have an exactly once guarantee, which requires the writer to be idempotent and stateful.
Idempotency means equivalency when writing the same data several times.

Keep in mind the following information regarding state management:

• To avoid deadlocks, don't block a port callback while it waits for another port callback.
• Before saving a state, the Modeler doesn't pause the shutdown function. Therefore, the shutdown function

doesn't change the operator state.
• If the operator has asynchronous behavior, the operator must support pause and resume.

For more information about these functions, see the Python3 Operator V2 section of the Repository Objects
Reference guide.

Example

 Sample Code

counter = 0

def on_input(msg_id, header, body):
 global counter
 counter += 1
 api.outputs.output.publish(str(counter))
api.set_port_callback("input", on_input)
api.set_initial_snapshot_info(api.InitialProcessInfo(is_stateful=True))
def serialize(epoch):
 return pickle.dumps(counter)
api.set_serialize_callback(serialize)
def restore(epoch, state_bytes):
 global counter
 counter = pickle.loads(state_bytes)
api.set_restore_callback(restore)
def complete_callback(epoch):
 api.logger.info(f"epoch {epoch} is completed!!!")

api.set_epoch_complete_callback(complete_callback)

Modeling Guide
Using Operators PUBLIC 49

Related Information

Examples: Operator States [page 50]

Error Recovery with Generation 2 (Gen2) Pipelines [page 59]

3.14.1 Examples: Operator States

This section contains examples illustrating the use of state management functions in the Python3 operator for
graph snapshots and operator states for Gen2 graphs.

Exactly Once Graph Structure

The following example uses this exactly-once graph structure:

PythonOperator Generator Deterministic Processing Idempotent Writer

Assumptions:

• The example doesn't include instances of the processing operator because the processing operator can
perform any operation, stateful or not, as long as it's deterministic. Therefore, if the graph is fed with the
same inputs, the same outputs are expected.

• The graph has a linear topology, which means that the operators don't have to fan in or out messages.
• The PythonOperator Generator accesses an SAP HANA table to which the system appended its content

during the graph execution.

 Example
The following code snippet shows the script:

''' python

 from hdbcli import dbapi
offset = 0
c = None
api.set_initial_snapshot_info(api.InitialProcessInfo(is_stateful=True,outports
_info={'output': api.OutportInfo(is_generator=True)}))
Operator will have batches and it will be Replayable
def prestart():
 conn = dbapi.connect(
 address=api.config.connection['connectionProperties']['host'],
 port=api.config.connection['connectionProperties']['port'],
 user=api.config.connection['connectionProperties']['user'],
 password=api.config.connection['connectionProperties']['password'],
 sslHostNameInCertificate='*',
 sslValidateCertificate=False
)
 global c
 c = conn.cursor()

def time_callback():
 global offset
 # The order by guarantees the same order when replaying

50 PUBLIC
Modeling Guide

Using Operators

 c.execute(f"SELECT * FROM test ORDER BY x LIMIT 2 OFFSET {offset};")
 test_data = c.fetchall()
 c.close()
 offset += 2
 if len(test_data) > 0:
 t = [[entry for entry in row] for row in test_data]
 api.outputs.output.publish(api.Table(t))
 return 0
api.add_timer(time_callback)

api.set_prestart(prestart)
Since we assume new entries will go to the end of the table, we can only
save the offset
and not the table.
def serialize(epoch):
 return pickle.dumps(offset)
api.set_serialize_callback(serialize)
def restore(epoch, state_bytes):
 global offset
 offset = pickle.loads(state_bytes)
api.set_restore_callback(restore)

Idempotent Writer Script

 Example
Continuing with Example 1, the idempotent writer also writes to an SAP HANA table through the following
script:

from hdbcli import dbapi

offset = 0
c = None
def prestart():
 conn = dbapi.connect(
 address=api.config.connection['connectionProperties']['host'],
 port=api.config.connection['connectionProperties']['port'],
 user=api.config.connection['connectionProperties']['user'],
 password=api.config.connection['connectionProperties']['password'],
 sslHostNameInCertificate='*',
 sslValidateCertificate=False
)
 global c
 c = conn.cursor()

def on_input(msg_id, header, body):
 data = body.get().body

 # Upsert guarantees idempotency
 sql = 'UPSERT test (x, y, z) VALUES (?, ?, ?) where x=?'
 for row in data:
 row.append(row[0])
 c.execute(sql, row)
 c.close()

api.set_port_callback("input", on_input)
api.set_prestart(prestart)

Modeling Guide
Using Operators PUBLIC 51

No Idempotent Guarantee

 Example
The following example uses the same setup as the Exactly Once Graph Structure example, but the writer
isn't guaranteed to be idempotent. To have the exactly once guarantees, the graph has to avoid writing
duplicate batches through an auxiliary table in the same SAP HANA database.

The auxiliary table can be another persistence structure. In this example, the auxiliary table is a Write-
Ahead Log (WAL). To preserve already seen batches, the table has to survive multiple-graph runs.
Therefore, create and delete the WAL outside the graph context.

The following script shows the implementation of the generator and writers as Python Operators:

''' python

from hdbcli import dbapi
import pickle
offset = 0
ID = 0
c = None
Table is broken into messages of 100 rows, and each made of 10 batches fo
10 rows
batch_size = 10
message_size = 100
api.set_initial_snapshot_info(api.InitialProcessInfo(is_stateful=True,outports
_info={'output': api.OutportInfo(is_generator=True)}))
def prestart():
 conn = dbapi.connect(
 address=api.config.connection['connectionProperties']['host'],
 port=api.config.connection['connectionProperties']['port'],
 user=api.config.connection['connectionProperties']['user'],
 password=api.config.connection['connectionProperties']['password'],
 sslHostNameInCertificate='*',
 sslValidateCertificate=False
)
 global c
 c = conn.cursor()

final = False
def time_callback():
 global offset, ID
 # The order by guarantees the same order when replaying
 c.execute(f"SELECT * FROM test ORDER BY x LIMIT {batch_size} OFFSET
{offset};")
 test_data = c.fetchall()
 c.close()
 global final
 if len(test_data) > 0 and not final:
 api.logger.info('sending1')
 t = [[entry for entry in row] for row in test_data]
 h = {}
 if len(test_data) < batch_size:
 h['isFinal'] = [True]
 final = True
 else:
 h['isFinal'] = [False]
 h['batchNum'] = [offset // batch_size]
 h['messageNum'] = [offset // message_size]
 # The last batch has the flag set to true, this is important so the
writer operator can clean up the WAL
 if (offset + batch_size) % message_size == 0 and offset > 1:
 h['isFinal'] = [True]

 h['ID'] = [ID]

52 PUBLIC
Modeling Guide

Using Operators

 api.outputs.output.publish(api.Table(t), h)
 api.logger.info('after')
 ID += 1
 offset += batch_size
 return 0
api.add_timer(time_callback)

api.set_prestart(prestart)
Since we assume new entries will go to the end of the table, we can only
save the offset
and not the table.
def serialize(epoch):
 return pickle.dumps([offset, ID])
api.set_serialize_callback(serialize)
def restore(epoch, state_bytes):
 global offset, ID
 offset, ID = pickle.loads(state_bytes)

api.set_restore_callback(restore)

Idempotent Guarantee That Accesses SAP HANA Table

 Example
The writer also accesses an SAP HANA table in the following script:

''' python

import pickle
from hdbcli import dbapi
offset = 0
messages_done = {}
c = None
api.set_initial_snapshot_info(api.InitialProcessInfo(is_stateful=True))
def prestart():
 conn = dbapi.connect(
 address=api.config.connection['connectionProperties']['host'],
 port=api.config.connection['connectionProperties']['port'],
 user=api.config.connection['connectionProperties']['user'],
 password=api.config.connection['connectionProperties']['password'],
 sslHostNameInCertificate='*',
 sslValidateCertificate=False
)
 global c
 c = conn.cursor()

def insert_wal(ID, batch_num, message_num):
 sql = 'INSERT INTO WAL VALUES(?,?,?)'
 c.execute(sql, [ID, batch_num, message_num])
 c.close()

def is_batch_new(batch_num, message_num):
 c.execute(f'SELECT ID FROM WAL WHERE BATCH={batch_num} AND
MESSAGE={message_num}')
 test_data = c.fetchall()
 c.close()
 return len(test_data) == 0

def on_input(msg_id, header, body):
 api.logger.info('Receiving')
 data = body.get().body

 batch_num = header['batchNum'][0]
 message_num = header['messageNum'][0]

 if header['isFinal'][0]:
 api.logger.info('Final message')

Modeling Guide
Using Operators PUBLIC 53

 global messages_done
 messages_done[message_num] = None

 # It will check if messageID and batchID do not exist in the WAL table,
if they do, message is ignored
 if not is_batch_new(batch_num, message_num):
 return

 api.logger.info('Inserting into test2')
 sql = 'INSERT INTO test2 (x, y, z) VALUES (?, ?, ?)'
 for row in data:
 row.append(row[0])
 c.execute(sql, row)
 c.close()

 api.logger.info('Inserting into wal')
 # Insert into WAL table, and if message is done, insert accordingly
 insert_wal(header['ID'][0], batch_num, message_num)

 api.logger.info('sending to output')
 api.outputs.output.publish(str(data))

api.set_port_callback("input", on_input)
api.set_prestart(prestart)
Any messages that have been finished by this point are eligible to be
removed from
WAL when the epoch is completed.
def serialize(epoch):
 global messages_done
 api.logger.info(f'setting epochs {messages_done}')
 for messageID, val in messages_done.items():
 if val is None:
 messages_done[messageID] = epoch

 # The writer has to keep as state the map, since finished messages may
not have had their epochs processed
 return pickle.dumps(messages_done)
api.set_serialize_callback(serialize)
def restore(epoch, state_bytes):
 global messages_done
 messages_done = pickle.loads(state_bytes)
api.set_restore_callback(restore)
Any message whose corresponding epoch existing could
be removed as we know the epoch has finished
def complete_callback(epoch):
 global messages_done
 api.logger.info(f'removing from wal {messages_done}')
 for messageID, e in messages_done.items():
 if e == epoch:
 api.logger.info(f'removing message {messageID}')
 c.execute(f'DELETE FROM WAL WHERE MESSAGE=?', [messageID])
 c.close()
 # cleaning up ended epochs
 del messages_done[messageID]
api.set_epoch_complete_callback(complete_callback)

```

54 PUBLIC
Modeling Guide

Using Operators



3.15 Dockerfile Library for Runtime Environment

Operators require a certain runtime environment. For example, if an operator executes some JavaScript code,
then the operator requires an environment with a JavaScript engine.

The Modeler provides predefined environments for operators, and these environments are available as a library
of Dockerfiles.

When you execute a graph, the application translates each operator in the graph into processes. It then
searches the Dockerfiles for an environment suitable for the operator execution and instantiates a Docker
image.

 Note
The Docker image with the environment and the operator process is executed on a Kubernetes cluster.

Modeling Guide
Using Operators PUBLIC 55



4 Using Graphs (Pipelines)

Graphs, also known as pipelines, are a network of operators connected by typed input and output ports for
data transfer.

There are two types of graphs based on the type of operators you choose to build the graph. When you create
a graph, you must select to use either Generation 1 (Gen1) or Generation 2 (Gen2) operators. Graphs can't
contain a combination of Gen1 and Gen2 operators. A graph created with Gen1 operators is a Gen1 graph. A
graph created with Gen2 operators is a Gen2 graph.

For more information about operators, see Using Operators [page 14]. For more information about Gen1 and
Gen2 operators, see Generation 1 and Generation 2 Operators [page 21].

Creating Graphs [page 57]
A graph (pipeline) consists of operators that you configure to form a specific process and connect
using input and output ports.

Error Recovery with Generation 2 (Gen2) Pipelines [page 59]
Gen2 pipelines (graphs) make it possible to recover from errors using specific runtime features.

Graph Snapshots and Operator States [page 61]
You can configure Generation 2 (Gen2) graphs to take snapshots of their state at regular time intervals
so that the operators of the graph send small pieces of data (status) to a central data store.

Delivery Guarantee for Generation 2 (Gen2) Graphs [page 66]
When you enable automatic graph recovery and snapshots for a Gen2 graph (pipeline), your graphs
can outlast system failures and system maintenance events.

Validate Graphs [page 69]
Graph validation is an automatic or manual process that analyzes a graph for correct structure and
components, such as operators, ports, groups, and configuration.

Running Graphs [page 72]
After creating a graph, you can run the graph based on the configuration defined for the graph. The
Modeler application runs the operators in the graph as individual processes.

Maintain Resource Requirements for Graphs [page 87]
Specify compute resource requirements, such as CPU and memory limits, for graph groups in SAP
Data Intelligence Modeler.

Create Data Types in Graph [page 91]
You can create graph-level data types and use them in the graph along with the automatically
generated data types.

Groups, Tags, and Dockerfiles [page 94]
Groups, tags, and Dockerfiles are essential parts of the SAP Data Intelligence environment for running
graphs (pipelines) more efficiently. Therefore, you must understand how they work together.

Execution Model [page 99]
To avoid problems, such as back pressure and deadlocks, SAP Data Intelligence Modeler executes
graphs following an execution model.

Monitoring Graphs [page 100]
After creating and running graphs, monitor graphs and view statistics.

56 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Native Multiplexing for Gen2 Pipelines [page 115]
Connect to multiple ports in a pipeline, such as one to many or many to one, without having to
implement multiplexing with a script operator or other predefined operator.

Related Information

4.1 Creating Graphs

A graph (pipeline) consists of operators that you configure to form a specific process and connect using input
and output ports.

Prerequisites

SAP Data Intelligence Modeler provides Generation 1 (Gen1) and Generation 2 (Gen2) operators. Before you
create a graph, determine which group of operators to use. You can build a graph using either Gen1 or Gen2
operators, but you can't combine them in a single graph. For complete information about Gen1 and Gen2
operators, see Generation 1 and Generation 2 Operators [page 21].

A graph can contain a single operator, or a network of operators based on the purpose of the graph.

Context

To create a basic graph, open the Modeler application and perform the following steps:

Procedure

1. In the navigation pane at left, open the Graphs tab.

2. Select the down arrow next to   (Create Graph) and choose either Use Generation 1 Operators or Use
Generation 2 Operators.

The Modeler opens the Operators tab. The tab lists only the operators belonging to the generation you
selected. The Modeler also opens an empty graph editor to the right of the navigation pane. Use the graph
editor area to create the graph.

 Tip
The Modeler groups the operators in the Operators tab under specific categories. To customize the list
of operators, use the   (Customize Visible Categories) icon or use the Search bar.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 57



For more information about operator types and categories, see the Repository Objects Reference.

3. Double-click the first operator for your graph in the Operators tab.

The Modeler adds the operator to the graph editor workspace. Add additional operators as necessary in
the same manner.

4. Each operator has default configuration settings. You can change default settings or create additional
configuration parameters. To configure each operator based on its purpose, perform the following
substeps:
a. Select the operator in the graph editor workspace.
b. Select   (Show Configuration) next to the operator.

The Modeler opens a Configuration pane at right. Based on the operator type, you can also specify
values for the subengine configuration parameters.

c. Configure each operator in your graph in the same manner.

For more information about operator configuration settings, see the Repository Objects Reference.
5. Optional: Select Validate in the Configuration pane.

If the operator has a type scheme associated with it, then validate the configuration parameters' values
against the conditions defined in the schema. For example, validate mandatory fields, minimum or
maximum length, value formats, regular expression, and so on.

 Note
The validation is based on the constraints defined in the scheme. The Modeler validates all
configuration parameter values and displays validation errors, if any.

6. Connect the operators: Drag and drop your cursor from the output port of one operator to an input port of
another operator.

Continue connecting the operators in your graph so that all operators are connected in the order in which
to process the data. The Modeler helps you select the allowable input port type by highlighting all input
ports based on the output port type.

7. Optional: To configure the graph, perform the following substeps:

a. Ensure that no individual object in the graph is selected, then select   (Show Configuration).
b. Complete the parameters as described in the following table.

Parameter Description

Description Enter a description of the graph.

Icon file name Enter the icon name, such as kafka.png.

Icon Enter the Font Awesome icon name, or choose an op-
tion from the list.

The Modeler uses the icon for display only when you
don't provide a value for Icon file name.

58 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Parameter Description

Disable lineage Slide the toggle to ON or OFF.

Applicable only for graphs that contain certain opera-
tors that support lineage extraction. You can use the
Metadata Explorer tool to view data lineage.

8. Choose Save from the   (Save) list.
9. Enter the fully qualified path and file name for the graph in Name, and optionally enter a description in

Description.
10. Choose the applicable value from the Category list, or enter a new category.
11. Select OK.

The Modeler saves the graph and operators in a folder structure in the modeler repository, such
as ...com/sap/others/<graphname>. To save another instance of the graph, in the editor bar, choose
Save As from the   (Save) list and provide the applicable information in the Save dialog box.

12. Optional: To export the graph to the JSON definition after you create and save the graph, perform the
following substeps:
a. Open the Graphs tab in the navigation pane at left.
b. Right-click the applicable graph and choose Export.

The Modeler creates the JSON file and places it in your Downloads folder.

Related Information

SAP Data Intelligence Operators
Creating Operators [page 36]
Monitor the Graph Execution Status [page 101]

4.2 Error Recovery with Generation 2 (Gen2) Pipelines

Gen2 pipelines (graphs) make it possible to recover from errors using specific runtime features.

Configure the following features at runtime for your Gen2 graphs to aid in pipeline recovery when errors occur:

• Auto Restart: Graphs restart automatically when the pipeline fails or is evicted.
• Snapshots: Graphs create periodic snapshots of the current operation. Benefits of snapshots include the

following:
• Recover the operation when there are failures, pauses, or system upgrades.
• Save information about individual tasks, such as row last read, so that you can view task information

when you recover the pipeline.
• Restart a pipeline at the point of error. Script operators implement an API for saving and restoring the

state, which allows you to implement more complex use cases.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 59

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/acd32810819a4b2893c9f8698e2ec55c.html


 Note
For more information about snapshots and limitations, see Graph Snapshots and Operator States
[page 61].

• Streaming API: Use streaming API during data transfor. Loads small chunks of data into system memory
instead of data from the entire pipeline. Streaming API has the following benefits:
• Reduce overall memory usage: Operators send and consume data in small chunks inside the same

stream, which reduces memory usage.
• Combine with batch: Operators send each batch as a stream, and include the metadata for each batch

inside the headers.

 Tip
When you implement runtime features for Gen2 graphs, use standardized error handling so that each
operator uses the same methods for processing errors.

To design and operate recoverable Gen2 graphs, use the following methods:

• Gen2 Runtime:

Option Description

Auto Restart Configure graphs to restart automatically on failure or eviction. Set the Automatic
Recovery options in the Run As dialog box.

Snapshots Configure graphs to save a snapshot of the current operation periodically. The
snapshot allows recovery of the operation when the graph fails, pauses, or when
there are system upgrades. Operators save information about individual tasks, such
as which row in a table was last updated, and receive that information on recovery,
avoiding the need to restart the whole operation from the beginning. There are also
functions for script operators that implement an API for saving and restoring state as
well, allowing users to implement more complex use cases.

• Streaming: Operators support a streaming API for data transfer that doesn't require loading all information
into memory. Operators can send and consume data in small chunks inside the same stream, reducing
overall memory usage. Sending data through batches is still possible but it can be combined with streams.
Operators can send each batch as a stream with the metadata for each batch being sent inside the
headers.

• Error Handling: Each operator has a standardized way of handling errors.

Related Information

Graph Snapshots and Operator States [page 61]
State Management [page 48]

60 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



4.3 Graph Snapshots and Operator States
You can configure Generation 2 (Gen2) graphs to take snapshots of their state at regular time intervals so that
the operators of the graph send small pieces of data (status) to a central data store.

If the graph fails or pauses, SAP Data Intelligence Modeler uses the last status data to reinitialize to the last
state before the failure or pause happened.

 Example
If a graph is processing a large database table, its operator regularly saves which rows it has already
processed. When recovering from a failure, the operator reads its last used state and continues processing
from the specific row instead of starting over from the beginning of the table.

If you also enable the snapshot feature, recovery of stateful graphs is more efficient than running with recovery
only. Enable snapshots only when the Gen2 graph is conceptually stateful. If a graph doesn't have any state to
save, it's more efficient to not capture snapshots.

Keeping State Size Small

To keep the status data per operator small, design a computation method that incrementally maintains a
small state size. Ensure that you design a computation method when you design the operator and before you
implement the operator.

 Note
The size of the stored state depends on the stateful computation by the operator, and not by the snapshot
frequency.

 Example
Calculate the total sales by city and send sales records to the operator in the graph through its input port,
and manage the state size. There are two methods to achieve this goal.

Method 1

1. Group all records received by each city.
2. After the last record is received, compute the sum of sales in each city group.
3. Return the result.

For Method 1, the size of the state is roughly the size of all records received by the operator, no matter the
snapshot frequency.

Method 2

Design an incremental version of the Method 1 computation:

1. Maintain a state where, for each city, you compute the current sum of sales amount.
2. After all records are received, the state contains the result that is returned.

For Method 2, the size of the state is roughly the number of cities with their sum, independent of the
snapshot frequency.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 61



Operators That Support Snapshots

Not every Gen2 operator supports the snapshot feature. When you configure and run a Gen2 graph, but
some of the operators in the graph don't support the snapshot feature, the graph can't reinitialize to the state
before a failure or a pause, and it can lose data. Therefore, ensure that a graph that you run with the Capture
Snapshots option enabled contains only operators that support snapshots.

The following table lists all Gen2 operators, whether they support snapshots, and any conditions that apply.

Category Operator Operator ID Supports Snapshots
Conditions and Re-
marks

ABAP Read Data From SAP
System

com.sap.abap.reader Yes Stores state: list of
package IDs in proc-
ess.

Connectivity Kafka Consumer com.sap.kafka.con-
sumer2.v2

With conditions For details about con-
ditions, see the section
Snapshot Support in
Kafka Consumer V2.

Connectivity Kafka Producer com.sap.kafka.pro-
ducer.v2

With conditions For details about con-
ditions, see the section
Snapshot Support in
Kafka Producer V2.

Connectivity REST API Client com.sap.restapi.client Yes For details about con-
ditions, see the section
Snapshot Support in
Rest API Client.

Connectivity (via Flow-
agent)

Flowagent SQL Execu-
tor

com.sap.dh.ds.sql.ex-
ecutor.v2

No None

Data Quality Validation Rule com.sap.dh.dq.valida-
tionrule.v2

No None

Files Binary File Consumer com.sap.file.read.v2 With conditions Stores state: index of
the part file last read.

For details about con-
ditions, see the section
Snapshot Support in
Binary File Consumer.

Files Binary File Producer com.sap.file.write.v2 With conditions Stores state: See the
section State Manage-
ment Support in Bi-
nary File Producer.

Files List Files com.sap.file.list.v2 With conditions Stores state: index of
file in the files list.

For details about con-
ditions, see the section
Snapshot Support in
List Files V2.

62 PUBLIC
Modeling Guide

Using Graphs (Pipelines)

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6d4be1097f8d4df0b18e3a606ae9b607.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/e22d0e5f8f564a76a1fe0486845b0303.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/36aa260d17f54d738071b9c7a716faea.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/1faddfa3f3e14bcb98049e90ece74f1f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/64d01ad02e39499594b1eb103974443e.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/64d01ad02e39499594b1eb103974443e.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/4d4da2140f354ba09fa4a280527f6e07.html


Category Operator Operator ID Supports Snapshots
Conditions and Re-
marks

Processing Python3 Operator com.sap.system.py-
thon3Operator.v2

Yes Stores state: depends
on user script.

Remote Dataflow Data Services Trans-
form

com.sap.dataservi-
ces.transform.v2

No None

SAP HANA Initialize HANA Table com.sap.hana.initTa-
ble.v2

Yes None

SAP HANA Read HANA Table com.sap.hana.readTa-
ble.v2

With conditions Stores state: row in-
dex.

For details about con-
ditions, see the section
State Management
Support in Read HANA
Table V2.

SAP HANA Run HANA SQL com.sap.hana.runSQL.
v2

With conditions Stores state: last state-
ment executed and the
batch index.

For details about con-
ditions, see the section
State Management
Support in Run HANA
SQL V2.

SAP HANA Write HANA Table com.sap.hana.writeTa-
ble.v2

Yes None

Structured Data Oper-
ators

SAP Application Con-
sumer

com.sap.applica-
tion.consumer.v3

No None

Structured Data Oper-
ators

SAP Application Pro-
ducer

com.sap.applica-
tion.producer.v2

With conditions Operator supports
running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
snapshots when you
use it with other con-
sumer operators, like
ABAP Readers.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 63

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/b51adedc86404c79afda7bbca3b958aa.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/b51adedc86404c79afda7bbca3b958aa.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/5796f97071ac44b386172f686fdaf015.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/5796f97071ac44b386172f686fdaf015.html


Category Operator Operator ID Supports Snapshots
Conditions and Re-
marks

Structured Data Oper-
ators

SQL Consumer com.sap.data-
base.sql.consumer.v3

With conditions Stores state: partition
of input data.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

Structured Data Oper-
ators

Table Consumer com.sap.database.ta-
ble.consumer.v3

With conditions Stores state: partition
of database table.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

Structured Data Oper-
ators

Table Producer com.sap.database.ta-
ble.producer.v4

With conditions Operator supports
running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
snapshots when you
use it with other con-
sumer operators, like
ABAP Readers.

Structured Data Oper-
ators

Data Transform com.sap.datatrans-
form.v2

No None

Structured Data Oper-
ators

Structured File Con-
sumer

com.sap.storage.con-
sumer.v3

With conditions Stores state: partition
of file groupings.

Operator supports
running with snap-
shots only when it
reads data using par-
titions, and when you
use it with Structured
Data Producer opera-
tors.

64 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Category Operator Operator ID Supports Snapshots
Conditions and Re-
marks

Structured Data Oper-
ators

Structured File Pro-
ducer

com.sap.storage.pro-
ducer.v3

With conditions Operator supports
running with snap-
shots only when you
use it with Structured
Data Consumer opera-
tors with source parti-
tions. However, the op-
erator doesn't support
snapshots when you
use it with other con-
sumer operators, like
ABAP Readers.

Utilities Binary to Table com.sap.table.de-
code.v2

Yes None

Utilities Table to Binary comsaap.table.encode Yes None

Utilities Graph Terminator com.sap.util.graphTer-
minator.v2

Yes None

Utilities Terminal com.sap.util.termi-
nal.v2

With conditions Data that entered the
terminal can be lost
when it wasn't proc-
essed downstream be-
fore a pause or restart.

Utilities Wiretap com.sap.util.wiretap.v2 Yes None

Limitations

SAP Data Intelligence doesn't support the following scenarios with the snapshot feature:

• Circular pipelines: You can't have a pipeline that has a circular connection, which is when the last operator
outputs data to the first operator.

• Debug mode: You can't run graphs in debug mode with snapshots enabled.
• Group multiplicity: You can't have snapshot generation on graphs with groups that have multiplicity.
• Subgraphs: You can't create subgraphs for Gen2 pipelines.

Related Information

State Management [page 48]
Examples: Operator States [page 50]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 65



4.4 Delivery Guarantee for Generation 2 (Gen2) Graphs

When you enable automatic graph recovery and snapshots for a Gen2 graph (pipeline), your graphs can outlast
system failures and system maintenance events.

SAP Data Intelligence doesn't persist snapshots continually. Therefore, some already-processed information
can be lost, and the Modeler has to reprocess some of the same information after restoring a graph.
Regardless, SAP Data Intelligence provides guarantees on the data consistency when there's a chance of losing
data or duplicating data when the Modeler recovers the graph.

The following table lists the guarantees that Gen2 graphs with automatic graph recovery and snapshots
provide. For descriptions of terms, see Terminology [page 66].

Source Batch Writer Other Conditions Guarantee

Replayable No Idempotent Pipeline is determinis-
tic

Exactly once

Replayable Yes Idempotent Pipeline is determinis-
tic

Discard duplicate mes-
sages after source

Exactly once

Any No Transactional None Exactly once

Replayable Yes Transactional None Exactly once

Nonreplayable No None Any At most once

Nonreplayable Yes Any Any At most once

Replayable Any Any Any At least once

Terminology

The terms in this section define the content of the values in the guarantee table.

Source
A source is an operator that generates data independently of any signal from an input port or ports. The
following table describes the values in the Source column.

66 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Replayable Data generated at time “T + x” always contains the data that
was generated previously, at moment “T”, and in the same
order.

The following scenarios apply to replayable generators with-
out batches:

• Reading immutable file.

• Query SELECT ...FROM SALESORDER WHERE
ORDERDATE <'10-02-2010' ORDER BY

ORDERDATE", where the comparison guarantees to al-
ways include previous information.

• Reading from an event queue starting from an offset.

• Query "SELECT ...FROM
SALESORDER...ORDER BY ORDERDATE", where
the table is append-only and records can be ordered.

Nonreplayable Data generated when replayable conditions aren't met.

 Note
SAP Data Intelligence reads from a directory of files so
that when there's a recovery, it doesn't have to start
from the beginning.

Any Either replayable or nonreplayable.

Batch
Data generated and broken into batches. You configure batches typically in the operator configuration.

Yes Data is broken into batches.

No Data isn't broken into batches.

Any Data is either broken into batches or not.

Writer
The writer column contains information about operators that send data outside the graph. The following table
describes values in the Writer column.

Idempotent Writing data multiple times has the same effect as writing
data once. An idempotent writer can be guaranteed by the
operator's operation, such as an UPSERT or a write-ahead
log (WAL).

Modeling Guide
Using Graphs (Pipelines) PUBLIC 67



Transactional Writing data only when an epoch is finished, where an
epoch is the interval between the snapshots. During
an epoch to snapshot the graph, the operator doesn't
write any data. Applicable only for the Python Opera-
tor ('api.set_epoch_complete_callback') and
Kafka Consumer.

 Note
Failure happens when the epoch completes, but before
persisting data. The data recovery is from the com-
pleted epoch, so the writer requires a WAL to determine
that the epoch hasn't saved the state yet.

Can discard duplicates The operator has to guarantee by an independent log that it
discards repeated batches before they're propagated to the
graph. Discarding repeated batches before propagating to
the graph is guaranteed by several operators in the graph.
An operator that is directly connected to the generators can
have the independent log. Alternately, the source operator
can have the independent log.

The Discard duplicate messages after source condition is
necessary for operators whose internal states are affected
by duplicate input messages. Otherwise, there's no risk of
having the operators process the data again, and the idem-
potent writers is enough to prevent external side effects.

Other Conditions

Pipeline is deterministic

The graph always produces the same data to write and the same internal state for a given set of messages
provided by the generators.

Recovering a graph with replayable sources has the same effect as the original run. The generators create the
same data of the latest persisted snapshot, which in turn produces the same effects.

Guarantees

The following table describes the values that appear in the Guarantees column.

Exactly once Execution is equivalent to failure-free execution.

At most once If there's a failure, data is lost but not duplicated.

At least once If there's a failure, data isn't lost and is duplicated.

 Note
The guarantees are for cases with a single generator or writer, such as a graph that contains the following
construction: Read File Python Operator Write HANA.  The listed guarantees are also applicable to
any other configuration, excluding cycles.

68 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



4.5 Validate Graphs

Graph validation is an automatic or manual process that analyzes a graph for correct structure and
components, such as operators, ports, groups, and configuration.

The results of a graph validation show that the graph analyses are successful. Graph validation checks the
following components of a graph:

• Graph configuration
• Operator connections
• Tag configuration for groups defined in a graph
• Graph resource requests and limits

Validation doesn't build the graph with the corresponding resources and dependencies. Therefore, validation
doesn't take as long as running the graph.

Types of Graph Validation

There are two types of graph validation based on when the validation is performed:

• Implicit validation: Performed when you save or run a graph. Implicit validation is also known as automatic
validation.

• Explicit validation: Performed when you start graph validation manually. Explicit validation is also known
as manual validation.
Start an explicit validation by selecting the   (Validate) icon in the Data Intelligence Modeler editor toolbar.

View Validation Results

To view graph validation results, open the Validation tab in the bottom pane of the Data Intelligence Modeler. It
displays either a success message or a list of errors and warnings.

• Success: The graph doesn't have any warnings or errors.
• Warning: There's a problem with the graph. This problem won't cause the graph to fail, but it can result in

other issues later.
• Error: There's an issue with the graph. This problem will cause the graph to fail and needs to be fixed.

 Note
If validation finds any errors or warnings, you can fix some of the issues by selecting the   (help) icon
located to the right of the error or warning message.

When the validation results in errors, you can't run the graph until you fix the errors and revalidate the graph.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 69



Related Information

Graph Validation Warnings and Errors [page 70]

4.5.1  Graph Validation Warnings and Errors

When a graph validation isn't successful, the Data Intelligence Modeler creates a list of warnings and errors,
with a link to additional information about the warning or error.

The following table describes some of the warnings and errors from a graph validation.

Message Component Severity Quick Fix

There are no operators in the
graph.

isGraphEmpty Warning Add operators to the graph.

Invalid graph description.
Special characters are not al-
lowed.

Validate Graph Description Error Check graph.json for
special characters in the de-
scription.

Group name is either missing
or not unique.

Validate Single Group Error Check graph.json to
add missing group names,
and modify identical group
names.

The tagdatabase of graph
<graph_name> is empty.

Check tags Error Check your repository or
Tags.json files for er-
rors. Errors occur in the
<graph_name> file.

Matching Dockerfile couldn't
be found.

Check tags Error Check your repository
Tags.json files, or other
resources, for errors. Also
check for missing or incor-
rect tags in the group config-
uration.

The graph <graph_name>
has a single operator.

Check Operator Connections Warning This graph can execute with
current configuration. How-
ever, consider adding more
operators to the graph based
on your requirement.

Incompatible ports are con-
nected (source: port %s of
operator %s, target: port %s
of operator %s).

Check Connection Types Error Provide connection between
compatible ports only.

Operator
<operator_name> either
deprecated or beta.

Validate Operator Versions Warning This graph can execute with
current configuration. How-
ever, consider using nonde-
precated or nonbeta opera-
tors.

70 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Message Component Severity Quick Fix

Operator
<operator_name> does
not exist in the registry.

Validate Port Names Warning Check that the operator
<operator_name> is cor-
rect and saved sucessfully.

Some groups are missing re-
source definitions. If the re-
source request is missing
and the limit is set, the re-
quest shall use the smaller
value from either the limit set
or the default request value.

Validate Graph Resources Error

The message is an error
when you validate the graph
manually (explicit validation).

Without selecting any part of
the graph in the canvas:

1. Open the Configuration
pane.

2. Expand Resources.
3. Select the Edit icon.
4. Add or edit the resource

limits.

For more information about
limits, see Maintain Resource
Requirements for Graphs
[page 87].

Some groups are missing re-
source definitions. If the re-
source request is missing
and the limit is set, the re-
quest shall use the smaller
value from either the limit set
or the default request value.

Validate Graph Resources Warning

The message is a warning
when you save or run a
graph, and the Modeler vali-
dates the graph (implicit vali-
dation).

Without selecting any part of
the graph in the canvas:

1. Open the Configuration
pane.

2. Expand Resources.
3. Select the Edit icon.
4. Add or edit the resource

limits.

For more information about
limits, see Maintain Resource
Requirements for Graphs
[page 87].

Group restart policy is set to
'restart' for the follow-
ing groups, while snapshot is
enabled: <group_name>.

Validate Restart Policy Error Change the restart policy
for the following groups:
<group_name>.

Operator
<operator_name> has a
manual connection, which
might contain sensitive infor-
mation, such as ID and pass-
word.

Validate Manual Connection Warning Use a connection from Con-
nection Manager rather than
the manual connection.

Operator
<operator_name> is us-
ing the “propagate to error
port” error handling option
but its error port is not con-
nected or not present.

Validate Error Handling Ports Error Connect the error port of this
operator or change its error
handling type.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 71



4.6 Running Graphs

After creating a graph, you can run the graph based on the configuration defined for the graph. The Modeler
application runs the operators in the graph as individual processes.

Procedure

1. Open the applicable graph in a graph editor.

2. Select the down arrow next to   (Run) in the editor toolbar.
3. Choose one of the run choices.

• Run: Runs the graph immediately.
• Run As: Run As: Runs the graph after you configure additional settings, such as automatic restart, and

snapshots. The following table describes the Run As options.

 Note
The Run and Run As options trigger graph validation before running the graph. The Modeler displays
the results in the Validation tab. For more information, see Validate Graphs [page 69].

4. Complete the options in the Run As dialog box as described in the following table.

Option Description

Run Graph As Required. Specifies a unique name for the run.

Trace Level Sets the trace severity threshold, which determines the
trace messages that are sent to the trace server. Choose
one of the following options:

• INFO

• DEBUG

• ERROR

• FATAL

• WARN

For complete descriptions of the Trace Level options, see
Trace Severity Levels [page 109].

72 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Option Description

Configuration Substitutions group Contains all the configuration substitution parameters for
the operators in the graph.

If you defined configuration substitution parameters for
the operators in the graph, all the configuration substitu-
tion parameters display in the Configuration Substitutions
group.

Provide the required values for the following options as
necessary:

• HANA_DB
• file_connection_id
• file_path
• select_statement

 Note
If there are conditional configuration properties for an
operator, regardless of the property that is visible in
the configuration panel, the Run As dialog box still
displays all the configuration substitution parameters.
It's optional to provide values for the substitution pa-
rameters that are hidden in the Modeler.

Capture Snapshot Saves a snapshot (intermediate state) of the graph for
efficient recovery.

 Note
Snapshot configuration is available for graphs only
with Generation 2 operators.

Every x second(s) Specifies the time frequency (in seconds) for the Capture
Snapshot option. Frequence is from 1 second to 24 hours.

Automatic Recovery Restarts the graph automatically if there are failures or
system upgrades.

Retry Count Sets the number of retries for recovery within a specific
time period.

Retry Interval Sets the interval in seconds between retries for recovery.

Retry Threshold Value Sets the amount of time the system tries to recover the
graph before it resets the automatic recovery count.

Remember Configuration Parameters Saves the Run As values to the configuration substitution
parameters for when you run the graph again. If you’ve
saved the configuration for the next graph execution, you
can select the configuration for running the graph or up-
date the existing run configuration.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 73



Option Description

Set as Default Run Configuration Saves the current settings as the default setting. Appli-
cable when you've defined and saved multiple configura-
tions.

5. Select OK to save your settings and to start running the graph.

Automatic Graph Recovery [page 74]
Configure any graph to recover from failure automatically, regardless of whether the graph uses
Generation 1 or Generation 2 operators.

Parameterize the Graph Run Process [page 78]
Parameterize the graph run process using parameters that assume different values based on the
values passed in each graph run.

Debug Graphs [page 82]
You can start the graph in debug mode to verify the input and output from each operator during
execution and analyze or modify the data passing through a connection.

Schedule Graph Executions [page 84]
The SAP Data Intelligence Modeler provides capabilities to schedule graph executions.

Related Information

Schedule Graph Executions [page 84]

4.6.1  Automatic Graph Recovery

Configure any graph to recover from failure automatically, regardless of whether the graph uses Generation 1 or
Generation 2 operators.

When Automatic Recovery is enabled in the Run As dialog, the runtime system monitors the graph for failures
and maintains a failure counter. As long as the failure counter is lower than the set options in the Recovery
Configuration group, the runtime system restarts the graph with the same runtime configuration. If the graph
fails within the set retry time, the error counter is reset.

 Note
Early graph failures are often caused for only temporary reasons, such as initial network or resource
allocation timeouts. By resetting the failure counter, you prevent unintentional consumption of the
automatic retrials.

The following table describes the options in the Recovery Configuration group.

Option Description

Automatic Recovery Select to turn on automatic recovery.

74 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Option Description

Retry for <n> run(s) Specifies the number of runs for which to retry the graph
before the counter is reset.

within the threshold value of <n> second(s) Specifies the time limit for retrying the graph before the
counter is reset.

Finally Failed Graphs

When the number of retries exceeds the settings in the Recovery Configuration group, the graph finally fails and
the automatic restart feature stops. However, a finally failed graph can still be restarted manually at any time,
even if the trials have been exceeded.

 Note
The number for automatic restart trials can't be changed once the graph has started.

Run Graph with Automatic Recovery

To enable the automatic recovery, check the option Automatic Recovery in the Run As dialog. To reset the
failure counter, complete the Recovery Configuration group options.

The following table describes the details that appear in the Overview tab in the Modeler after the graph has
entered the running state.

Detail Description

Status The current status of the graph.

Runtime Handle The ID of the current running graph graph. Every run has a
unique ID.

Restart ID The ID of the automatic recovery configuration. All recovered
graph runs share the same Restart ID.

Run Order Indicates how often the graph has been recovered. Because
the graph can also be restarted manually, the Run Order can
exceed the Maximum Automatic Retries.

Current Failure Counter Shows how often the graph has failed. You can reset this
counter if recovery fails within the set retry threshold time.

Run Type Shows whether the graph has been recovered automatically
or restarted manually.

Maximum Automatic Retries The number of retries.

Retry Threshold Time The threshold time for resetting the current failure counter
for early failures.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 75



 Example
 
Retry Threshold Time: 30s
Maximum Automatic Retries: 3
Instance: 0
Graph running for: 40s
Increase current failure count: false
Current failure count: 0
Instance: 1
Graph running for: 20s
Increase current failure count: true
Current failure count: 1
Instance: 2
Graph running for: 31s
Increase current failure count: false
Current failure count: 0
Instance: 3
Graph running for: 20s
Increase current failure count: true
Current failure count: 1
Instance: 4
Graph running for: 28s
Increase current failure count: true
Current failure count: 2
Instance: 5
Graph running for: 15s
Increase current failure count: true
Current failure count: 3
 
Maximum retries reached

The Status Tab

The Status tab lists all graph runs. The Status tab has two views, linear list and tree view that groups all runs
belonging to the same automatic restart configuration (automatic restart group).

You can perform the following tasks in the Status tab:

• Download diagnostics information.
• Pause and restart the graph run.
• Archive the graph run.

Automatic Graph Recovery and System Maintenance

When the system changes to maintenance mode, all graphs eligible for automatic restart enter the “stopped
by pause” state. After the system goes back to production mode and the pipeline modeler is running for the
respective users, the system restarts the graphs in the “stopped by pause” state automatically.

 Note
The automatic restart is triggered only when the user who owns that graph logs on to the system and starts
the pipeline modeler.

76 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Pause and Stop Graphs Manually

Use the options in the Status tab to manually pause, restart, and stop graphs. Pausing and restarting graphs is
helpful when you develop and test recoverable graphs.

 Note
Paused graphs keep allocating resources. If you don't plan to later restart a paused graph, SAP
recommends stopping the graph to free resources.

You can restart a graph that has a status of “stopped by pause” at any time.

You can stop a graph manually, or the system stops the graph automatically when it completes its work. When
a graph is stopped, it enters the state of “completed” and can't be restarted or recovered.

Archiving Graphs

You can archive a graph when it enters into any of the following states:

• “completed”
• “stopped by pause”
• “dead”

 Restriction
To prevent potential data loss, a graph can't be archived when it's in the “stopped by pause” state and has a
valid snapshot.

Parent topic: Running Graphs [page 72]

Related Information

Parameterize the Graph Run Process [page 78]
Debug Graphs [page 82]
Schedule Graph Executions [page 84]
Managing Cluster Hibernation and Wakeup

Modeling Guide
Using Graphs (Pipelines) PUBLIC 77

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/911eae13fc4849db8b3b237a91a86d04.html#loio911eae13fc4849db8b3b237a91a86d04


4.6.2  Parameterize the Graph Run Process

Parameterize the graph run process using parameters that assume different values based on the values passed
in each graph run.

When you configure operators and groups in a graph manually during design time, the resulting values are the
same for all executions of the graph. But, when you parameterize the graph run process, you can change the
results for each run.

Use the following two modes of parameterization through the API:

• Substitution Parameters
• Graph Parameters

 Note
You can't mix the two types of parameterization in the same graph. A graph, however, can be executed
using substitution parameters while another instance of the same graph can use graph parameters.

SAP Data Intelligence restricts both methods to operator configurations and group multiplicity. Therefore, you
can change a group's CPU or memory limits only during design time.

Substitution Parameters

When you use substitution parameters, set values for the parameters at the following times:

• At runtime, when you run the graph.
• At design time, by referencing the value of another configuration from the same operator.

When you reference the value of another configuration from the same operator, the values must always be
strings. The values must be strings even for group multiplicity. The system converts the strings to integers
internally.

Define a substitution parameter by providing the value to the configuration in the following format:
${parameter_name}, where parameter_name is the name of the substitution parameter. SAP Data
Intelligence handles the substitution parameter value as follows:

• If the name of the substitution parameter (parameter_name) matches the name of an operation
configuration, then the Modeler uses the configuration value as the substitution parameter value.

• If the name of the substitution parameter (parameter_name) doesn't match the name of any
configuration parameter of the operator, then you provide the value at runtime.

 Example
The operator configuration parameter named “Path” is defined with the value URL://${name}. In this
example, {name} is the substitution parameter. You define the value for “Path” by providing a value to
{name} at runtime.

78 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



 Example
The following snippet shows an excerpt of a graph JSON with a substitution parameter in an operator
configuration:

{
 
    "properties": {},
    "description": "",
    "processes": {
        "httpclient1": {
            "component": "com.sap.http.client2",
            "metadata": {
                "label": "HTTP Client",
                "config": {
                    "getConnection": {
                        "connectionID": "${TO_BE_SUBSTITUTED_CONNECTIONID}"
                    },
                    "retryPeriodInMS": 500
                }
            }
        },
        ...
 
}

The following code snippet requests the body of an HTTP request that runs a graph named “testSubs”, and
sets a value for the substitution parameter as “TO_BE_SUBSTITUTED_CONNECTIONID”:

{
 
    "src":"test_substitution",
    "name":"testSubs",
    "debug":false,
    "async":true,
    "configurationSubstitutions":{
      "TO_BE_SUBSTITUTED_CONNECTIONID": "TEST_HTTP_CONNECTION"
    }
 
} 

Graph Parameters

Graph parameters support all JSON types. To support graph parameters, SAP Data Intelligence uses the
following attributes:

• parameters: Use as part of the graph description. Lists all the schemas that appear between the brackets
(${}) and includes the JSON type. Default values are optional. This field contains the schemas of each
para parameter.

• parameterMapping: Use as part of the graph description. Maps an operator configuration property to a
value that contains a graph parameter.

• An entry to the request body that JSON uses to start a graph. Instead of the
configurationSubstitutions, you can use parameters that support any type.

 Example
The following code snippet uses integer and boolean:

{
 
    "src": "test_parameters",

Modeling Guide
Using Graphs (Pipelines) PUBLIC 79



    "name": "testParams",
    "parameters": {
        "eggs": 100,
        "dis": true
    }
 
} 

Where:
• eggs = integer
• dis = boolean

The following example shows the extent of the graph parameter feature and how you can use the graph
parameters for operator configurations.

 Example

{
 
...
"parameters": { // Schemas of the substitution parameters
    "foobar":{
        "type": "number",
        "default": 100 // default value if no value is passed
    },
    "foobar2": {
        "type": "object"
    },
    "foobar3": {
        "type": "number"
    }
}
"processes": {
    "pythonOperator1": {
        "configuration": {
            "other": "value",
            "baz": "3",
            "test2": "3",
            "bazarray": [
                {
                    "baz": 2
                }
            ]
        }
    }
}
"parameterMapping": { // How the parameters will be introduced into the 
configurations, we should always refer to the parameters with ${}
    "processes.pythonOperator1.configuration.baz": "where count < $
{foobar}", // overwrite existing baz with string "where count < 3".
    "processes.pythonOperator1.configuration.test": "${foobar2}", // create 
configuration that expects any JSON object, not requiring further schema
    "processes.pythonOperator1.configuration.test2": "${foobar3}", // 
overwrites 3 with the parameters integer value.
    "processes.pythonOperator1.configuration.bazrray.0.baz": "${foobar}", // 
overwrites 2 with the parameter value, keep in my the last structure (baz in 
this case) must be an object.
    "processes.pythonOperator1.configuration.test": "foobar2 dummy", // ERROR 
because the value must contain ${}, and the stringification depends only on 
the type in the schema. 
}
...
 
}

80 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Type Validation
SAP Data Intelligence performs type validation on the parameters based on their type definition. An invalid type
results in the graph run request to fail with an error code of 400.

The following sample code shows how to parameterize group multiplicities and how SAP Data Intelligence
works with the operator configurations.

 Example
Only integer and number types are allowed. In parameterMapping, the system references each group by
its index in the graph groups list.

{
 
    "processes": {
        "formatconverter1": {
            "component": "com.sap.util.formatConverter1",
            "metadata": {
                "config": {
                }
            }
        }
    },
    "groups": [
        {
            "name": "group1",
            "nodes": [
                "formatconverter1"
            ],
            "metadata": {
                "description": "Group"
            }
        }
    ],
    "parameters": {
        "foo": {
            "type": "string"    
        },
        "bar": {
            "type": "number"    
        }
    },
    "parameterMapping": {
        "processes.formatconverter1.configuration.cfg1": "${foo}",
        "groups.0.multiplicity": "${bar}"
    }
 
}

Limitations

The request to run a graph fails with error “400 bad request” under the following conditions:

• Parameters are too large. The default threshold is 5 MB.
• Graph uses both substitution parameters and graph parameters.
• Parameters aren't valid according to their schema.

Parent topic: Running Graphs [page 72]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 81



Related Information

Automatic Graph Recovery [page 74]
Debug Graphs [page 82]
Schedule Graph Executions [page 84]

4.6.3  Debug Graphs

You can start the graph in debug mode to verify the input and output from each operator during execution and
analyze or modify the data passing through a connection.

Context

Debug mode enables debugging capabilities on the execution of a pipeline and allows you to investigate the
whole pipeline step by step to make it bug free. You can inspect data at a specific stage of a pipeline execution,
detect data quality issues, perform a root cause analysis of the detected problems, and try corrective actions.

 Note
The debug feature is not supported for generation 1 graphs with structured data operators.

Procedure

1. In the graph editor, open the graph that you want to debug.

2. In the editor toolbar, choose the  (Debug) menu option.
The graph executes in debug mode.

3. To view the debugging status of the graph, open the Status tab in the bottom panel and select the graph to
open it in the monitoring/runtime view.

In the runtime view, the Debug Panel opens and lists all the breakpoints in the graph. You can select a
specific operator in the graph to see the breakpoints associated with that operator.

4. To filter the results in the debug panel, click   and choose from one of the following:

• Breakpoint: Displays only breakpoints.
• Hit: Displays breakpoints and streaming points that are hit.
• Streaming: Displays only streaming points.

Task overview: Running Graphs [page 72]

82 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Related Information

Add Breakpoints to a Graph [page 83]
Automatic Graph Recovery [page 74]
Parameterize the Graph Run Process [page 78]
Schedule Graph Executions [page 84]

4.6.3.1 Add Breakpoints to a Graph

Breakpoints and streaming points allow you to inspect the data transformation occurring throughout the
pipeline when you run in Debug mode.

Context

When running in debug mode, streaming points will be set by default in all connections. You will be able to
convert streaming points to breakpoints, which stops when data hits them and shows visually. You can modify
or resume execution of that connection, which in turn would stop again when data hits the next connection
breakpoint.

You can set a breakpoint during design time or run time. The design time breakpoints will not be saved with
graph information, which means that design time breakpoints gets reset once you close and open the graph
again.

Procedure

1. To set a breakpoint,

• hover over the connection between operators in a graph, you will get an option to click and set the
breakpoint.
or

• right-click over the connection between operators in a graph and click Add Breakpoint.
2. Run the graph in debug mode. For more information, see Debug Graphs [page 82].
3. To add/remove breakpoints, right-click a breakpoint in the debug panel or in the graph and select the

appropriate option in the context menu.
4. For a breakpoint, you can:

a. inspect and modify data upon hit. Right-click and select Inspect Data in the context menu.
b. resume inspection. Right-click and select Resume in the context menu.

5. For a streaming point, you can:
a. open its corresponding debugger page. Right-click and select Open Streaming UI.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 83



4.6.4  Schedule Graph Executions

The SAP Data Intelligence Modeler provides capabilities to schedule graph executions.

Context

Scheduling graph execution is useful when you have to schedule graph executions with recurring conditions.

 Note
We recommend scheduling executions only for those graphs that, when executed, run for a limited period
and finish with the status of completed or dead (for example, Data Workflows operators).

Procedure

1. Open the graph that you want to schedule to execute in a graph editor.

2. In the editor toolbar, choose  (Run).
3. Choose the Schedule menu option.
4. Schedule a graph execution.

In the Schedule Graph dialog box, define the schedule.
a. In the Schedule Description text field, provide a name for the schedule.
b. Select a schedule property.

The application supports a form-based approach or a cron expression to define the schedule.

Schedule Property

Property Description

Form Provides a form-based UI to define a condition that specifies the frequency (or
the number of occurrences) for executing the graph.

Select a time zone and define the frequency pattern in the schedule properties
section to schedule the executions..

The system uses the UTC equivalent of the frequency pattern that you specify to
schedule the executions.

For example, you can define a recurring condition that executes the graph every
day at 9:00 AM.

84 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Property Description

Expression Defines a cron expression that provides the condition for scheduling a recurring
graph execution. The cron expression is a string of five fields separated by white
spaces.

The syntax for the cron expression is Minute Hour DayOfMonth Month
DayOfWeek.

5. Choose Schedule.

Next Steps

After creating a schedule, you can monitor the schedule within the Modeler or use the SAP Data Intelligence
Monitoring application to monitor and manage all schedules.

In the bottom pane of the Modeler application, under the Schedule tab, you can monitor and manage the
schedule. In this tab, you can view the description of the schedule and the graph execution state. If the
schedule of the graph is in active state, the graph run is triggered. Otherwise, it is suspended. To stop a

schedule, select the required graph and choose  (Stop Process).

 Note
A special scheduling graph running in the SAP Data Intelligence Modeler performs the scheduled
operation.

Task overview: Running Graphs [page 72]

Related Information

Cron Expression Format [page 86]
Automatic Graph Recovery [page 74]
Parameterize the Graph Run Process [page 78]
Debug Graphs [page 82]

Working with the Data Workflow Operators [page 133]
Monitoring SAP Data Intelligence [page 204]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 85



4.6.4.1 Cron Expression Format

Use cron expressions to define the recurrence condition that the tool uses to schedule the graph execution.

Cron Format

A cron expression to execute graphs in the Modeler is a string comprised of five fields. The table lists the order
of fields (from left to right) in a cron expression and the permitted values for each field.

Cron Field (from left to right) Description

Minute Representation for a minute. Permitted: 0 to 59.

Hour Representation for an hour. Permitted: 0 to 23.

 Note
The system uses the UTC (offset 0) equivalent of the condition specified with
the cron expression.

DayOfMonth Day of the month. Permitted: 1 to 31.

Month 3-letter representation for month. Permitted: jan-dec. Alternatively, numbers 1-12
can be used, where 1 = jan, and so on.

DayOfWeek 3-letter representation for day of week. Permitted: sun, mon, tue, wed, thu, fri, sat.
Alternatively, use numbers 0-6, where 0 = sun, and so on.

Cron Syntax

The table provides the syntax that the application supports to define a cron expression.

Expression Where Used Value

. Anywhere Any value

*/a Anywhere Any a-th value

a-b Anywhere Values in range a to b

a-b/c Anywhere Every c-th value between a and b

a,b,c Anywhere a or b or c

86 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Cron Expression: Examples

The table lists some examples of cron expressions that you can use.

Expression Description

* * * * * Runs the schedule every minute.

*/5 13 * 12 0 Runs the schedule every fifth minute between 1:00 PM (UTC) and 1:59
PM (UTC) on Sundays in December.

0 9 1-7 * sat,sun Runs the schedule at 09:00 on every day of the month from 1 through 7,
and on Saturday and Sunday.

4.7 Maintain Resource Requirements for Graphs

Specify compute resource requirements, such as CPU and memory limits, for graph groups in SAP Data
Intelligence Modeler.

For each resource type, specify CPU and memory limits in the Requests and Limits properties of the
Configuration pane.

• The Requests properties specify the initial resource quantities for memory and CPU that the Modeler
requires to start the graph group execution. If the resource availability isn't enough, then the graph
execution fails to start. Default settings are as follows:
• Memory: 256 Mebibytes (Mi)
• CPU: 0.3 CPU

• The Limits properties specify the limits for resource usage for memory and cpu. If the graph group
execution violates the limit set for memory, the Modeler terminates the graph execution. If the graph group
execution uses excessive CPU, the set CPU limit helps control the CPU consumption by the graph group.
Default settings are as follows:
• Memory: 3 Gibibytes (Gi)
• CPU: 3 CPU

If you don't specify memory and CPU limits in the Resources section of the Configuration pane, the Modeler
uses the default limits.

When you set resources for Requests and Limits in the Configuration pane, you also select the resource units.
SAP uses the same notations as Kubernetes to specify the resource quantity. For more information on memory
and CPU resource units, see the following Kubernetes documentation:

• Memory resource units
• CPU resource units

For more information about CPU and memory size considerations, see Sizing for Data Pipelines in the Sizing
Guide for Cloud.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 87

http://help.sap.com/disclaimer?site=https%3A%2F%2Fkubernetes.io%2Fdocs%2Fconcepts%2Fconfiguration%2Fmanage-resources-containers%2F%23meaning-of-memory
http://help.sap.com/disclaimer?site=https%3A%2F%2Fkubernetes.io%2Fdocs%2Fconcepts%2Fconfiguration%2Fmanage-resources-containers%2F%23meaning-of-cpu
https://help.sap.com/docs/SAP_DATA_INTELLIGENCE/ea95bb6d8ac24cd6a4ad396ca5e35bc6/c7bd6c8a19014e75a319fab59e1b4a98.html?state=LATEST&version=Cloud


Errors and Warnings

When a graph or graph group exceeds the limits you set in Resources, the Modeler issues an error and the
graph doesn't run.

If you don't set limits in Resources, the Modeler uses the default limits and issues a warning or an error. The
message instructs you to adjust the CPU and memory limits for the graph. The following lists when the Modeler
issues a warning or an error:

• Warning: When you save or run a graph, and the Modeler validates the graph (implicit validation), the
Modeler issues a warning.

• Error: When you validate the graph manually (explicit validation), the Modeler issues an error.

Adjust the limits either in the Modeler or in the graph.json file.

Resource Requirements for a Graph in JSON [page 88]
View and overwrite resource requirements in the JSON file of a graph.

Configure Resources for a Graph [page 90]
You can add and specify resource configuration for a graph or the groups within the graph.

Related Information

4.7.1  Resource Requirements for a Graph in JSON

View and overwrite resource requirements in the JSON file of a graph.

Resource requirements are specified in the graph.json file. The groupResources property provides the
default resource requirements for all groups. For a group (except default), you can overwrite requirements in
resources property in the group definition.

 Example
Here is an example of a modified data generator demo graph (unnecessary details are omitted):

 Sample Code

{
 
   "groupResources": {
       "requests": {
           "cpu": "0.5",
           "memory": "4M"
       },
       "limits": {
           "cpu": "1.5",
           "memory": "16M"
       }
   },
   "description": "Data Generator",
   "processes": {
       "datagenerator1": {

88 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



           "component": "com.sap.util.dataGenerator",
           ...
       },
       "1mnu": {
           "component": "com.sap.util.terminal",
           ...
       }
   },
   "groups": [
       {
           "name": "group1",
           "nodes": [
               "datagenerator1"
           ],
           "resources": {
               "requests": {
                    "cpu": "1",    
       },
       "limits": {
           "cpu": "2",
           "memory": "32M"
               }
           }
       }
   ],
   "connections": [
       {
           "src": {
               "port": "output",
               "process": "datagenerator1"
           },
           "tgt": {
               "port": "in1",
               "process": "1mnu"
           }
       }
   ]
 
}

In this example graph, there are two groups: default (contains terminal operator) and group1
(contains dataGenerator operator). Resource requirements from groupResources are applied to the
default group:

 Sample Code

{
 
    "groupResources": {
        "requests": {
            "cpu": "0.5",
            "memory": "4M"
        },
        "limits": {
            "cpu": "1.5",
            "memory": "16M"
        }
    },
    ...
 
}

Modeling Guide
Using Graphs (Pipelines) PUBLIC 89



First the resource requirements from the groupResources property is applied to group1. Then all
resource requirements are overwritten for group1 but not memory request (because it's not specified for
group1):

 Sample Code

{
 
  ...
    "groups": [
        {
            "name": "group1",
            "resources": {
                 "requests": {
                    "cpu": "1"
                },
               "limits": {
                    "cpu": "2",
                    "memory": "32M"
                }
            }
        }
    ],
  ...
 
}

Parent topic: Maintain Resource Requirements for Graphs [page 87]

Related Information

Configure Resources for a Graph [page 90]

4.7.2  Configure Resources for a Graph

You can add and specify resource configuration for a graph or the groups within the graph.

Procedure

1. Open the graph for which you want to configure resources, in the graph editor.

2. Click anywhere on the graph or select a group within the graph and choose  (Show Configuration).

3. In the Configuration panel, go to the Resources section and click  (Edit).
4. In the Resource Configuration dialog, add or modify the resource requests and limits as required.
5. Specify the Resource Type, Value, and Unit for the Requests and Limits, and click OK.

90 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



 Note
If you don’t provide explicit configuration for a selected group, the graph level configuration is
applicable by default.

Task overview: Maintain Resource Requirements for Graphs [page 87]

Related Information

Resource Requirements for a Graph in JSON [page 88]

4.8 Create Data Types in Graph

You can create graph-level data types and use them in the graph along with the automatically generated data
types.

Context

To create additional data types to the existing automatically generated data types, perform the following steps
in the Modeler:

Procedure

1. Open the applicable graph in the graph editor.

2. Select   (Show Configuration) in the editor toolbar.

3. Expand the Data Types section and select   (Create).
4. Enter a unique ID for your data type in the ID text box.
5. Choose Structure, Table, or Scalar for Type.
6. Select OK.

The new data type appears in the list of data types in the Data Types section.

7. Optional: Select   (Edit) next to the data type name to set additional properties.

The available properties to set are based on the data type.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 91



Related Information

Use Data Types in Graph [page 92]
Exporting and Importing Graphs with Data Types [page 93]

4.8.1  Use Data Types in Graph

Procedure

1. In the navigation pane, choose the Graphs tab.

2. In the navigation pane bar, choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph.

3. In the navigation pane, choose the Operators tab.
4. Choose source and target operators that supports addition of ports from the Structured Data Operators

category.
5. In the context menu of the source, select the Add Port option.
6. Do the following in Add Port dialog:

a. Enter the output port name
b. Select data type as Structure, Table, or Scalar
c. Select a data type name from the value help, and click OK.

7. Drag from this port to the target operator.

If there’s a port of compatible data type, the connection is created to this port. Else, a new input port is
created on the target operator and is connected. If the port doesn’t allow additional ports, the link to the
operator is not created.

 Restriction
Only structured data transform operator supports data types.

92 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



4.8.2  Exporting and Importing Graphs with Data Types

When your graph has added data types, and you want to reuse the graph in another system, you must export
and import the graph from the repository instead of copying and pasting the JSON content.

Prerequisites

Before you perform the following steps, ensure that you complete the following tasks:

• Create a graph: Creating Graphs [page 57].
• Create a new data type: Create Data Types in Graph [page 91].
• Assigned the new data type to a port in the graph: Use Data Types in Graph [page 92].

Context

SAP Data Intelligence adds additional subfolders to a graph structure to store a data type definition. However,
the additional data type definition isn't included in the JSON content. Therefore, if you reuse a graph from
one system, such as a test system, to another system, such as a production system, it's important to use the
options Export as a Solution and Import as a Solution.

Perform the following steps in SAP Data Intelligence Modeler:

Procedure

1. Open the Repository tab in the navigation pane at left.
2. Select the graph to export in the Graphs node.
3. Choose Export as solution from the Export selected files or folders list at the top of the navigation pane.

The Export Solution dialog opens.
4. Complete the export by performing the following substeps:

a. Enter a name for the exported graph for the new environment.

 Sample Code

"name": "<graph_name>"

b. Enter a version for the graph.

 Sample Code

"version": "<graph_version>"

Modeling Guide
Using Graphs (Pipelines) PUBLIC 93



c. Optional: Complete the remaining attributes as necessary:

 Sample Code

...format": "2",
 
"description": "",
"dependencies": [ ]
 
}

d. Select Export Solution.
5. To import the graph, open the target SAP Data Intelligence environment and perform the following steps in

the Modeler:
a. Open the Repository tab.
b. Choose Import Solution from the Import File list.
c. Select the solution and choose Open.

The imported graph appears listed in the Graphs node of the Repository tab.

4.9 Groups, Tags, and Dockerfiles

Groups, tags, and Dockerfiles are essential parts of the SAP Data Intelligence environment for running graphs
(pipelines) more efficiently. Therefore, you must understand how they work together.

Groups

A group is an aggregation of operators in a graph that have similar technical requirements or that run in a
common Docker image. When you run a graph with groups, each group runs in a different Docker container.
Each Docker container has the possibility of having a different Docker image. The Modeler selects a group's
Docker image automatically based on the tags associated with the image. The operators in a group run in the
same node. You can configure each group with a different restart policy, tags, or multiplicity.

 Example
Assign different restart policies for each group in a graph:

• Group 1 has a restart policy where the container redeploys when the group fails.
• Group 2 has a restart policy where the graph terminates when the group fails.

The most common reason for using groups is to distribute work among many compute nodes. Distribute work
by partitioning the graph into many groups and (or) adding multiplicity larger than 1 for a group. Distributing
work among many compute nodes can result in better graph throughput and cluster utilization.

 Note
Multiplicity determines the number of runs for the group at runtime.

94 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



If there's no Dockerfile that satisfies the requirements of a graph, you can partition a graph into groups in such
a way that, for each group, there exists at least one Dockerfile that satisfies the graph's requirements.

A graph with no group defined explicitly has only one group, the default group. A default group contains all
operators from the graph that haven't been assigned to an explicit group. You can partition the graph by
assigning a subset of operators to an explicit group.

 Example
You have a non-partitioned graph with the following topology: A → B → C → D → E. All operators in this
graph run in the default group.

You decide to create 2 explicit groups:

• Group 1 contains A and B
• Group 2 contains E

When you include the default group, your graph now has 3 groups:

• Group 1: (A → B)
• Group 2: (E)
• Default group: C → D

The resulting topology is as follows: (A → B) → C → D → (E).

Tags and Dockerfiles

When running a graph, the Modeler selects a Docker image for each group based on the group's tags. View
the available tags in the Tags list in the group properties. If multiple Dockerfiles meet the tag requirements,
the Modeler chooses the Dockerfile with the fewest tags. If the Docker image isn't already cached, the Modeler
builds the selected Dockerfile during the graph run.

Each tag represents a software component, such as a package or library, that is required at runtime for a group.
The Modeler identifies the software component by a pair of values in the following format:

{
  
"<resource_id>":"<resource_version>"
  
}

.

 Example
The following are examples of value pairs for software component:

{
 
"python":"3.9"
}
 

{
 
"tornado":"6.1.0"
 
}

{

Modeling Guide
Using Graphs (Pipelines) PUBLIC 95



 
"opencv":""
 
}

 Note
An empty <resource_version>, such as "", means that the Modeler can use any version of the
component.

The final list of tags for a group is a combination of the following:

• individual tags specified by each operator
• tags from the group configuration

When determining the final list of tags, the Modeler searches for a Dockerfile in your repository directory that
meets all requirements. If two operators in the same group require the same resource but different versions,
and the versions are compatible, the Modeler uses the more specific version. If the versions aren't compatible,
the Modeler issues an error.

 Example
If one operator requires version “1.1” of component “foo” and another operator requires version
“1.1.2”, the Modeler selects version “1.1.2” because it's more specific. However, if one operator
requires version “1.1” and the other requires “2.1.1”, the Modeler issues an error because versions
“1.1” and “2.1.1” don't share a common prefix and aren't compatible.

When the Modeler searches for Dockerfiles that meet a group's tag requirements, it's essential that it
determines whether a specific group tag is fulfilled by a Dockerfile tag. A group is considered satisfied by
a Dockerfile tag only when the following conditions are met:

• The resource IDs in both tags are identical.
• The resource versions share a common prefix.
• The resource version of the Dockerfile tag is more specific than the resource version of the group tag.

 Example
The group tag {“foo”:“1.1”} is satisfied by the Dockerfile tags {“foo”:“1.1”} or {“foo”:“1.1.2”},
but not by {“foo”:“1”}, {“foo”:“”}, or {“bar”:“1.1”}.

If multiple Dockerfiles meet a group's tag requirements, the Modeler doesn't use the specific resource versions
defined in each Dockerfile to break the tie; it selects the Dockerfile arbitrarily.

To determine the selected Dockerfile for a group, download the graph diagnostics archive and examine the
image field in the topic execution.json File [page 112]. If no Dockerfile meets a group's needs, the Modeler
issues an error. To fix the error, you can either split the group into smaller groups that match existing
Dockerfiles or create a new Dockerfile that meets all the group's requirements. For information about creating
Dockerfiles, see the topic Creating Dockerfiles [page 291].

96 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Default and Deprecated Tags

Default Tag

The Modeler gives higher priority over other Dockerfiles to the Dockerfiles that have the {“default”:} tag.

 Example
A Docker image named com.sap.sles.base has the {“default”:} tag and meets the tag
requirements. The Modeler chooses the com.sap.sles.base Docker image even when other Dockerfiles
meet the requirements and have fewer matching tags, because the other Dockerfiles don't have the
{“default”:} tag.

If two Dockerfiles have the {“default”:} tag and meet the tag requirements, the Modeler selects the
Dockerfile with the fewer tags.

Deprecated Tag

Dockerfiles with the {“deprecated”:} tag have a lower priority than other tags.

 Example
If the Docker image com.sap.opensuse.going.zypper has the {“deprecated”:} tag and meets the
tag requirements, the Modeler doesn't choose it over a non-deprecated image, even when it has fewer
matching tags.

If the Modeler has to choose between two Dockerfiles, each with the {“deprecated”:} tag, it chooses the
Dockerfile with the fewer matching tags.

Operator Tags

View or edit an operator's tags in the operator editor. Open the editor by right-clicking the operator and
choosing Edit.

The operators that run on subengines can have implicit tags. Implicit tags don't appear on the operator
editor screen; they're included in the requirements of a group using the operator. Check each subengine's
documentation for more information about its implicit tags. The following table lists the implicit tags for all
active subengines.

Subengine Implicit Tags

ABAP vrep (runs using any image)

Node.js node

Python 3.9 • 'tornado':'6.1.0'
• 'sles':""
• 'python':'3.9'

C++ Deprecated

Modeling Guide
Using Graphs (Pipelines) PUBLIC 97



 Caution
Be careful when you add or change tags for existing operators or groups. Tags affect the selection of the
Docker image. Modifying tags can alter the Dockerfile that the Modeler chooses during graph execution,
which can cause unexpected results or errors. SAP recommends that you thoroughly review the tag
changes and the impact on the Docker image selection process before you complete any modifications.

The following example shows how tags affect the selection of Docker images and the Dockerfile that the
Modeler chooses during graph execution.

 Example
Your repository has the following Dockerfiles and associated tags:

• com.sap.d1: {“python36”:“”, “pandas”:“1.2.3”, “numpy36”:“”, “tornado”:“1.1.1”,
“pyarrow”:“”}

• com.sap.d2: {“python36”:“” , “corge”:“2.2.2”}
• com.sap.d3: {“node”:“”}

The tags associated with a group in a graph are the union of each operator's tags and the tags specified in
the group configuration.

A graph with the topology of (A→B→C)→D→E, has the following groups:

• Explicit group: (A, B, C)
• Default group: (D, E)

The following table lists the group configurations and operators with their corresponding associated tags.

Group Configuration or Operator Associated Tags

Explicit group configuration {“python36”:“”, “pandas”:“”}

Default group configuration { }

Operator A {“numpy36”:“”}

Operator B {“pandas”:“1.2”, “tornado”:“1.1.1”}

Operator C { }

Operator D { }

Operator E {“python36”:“”}

The following are the results when you associate the union of the tags with each group results:

• Explicit group (A, B, C): {“python36”:“”, “pandas”:“1.2”, “numpy36”:“”, “tornado”:
“1.1.1”}

• Default group (D, E): {“python36”:“”}

The Modeler determines a Dockerfile for each group using the following information:

• The aggregation of the tags in the Explicit group are satisfied only by the Dockerfile com.sap.d1.
• The Dockerfile com.sap.d1 has one more tag {“pyarrow”:“”) than Group 1 requires.

• The “1.2.3” version for “pandas” in com.sap.d1 satisfies the Explicit group.
• The Explicit group requires version “1.2”, but “1.2.3” is more specific.

98 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



• The Default group has two Dockerfiles that satisfy the aggregated tags: com.sap.d1 and com.sap.d2.

The Modeler chooses the Dockerfiles with fewer tags:

• com.sap.d1 for Explicit group
• com.sap.d2 for Default group

4.10 Execution Model

To avoid problems, such as back pressure and deadlocks, SAP Data Intelligence Modeler executes graphs
following an execution model.

Back Pressure

The Modeler executes operators in all graphs concurrently. Operators communicate with each other by
sending data to their outports and receiving data from their inports. When “Back-pressure” between two
operators occurs, the Modeler blocks the operator that is trying to send data until the receiving operator reads
it. This blocking prevents data from accumulating on a region of the pipeline that produces data faster than
other parts can consume.

Deadlocks

Back pressure can cause some graphs with cycles to deadlock. A deadlock happens in graphs when there are
at least as many messages in the cycle as there are nodes in the cycle.

 Example
The following graph has a cycle between operators A, B, and C:

A--->B--->C
 
     ^    |
 
     +----+

A smooth execution of a graph with no deadlocks happens when operator A generates just one message
and sends it to operator B or operator C. Each time operator B or C receives a message through their
inport, they process the message and then send a new message through their outport. This process implies
that there's always a single message circulating around the cycle, and no deadlock occurs.

A deadlock can occur when, instead of operator A feeding just one message into the graph, it produces
two messages. When operator A produces two messages, the graph deadlocks because of the following
activity:

• Operator B is blocked when it tries to send a message to operator C.
• Operator C doesn't read from its inport because it's trying to send the message to operator B.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 99



• Operator B doesn't read from its inport because it's trying to send the message to operator C.

The graph can also deadlock under the following circumstances:

• Operator A generates only one message.
• Operator B outputs two messages for each one message that it receives from Operator A at its input

port.

Sending Data and Mutable Objects

When an operator sends data to another operator, the Modeler doesn't send a copy of the data. Instead, the
Modeler sends only a reference to the data. Sending a reference to the data decreases the communication
cost.

However, when the graph has mutable objects, it's more secure to send copies of the objects. A mutable object,
such as a message data type, is one in which you can modify or edit a value. When you program a script
operator and change an object received on input, the object can reflect in other parts of the graph. Therefore,
it's safer to make a copy of a mutable object before you change it instead of sending a reference to the data.

4.11 Monitoring Graphs

After creating and running graphs, monitor graphs and view statistics.

The following table describes the options for monitoring the graph status in the SAP Data Intelligence Modeler.

Action Description

Monitor Status of Graph Runs After you create and run a graph, monitor the status of the
graph run in the Modeler.

Use the standalone monitoring application that SAP Data
Intelligence provides to monitor the status of all graphs
executed in the Modeler.

Trace Messages Trace messages monitor both the system and running
graphs to isolate problems or errors that may occur. Trace
messages provide an initial analysis of your running graphs
so you can troubleshoot potential problems or errors.

Use SAP Data Intelligence Monitoring SAP Data Intelligence provides the Monitoring application
to monitor the status of graphs run in the SAP Data
Intelligence Modeler.

Access the SAP Data Intelligence Monitoring Query API Access the SAP Data Intelligence Monitoring Query API
to retrieve application performance metrics for your
tenant. For more information, see Accessing the SAP Data
Intelligence Monitoring Query API.

100 PUBLIC
Modeling Guide

Using Graphs (Pipelines)

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/9bc60ac178964f23b3fee513595a73a4.html
https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/9bc60ac178964f23b3fee513595a73a4.html


Action Description

SAP Data Intelligence Diagnostics SAP Data Intelligence Diagnostics deploys one of the
most widely used stacks of open-source monitoring
and diagnostic tools for Kubernetes. For health and
performance monitoring, SAP Data Intelligence Diagnostics
provides cluster administrators access to cluster-wide
system and application metrics.

 Note
Developer member users with the sap.dh.monitoring policy can monitor the status of graph runs for all
tenant users.

 Note
By default, the Modeler also performs logging. The log messages are intended for a broader audience with
different skills. If you want to view the log messages, start the Modeler, and in the bottom pane, select the
Logs tab.

Related Information

Monitor the Graph Execution Status [page 101]
Activate Trace Messages [page 108]
Downloading Diagnostic Information for Graphs [page 109]

4.11.1  Monitor the Graph Execution Status

After creating and executing a graph, you can monitor the status of the graph execution in the SAP Data
Intelligence application.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. Select the Status tab in the bottom pane.

The Status tab provides information on the status of all graphs, including graphs that have completed
execution.

Action Description

Customize the view of status panel Display the status of all graphs either in   (List View) where
instances of a graph are displayed separately as a list, or in

Modeling Guide
Using Graphs (Pipelines) PUBLIC 101



Action Description

  (Tree View) where instances of a respective graph are
grouped into one.

Monitor status of subgraphs When a graph execution triggers the execution of another
graph, the other graph is called a subgraph. Monitor the status
of various subgraphs that the Modeler has executed by doing
the following:
1. Open the Status tab.
2. Enable Show Subgraphs.

You can see subgraphs only in the   (List View).

Download diagnostic information Download the diagnostic information that the Modeler gener-
ates for a graph as a zipped archive.
1. In the Status tab, next to the required graph, choose

  (Download Diagnostic Information).
2. Open or save the zipped archive file.

 Note
If a graph has subgraphs or the graph is a subgraph, the
archive contains information about all of the graphs in the
hierarchy.

Edit a graph Edit a graph by opening the Status tab next to the applicable
graph and selecting  (Open Graph Editor).

Pause and restart a process Pause the execution of a graph by opening the Status tab next
to the required graph and selecting   (Pause process).

Restart the paused graph by selecting   (Restart process).

Restarting a graph creates a new instance of the graph with
previously saved graph, recovery, and snapshot configura-
tions.

You can also configure automatic recovery of graph for graph
failures. For more information, see Running Graphs [page 72].

Archive instances Archive a single graph instance by selecting   (Archive) next
to the applicable graph. You can archive a graph in either
  (List View) or   (Tree View).

To archive multiple graph instances of a group at once, switch
to   (Tree View) and select   (Archive) next to the required
subgraph.

 Note
The Modeler archives the graph instances with status
stopped by pause, dead, and completed. The Modeler
doesn't archive graphs whose latest instance is a valid
snapshot with status other than completed.

102 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Action Description

Archive instances by status Archive graph instances by status by opening the Status tab
and selecting Cleanup. Choose one of the following options:

• Archive only completed instances

• Archive completed and dead instances

To delete any saved snapshots, select the Delete saved
snapshots checkbox.

View execution details View additional details about a graph's execution after execu-
tion completes.

Snapshots enabled: In the Status tab, the symbol   next
to the graph name indicates that the snapshots feature is ena-
bled.

Detailed graph information: To view detailed information
about a graph, select the graph name in the Status tab. The
Modeler opens the graph in the graph editor area and displays
a series of tabs below the graph. For example, view informa-
tion in the following tabs:

• Group tab: View more information about the groups in a
partitioned graph.

 Note
If you’ve defined a multiplicity of a number greater
than 1 for a group, such as 3, the Modeler displays
three instances for the same group.

• Process tab: View details of various processes executed in
the graph.

• Metrics tab: View metrics that the Modeler provides as
part of the process.

Stop execution Stop the execution of any graph by opening the Status tab, se-
lecting the applicable graph, and choosing   (Stop Process).

The status of the graph changes to completed or dead de-
pending on the state of the graph when the execution is stop-
ped.

Related Information

Graph Execution [page 104]
Graph Status [page 104]
Process Status [page 105]
Graph Execution Garbage Collection [page 106]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 103



4.11.1.1  Graph Execution

The Modeler application supports executing a graph and monitoring its status from within the application.

When you schedule a graph for execution, the application translates the graphical representation (internally
represented as a JSON document) into a set of running processes. These processes are responsible for the
graph execution.

During the graph execution, the application translates each operator in the graph into (server) processes and
translates the input and output ports of the operators into message queues. The process runs and waits for an
input message from the message queue (input port). When it receives the input message, it starts processing
to produce an output message and delivers it to the outgoing message queue (output port). If a message
reaches a termination operator, the application stops executing all processes in the graph and the data flow
stops.

 Note
If a graph does not have a graph terminator operator, it continues to execute all processes until you
manually stop the graph execution.

4.11.1.2  Graph Status

When you create a graph, each graph is associated with a graph status, which may vary with time and can be
manipulated with operations on the graph.

The table lists the possible graph status. You can view the status of the graph in the Status tab.

Status Description

Pending Graph is being prepared for execution. Initial status.

Running Graph is currently running.

Paused Graph is currently paused and can be resumed later.

Stopping Graph execution is stopping.

Completed Graph terminated successfully.

Dead Graph terminated abnormally because one or more operators in the graph failed.

Unknown Status of graph is unknown. Indicates internal problems.

Initially, the graph has pending status, that is, the graph is being prepared for execution. Pending status stays
until either an error occurs, or the status of all subgraphs in graph is running.

The following image depicts the potential graph transition status.

104 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



If an error occurs during the running status, the graph allocation (and hence the overall graph) changes to
dead. If all subgraphs terminate successfully, the graph status changes to completed.

Related Information

Monitor the Graph Execution Status [page 101]

4.11.1.3  Process Status

When you execute a graph, the tool executes each operator in the graph as processes. Each process execution
is associated with a status, which may vary with time.

The following table lists the possible status for process execution. Select the Process tab in status details to
view the status of process execution.

Status Description

Initializing Process is starting.

Running Process is on-going.

Stopping User called STOP, the process is still running.

Stopped Process has terminated.

Dead Process has crashed and is unrecoverable.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 105



Related Information

Monitor the Graph Execution Status [page 101]

4.11.1.4  Graph Execution Garbage Collection

To maintain the cluster, the Modeler employs Graph Garbage Collection using the following strategies: time-
based and number-based.

Garbage collection settings are in the System Management properties. For a list of all system management
properties, see System Management Properties in the Administration Guide.

The garbage collector collects the following finished graphs:

• completed (always)
• dead (optionally)
• paused (optionally)

For more information, see Graph Status [page 104].

Time-Based Strategy

The time-based strategy specifies the time before the garbage collector frees memory used by the finished
graphs.

Property Default Value Result

Garbage collection time limit for fin-
ished graphs.

72 hours The Modeler collects graphs that have been finished for
3 days.

The lowest value the Modeler system accepts is 1 minute. If you enter a value lower than 1 minute, the Modeler
replaces the value with 1 minute. For more information about the format and layout of the duration, see the
Golang.org Parse Duration official documentation .

Number-Based Strategy

The number-based strategy limits the number of graphs per user in the Modeler at any time. When the user
exceeds the limit, the Modeler removes completed graphs. If the user exceeds the limit and there aren't any
finished graphs to be collected, the Modeler waits until finished graphs appear and then collects them.

 Note
The number-based strategy prioritizes the removal of completed over dead over paused graphs.

106 PUBLIC
Modeling Guide

Using Graphs (Pipelines)

https://help.sap.com/docs/SAP_DATA_INTELLIGENCE/ca509b7635484070a655738be408da63/3b07102657de4b8e9bbedc8d0184c3bd.html?version=Cloud
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgolang.org%2Fpkg%2Ftime%2F%23ParseDuration


Property Default Value Result

Maximum number of graphs per user.
Finished graphs will be deleted when
exceeded.

50 At most, the Modeler keeps 50 graph executions at a
time.

Collect Dead Graphs

Because dead graphs can collect failure information, you can exclude dead graphs from garbage collection by
setting the System Management property Enable garbage collection for dead graphs. Use failure information to
analyze information about why the graph failed.

If you exclude dead graphs using the time-based strategy, the Modeler ignores dead graphs. In number-based
mode, the Modeler doesn't include dead graphs in the graph count.

Property Default Value Result

Enable garbage collection for dead
graphs.

true The Modeler collects dead graphs.

Collect Paused Graphs

By default, the removal of paused graphs is disabled, because pausing a graph signals the intent to resume it
later.

However, if users have forgotten them, pausing graphs leads to the accumulation of many paused graphs over
time. To prevent this accumulation, you can optionally enable the collection of paused graphs.

If you disable the collection of pause graphs and you use the time-based strategy, paused graphs are ignored.
With the number-based strategy, the Modeler doesn't include paused graphs in the graph count.

 Note
Be careful when you turn on the collection of paused graphs because it can cause the Modeler to lose
possible valuable data.

Property Default Value Result

Enable garbage collection for paused
graphs.

false The Modeler doesn't collect paused graphs.

Changes to the Garbage Collector System Management parameters can take the system up to 5 minutes to
update without restarting the application.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 107



4.11.2  Activate Trace Messages

Trace message logs contain a complete set of information for monitoring graph execution performance. Trace
message logs help you to isolate problems or errors that occur based on different severity threshold levels.

Prerequisites

Read about trace levels in Trace Severity Levels [page 109].

Context

You can activate trace message logging to find errors that occur sporadically. The Modeler logs the trace
messages and categorizes them based on the severity levels. You can also limit the number of trace files that
are written at the same time.

Trace messages are intended for specific users. For example, trace messages are useful for users with
development skills and a deep understanding of the Modeler to debug graph executions.

Procedure

1. Start the SAP Data Intelligence Modeler application.
2. Open the Trace tab in the graph's runtime view.

In the Trace tab, you can configure the trace level, download the latest logs, and monitor the trace
messages for different severity levels.

3. Optional: To change the group and trace level, perform the following substeps:
By default, a graph's Trace Level is INFO.
a. Select Group: default | Trace Level: INFO at the top right of the Trace tab.
b. In the Trace Configuration dialog, select a different value from the Trace Level list.

Trace Level options are as follows:
• INFO
• DEBUG
• ERROR
• FATAL
• WARNING

c. Select OK.
4. Optional: Select Get Latest Logs at the top right of the Trace tab.

The Modeler displays the latest logs.

108 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Related Information

Trace Severity Levels [page 109]

4.11.2.1  Trace Severity Levels

When streaming the traces for the SAP Data Intelligence Modeler application, you can set a trace severity
threshold. Depending on the trace level that you define, the application streams messages accordingly into the
trace server.

The application supports the following trace levels.

Trace Level Description

INFO The publisher streams trace messages that contain informational text, mostly for
echoing what has happened in the application. The trace messages streamed also
include messages associated with warnings, errors, and fatal errors.

DEBUG The publisher streams trace messages that contain useful information for devel-
opers to debug and analyze the application. The trace messages streamed also
include messages associated with info, error, warning, and fatal error.

ERROR The publisher streams trace messages that contain information describing the
error conditions that may occur when working with the application. The trace mes-
sages streamed also include messages associated with the fatal error.

FATAL The publisher streams trace messages associated with fatal errors that may occur
when working with the application.

WARNING The publisher streams messages associated with warnings and errors that may oc-
cur when working with the application. The trace messages streamed also include
messages associated with error and fatal error.

4.11.3  Downloading Diagnostic Information for Graphs

To help you diagnose graph issues, download a zipped archive of information.

The SAP Data Intelligence Modeler lets you download diagnostic information for graphs in the following ways:

• For all graphs: Select your profile icon in the upper right of the Modeler and choose Download Diagnostic
Information. The Modeler generates a zip archive of information for all of your graphs.

• For a specific graph: In the Status tab, select   (Download Diagnostic Information) next to a graph to
generate a zip archive of information about the graph and its subgraphs.

Related Information

Diagnostic Information Archive Structure and Contents [page 110]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 109



Saving Diagnostic Information for Graphs on External Storage [page 114]

4.11.3.1  Diagnostic Information Archive Structure and
Contents

This is the directory structure and contents of the diagnostic information archive.

Zip Archive Structure

vflow-diagnostic-<timestamp>.zip
 ├── version.json
├── graphs.json
├── errors.txt
├── api-pods
|   ├── pods.json
|   ├── goroutine.txt
|   ├── <podname>
|   |   └── goroutine.txt
|   |   └── logs-<podname>.txt
|   |   └── pod-<podname>.json
├── <graph-source>-<handle>
|   ├── graph.json
|   ├── execution.json
|   ├── <group-instance-id>
|   |   └── goroutine.txt
|   |   └── heap.txt
|   |   └── logs-<podname>.txt
|   |   └── pod-<podname>.json
...
|   └── <group-instance-id>
|   |   └── goroutine.txt
|   |   └── heap.txt
|   |   └── logs-<podname>.txt
|   |   └── pod-<podname>.json
├── <graph-source>-<handle>
 
...

Related Information

version.json File [page 111]
graphs.json File [page 111]
<graph-source>-<handle> Folders [page 112]
graph.json File [page 112]
execution.json File [page 112]
events.json File [page 113]
<group-instance-id> Folders [page 113]
logs-<pod-name>.txt File [page 114]

110 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



pod-<pod-name>.json File [page 114]
goroutine.txt File [page 114]
<heap.txt> File [page 114]
api-pod Folder [page 114]

4.11.3.1.1  version.json File

The version.json file contains version information.

For example:

{
 
    "version": "2.3.30-dev-0828",
    "buildTime": "2018-08-28T17:10:27",
    "gitCommit": "a1897fcf38788b55be1ce177e32bb2ebc733b28c",
    "platform": "linux"
 
}

4.11.3.1.2  graphs.json File

The graphs.json file contains brief information about executed graphs, including files that are completed and
not deleted.

The file can be used, for example, to identify graphs with a status of dead, the last messages of a graph, and so
on.

[
 
    {
        "src": "com.sap.demo.datagenerator",
        "name": "com.sap.demo.datagenerator",
        "executionType": "",
        "handle": "9a6eeb59abb242baabb110dba50ae178",
        "status": "running",
        "terminationRequested": false,
        "message": "Graph is currently running",
        "started": "2018-08-29T10:26:41Z",
        "updated": "2018-08-29T10:26:45Z",
        "stopped": "",
        "submitted": "2018-08-29T10:26:40Z"
    },
    ...
 
]

Modeling Guide
Using Graphs (Pipelines) PUBLIC 111



4.11.3.1.3  <graph-source>-<handle> Folders

The <graph-source>-<handle> folder contains detailed information about graph execution. For example:
com.sap.demo.datagenerator-9a6eeb59abb242baabb110dba50ae178.

To identify the files that you want to open, see the graphs.json file.

[
 
    {
        "src": "com.sap.demo.datagenerator",
        ...
        "handle": "9a6eeb59abb242baabb110dba50ae178",
        ...
    },
 
...

4.11.3.1.4  graph.json File

The graph.json file contains the graph definition.

The content in the graph.json file is the same that you get when you export the graph from the Modeler
application.

4.11.3.1.5  execution.json File

The execution.json file contains information about the execution for a graph, such as groups, pods,
processes (operator instances in a graph), and so on.

You can use the execution.json file to identify which pod or pods failed.

{
 
    "src": "com.sap.demo.datagenerator",
    "name": "com.sap.demo.datagenerator",
    "executionType": "stream",
    "handle": "9a6eeb59abb242baabb110dba50ae178",
    "status": "running",
    "terminationRequested": false,
    "message": "Graph is currently running",
    "remoteExecution": {
        "parent": ""
    },
    "started": 1535538401,
    "updated": 1535538405,
    "stopped": 0,
    "submitted": 1535538400,
    "allocations": [
        {
            "groupName": "default",
            "groupDescription": "",
            "subgraph": "default",
            "container": "vflow-graph-9a6eeb59abb242baabb110dba50ae178-com-sap-
demo-ngq4m",
            "containerIp": "172.17.0.8",
            "host": "minikube",

112 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



            "status": "running",
            "message": "Container is currently running",
            "restartCount": 0,
            "image": "a-docker-registry:5000/vora/vflow-node:2.3.30-dev-0829-
com.sap.debian",
            "destination": "",
            "updated": "2018-08-29T10:26:40Z",
            "processes": [
                {
                    "id": "16d1",
                    "componentId": "com.sap.system.jsengine",
                    "status": "running",
                    "processName": "datagenerator (16d1)",
                    "engine": "main",
                    "timestampPublished": "2018-08-29T10:26:41Z",
                    "timestampReceived": "2018-08-29T10:26:41.031657526Z",
                    "published": 1535538401,
                    "received": 1535538401,
                    "message": "Process is running",
                    "metrics": null
                },
                {
                    "id": "1mnu",
                    "componentId": "com.sap.system.terminal",
                    "status": "running",
                    "processName": "terminal (1mnu)",
                    "engine": "main",
                    "timestampPublished": "2018-08-29T10:26:41Z",
                    "timestampReceived": "2018-08-29T10:26:41.033268298Z",
                    "published": 1535538401,
                    "received": 1535538401,
                    "message": "Process is running",
                    "metrics": null
                }
            ]
        }
    ]
 
}

4.11.3.1.6  events.json File

The events.json file contains information about graph events.

For example, when a group is initialized, a group execution is started, or a graph has received a shutdown
command, and so on.

4.11.3.1.7  <group-instance-id> Folders

For each instance of a group, a folder is created.

To determine which <group-instance-id> to open, see the execution.json file.

{
 
    "allocations": [
        {
            "subgraph": "<group-instance-id",
            ...
         }

Modeling Guide
Using Graphs (Pipelines) PUBLIC 113



 

4.11.3.1.8  logs-<pod-name>.txt File

The logs-<pod-name>.txt file contains logs for a specific pod.

4.11.3.1.9  pod-<pod-name>.json File

The pod-<pod-name>.json file contains a pod description.

The file content is similar to the output of a kubectl describe pod.

4.11.3.1.10  goroutine.txt File

The goroutine.txt file contains pprof output for a goroutine profile.

4.11.3.1.11  <heap.txt> File

The <heap.txt> file contains pprof output for a heap profile.

4.11.3.1.12  api-pod Folder

The api-pod folder contains information about vFlow API nodes.

The folder structure is similar to the <group-instance-id> folder, except that it does not contain a
heap.txt file. A heap.txt file can become quite large for long-running vFlow API nodes, and it is rarely
used.

4.11.3.2  Saving Diagnostic Information for Graphs on
External Storage

Save a zipped archive of information for your graphs on external storage to help diagnose issues.

The SAP Data Intelligence Modeler allows saving diagnostic information for graphs on external storage. It saves
the archive for graphs that reach the final state, depending on the configured System Management properties
for the tenant.

114 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



• Set the property Enable diagnostics archive to external storage defined via Connection ID to true to enable
the feature.

• Specify the Connection ID for the storage expected to be used on the property Connection ID for
diagnostics storage. It supports the HDFS, WebHDFS, S3, ADL, GCS, SFTP, OSS, HDL, WASB, and SDL
connection types.

• Set the property Store diagnostics on external storage only for failed graphs to true when it should store
diagnostics for failed graphs exclusively. Otherwise, to store the diagnostic archive to any final graph, this
property should be false.

• Specific graph: In the Status tab, select Download Diagnostic Information next to a graph to generate a zip
archive of information about the graph and its subgraphs.

• The property Garbage collector strategy for diagnostics storage allows to choose wheather the graph
archive should never be removed from the storage or wheather it should be removed when historical
graphs are removed. If the history option is chosen, the files are removed according to the graph garbage
collector parameter Execution history retention time limit.

• Data on the storage defined always follows a path pattern: <rootPath-from-connection>/
graph_diagnostics/<tenant>/<user>/graph_<handle>.zip, where Diagnostic Information
Archive Structure and Contents [page 110] is the directory structure and contents of the diagnostic
information archive.

Current Limitations

• If one of the Modeler applications is being downscaled in parallel when a graph reaches its final state, the
graph diagnostics archive may not be stored.

• The object store is not automatically cleaned up when a user or tenant is deleted.
• If the underlying storage or connection changes after enabling the feature, the previous storage is not

automatically cleaned up.
• Custom time-based cleanup of the stored archives is not supported.

4.12 Native Multiplexing for Gen2 Pipelines

Connect to multiple ports in a pipeline, such as one to many or many to one, without having to implement
multiplexing with a script operator or other predefined operator.

When you use Generation 1 pipelines, you use Multiplexer operators to connect to an output or input port of
one operator with several input or output ports of another operator. In Generation 2 pipelines, multiplexing
is natively built into the Python and main subengines. Therefore, you don't need to use additional Muliplexer
operators in Generation 2 pipelines.

 Note
Native multiplexing is available for Generation 2 pipelines only, and only in SAP Data Intelligence Cloud
version 2022.21 and higher. Multiplexing works in the Python and main subengines only.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 115



For Generation 2 pipelines, you can still use the Python multiplexer to create a python script for multiplexing
when necessary.

Supported Connections

Native multiplexing for Generation 2 pipelines works for the following types of connections:

One to many: 1:n

In the following pipeline, the Python Generator has one output port that leads to two separate Terminal
operators. Therefore, the Python Generator has multiple output ports. Each of the terminals has one input
connection.

Many to one: n:1

In the following pipeline, each of the Python Generator operators have one output port. The input port of the
Terminal operator receives data from the output ports of two (multiple) Python operators.

Many to many: m:n

In the following pipeline, each of the Python Genererator operators sends data to multiple Terminal operators.
The input ports of each of the Terminal operators receives data from the output ports of two (multiple) Python
Generator Operators.

116 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



Related Information

Multiplexing Scenarios [page 117]

4.12.1  Multiplexing Scenarios

When you create Generation 2 pipelines using the native multiplexing feature, you must be aware of situations
when multiplexing works, or when it results in errors.

Deadlock Error for BLOB Messages

In a scenario where you have multiple generators publishing messages to multiple receivers (m:n), and you
have a cross over between the message transmission, the graph can become deadlocked when the message
includes blob data types.

 Example

Modeling Guide
Using Graphs (Pipelines) PUBLIC 117



Multiplexing with Mixed Engine Types

SAP Data Intelligence supports native multiplexing in the Python and main subengines. Multiplexing doesn't
work with other subengines, such as the Flowagent subengine.

 Example
The following diagram shows a portion of a multiplexed pipeline with operators that belong to the Python3
subengine. In this example, the Python subengine processes the multiplexing in this portion of the pipeline.

When a pipeline contains multiplexing portions that involve the Python subengine and the main engine, SAP
Data Intelligence switches processing between the subengine and the main engine.

 Example
After multiplex processing completes in the Python3 subengine, SAP Data Intelligence switches processing
to the main engine. In the following pipeline, the main engine processes the output from the Python3
Operator objects to the terminal.

A pipeline that contains operations for the subengine and main engine can result in an error based on where
the multiplexing happens.

 Example
In the following pipeline, The following pipeline contains operators from three engines.

118 PUBLIC
Modeling Guide

Using Graphs (Pipelines)



• Python3 Operator uses the Python subengine.
• Terminal A uses the Flowagent subengine.
• Terminal B uses the main engine.

The output port of the Python3 Operator has multiple connections. The output port sends a message
to two Terminal operators, A and B. Each Terminal operator receives a message from one connection.
Therefore, the multiplexing is handled by Python subengine.

Modeling Guide
Using Graphs (Pipelines) PUBLIC 119



5 Using Git Terminal

Use the Git terminal to integrate SAP Data Intelligence file-based content, such as graphs, operators, docker
files, or script code, with an existing Git server.

Keep a version history of changes in Git and work collaboratively with other developers by sharing content files
in Git.

Leverage Git capabilities in the SAP Data Intelligence Modeler application, and perform the following basic
tasks:

• Maintain Git credentials using standard Git Credential Helper.
• Create a local Git repository.
• Clone a remote Git repository.

Other Git Features

In addition to the Git commands for the basic configurations, there are other one-line commands and features
of the Git command-line client for Linux. For example, use the following one-line codes:

• git branch: Creates a new branch.
• git merge: Combines a specified branch history with the current branch.
• git rebase: Change a series of commits that modify the history of your repository.
• .gitignore files:

• Prevent tracking specific artifacts that are in both the Git repository and the working directory, such as
the Modeler workspace.

• Manipulate the content of the info/exclude file in the .git directory of the local Git repository.

 Example
To ignore all files and track only one graph.json file, run the following command:

 
# setup repo to ignore everything
Export GIT_DIR=vhome/.git
echo '# ignore everything' >> $GIT_DIR/info/exclude
echo '*' >> $GIT_DIR/info/exclude
echo '# but allow directories' >> $GIT_DIR/info/exclude
echo '!*/' >> $GIT_DIR/info/exclude
echo '# add include pattern below starting with !' >> $GIT_DIR/info/exclude
echo '!vflow/graphs/demo-graph/**' >> $GIT_DIR/info/exclude
 

Related Information

Git Credential Handling Using Standard Git Credential Helper [page 121]

120 PUBLIC
Modeling Guide

Using Git Terminal



Create a Local Git Repository [page 122]
Clone a Remote Git Repository [page 123]

5.1 Git Credential Handling Using Standard Git Credential
Helper

To avoid entering credentials for each Git command, configure either git-credential-store or git-
credential-cache.

Before you use git-credential-store or git-credential-cache, set the HOME variable accordingly with
the following terminal command:

export HOME=~

The tilde (~) corresponds to a folder named project that is located at the same level as the vhome folder.

 Note
While the vhome folder is listed in the Files tab of the SAP Data Intelligence System Management
application, the project folder isn't listed in the SAP Data Intelligence System Management application.

git-credential-store

git-credential-store keeps credentials in a file in ${HOME}/.git-credentials, which requires
protection accordingly. For more information about git-credential-store, see the Git documentation at
https://git-scm.com/docs/git-credential-store .

 Example
git config --global credential.helper store

git-credential-cache

git-credential-cache keeps the credentials in memory in a daemon process that is communicating
through a socket: ${HOME}/.git-credential-cache/socket. You can configure git-credential-
cache timeout. For more information about git-credential-cache, see the Git documentation at https://
git-scm.com/docs/git-credential-cache .

git-credential-cache is preferred over git-credential-store because git-credential-store
stores credentials on disk.

 Example
The following Git Credential caches credentials for one day:

Modeling Guide
Using Git Terminal PUBLIC 121

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgit-scm.com%2Fdocs%2Fgit-credential-store
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgit-scm.com%2Fdocs%2Fgit-credential-cache
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgit-scm.com%2Fdocs%2Fgit-credential-cache


git config --global credential.helper ‘cache –timeout=86400’

${HOME}/.git-credential-cache/ and ${HOME}/.git-credentials/ can't be located in /vhome.

After the container that runs the git terminal user application is recreated, re-enter the stored or cached
credentials.

5.2 Create a Local Git Repository

Use the Git Terminal in the SAP Data Intelligence Modeler application to create a local Git repository, then push
the graph to your remote Git repository location.

Prerequisites

Before you perform this task, ensure that you configure credential handling. For information about configuring
credential handling, see Git Credential Handling Using Standard Git Credential Helper [page 121].

Ensure that you have the appropriate permissions to create a local Git repository in SAP Data Intelligence.

 Note
If you don't see the Git Terminal tab in the lower pane of the Modeler, request the applicable permission
from your administrator.

Context

 Caution
The following steps are to introduce the process for a basic creation of a local Git repository. The success
of the example command sequences depends on the actual folder structure of the remote Git repository, or
additional design time artifacts that are stored in your user workspace.

To create a local Git repository, perform the following steps in the Modeler application:

Procedure

1. Create a graph using the following folder structure:

files/vflow/graphs/demo-graph

2. Open the Git Terminal tab in the lower pane of the Modeler.

122 PUBLIC
Modeling Guide

Using Git Terminal



A Git terminal opens in the tab.
3. Type the following code in the Git terminal:

# init git repository and set the name of the default branch to 
 
# 'main'
git init -b main
# configure user E-Mail and user name for the local git #repository 
git config user.email “<replace with email>”
git config user.name “<replace with user name>”
# add the demo-graph to the git staging area
git add vflow/graphs/demo-graph/graph.json
# commit the changes to the local Git repository 
git commit -m “add demo graph”
 

This code creates the local Git repository.
4. Type the following code in the Git terminal, replacing https://<url>/to/remote_repository.git

with the actual address to the remote Git repository:

# add the address to the remote Git repository to the local Git 
 
# repository 
git remote add origin https://<url>/to/remote_repository.git 
# push the local changes to the remote Git repository
git push -u origin main
 

This code pushes the changes (in the local Git repository) to the specified remote repository on the Git
server.

5.3 Clone a Remote Git Repository

Prerequisites

Before you perform this task, ensure that you've completed the following tasks:

• Configure credential handling by following the process in Git Credential Handling Using Standard Git
Credential Helper [page 121].

• Create a local Git repository by following the process in Create a Local Git Repository [page 122].

Also ensure the following:

• The workspace of the user of the Git terminal application in SAP Data Intelligence Cloud is empty.
• You have the appropriate permissions to access the Git terminal in the Modeler application.

 Note
If you don't see the Git Terminal tab in the lower pane of the Modeler, request the applicable permission
from your administrator.

Modeling Guide
Using Git Terminal PUBLIC 123



Context

 Caution
The following steps are to introduce the process for a cloning a remote Git repository. The success of
the example command sequences depends on the actual folder structure of the remote Git repository, or
additional design time artifacts that are stored in your user workspace.

To clone a remote Git repository, perform the following steps:

Procedure

1. Open the Git Terminal tab in the lower pane of the Modeler.

A Git terminal opens in the tab.
2. Type the following command into the Git terminal:

# configure user E-Mail and user name for the local gitrepository 
 
git clone https://<url>/to/remote_repository.git .
 

 Note
The dot at the end of this command causes the Git command-line client to clone the repository
content to the root folder of the user workspace (vhome) instead of cloning the content to a subfolder
(vhome/.remote_repository).

Results

Because the folder structure in the remote Git repository is similar to the following structure, SAP Data
Intelligence recognizes the graph.json, and you can run the graph or manipulate its content directly:

 
vflow/
        graphs
                demo-graph
        operators
        dockerfiles
        subdevkits
 
        subengines        

124 PUBLIC
Modeling Guide

Using Git Terminal



6 Using Scenario Templates

SAP Data Intelligence provides common graph scenarios that you can use with operators and graphs.

Find the templates that are shipped as example graphs in the Modeler application Graphs tab in the navigation
pane at left. Make sure that you include Scenario Templates in the visible categories by selecting   (Customize
Visible Categories).You can also search for the package com.sap.scenarioTemplates.

To learn how to set up and run each scenario template, see “Scenario Templates” in Repository Objects
Reference.

Related Information

ABAP with Data Lakes [page 125]
Data Processing with Scripting Languages [page 126]
ETL from Database [page 128]
Loading Data from Data Lake to Database (SAP HANA) [page 128]

6.1 ABAP with Data Lakes

These graphs show how to ingest ABAP Tables or CDS Views data from SAP S/4HANA and SAP Business Suite
systems into a cloud storage.

For both data source types, there are example graphs that showcase how to supply data lakes using a full or
delta load mechanism.

A typical template scenario consists of a reader operator (SLT Connector or CDS Reader) that runs on a
connected ABAP system. The connected ABAP system streams the data into a pipeline with a file writer or a
Kafka producer operator.

 Note

The ABAP system needs to fulfill the prerequisites documented in 2835207  before it can be connected
to SAP Data Intelligence.

Modeling Guide
Using Scenario Templates PUBLIC 125

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2835207


Available Templates

Template Path Description

Data Extraction using SLT to a File
Store Data Extraction using SLT to a
File Store

com.sap.scenarioTem-
plates.ABAP.SLTtoFile

Connect to an SAP Landscape Transfor-
mation Replication Server (SLT) config-
uration to read table data and write the
data to a (cloud) storage or data lake.

Data Extraction using SLT to KAFKA
Data Extraction using SLT to KAFKA

com.sap.scenarioTem-
plates.ABAP.SLTtoKafka

Connect to an SAP Landscape Transfor-
mation Replication Server (SLT) config-
uration to read table data and feed the
data into a Kafka pipeline.

Data Extraction from SAP S/4HANA
CDS View to a File Store Data Extrac-
tion from SAP S/4HANA CDS View to a
File Store

com.sap.scenarioTem-
plates.ABAP.CDStoFile

Connect to an SAP S/4HANA system to
read CDS View Data and write the data
to a cloud storage or data lake.

Data Extraction from SAP S4/HANA
CDS View to KAFKA Data Extraction
from SAP S4/HANA CDS View to
KAFKA

com.sap.scenarioTem-
plates.ABAP.SLTtoKafka

Connect to an SAP S/4HANA system to
read CDS View Data and feed the data
into a Kafka pipeline.

To learn how to set up and run each scenario template, see “Scenario Templates” in the Repository Objects
Reference for SAP Data Intelligence. Scenario Templates in the Repository Objects Reference for SAP Data
Intelligence.

6.2 Data Processing with Scripting Languages

These graphs show how to manipulate data with scripting languages.

A typical scenario consists of the following:

• Reading input data from storage, such as a file or a database table.
• Applying a processing algorithm to the data that is implemented in a scripting language, such as

Javascript, Node, Python, or R.
• Writing the results of the data processing to another storage area, which may or may not be the same as

the one providing the input data.

Available Templates
JavaScript

Template Path Description

Simple Javascript File Data Manipula-
tion Simple Javascript File Data Manip-
ulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2FJavascript

File data manipulation using JavaScript
and writing the manipulated data back
to another file.

126 PUBLIC
Modeling Guide

Using Scenario Templates

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/3fe72f0cde894aa6a19ea4d910be6aae.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/3fe72f0cde894aa6a19ea4d910be6aae.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/aef3e6be31204adf8f8fd7d69adcc8a5.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/e9747985aa6546aeabe85b5bae50e8a4.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/e9747985aa6546aeabe85b5bae50e8a4.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/e9747985aa6546aeabe85b5bae50e8a4.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/cd22a2cd6387487c9014fb19813dcd40.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/cd22a2cd6387487c9014fb19813dcd40.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/cd22a2cd6387487c9014fb19813dcd40.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2739328e6efc42be8cac62cf7dcfa449.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/29d8196f8ccd4e0c997960a709176fc7.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/29d8196f8ccd4e0c997960a709176fc7.html


Template Path Description

Simple Javascript File-to-DB Data Ma-
nipulation Simple Javascript File-to-DB
Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2DBJavascript

File data manipulation using JavaScript
and writing the manipulated data to an
SAP HANA database table.

Simple Javascript DB-to-File Data Ma-
nipulation Simple Javascript DB-to-File
Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleDB2FJavascript

Manipulation of data from an SAP
HANA database table using JavaScript
and writing the manipulated data to a
file.

Javascript File Data Manipulation Java-
script File Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.F2FJavascript

File data manipulation with a custom
JavaScript operator and writing the ma-
nipulated data back to another file.

Node

Template Path Description

Simple Node.js File Data Manipulation
Simple Node.js File Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2FNode

File data manipulation using Node.js
and writing the manipulated data back
to another file.

File-to-File Custom Node Operator com.sap.scenarioTemplates.customDa-
taProcessing.F2FNode

File data manipulation with a custom
Node.js operator and writing the manip-
ulated data back to another file.

Python

Template Path Description

Simple Python File Data Manipulation
Simple Python File Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2FPython

File data manipulation using Python
and writing the manipulated data back
to another file.

Python File Data Manipulation with Pan-
das Python File Data Manipulation with
Pandas

com.sap.scenarioTemplates.customDa-
taProcessing.F2FPython

File data manipulation with a custom
Python operator using the pandas mod-
ule and writing the manipulated data
back to another file.

R

Template Path Description

Simple R File Data Manipulation Simple
R File Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2FR

File data manipulation using R and writ-
ing the manipulated data back to an-
other file.

Simple R File-to-DB Data Manipulation
Simple R File-to-DB Data Manipulation

com.sap.scenarioTemplates.customDa-
taProcessing.simpleF2DBR

File data manipulation using R and writ-
ing the manipulated data to an SAP
HANA database table.

File-to-File Custom R Operator com.sap.scenarioTemplates.customDa-
taProcessing.F2FR

File data manipulation with a custom R
operator and writing the manipulated
data back to another file.

To learn how to set up and run each scenario template, see “Scenario Templates” in the Repository Objects
Reference for SAP Data Intelligence. Scenario Templates in the Repository Objects Reference for SAP Data
Intelligence.

Modeling Guide
Using Scenario Templates PUBLIC 127

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/88d58fd825c943c09130af49f6326d4a.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/88d58fd825c943c09130af49f6326d4a.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/66f979b6bc834639860f7440555f245a.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/66f979b6bc834639860f7440555f245a.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2fc0a66f8dea4586abd3e004e3e0b408.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2fc0a66f8dea4586abd3e004e3e0b408.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/199c677ef5d7417e979ffce87015637f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/801a70440b204ba89034ea2b931064ea.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/bbc1b874df5a483ea359e13a978936d6.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/bbc1b874df5a483ea359e13a978936d6.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/bd5277e9e5a74c11950578ef4ac7f6e2.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/bd5277e9e5a74c11950578ef4ac7f6e2.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/37af8cb1c42e476fa5bf7176652f214f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2739328e6efc42be8cac62cf7dcfa449.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html


6.3 ETL from Database

These graphs show how to extract, transform, and load data from different databases into file storage or other
databases.

Available Templates

Template Path Description

Initial Load from any Table (parallel) Ini-
tial Load from any Table (parallel)

com.sap.scenarioTemplates.ETL-
FromDB.cdcInitialLoad

Read contents from an Oracle table and
load it into files stored on a connected
(cloud) storage.

Initial Load + Delta Extraction from
AnyDB Initial Load + Delta Extraction
from AnyDB

com.sap.scenarioTemplates.ETL-
FromDB.cdcGraphGenerator

Use the CDC Graph Generator operator
for replication of relational databases.
The CDC Graph Generator operator
generates the required SQL scripts so
users can capture changes from a da-
tabase source. The graphs generated
from this graph capture the changes.

To learn how to set up and run each scenario template, see “Scenario Templates” in the Repository Objects
Reference for SAP Data Intelligence. Scenario Templates in the Repository Objects Reference for SAP Data
Intelligence.

6.4 Loading Data from Data Lake to Database (SAP HANA)

These graphs show how to batch and stream process data.

Batch Processing

Batch processing graphs show how to load data in a batch from different cloud storages into an SAP HANA
database. Batch in this context means that the Modeler loads all data available at runtime and stops the
execution when all files are processed.

Available Templates

Template Path Description

Load Files into HANA Ingest Files Into
SAP HANA (Incremental Load)

com.sap.scenarioTemplates.datalake-
ToDatabase.loadToHana

Load product data from CSV files into
an SAP HANA table, offering at-least-
once guarantee between multiple graph
runs.

128 PUBLIC
Modeling Guide

Using Scenario Templates

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/727f84c0eeba40a2a0ae4998ee94a081.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/727f84c0eeba40a2a0ae4998ee94a081.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/099adc5b14184bf0abaab0ea4bd31ed8.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/099adc5b14184bf0abaab0ea4bd31ed8.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2739328e6efc42be8cac62cf7dcfa449.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/d0c7e3e9b0dc4e5eb485c7f675cb1d82.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/d0c7e3e9b0dc4e5eb485c7f675cb1d82.html


Stream Processing

Stream processing graphs show how to load data in near real-time from different cloud storages into an SAP
HANA database. Real-time in this context means that the graphs run continuously and read new files when
available by polling repeatedly for changes on the connected file storage.

Available Templates

Template Path Description

Ingest Files into HANA Ingest Files into
HANA

com.sap.scenarioTemplates.datalake-
ToDatabase.ingestToHana

Ingest product data in parallel from
CSV files into an SAP HANA table with
a long-running graph, offering at-least-
once guarantee between multiple graph
runs.

To learn how to set up and run each scenario template, see “Scenario Templates” in the Repository Objects
Reference for SAP Data Intelligence. Scenario Templates in the Repository Objects Reference for SAP Data
Intelligence.

Modeling Guide
Using Scenario Templates PUBLIC 129

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/7904dcd00ad9469fa92828fd3ec83089.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/7904dcd00ad9469fa92828fd3ec83089.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/2739328e6efc42be8cac62cf7dcfa449.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/6529535176db4c489fa9baaa75af1b33.html


7 Using Graph Snippets

SAP Data Intelligence provides a group of commonly used operators that you can add as a single entity to the
graph instead of adding and configuring the operators individually.

A graph snippet is an entity that contains a group of operators and connections. The group performs a single
logical function. You can import graph snippets to your graph.

To learn how to set up and run each graph snippet, see Graph Snippets in the Repository Objects Reference.

Related Information

Importing Graph Snippets [page 130]
Creating Graph Snippets [page 131]
Editing Graph Snippets [page 132]

7.1 Importing Graph Snippets

You can import the available graph snippets to your graph.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.
3. In the navigation pane bar, search for an existing graph or choose + (Create Graph).

The application opens the graph editor, where you can import graph snippets.
4. To import graph snippets, right-click the empty area in the graph editor and select Import Graph Snippet.

(Or click the Import Graph Snippet icon in the editor toolbar.)
5. In the Import Snippet dialog, select the required graph snippet.
6. Click Proceed.
7. In the subsequent dialog, fill in the necessary configuration details and click OK.

The graph snippet is now imported to your graph. You can configure each operator additionally, if required,
in the configuration panel of the operator.

130 PUBLIC
Modeling Guide

Using Graph Snippets

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/46542f8e453e48afa448c3b50caafdb5.html


7.2 Creating Graph Snippets

You can create your own graph snippet if you don't find a suitable one in the available list of graph snippets.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. In the navigation pane bar, search for an existing graph or select   (Create Graph).
4. To create a graph snippet, select a part of the graph that you want to add as a graph snippet and right-click

the selected area.

• Press Shift  and drag the mouse to select a specific part of the graph.
• Choose ctrl  + a  to select the complete graph.

5. Select the Create Snippet option in the context menu.

 Note
If your graph snippet consists of ABAP operators, you must select the connection and version for the
operator before creating the snippet.

6. In the Create Graph Snippet dialog, for each operator or group, do one of the following:

• Select the properties that are to be configured during import of the graph snippet.
• Preconfigure some of the properties.

7. Optional: To provide better context about the parameters during import of the graph snippet to a graph:
a. Click Add Description for a selected parameter.
b. Provide details about the property and click Save.

8. To define parameters for properties and use across several operators, perform the following substeps:
a. Click Add Parameter.
b. Provide the details for the parameter and click Save. A parameter is created and you can use this for

similar properties in other operators.

 Note
• To clear the changes you made to all operators in the graph snippet, click Reset All.
• To view all existing parameters in the graph snippet, click Show Parameters.

9. When you have finished configuring all required properties, click Create.
10. In the Save Snippet dialog, provide the necessary information for the graph snippet.
11. Click Save.

The graph snippet is created. You can now import the graph snippet that you created.

Modeling Guide
Using Graph Snippets PUBLIC 131



7.3 Editing Graph Snippets

You can modify the properties of existing graph snippets.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Repository tab.
3. Navigate to the JSON file of the graph snippet, which is stored under templates/graphsnippets.
4. To edit in JSON editor:

a. Right-click the JSON file and choose Open JSON Editor option in the context menu.
b. Modify the existing properties of the graph snippet and click Save.

5. To edit in graphical editor:
a. Double-click the JSON file to open the graph snippet dialog.
b. Modify the existing properties of the graph snippet and choose Save.

132 PUBLIC
Modeling Guide

Using Graph Snippets



8 Working with the Data Workflow
Operators

SAP Data Intelligence Modeler has a category of operators called Data Workflow operators. When used in a
graph (pipeline) and executed, the Data Workflow operators run for a limited time and finish with the status of
either “completed” or “dead”.

Graphs with Data Workflow operators are known as data workflows. The operators in a data workflow
communicate through signals that are transferred at their input and output ports. All Data Workflow operators,
except for the Workflow Trigger and Workflow Terminator operators, have an input, an output, and an error
port. Thus, the operator begins to execute only when it receives a signal at its input port. The Modeler begins
the execution of other connected operators in the data workflow only after the previous operator has finished
its execution.

 Note
SAP recommends that you don't model graphs that have both Data Workflow operators and non-Data
Workflow operators.

 Example
In the following data workflow, the Workflow Trigger operator sends a start execution signal to the BW
Process Chain operator. Only after the BW Process Chain operator has completed successfully does the
SAP HANA Flowgraph operator start to run.

 Note
If the graph sends an outgoing signal to the output port, but the output port isn't connected, the graph
execution fails.

Data Workflow Operators

Access the Data Workflow operators in the Operators tab in the Modeler navigation pane. The Modeler groups
these operators under the Data Workflows category. The following Data Workflow operators are supported in
the Modeler.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 133



 Note
For a description of each operator, hover your mouse over each operator icon, or consult the table after the
image.

 

 

• Transfer Data from SAP BW to Cloud Storage [page 146]
• Run an SAP BW Process Chain Operator [page 137]
• Run a HANA Flowgraph Operator [page 139]
• Control Flow of Execution [page 156]
• Control Flow of Execution [page 156]
• Send E-Mail Notifications [page 157]
• Control Flow of Execution [page 156]
• Workflow Trigger and Workflow Terminator [page 136]
• Workflow Trigger and Workflow Terminator [page 136]
• Run an SAP Data Intelligence Pipeline [page 141]
• Run an SAP Data Services Job [page 143]
•

Supported Data Workflow Operators

Operator Description

BW Process Chain Executes an SAP Business Warehouse process chain in a remote SAP BW
system.

Data Transfer Transfers data from an SAP BW or SAP HANA system to supported cloud
storages.

Data Transform Provides a variety of options for data transformation.

SAP HANA Flowgraph Executes an SAP HANA flowgraph in a remote SAP HANA system.

Notification Sends e-mail notifications.

134 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



Operator Description

Pipeline Executes an SAP Data Intelligence graph on either a remote system or the
local system.

SAP Data Services Job Executes an SAP Data Services job in a remote SAP Data Services system.

Workflow Merge (and) Combines the output from two Data Workflow operators in a "logical AND".

Workflow Merge (or) Combines the output from two Data Workflow operators in a "logical OR".

Workflow Split Duplicates the incoming signal from a Data Workflow operator.

Workflow Terminator Terminates the current data workflow graph.

Workflow Trigger Sends a start signal to trigger the execution of a data workflow graph.

Modeling Data Workflows

A data workflow must have a Workflow Trigger operator as the first operator and a Workflow Terminator
operator as the last operator.

• The Workflow Trigger operator sends the start execution signal to the connected operator.
• The Workflow Terminator operator shuts down the data workflow graph.

If you're using operators to perform actions in remote systems, then first create a connection to the remote
system using the SAP Data Intelligence Connection Management application. For more information on how to
create a connection, see the Administration Guide.

Execution Logic and Data Workflow Status

Each operator in a data workflow starts running after receiving a signal at its input port. After the operator
runs successfully, it sends a signal to the connected operator through its output port. If the operator doesn't
complete successfully, it sends a signal to its error port.

If the port to which the message is being sent is connected to another Data Workflow operator, the operator
that receives the signal begins running. If the port to which the signal is being sent isn't connected to another
operator, the overall execution of the data workflow stops with the status of “dead”.

 Tip
To design the data workflow execution to fail when any operator execution fails, model the data workflow so
that the respective error ports aren't connected.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 135



Importing Certificates for Remote Systems

For operators that use HTTPS as the underlying transport protocol (using TLS transport encryption), the
upstream system must have a trusted certificate. To import a certificate into the trust chain, obtain the
certificates from the target system and import them using the SAP Data Intelligence Connection Management
application. The next execution of the graph involving the HTTPS connection picks up any certificate that
is present in the trust chain automatically. For more information on how to create a connection, see the
Administration Guide.

 Remember
SAP Data Intelligence assumes that the imported certificates are for all of its applications. SAP Data
Intelligence doesn't restrict the certificates for use only for the Data Workflow operators.

 Note
Adding any certificate overwrites the default chain of trust. Thus, the engine can require that you add
further certificates for the existing graphs to continue working.

Related Information

Workflow Trigger and Workflow Terminator [page 136]
Run an SAP BW Process Chain Operator [page 137]
Run a HANA Flowgraph Operator [page 139]
Run an SAP Data Intelligence Pipeline [page 141]
Run an SAP Data Services Job [page 143]
Transfer Data [page 146]
Control Flow of Execution [page 156]
Send E-Mail Notifications [page 157]
Using SAP Data Intelligence System Management
Create a Connection
Manage Certificates

8.1 Workflow Trigger and Workflow Terminator

The operators Workflow Trigger and Workflow Terminator control the beginning and ending of a data workflow
graph (pipeline).

Use the Workflow Trigger and Workflow Terminator operators only with the other operators in the Data
Workflow category. The following table contains descriptions for each operator.

136 PUBLIC
Modeling Guide

Working with the Data Workflow Operators

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/76e7a1faa64f408e9e72dc2fa4071964.html
https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html
https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/95b577f233ea4546ac7620b607fd1f70.html


Operator Description

Workflow Trigger Sends a start message to the next operator in the graph,
which starts the data workflow graph. The Workflow Trigger
operator has one output port; it doesn't have an input port.

Once the graph run is started, the Workflow Trigger operator
sends a message to its output port. If the output port is
connected to another Data Workflow operator, the next op-
erator starts its execution. However, if the Workflow Trigger
output port isn't connected to a Data Workflow operator, the
execution of the data workflow graph fails.

Workflow Terminator Shuts down, or terminates, the execution of the data work-
flow graph. The Workflow Terminator operator has one input
port; it doesn't have an output port.

Once the Workflow Terminator receives a message from the
upstream operator to its input port, it terminates the data
workflow graph with the state, Completed.

8.2 Run an SAP BW Process Chain Operator

To run (execute) an SAP Business Warehouse (BW) process chain in an SAP BW system, use the BW Process
Chain operator in the SAP Data Intelligence Modeler application.

Prerequisites

Create a connection to an SAP BW system using the SAP Data Intelligence Connection Management
application.

Context

The SAP BW Process Chain operator contains a sequence of processes that are scheduled to wait in the
background for an event. Some of these processes can trigger a separate event that can, in turn, start other
processes.

In the SAP BW Process Chain operator, define the start condition of a process chain with the start process
type. All other processes in the chain are scheduled to wait for an event. These processes are connected using
events that are triggered by an upstream process to start a downstream process.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 137



Procedure

1. Log into SAP Data Intelligence and select the Modeler tile.
2. Open the Graphs tab in the navigation pane at left.

3. Select   (Create Graph) from the navigation pane toolbar, and select Use Generation 1 Operators.

The Modeler opens an empty graph editor at right, and opens the Operators tab in the navigation pane.
4. Select the operator by performing the following substeps:

a. Enter “BW Process Chain” in the search bar.
b. In the search results, double-click the BW Process Chain operator.

The Modeler adds the BW Process Chain operator to the graph editor workspace.
5. Configure the BW Process Chain operator by performing the following substeps:

a. Select the BW Process Chain operator in the graph editor, and choose   (Show Configuration).
b. Select   (Edit Property) in the SAP BW Connection option.
c. Enter a connection ID in Connection ID that references a connection to a remote SAP BW system, and

choose Save.

To manually enter the connection details to the remote system, select Manual in the Configuration
Type list and enter the required connection details in Connection ID.

d. Select an SAP BW process chain from the SAP BW ProcessChain ID list to run it in the remote system.
The Modeler populates the list based on the connection ID.

 Restriction
When the Configuration Type for the SAP BW Connection is Manual, you must enter the SAP BW
ProcessChain ID manually.

e. Optional: Enter the request timeout in seconds in Request Timeout (seconds).
The engine waits the set number of seconds for receiving a response from the BW system. The default
value is 480 seconds.

f. Optional: Enter the time interval in seconds in Retry Interval.
The engine waits the set number of seconds until checking the status update of the BW Process Chain.
The default value is 20 seconds.

g. Optional: Enter the maximum number of attempts in Retry Attempts.
The engine queries the status update for the set number of attempts. The default value is 1080
attempts.

 Note
The Modeler uses only the value of Retry Interval if the BW system sends a successful response (status
code 200) when the Modeler checks the status of the executed BW Process Chain.

For long-running Process Chains, in cases when the Process Chain doesn't complete or fails, the
maximum time limit for polling the status is 14 days.

If the Modeler receives a response code other than 200, it uses the value set in Retry Attempts along
with the setting in Retry Interval to check the status of the BW Process Chain.

The operator execution fails and the Modeler sends a message to the error output port under the
following circumstances:

138 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



• The engine doesn't receive a response from the BW system within the number of seconds specified
in Request Timeout (seconds).

• The engine reaches the maximum time limit (14 days), which means that the status of the SAP
HANA Flowgraph is other than “completed”, “failed” or “canceled”.

• The engine exceeds the number of seconds set in (Retry Interval) * (Retry Attempts), which means
that the BW system never returned a response with status code 200 when it checked the status
update of the Process Chain.

6. Save and run the graph.
You can control the start and stop of the graph execution using the Workflow Trigger and Workflow
Terminator operators respectively.

 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

Related Information

Working with the Data Workflow Operators [page 133]
Create a Connection

8.3 Run a HANA Flowgraph Operator

To run (execute) an SAP HANA Flowgraph in an SAP HANA system, use the HANA flowgraph operator in the
SAP Data Intelligence Modeler application.

Prerequisites

Before you perform the following process, ensure that you first create a connection to an SAP HANA system
using the SAP Data Intelligence Connection Management application.

Context

Executing a HANA Flowgraph operator in a graph helps you transform data from a remote source into SAP
HANA either in batch or real-time mode. The flowgraphs are predefined in the server and represent a complete
data flow. Select the required SAP HANA flowgraph, and all the operations that the flowgraph must perform are
defined in the server.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 139

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html


 Note
The Modeler supports executing only XSC-based HANA flowgraphs.

Procedure

1. Log into SAP Data Intelligence and select the Modeler tile.
2. Open the Graphs tab from the navigation pane at left.

3. Select   (Create Graph) from the navigation pane toolbar, and select Use Generation 1 Operators.

The Modeler opens an empty graph editor at right, and opens the Operators tab in the navigation pane.
4. Select the operator by performing the following substeps:

a. Enter “HANA Flowgraph” in the search bar.
b. Double-click the HANA Flowgraph operator in the search results.

The Modeler adds the HANA Flowgraph operator to the graph editor workspace.
5. Double-click the HANA Flowgraph operator in the graph editor.
6. Complete the Operator Details group of options by performing the following substeps:

a. Enter the required connection ID in Connection.
Alternately, browse and select the required connection.

b. Browse and select the required SAP HANA flowgraph in SAP HANA Flowgraph.
c. Optional: Enter a time interval in seconds in Retry Interval.

The Retry Interval specifies the time in seconds for the engine to wait until the next status update. The
default value is 20 seconds.

d. Optional: Enter a value in Retry Attempts.
The Retry Attempts specifies the number of attempts to query for the status update. The default value
is 10 attempts.

 Note
If the BW system sends a successful response (status code 200) when the Modeler checks the status
of the executed BW Process Chain, the Modeler uses only the value of Retry Interval. For long-running
Process Chains that don't complete or they fail, the maximum time limit for polling the status is 14
days. If the Modeler receives a response code other than 200, it uses the value of Retry Attempts with
Retry Interval to check the status of the BW Process Chain.

The operator execution fails and the Modeler sends a message to the error output port under the
following circumstances:
• A response from the BW system isn't received within the number of seconds specified in Request

Timeout (seconds).
• The maximum time limit (14 days) is reached, which means that the status of the SAP HANA

Flowgraph is other than “completed”, “failed” or “canceled”.
• The number of seconds set in (Retry Interval) * (Retry Attempts) is exceeded, which means that

the BW system never returned a response with status code 200 when it checked the status update
of the Process Chain.

140 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



7. Optional: Update the Variables section by performing the following substeps:

In the Variable section, the Modeler displays the variables associated with the SAP HANA flowgraph, its
data type, and default value. You can edit the default value of a variable.

a. Select   (Edit) in the Variables section.
b. Enter new variable values as applicable.

8. Optional: Update the Table Variables section by performing the following substeps:
In the Table Variables section, the Modeler displays the table variables associated with the SAP HANA
flowgraph, its data type, and default value. You can edit the default value of a table variable or define new
table variables.
a. Enter (or select) the name of the table variable in the Table Variables section under the Name column.
b. Select   (Edit) in the Value text field and provide the required variable value.
c. Select   (Add New) to define a new table variable for the selected SAP HANA flowgraph.

9. Save and run the graph.
You can control the start and stop of the graph execution using the Workflow Trigger and Workflow
Terminator operators respectively.

 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

Related Information

Working with the Data Workflow Operators [page 133]
Create a Connection

8.4 Run an SAP Data Intelligence Pipeline

Use the Pipeline operator in the SAP Data Intelligence Modeler application to run (execute) a graph (pipeline) in
an SAP Data Intelligence system.

Context

Use the Pipeline operator to run a graph in a remote SAP Data Intelligence system or in a local system. A
graph represents a concrete and complex data flow and helps transform data between elements connected
in a series. When you run a graph, it can help process the raw data from multiple sources and make the data
available for different use cases.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 141

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html


Procedure

1. Log into SAP Data Intelligence and select the Modeler tile.
2. Open the Graphs tab in the navigation pane at left.

3. Select   (Create Graph) from the navigation pane toolbar, and select Use Generation 1 Operators.
The Modeler opens the graph editor in the workspace and opens the Operators tab automatically.

4. Enter “Pipeline” in the search bar and double-clidk the Pipeline operator in the search results.

The Modeler adds the Pipeline operator to the graph editor workspace.
5. Configure the operator by performing the following substeps:

a. Select   (Open Configuration) to the right of the Pipeline operator in the workspace.
b. Select   (Edit Property) in the VFlow Connection box in the Configuration pane.

The Edit Property dialog box opens.
c. Enter a connection ID in one of the following ways:

• If you've already created connections in the SAP Data Intelligence Connection Management
application, select the dropdown arrow at the end of the Connection IDoption and choose the
required connection.

• To enter the connection manually, first choose Manual from the Configuration Type list.

 Note
Providing connection details for the Pipeline operator is necessary only to run a graph in a remote
SAP Data Intelligence system. If you don't provide a value, you can run only a pipeline from the
local system. A pipeline from the local system is one that you're working on currently in the SAP
Data Intelligence Modeler.

d. Select Save.

The Edit Property dialog box closes.
e. Choose the SAP Data Intelligence graph (pipeline) to run from the Graph Name list in the Configuration

pane.
The Modeler populates the list with all graphs in the remote system, based on the connection ID, or all
graphs available in the local system.

f. Optional: Enter the time interval in seconds in Retry Interval.
The engine waits the set number of seconds until the next status update. The default value is 20
seconds.

g. Optional: Enter the maximum number of attempts in Retry Attempts.
The engine queries for the status update for the set number of attempts. The default value is 10
attempts.

 Note
If the Pipeline operator exceeds the settings for both Retry Interval and Retry Attempts, the graph
run fails and the Pipeline operator sends a message to the error output port. The Pipeline operator
exceeds the settings when it has requested a status update for the set number of times in Retry
Attempts and the Modeler hasn't executed the graph, or the graph executed with errors.

142 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



h. Choose a value from the Running Permanently list to indicate whether the selected SAP Data
Intelligence graph is running permanently.
The following table describes the values for Running Permanently.

Value Description

true The operator execution checks whether the graph is in
a running state. If the graph isn't running, the operator
starts the graph execution and terminates immediately
(status: completed), while the graph remains in the run-
ning state. But, if the task is already running with a
different task version, then the already-running instance
is stopped, and the new task version is started and then
terminated immediately (status: completed).

false The operator runs the graph once, and the operator
execution terminates after the graph execution termi-
nates. False is the default value.

6. Save and run the graph.
You can control the start and stop of the graph execution using the Workflow Trigger and Workflow
Terminator operators respectively.

 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

Related Information

Working with the Data Workflow Operators [page 133]
Create a Connection

8.5 Run an SAP Data Services Job

Use the SAP Data Services Job operator in the SAP Data Intelligence Modeler application to run (execute) an
SAP Data Services job in a remote system.

Prerequisites

Create a connection to an SAP Data Services system using the SAP Data Intelligence Connection Management
application.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 143

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html


Context

Running an SAP Data Services job helps you integrate, transform, and improve the data quality. In SAP Data
Services, the unit of execution is called a job. Running an SAP Data Services job in SAP Data Intelligence helps
you in the following ways:

• Ingesting data into a Hadoop cluster for further processing (natively in a Hadoop cluster).
• Moving data out of SAP Data Intelligence after processing.

Procedure

1. Log into SAP Data Intelligence and select the Modeler tile.
2. Open the Graphs tab in the navigation pane at left.

3. Select   (Create Graph) from the navigation pane toolbar, and select Use Generation 1 Operators.
The Modeler opens the graph editor in the workspace and opens the Operators tab in the navigation pane
automatically.

4. Select the SAP Data Services Job operator by performing the following substeps:
a. Enter “SAP Data Services” in the search bar.
b. Double-click the SAP Data Services Job operator under the Remote DataFlow group in the search

results.

The Modeler adds the Pipeline operator to the graph editor workspace.
5. Configure the operator by performing the following substeps:

a. Select   (Open Configuration) to the right of the SAP Data Services Job operator in the workspace.
b. Select   (Edit Property) in the SAP Data Services Connection box in the Configuration pane.
c. Browse for and choose a connection in Connection ID.
d. Enter a description for the operator in Description.
e. Browse for and select the required SAP Data Services job in Job.

The Modeler populates the Repository field automatically with the repository that contains the SAP
Data Services job. The Modeler also displays the global variables and the substitution parameters (if
any) that are associated with the job in the Global Variables table.

f. Choose the required Job Server from the Job Server list.
The Modeler uses the selected Job Server to run the job.

 Note
You can also use a Job Server group to run the job. If you select a Job Server group, specify the
distribution level (job level, data flow level, or sub data flow level).

g. Choose the required system configuration details from the System Configuration list.

The Modeler uses the system configuration for running the job.
6. Optional: Edit global variables by performing the following substeps:

If the selected job is associated with global variables, in the Global Variables section the Modeler displays
the global variables, its data type, and default value. You can edit the default value of a global variable
associated with the job.

144 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



a. Select   (Edit) in the Global Variables box.

The Modeler populates values in the Global Variables section depending on the version of the SAP Data
Services system in which you've created the selected job.

b. Choose the applicable global variable and select   (Edit) in the Value text field and provide the
required value.

c. To define a new global variable for the SAP Data Services job, in the Global Variables section, choose
  (Add) and provide the variable and value.

 Note
Adding new global variables isn't applicable for all Data Services jobs. It depends on the version of
the SAP Data Services system in which you've created the selected job.

7. Optional: Edit substitution parameters in the same manner as global variables.
In the Substitution Parameters section, define the substitution parameters associated with the job, its
data type, and default value. You can edit the default value of a substitution parameter or define new
substitution parameters.

 Note
Substitution parameters that the application displays in the dropdown list are the parameters that are
associated with the selected system configuration.

 Note
The Modeler doesn't always auto-populate the global variables or substitution parameters. It depends
on the version of the SAP Data Services system in which you've created the selected job. If the global
variables aren't auto-populated, enter the information manually.

8. Save and run the graph.
You can control the start and stop of the graph execution using the Workflow Trigger and Workflow
Terminator operators respectively.

 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

Related Information

Working with the Data Workflow Operators [page 133]
Create a Connection

Modeling Guide
Working with the Data Workflow Operators PUBLIC 145

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html


8.6 Transfer Data

The Data Transfer operator allows you to transfer data from specific source systems to specific target systems.

Use the Data Transfer operator in SAP Data Intelligence Modeler in a data workflow for the following tasks:

• Transferring data from SAP Business Warehouse or SAP HANA.
• Loading data to cloud storages, such as Amazon S3, Google Cloud Platform, and Hadoop Distributed File

System.

Before you use the Data Transfer operator in the data workflow, create connections to source and target
systems using the SAP Data Intelligence Connection Management application. When you configure the Data
Transfer operator, browse and select the source and target connections.

Related Information

Transfer Data from SAP BW to Cloud Storage [page 146]
Transfer Data from SAP HANA to Cloud Storage [page 153]

8.6.1  Transfer Data from SAP BW to Cloud Storage

Use the Data Transfer operator in a data workflow graph (pipeline) to transfer data from an SAP Business
Warehouse (BW) system to cloud storage.

Prerequisites

Before you perform the following task, ensure that you've created the following connections using the SAP Data
Intelligence Connection Management application:

• Create a connection to an SAP BW system.
• Create a connection to a cloud storage.

 Note
SAP Data Intelligence displays decimal numbers from the source with the same scale as shown in other
SAP tools, such as SAP Logon or SAP BW Modeling tools. SAP Data Intelligence represents the data in its
raw form as generated by the SAP BW system and rounds it down to the nearest number based on the SAP
BW backend scale.

146 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



Context

In the Modeler, configure and execute the Data Transfer operator in a graph to transfer data from SAP BW to
cloud storage. Run the data workflow using three access layers.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. Open the Graphs tab in the navigation pane.

3. Select   (Create Graph) in the navigation pane toolbar and choose Use Generation 1 Operators.
4. Select the Data Transfer operator.

A graph can contain a single operator or a network of operators based on the business requirement.
a. Open the Operators tab in the navigation pane.
b. Enter “Data Transfer” in the search bar in the navigation pane toolbar.
c. Double-click the Data Transfer operator in the search results.

The Modeler adds the Data Transfer operator to the graph editor.
d. Double-click the Data Transfer operator in the graph editor.

The Modeler opens a form-based editor where you define the source and target for data transfer
5. Provide details of the source dataset for the data transfer operation.

a. Open the Source tab.
b. Browse for or enter a connection ID in the Connection ID text box.

A connection ID provides the connection to an SAP BW system.
c. Browse for or enter the source in the Source text box.

If you browse for the source, the Browse File dialog box contains all queries, InfoProviders, or
DataStores from the SAP BW system used in the connection ID definition. Source types include the
following:
• Queries
• InfoProviders
• DataStores

6. Optional: Import source dataset (Queries, InfoProviders, or DataStores) from the Metadata Catalog.
a. Select Import Dataset in the Source tab.
b. Browse and select the required dataset.
c. Select OK.

The Modeler populates the connection details automatically based on the selected data set.
7. If you select a query as the source dataset, and if the query is defined with parameters, provide values to

the parameters.
The Modeler populates the default values automatically, if any, that are already defined for the parameters.

a. Select   (Edit) in the Variables text field.
b. Select the required parameter and operator type, and provide a value in the Provide Parameter Values

dialog box.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 147



c. Optional: To view the mandatory parameters only, select   (Add Filter) and select Show Mandatory
Only.

d. Select OK.
8. Optional: Specify the transfer mode.

SAP Data Intelligence supports three types of transfer modes. The preferred mode is to use SAP HANA.
a. If the engine uses the SAP BW OLAP (Online Analytical Processing) Interface Information Access

Protocol (INA) to retrieve data from the source, enter a value in milliseconds in Timeout
The Modeler waits for the time that you specify before it times out on the data retrieval. After the
timeout period, the graph execution fails. The default timeout value is 60 seconds.

b. To use an SAP HANA view, mark a specific query or InfoProvider in the query designer to generate
an underlying Calculation view. SAP Data Intelligence can query this view to transfer the data to other
target systems.
If an external SAP HANA view exists, the Modeler displays the name of the SAP HANA view that it's
using to retrieve data from the source.

 Remember
The engine uses the nonoptimized SAP BW OLAP (INA) provider to retrieve data from the source
only if no external SAP HANA view exists.

If you select a DataStore, then the application by default uses SAP BW Operational Data Provisioning
(ODP) as the Data Access configuration. In this case, you can't modify the access configuration.

9. Optional: If you use SAP BW DataStore as a source, perform the following substeps:
a. Choose an extraction mode.

Choose from one of the following extraction modes:
• Full: Extracts all data at once.
• Delta: Extracts only what has changed with each run of the graph.

b. If you choose Full, define a file as the target.

The application supports two modes:

Mode Description

Overwrite Choose a file or a file name in the target file system. For
each run, the Modeler overwrites the selected file.

Create for each package Choose a file or pick a file name in the target file
system. For each run, the Modeler writes a new file for
each data package.

 Note
The Modeler extracts the full data when you run the graph for the first time. After the first run, the
Modeler extracts only delta changes for all subsequent runs.

c. Provide a subscription ID.

Consider the following information about subscription IDs:
• The ID must be unique for the same InfoProvider in the same SAP BW system for all clients

accessing it.

148 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



• For Full extraction mode, the system generates a subscription ID automatically.
• The ID serves as the session for the delta extraction and stores the delta pointer. It ensures that

just the changed data is transferred.
• Write the subscription ID so that you can later look it up on your subscriptions.

10. Select the required measures and dimensions from the source dataset to project to the target.
a. Open the Target tab.

The Modeler displays all measures and dimensions from the selected source in the Column Mapping
section.

b. Drag and drop applicable source columns from the Source pane to the Target pane.

 Note
When you map columns from source to target, or if there are pre-existing target objects that have
the data types listed below, the Modeler reorders the columns in the target pane automatically
based on those data types regardless of the target type.

The columns with the following data types appear at the end of the list in the target pane:
• BLOB
• CLOB
• NCLOB
• BINARY
• VARBINARY
• TEXT
• BINTEXT

11. Apply filter conditions on dimensions in the source dataset, and project only the filtered values.
a. Open the Source tab.
b. Select   (Edit Filters) in the Filters text box.

 Remember
You can define filters only after you map columns to the target.

c. Select the dimension, and define the filter condition in the Provide Filter Values dialog box.
d. Select OK.

12. Optional: Define partitions.
To optimize the data transfer operation for SAP HANA views, the Modeler provides capabilities to define a
maximum of two partition conditions for columns in the source dataset. It supports the following partition
types to define the partition condition: List and Range.
a. Choose Add Condition in the Partition Conditions section.
b. Select the required partition column and its data type.
c. Select the required partition type from the Type list.
d. Define one or more partition values in the Partition Values text box.

For range partition type, define only the low boundary value.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 149



 Note
If data is retrieved using the SAP BW OLAP Interface provider (INA) as the transfer mode, then the
Modeler ignores the partitions.

13. Define the cloud storage target in the Target pane.
To use any of the supported cloud storages as the target dataset for data transfer, provide details about the
required cloud storage.
a. Enter or browse for a connection ID that provides a connection to the required cloud storage in the

Connection ID text box.
b. Enter or browse for the path of the file to which the graph transfers the data in the Target text field.

If the selected connection has a root path specified in the connection definition, then the content of
this field is relative to the path.

 Note
The Modeler supports CSV, ORC, or Parquet file formats.

c. Define a file as a target for Delta extraction mode.

The application supports three modes to write deltas to files as described in the following table.

Mode Description

Append Choose a file or select a file name in the target file
system. Each delta run is appended to the selected file.

Create Choose a folder in the target file system. Each delta run
creates a new file in the selected folder.

In Create mode, you must define the
fileNamePattern property that tells how the delta
files are to be created inside the folder.

 Example
Customer-<date>-<time>, where, Customer
is the name of the source dataset.

Create for each package Choose a file or pick a file name in the target file
system. Each delta run writes a new file for each data
package.

 Note
SAP Data Intelligence supports only the .csv file format for delta write mode.

d. Optional: Select Fetch Metadata only if you manually entered the file path in the top right of the editor.
The Fetch Metadata functionality helps to fetch the metadata (schema) from the selected source or
target and populates the column details accordingly in the Modeler.

14. Map source and target columns.
a. Open the Target tab.

150 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



b. Select a source column from the source and drag it to the target column in the Column Mapping
section.

Use the mapping editor.
15. Optional: After you complete the mapping, preview data.

a. Open the Source tab.
b. Select Data Preview.

The following table describes the areas to preview.

Area Description

Source Data Preview remote dataset. Enter variable values to see the
data preview.

Adapted Data Preview the selected columns in the Target tab, the var-
iable values that you entered, and the filters that you
provided.

c. Open the Target tab.
d. Select Data Preview.

View data similar to data in the Source tab.

 Note
When you run the data transfer graph, only the mapped columns are projected to the target
dataset.

16. Save and run the graph.
You can control the start and stop of the graph execution using the Workflow Trigger and Workflow
Terminator operators respectively.

 Tip
You can also schedule the graph run. For more information, see Schedule Graph Executions [page 84].

Related Information

Transfer Modes [page 151]

Working with the Data Workflow Operators [page 133]
Create a Connection

8.6.1.1 Transfer Modes

The Data Transfer operator in SAP Data Intelligence supports different modes for retrieving data.

Use the Data Transfer operator to retrieve data using any of the following modes:

Modeling Guide
Working with the Data Workflow Operators PUBLIC 151

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/e259041c90734cb688e13a7931e7d721.html


• SAP Business Warehouse (BW) OLAP. (Use the OLAP Interface (INA) protocol as the access method.)
• Generated SAP HANA views.
• SAP BW ODP for full or delta data extraction.

For all other cases, the preferred way is to use SAP HANA. To use SAP HANA, mark a specific query,
infoprovider, or datastore in the query designer to generate an underlying calculation view. SAP Data
Intelligence queries this view to transfer the data to other target systems.

 Note
The application processes the partition result sets one after the other and not in parallel.

SAP BW OLAP

SAP BW OLAP is the default mode. SAP BW uses OLAP to access data. The OLAP method ensures that the
data you write matches the data from the common SAP BW user interfaces, such as Transaction RSRT2. The
OLAP method supports a wide variety of SAP BW functionality.

Because of the online nature of the OLAP access method, SAP doesn't recommend it for large-scale data
transfer. With the SAP BW OLAP mode, transfer the complete data in a single result set.

 Note
SAP BW INA has a maximum number of cells that can be exported.

Generated SAP HANA Views

Generate designated calculation views on the underlying SAP HANA database for each query or infoprovider in
SAP BW on SAP HANA and SAP BW/4HANA. SAP Data Intelligence uses generated SAP HANA views when the
following condition are met:

• You create a connection to an SAP BW system using the SAP Data Intelligence Connection Management
application.

• You use SAP BW version 4.2.0 and higher.
• You specify a working connection to the SAP HANA database and referenced it in the SAP BW connection

that you use.
• You upload two certificates for SSL access in case the two connections can't be covered by the same root

certificate.
• You ensure that the corresponding query or infoprovider has a generated calculation view.
• The projection of chosen dimensions and measures doesn't contain a restricted attribute, such as

specified in 2145502 .
• There are no further errors that occur, such as SAP HANA authorization errors.

If data is retrieved with generated SAP HANA views, then you can specify partitions of data. The application
transfers partitions of data separately, which enables large result sets.

152 PUBLIC
Modeling Guide

Working with the Data Workflow Operators

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2145502


SAP BW ODP

You can use the SAP BW ODP mode only with datastores.

 Note
You must change the setting in the Data Transfer operator manually to activate querying with SAP HANA.
The application uses the non-optimised BW INA provider for data extraction in the following cases:

• If SAP HANA isn't available.
• If the application doesn't generate the necessary calculation view.
• If you've selected the INA option explicitly.

If the application uses the non-optimised BW INA provider, it requires that you provide an appropriate
timeout for the BW INA call, depending on the amount of data you expect to be extracted.

In the current version, SAP Data Intelligence supports the following file storage targets for data transfer using
the SAP BW ODP mode:

• ADL (Microsoft Azure Data Lake)
• GCS (Google Cloud Storage)
• HDFS (Hadoop Distributed File System)
• OSS (Alibaba Cloud Object Storage Service)
• S3 (Amazon Simple Storage Service)
• SDL (Semantic Data Lake)
• WASB (Microsoft Azure Storage Blob)

8.6.2  Transfer Data from SAP HANA to Cloud Storage

Use the Data Transfer operator in a graph to transfer data from an SAP HANA system to an SAP Vora system or
to cloud storage.

Prerequisites

• Create a connection to an SAP HANA system using the SAP Data Intelligence Connection Management
application.

• Create a connection to a cloud storage using the SAP Data Intelligence Connection Management
application.

Procedure

1. Start the SAP Data Intelligence Modeler.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 153



2. Open the Graphs tab in the navigation pane.

3. Select   (Create Graph) in the navigation pane toolbar.
4. Choose Use Generation 1 Operators.
5. Add The Data Transfer operator to a graph.

A graph can contain a single operator or a network of operators based on the business requirement.
a. Open the Operators tab in the navigation pane.
b. Enter “Data Transfer” in the search text box in the navigation toolbar.
c. Double-click the Data Transfer operator in the search results to add the operator as a process to the

graph editor.
6. Define the source for data transfer.

a. In the graph editor, double-click the Data Transfer operator.
The Modeler opens an editor in the graph editor pane where you define the source and target for data
transfer.

b. Open the Source tab.

In the Source tab, provide details of the source dataset for the transfer operation.
c. Enter or browse for the applicable connection ID in the Connection ID text box.

The connection ID provides the connection to an SAP HANA system.
d. Select   (Browse) in the Table Name field and select the required SAP HANA table.

The Modeler populates the connection details automatically based on the selected data set.
7. Optional: Browse the Metadata Catalog and import the applicable SAP HANA table.

a. Select Import Dataset in the Source tab toolbar.
b. Browse for and select the applicable data set.
c. Select OK.

The Modeler populates the connection details automatically based on the selected data set. For more
information about the Metadata Catalog, see the Data Governance User Guide.

8. Provide values to parameters.
If the selected SAP HANA objects are defined with parameters, then it's necessary to provide values
to those parameters. The application automatically populates the default values, if any, that are already
defined for the parameters.
a. Select the Edit icon in the Variables text box and provide applicable values.
b. Select the variable and operator type, and provide the required values in the Provide Parameter Values

dialog box.
c. Optional: To view only required parameters, select   (Add Filter) and select Show Mandatory Only.

9. Select applicable columns from the target dataset to load to the target.
a. Open the Target tab.

The Column Mapping section lists all columns from the selected source.
b. Drag and drop applicable columns to the Target pane.

 Note
When you map columns from source to target, or if there are pre-existing target objects that have
the data types listed below, the Modeler reorders the columns in the target pane automatically
based on those data types regardless of the target type.

The columns with the following data types appear at the end of the list in the target pane:

154 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



• BLOB
• CLOB
• NCLOB
• BINARY
• VARBINARY
• TEXT
• BINTEXT

10. Optional: Filter column values in the source dataset to load only filtered values to the target.

 Remember
You can define filters only after you map columns to the target.

a. Open the Source tab.
b. Select   (Edit Filters) in the Filters text box.
c. Select applicable columns in Provide Filter Values dialog and define the filter condition.
d. Select OK.

11. Define the cloud storage target table.
a. Open the Target tab.
b. Enter or browse for the connection ID for the cloud storage dataset in the Connection ID text box.
c. Enter or browse for the path to the cloud storage dataset in the Target text box.

If the selected connection has a root path specified in the connection definition, then the content of
this field is relative to this path.

12. Map source columns to the target columns.
a. Open the Target tab.
b. Drag and drop each source column in the Source pane to the corresponding target column in the

Target pane in the Column Mapping section.
13. After you've mapped all of the source columns to the target columns, preview data in the columns.

a. Open the Source tab.
b. Select one of the following options from the Data Preview list:

• Source Data: Input variable values to preview the remote dataset.

 Note
The variable values that you enter don't overwrite the existing values of the data transfer
operator.

• Adapted Data: Preview the columns that you selected in the Target tab, the variable values, and the
filters that you set.

c. To view data in the target table columns, open the Target tab and select Data Preview.

 Note
When you run the data transfer, only the mapped columns are loaded to the target dataset.

14. Save and run the graph.
You can control the start and stop of the graph run using the Workflow Trigger and Workflow Terminator
operators respectively.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 155



 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

8.7 Control Flow of Execution

SAP Data Intelligence provides the data workflow operators Workflow Merge (or), Workflow Merge (and), and
Workflow Split to control the flow of execution in a data workflow.

A typical use case for these data workflow operators is parallel executions within a data workflow.

 Note
You can connect the input ports of the operators to other data workflow operators. But, if the operator
receives a message at any of its input ports, then leaving the output ports unconnected results in a data
workflow execution to fail or stop.

Operator Description

Workflow Merge (or) A message is sent to the output port once the operator receives
a message at any of its input ports. All further inputs are ig-
nored.

The operator has two input ports and one output port.

Workflow Merge (and) This operator sends a message to the output port once it re-
ceives a message on both the input ports. The process shuts
down after sending the message.

The Workflow Merge (and) operator is intended to control the
flow of execution when there are parallel executions within the
data workflow.

The operator has two input ports and one output port. Leaving
the output port unconnected results in a data workflow execu-
tion failure once the operator receives an input message.

Workflow Split This operator helps duplicate an input message into two output
messages.

The Workflow Split operator is intended to control the flow of
execution when there are parallel executions within the graph.

The operator has one input port and two output ports. The op-
erator sends the message at the input port to both the output
ports.

These operators are listed in the SAP Data Intelligence Modeler under the Data Workflow category.

156 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



 Note
Use the operators Workflow Split, Workflow Merge (and), and Workflow Merge (or) operators in a graph
with other data workflow operators only.

Example

 Example
The following data workflow uses the Workflow Split, Workflow Merge (and), and Workflow Merge (or)
operators.

After the engine executes the Pipeline operator successfully, the Modeler duplicates the output message
to both the HANA Flowgraph operator and the BW Process Chain operator. Therefore, both the HANA
Flowgraph and BW Process Chain operators run in parallel.

The Workflow Merge (and) operator ensures that the data workflow sends a message to the SAP Data
Services operator only if both the operators have finished successfully. The Workflow Merge (or) operator
takes the first incoming message and forwards it to the Workflow Terminator operator that shuts down the
data workflow execution.

8.8 Send E-Mail Notifications

Use the Notification operator in the SAP Data Intelligence Modeler to send e-mail notifications to users at
certain points during the data workflow execution.

Prerequisites

Create a connection to an SMTP server using the SAP Data Intelligence Connection Management application.

Modeling Guide
Working with the Data Workflow Operators PUBLIC 157



Context

A typical use case for using the notification operator is to send an e-mail when an operator writes onto its
error or success port. The message body contains technical information that the notification operators
receive at its input port from the previous operator in the data workflow.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. In the navigation pane toolbar, choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph.

4. Select the operator.
A graph can contain a single operator or a network of operators based on the business requirement.
a. In the navigation pane, choose the Operators tab.
b. In the search bar, search for the Notification operator.
c. In the search results, double-click the Notification operator (or drag and drop it to the graph editor) to

add it as a process in the graph execution.
5. Configure the operator.

a. In the graph editor, select the Notification operator and choose   (Open Configuration).
b. In the Connection text field, enter the required connection ID.

You can also browse and select the required connection.
c. If you want to delete the attachments after sending the e-mail, in the Delete attachments after sending

dropdown list, select true.
d. In the Default From Value text field, enter the value of email.from that the Modeler must use when no

such value is received through the incoming message.
e. In the Default To Value text field, enter the value of email.to that the Modeler must use when no such

value is received through the incoming message.
f. In the Default Subject Value text field, enter the value of email.subject that the modeler must use

when no such value is received through the incoming message.

 Note
The following characters aren't supported in message header names: <, >, $, and {}.

158 PUBLIC
Modeling Guide

Working with the Data Workflow Operators



9 Working with Structured Data Operators

You can model a flow and build a transformation pipeline which will move data from the source(s) to the
target(s) while transforming the data in the process without having to create custom operators.

Related Information

Data Transform [page 159]
Structured Consumer Operators [page 171]
Structured Producer Operators [page 175]
Custom Editor [page 178]
Resiliency with Structured Data Operators [page 179]

9.1 Data Transform

The Data Transform operator in the SAP Data Intelligence Modeler provides wide variety of options to meet
your data transformation needs.

Context

This operator allows you to perform data transformations, such as projection, union, aggregation, and join. It
can connect to other operators from the Structured Data Operators category as sources and targets. There are
nodes available in the operator that provide capabilities to meet your data transformation requirements. For
example, you can use these nodes to create projections and joins. Configure each node to meet your individual
data specifications.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

Modeling Guide
Working with Structured Data Operators PUBLIC 159



4. In the Operators tab, select any consumer operator. For example, double-click the Structured File
Consumer operator (or drag and drop it to the graph editor) to add it as a process in the graph execution.

5. Select the operator and choose  (Open Configuration) to define the required configurations to the
operator.

 Note
• For consumer operators (Structured File Consumer, Table Consumer, and Application Consumer)

you can use the Data Preview option in the configuration panel to view the content of the selected
file or table. If the table is very wide or contains a number of large column types, the result may be
truncated in order to avoid out of memory issues.

• The file browsing and data preview is not possible if substitution parameters are used to configure
the connection ID or the table name properties.
For CSV files, you can modify the CSV properties using  Data Access Configuration and view data
accordingly.

6. Add the Data Transform operator to the graph.
7. Connect the output port of the Structured File Consumer operator to the Data Transform operator.
8. In the graph editor, double-click the Data Transform operator.
9. In the Nodes tab, drag and drop the required node to the operator editor.

The Data Transform operator provides different nodes that you can use to define your data transformation
requirements.

Node Description

Projection Represents a relational selection (filter) combined with a projection operation. It also
allows calculated columns to be added to the output.

Join Represents a relational multiway join operation. It supports multiple input ports.

Aggregation Represents a relational group-by and aggregation operation.

Union Represents a relational union operation. It supports multiple input ports.

Case Specifies multiple paths so that the rows are separated and processed in different
ways.

10. Double-click the node and define the required node configurations. For more information on configuring
the data transform nodes, see the Related Information section.

11. In the menu bar, use the breadcrumb navigation to navigate back to the operator configuration editor.
12. Add any producer operator. For example, add the Structured File Producer operator to the graph editor.
13. Connect the output port of the Data Transform operator to the Structured File Producer operator.
14. Define the required configurations to the Structured File Producer operator.
15. To control the start and stop of the graph execution, add the Workflow Trigger and the Graph Terminator

operators at the beginning and at the end of the graph, respectively.
16. Save and execute the graph.

160 PUBLIC
Modeling Guide

Working with Structured Data Operators



 Tip
You can also schedule the graph execution. For more information, see Schedule Graph Executions
[page 84].

Related Information

Configure the Projection Node [page 161]
Configure the Join Node [page 163]
Configure the Aggregation Node [page 167]
Configure the Union Node [page 169]
Configure the Case Node [page 170]

9.1.1  Configure the Projection Node

A Projection node represents a relational selection (filter) combined with a projection operation. It also allows
calculated attributes to be added to the output.

Prerequisites

You have defined the operator with a Projection node and connected the previous node to this node.

Procedure

1. Double-click the Projection node.
2. Define the output columns.

If you have connected the previous node to the Projection node, you can map any columns from the input
as output columns of the Projection node. You can also add, delete, and rename the columns, as needed.
a. In the Mapping pane, select a Source column and drag and drop into the Drop row here zone in the

Target section.

 Note
You can also duplicate an output column (map the same source column more than once). Select
the required Source column and drag and drop into the Drop row here zone in the Target section.

b. Optional: To automatically map the columns based on column names, in the Source section, choose

 (Auto Map by Name).

Modeling Guide
Working with Structured Data Operators PUBLIC 161



c. Optional: To add new output columns, in the Target section, choose + (Add Column) to add new rows
and define its data type.

 Note
For all new output columns, define the output column with a column expression or with a mapping
to any of the existing source columns.

d. Optional: To use an expression to define an output column, click the required Target column and then
define the output column expression in the expression editor.

e. Optional: To remap an output column with a different source column, right-click the mapping, choose
Remap, select a new source column, and choose OK.

f. Optional: To edit a column name or its data type, select a Target column and choose  (Edit).
g. Optional: To delete a mapping without deleting the output column, right-click the mapping and choose

Delete.
3. Optional: Define additional configurations for output columns.

In the Columns tab toolbar, switch to the Form pane to define additional configurations for output columns.
a. If you have identical records from the previous node, in the toolbar, select the Distinct checkbox to

output unique records only.

 Remember
The duplicate records must match exactly; similar records are included to the output. For example,
if the only difference between record 1 and record 2 is that the first name is spelled "Jane" and
"Jayne" respectively, then both records are output.

b. If you want to add new output columns by duplicating an existing output column definition, select an

output column and in the toolbar, choose .
c. Under the Primary Key column, select an output column that serves as the primary key.

Typically the data in this column is unique.
d. Under the Nullable column, choose whether the column value can be empty (nullable).
e. To reorder the columns, select the column that you want to move and in the toolbar click the up or

down arrows.
4. Optional: Define filters.

For example, if you want to move all the records that are in Canada for the year 2017, your filter might look
like the following: "Filter1_input"."COUNTRY" = 'Canada' AND "Filter1_input"."DATE"='2017'
a. Select the Filter tab to compare the column name against a constant value.
b. In the expression editor, enter the required expression.

 Tip
Use the SQL Helper, choose whether to select the required columns, functions, or operators to
the expression editor. Double-click the columns, operators, or functions to include them in the
expression editor. For more information on each function, see the "SQL Functions" topic in the SAP
HANA SQL and System Views Reference guide.

5. Add and connect new nodes.
If you want to configure the Data Transform operator with another node:
a. In the menu bar, use the breadcrumb navigation to go back to the node editor.

162 PUBLIC
Modeling Guide

Working with Structured Data Operators



b. Optional: Add new nodes.
c. To connect the nodes, select the output port of a node and drag the cursor to an input port of another

node.
6. Define data target.

It is necessary to create a data target to the node and create an output port for Data Transform operator.
a. Right-click the output port of the node and select Create Data Target.

9.1.2  Configure the Join Node

A Join node represents a relational multiway join operation.

Prerequisites

You have configured the operator with the Join node and connected output of one or two previous nodes to the
Join node.

Context

The Join node can perform multiple step joins on maximum of two inputs. Configure the Join node to define the
join condition and the output columns of the Join node.

 Note
The Join node is not available for real-time processing.

Procedure

1. Double-click the Join node.
2. Create a join.

a. In the Definition tab, select a source.

b. Choose  (Create Join) and drag the cursor to another source on the canvas with which you want to
create a join.
You can also create a join by selecting a column in the source and dragging the cursor to the required
column in a different source. In this case, the application automatically creates a join condition.

3. Define the join.
The Join Definition pane, define the join type and the join condition.

Modeling Guide
Working with Structured Data Operators PUBLIC 163



a. In the Join Type dropdown list, select a value.

Join Type Description

Inner Join Use when each record in the two tables has matching records.

Left Outer Outputs all records in the left table, even when the join condition does not match
any records in the right table.

Right Outer Outputs all records in the right table, even when the join condition does not
match any records in the left table.

Cross Outputs all possible combinations of rows from the two tables.

b. In the expression editor, enter a join condition.
c. Optional: To use the join condition that the application proposes, select Propose Condition.

The application analyzes the sources participating in the join and proposes a condition.

4. Define the output columns.
In the Columns tab, define the output columns of the join node.
a. In the toolbar, choose the Columns tab.
b. In the Mapping pane, select a Source column and drag and drop it into the Drop row here zone in the

Target section.

 Note
You can also duplicate an output column (map the same source column more than once). Select
the required Source column and hold and drag the cursor to the Drop row here zone in the Target
section.

c. Optional: If you want to automatically map the columns based on column names, in the Source

section, choose  (Auto Map by Name).

d. If you want to edit a column name, select a Target column and choose  (Edit).

 Note
You cannot edit the data type of output columns of a join node.

e. If you want to remap an output column with a different source column, right-click the mapping and
choose Remap.
Select a new source column and choose OK.

5. Optional: Reorder output columns.
In the Columns tab toolbar, switch to the Form pane to reorder the output columns.
a. To reorder the columns, select the column that you want to move and in the toolbar click the up or

down arrows.
6. Add and connect new nodes.

If you want to configure the Data Transform operator with another node:
a. In the menu bar, use the breadcrumb navigation to go back to the node editor.

164 PUBLIC
Modeling Guide

Working with Structured Data Operators



b. Optional: Add new nodes.
c. To connect the nodes, select the output port of a node and drag the cursor to an input port of another

node.
7. Define data target.

It is necessary to create a data target to the node and create an output port for Data Transform operator.
a. Right-click the output port of the node and select Create Data Target.

Related Information

Join Design Considerations [page 165]

9.1.2.1 Join Design Considerations

You can control memory and CPU usage used to process joins, improve runtime performance of the joins in the
graph, and process more joins within a graph effectively with resource limitations.

Join Resource and Performance Control Options

When designing joins within a structured data transform operator, use the following options to help control the
resources needed:

• Rank: A number whose value determines if a table should be considered inner or outer. If the rank is higher,
the table is outer. If the rank is lower, the table is inner.

• Cache: A value of yes or no determines whether a table should be cached or not. A value of automatic
means that the engine decides.

Choosing Rank and Cache Values for Join

• DB – database source
• File – cloud file source
• Any – any output within a data transform operation like projection or join

One source will be referred as left and other one as right.

Inner Join

DB and DB

Modeling Guide
Working with Structured Data Operators PUBLIC 165



• Use low rank for the large table and high rank for the small table
• Cache = no, for both sources

Index must be defined for join columns on the DB table.

Runtime performance option: If index is not defined for the inner table, choose Cache = yes. This setting
improves runtime performance but affects memory. Choose this option when there are fewer resources
consuming transforms.

File and DB, Any and DB

• Use low rank for the DB and high rank for the file
• Cache = no, for both sources

Index must be defined for join columns on the DB table.

Runtime performance option: When the number of database rows is less than the number of rows in the file,
use a lower rank for the file and set Cache = Yes. This setting improves runtime performance but affects
memory. Choose this option when there are fewer resources consuming transforms.

File and File, Any and File, Any and Any

• Use low rank for the smaller source
• Cache = yes for the low rank source

Index must be defined for join columns on the DB table.

Runtime performance option: When the number of rows is fewer in one source than another source, use
low rank for the larger source and set Cache = Yes. This setting improves runtime performance but affects
memory. Choose this option when there are fewer resources consuming transforms.

Left Outer Join

In case of Left Outer Joins, the left source is always chosen as outer irrespective of type, and the right source is
chosen as inner. The Rank value is not considered.

• Cache = no, for left table
• Cache = no, when right table is DB
• Cache = yes, when right table is File or Any

When the number of rows is fewer in one source than another source, use the smaller source as Left (outer).
This setting improves runtime performance but affects memory. Choose this option when there are fewer
resources consuming transforms.

• When the Right table is a database, choose Cache = no. When the Right table is a File or Any, choose Cache
= yes.

Index must be defined for join columns in the DB table.

166 PUBLIC
Modeling Guide

Working with Structured Data Operators



Right Outer Join

In case of Right Outer Join, the right source is always chosen as outer irrespective of type, and the left source is
chosen as inner. The Rank value is not considered.

• Cache = no, for right table
• Cache = no, when left table is DB
• Cache = yes, when left table is File or Any

Runtime performance option: When the number of rows is smaller in one source than another source, use the
smaller sources as the RIGHT (outer). This setting improves runtime performance but affects memory. Choose
this option when there are few resource-consuming transforms.

• When the LEFT table is a database, choose Cache = no. When the LEFT table is a File or Any, choose Cache
= yes.

Index must be defined for join columns on the DB table.

Cache Size Estimate

When any input source is chosen to be cached for join, the amount of cache memory used by the Flowagent
engine is roughly estimated using the following formula.

Cache size in bytes = Number of rows * Number of columns * 20 bytes (average column

size) * 1.3 (30% overhead)

Number of columns here refers to the number of columns selected in the Join from the table plus the number
of join columns.

9.1.3  Configure the Aggregation Node

An Aggregation node represents a relational group-by and aggregation operation.

Prerequisites

You have defined the operator with an Aggregation node and connected the previous node to this node.

Procedure

1. Double-click the Aggregation node.
2. Define the output columns.

Modeling Guide
Working with Structured Data Operators PUBLIC 167



If you have connected the previous node to the Aggregation node, you can map any columns from the input
as output columns of the Aggregation node. You can add, delete, and rename the columns, as needed.
a. In the Mapping pane, select a Source column and drag and drop it into the Drop row here zone in the

Target section.

 Note
You can also duplicate an output column (map the same source column more than once). Select
the required Source column and drag and drop it into the Drop row here zone in the Target section.

b. Optional: If you want to automatically map the columns based on column names, in the Source

section, choose  (Auto Map by Name).

c. If you want to edit a column name, select a Target column and choose  (Edit).
d. If you want to remap an output column with a different source column, right-click the mapping and

choose Remap.
Select a new source column and choose OK.

3. Define the aggregation type.
You can specify the columns that you want to have the aggregate or group-by actions taken upon.

a. If you want to define an aggregation type, select a Target column and choose  (Edit).
b. In the Aggregation Type dropdown list, select a value.

Aggregation Type Description

<empty> Specifies a list of columns for which you want to combine output. For
example, group sales orders by date to find the total sales ordered on a
particular date. This type is the default aggregation type.

Avg Calculates the average of a given set of column values.

Count Returns the number of values in a table column.

Max Returns the maximum value from a list.

Min Returns the minimum value from a list.

Sum Calculates the sum of a given set of values.

4. Optional: Reorder output columns.
In the Columns tab toolbar, switch to the Form pane to reorder the output columns.
a. To reorder the columns, select the column that you want to move and in the toolbar click the up or

down arrows.
5. Add and connect new nodes.

If you want to configure the Data Transform operator with another node, follow these steps:
a. In the menu bar, use the breadcrumb navigation to go back to the node editor.
b. Add new nodes.
c. To connect the nodes, select the output port of a node and drag the cursor to an input port of another

node.

168 PUBLIC
Modeling Guide

Working with Structured Data Operators



6. Define data target.
It is necessary to create a data target to the node and create an output port for Data Transform operator.
a. Right-click the output port of the node and select Create Data Target.

9.1.4  Configure the Union Node

A Union node represents a relational union operation.

Prerequisites

You have configured the operator with the Union node and connected the previous nodes to Union node.

Context

The union operator forms the union from two or more inputs with the same signature. This operator can either
select all values including duplicates (UNION ALL) or only distinct values (UNION).

Procedure

1. In the canvas, select the Union node.

2. Choose  (Open Configuration).
In the Configuration pane, under the Columns section, you can see the column information from the
previous nodes.

3. If you want to merge all of the input data (including duplicate entries) into one output, enable the Union All
toggle button.

4. Add and connect new nodes.
If you want to configure the Data Transform operator with another node:
a. In the menu bar, use the breadcrumb navigation to go back to the node editor.
b. Add new nodes.
c. To connect the nodes, select the output port of a node and drag the cursor to an input port of another

node.
5. Define data target.

It is necessary to create a data target to the node and create an output port for Data Transform operator.
a. Right-click the output port of the node and select Create Data Target.

Modeling Guide
Working with Structured Data Operators PUBLIC 169



9.1.5  Configure the Case Node

The Case node specifies multiple paths so that the rows are separated and processed in different ways.

Prerequisites

You have defined the operator with a Case node and connected the previous node to the Case node.

Context

Route input records from a single source to one or more output paths. You can simplify branch logic in data
flows by consolidating case or decision making logic in one node. Paths are defined in an expression table. By
default, there are two output ports defined. The one ending in Default contains any records that do not meet
the expression definition in one of the other output ports.

Procedure

1. Double-click the Case node.
2. Optional: Select Output Row Once to specify whether a row can be included in only one or many output

targets.
For example, you might have a partial address that does not include a country name such as 455 Rue
de la Marine. It is possible that this row could be output to the tables named Canada_Customer,
France_Customer, and Other_Customer. Select this option to output the record into the first output
table whose expression returns TRUE. Not selecting this option would put the record in all three tables.

3. Optional: Choose + (Add Port) to add more Case output ports and expressions.
4. Click the name under the Output Port Name heading to rename the port to be more meaningful. For

example, Canada_Customer.
5. Click the link under the Expression heading to open the expression editor.
6. In the expression editor, define an expression for the records that you want to include in this output.
7. Define the default port by selecting the required output port and choose Default.

The default port contains any records that do not meet the expression definition in one of the other output
ports.

8. Add and connect new nodes.
If you want to configure the Data Transform operator with another node:
a. In the menu bar, use the breadcrumb navigation to go back to the node editor.
b. Add new nodes.
c. To connect the nodes, select the output port of a node and drag the cursor to an input port of another

node.

170 PUBLIC
Modeling Guide

Working with Structured Data Operators



9. Define data target.
It is necessary to create a data target to the node and create an output port for Data Transform
a. Right-click the output port of the node and select Create Data Target.

operator.

9.2 Structured Consumer Operators

Related Information

SAP Application Consumer [page 171]
Structured File Consumer [page 172]
Structured SQL Consumer [page 174]

9.2.1  SAP Application Consumer

The SAP Application Consumer operator allows you to create pipelines that consume data from SAP and
non-SAP sources as modeled in the Pipeline Modeler, and connect them to other structured operators such as
the Structured Data Transform operator.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the SAP Application Consumer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. To open the editor of the SAP Application Consumer operator, double-click the operator.
6. Configure the Service, Connection, and Source (dataset) properties. You can delete columns or define

filters to orchestrate the data as required.

• For directories containing part-files, you can select the partition type and choose what happens upon
string truncation.

• For OData service, you can browse and expand the navigation properties by defining the Depth value
based on which the Source Columns section is updated. The depth value can be either 1 or 2.

Modeling Guide
Working with Structured Data Operators PUBLIC 171



 Note
• Use the Data Preview option to see the original data from the source or to see the configured data.

If the table is very wide or contains a number of large column types, the result may be truncated in
order to avoid out of memory issues.

• The file browsing and data preview is not possible if substitution parameters are used to configure
the connection ID or the table name properties.

7. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator in the configuration panel.

8. Add any producer operator from the Structured Data Operators category to the graph.
9. Connect the output port of the SAP Application Consumer operator to the producer operator.
10. To control the stop of the graph execution, add the Graph Terminator operator at the end of the graph.
11. Connect the output port of the producer operator to the Graph Terminator operator.
12. Save and execute the graph.

9.2.2  Structured File Consumer

Structured File Consumer operator reads from any supported cloud storage. The operator produces
structured output, and you need to connect it to other operators from Structured Data Operators category.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the Structured File Consumer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. To open the editor of the Structured File Consumer operator, double-click the operator.
6. Configure the Service, Connection, and Source (dataset) properties.

• For CSV files, you can define various CSV properties.
• For JSON files, you can mention the flattening level in the JSON properties.
• For directories containing part-files, you can select the partition type and choose what happens upon

string truncation.
7. Delete columns or define filters to orchestrate the data as required.

172 PUBLIC
Modeling Guide

Working with Structured Data Operators



 Note
• Use the Data Preview option to see the original data from the source or to see the configured data.

If the table is very wide or contains a number of large column types, the result may be truncated in
order to avoid out of memory issues.

• The file browsing and data preview is not possible if substitution parameters are used to configure
the connection ID or the table name properties.

8. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator in the configuration panel.

9. Add any producer operator form the Strutured Data Operators category to the graph.
10. Connect the output port of the Structured File Consumer operator to the producer operator.
11. To control the stop of the graph execution, add the Graph Terminator operator at the end of the graph.
12. Connect the output port of the producer operator to the Graph Terminator operator.
13. Save and execute the graph.

Related Information

Consuming Excel Files with Structured File Consumer Operator [page 173]

9.2.2.1 Consuming Excel Files with Structured File
Consumer Operator

Use a structured file consumer operator and select an Excel file as a source in a pipeline to transform the Excel
format to a table or dataset.

Context

After you open the structured file consumer operator in your graph, select a connection in Connection ID and
an Excel file source in Source. Then perform the following steps to configure the Excel worksheet:

Procedure

1. Select Data Preview.

The Excel Properties pane opens. The Modeler fetches the first sheet in the selected Excel file.

The lower portion of the Excel Properties pane shows the source columns in the table that also includes the
qualified names and the data types. You can change the data types, if necessary.

Modeling Guide
Working with Structured Data Operators PUBLIC 173



2. Optional: Select Modify to select a different worksheet. The Excel Properties dialog opens.
a. Select a sheet number from the Select Sheet list.
b. Select Set first row as header to use the first row of the sheet as the header row in the resulting table.
c. Select OK.

Results

The Modeler doesn't transform formulas into the final table or dataset. Therefore, if your Excel sheet contains
cells with formulas, the result is an empty cell in the final table or dataset.

9.2.3  Structured SQL Consumer

SQL Consumer operator reads from a specified database using native SQL. This operator produces a
structured output, and you need to connect it to other operators from Structured Data Operators category.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the Structured SQL Consumer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. To open the editor of the Structured SQL Consumer operator, double-click the operator.
6. Configure the Service and Connection properties.
7. Write an SQL statement in the SQL Editor dialog.

8. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator in the configuration panel.

9. Add any producer operator form the Strutured Data Operators category to the graph.
10. Connect the output port of the Structured SQL Consumer operator to the producer operator.
11. To control the stop of the graph execution, add the Graph Terminator operator at the end of the graph.
12. Connect the output port of the producer operator to the Graph Terminator operator.
13. Save and execute the graph.

174 PUBLIC
Modeling Guide

Working with Structured Data Operators



9.3 Structured Producer Operators

Related Information

SAP Application Producer [page 175]
Structured File Producer [page 176]
Structured Table Producer [page 177]

9.3.1  SAP Application Producer

The SAP Application Producer operator allows you to create pipelines that write data to SAP Business
Warehouse and OData targets as modeled in the Pipeline Modeler, and connect them to other structured
operators such as the Structured Data Transform operator.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the SAP Application Producer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. Add any consumer operator from the Structured Data Operators category to the graph. To know more
about configuring consumer operators, See Structured Consumer Operators [page 171].

6. Connect the output port of the consumer operator to the SAP Application Producer operator.
7. To open the custom editor of the SAP Application Producer operator, double-click the operator.
8. Configure the Service, Connection, and Target properties. You can map source and target columns if not

automatically mapped.

 Note
• Use the Data Preview option to see the output data. If the table is very wide or contains a number of

large column types, the result may be truncated in order to avoid out of memory issues.
• The file browsing and data preview is not possible if substitution parameters are used to configure

the connection ID or the table name properties.

Modeling Guide
Working with Structured Data Operators PUBLIC 175



9. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator.

10. To control the stop of the graph execution, add the Graph Terminator operator at the end of the graph.
11. Connect the output port of the producer operator to the Graph Terminator operator.
12. Save and execute the graph.

9.3.2  Structured File Producer

The Structured File Producer operator receives data from any structured data operators and produces a file
(CSV, ORC, or PARQUET) in the specified storage.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the Structured File Producer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. Add any consumer operator from the Structured Data Operators category to the graph. To know more
about configuring consumer operators, See Structured Consumer Operators [page 171].

6. Connect the output port of the consumer operator to the Structured File Producer operator.
7. To open the custom editor of the Structured File Producer operator, double-click the operator.
8. Configure the Service, Connection, and Target properties.

a. To create new target within an existing schema, click  Add Target in the Browse dialog. The columns
will be copied from the source consumer operator to the new target.

9. You can map source and target columns if not automatically mapped.

 Note
• Use the Data Preview option to see the output data. If the table is very wide or contains a number of

large column types, the result may be truncated in order to avoid out of memory issues.
• The file browsing and data preview is not possible if substitution parameters are used to configure

the connection ID or the table name properties.

10. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator.

11. To stop running the graph, add the Graph Terminator operator at the end of the graph.
12. Connect the output port of the producer operator to the Graph Terminator operator.

176 PUBLIC
Modeling Guide

Working with Structured Data Operators



13. Save and execute the graph.

9.3.3  Structured Table Producer

The Structured Table Producer operator receives data from any structured operators, and produces a table in
the specified database.

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, select the Graphs tab.

3. Choose   (Create Graph).
The application opens an empty graph editor in the same window, where you can define your graph. A
graph can contain a single operator or a network of operators based on the business requirement.

4. In the Operators tab, double-click the Structured Table Producer operator (or drag and drop it to the graph
editor) to add it as a process in the graph.

5. Add any consumer operator from the Structured Data Operators category to the graph. To know more
about configuring consumer operators, See Structured Consumer Operators [page 171].

6. Connect the output port of the consumer operator to the Structured Table Producer operator.
7. To open the custom editor of the Structured Table Producer operator, double-click the operator.
8. Configure the Service, Connection, and Target properties.

a. To create new target within an existing schema, click  Add Target in the Browse dialog. The columns
will be copied from the source consumer operator to the new target..

9. Choose a write mode:

• Append: Add data to an existing table. In this mode, you can choose to perform an upsert. Select the
checkbox Update Records By Primary Key (Upsert).

• Overwrite: Drop the table and create another one according to the source schema.
• Truncate: Clear the table before inserting data.
• Delete: Delete records from the target where values of the mapped target columns match with the

source column.

 Caution
Existing column mappings will be cleared once you switch to delete mode from any other mode.

 Note
Delete mode is not available for HDL database connection.

10. You can map source and target columns if not automatically mapped.

Modeling Guide
Working with Structured Data Operators PUBLIC 177



 Note
• Use the Data Preview option to see the output data. If the table is very wide or contains a number of

large column types, the result may be truncated in order to avoid out of memory issues.
• The file browsing and data preview is not possible if substitution parameters are used to configure

the connection ID or the table name properties.

11. In the graph editor, select the operator and choose  (Open Configuration) to define the other required
configurations of the operator.

12. To stop running the graph, add the Graph Terminator operator at the end of the graph.
13. Connect the output port of the producer operator to the Graph Terminator operator.
14. Save and execute the graph.

9.4 Custom Editor

Use the Custom Editor to update the source dataset and projection and filters are pushed down to the source.

 Note
The Custom Editor is only for the operators from the Structured Data Operators and Connectivity (via
Flowagent) categories.

Projection

Use the Delete Projection button to drop a column and reduce the amount of data read from the source.

 Note
If you drop a column and need to revert the changes, use Restore Metadata to get the latest source dataset
definition again.

Filters

Filtering is based on column capabilities. If a source allows filtering on a column, it is shown in the user
interfaces as drop-down options.

Supported operators are EQUAL, BETWEEN, >, <, <= and >=.

If the operator user interface doesn’t show any filtering, then the source doesn’t support it. To filter on these
columns, use the Data Transform operator.

178 PUBLIC
Modeling Guide

Working with Structured Data Operators



 Note
The operator OR is applicable per column while AND is applicable across columns. For example, a source
has two columns: ID and NAME. If you choose multiple conditions on ID and on NAME, the query would
look like (ID = 2 OR ID = 3) AND (NAME = “TEST” OR NAME = “TEST2”).

Data Preview

Use Data Preview to preview data in the source system.

Data Preview has two modes: Source and Adapted. Adapted Dataset takes the selected projection and applies
a filter in the user interface, while Source Dataset shows the preview of the source object as-is.

Related Information

SAP Application Consumer V2
Structured File Consumer V3

9.5 Resiliency with Structured Data Operators

Table Consumer version 3 (com.sap.database.table.consumer.v3) is part of the Generation 2 set of operators,
and you can run pipelines with snapshot enabled.

Here are the requirements:

• Table Consumer must be configured with a Partition Type:
• Logical (user-defined) for all supported sources
• Row ID and Physical (Source Based) for Oracle

• Table Consumer must not be in a group with multiplicity greater than one.
• Snapshot does not support multiplicity greater than one.
• If you want to run partitions in parallel, then snapshot is not supported.

If your pipeline does not meet the requirements above, you can still run the graph. However, snapshot is not
enabled.

For more information about partitioning, see Partitioning.

For more information about graph termination using partition, see Graph Termination Using Partition.

Modeling Guide
Working with Structured Data Operators PUBLIC 179

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/7a1527d494844adeb930d2e05cc1e56f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/02d49cc93994449f948094abf220ac3c.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/86085d9ccd9d49f69464e7c8e6c6f91f.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/76478fd5bd5a4b709e4b28ad23e71224.html


Resiliency Behavior

On restart, the pipeline skips processing partitions that were successfully consumed previously. For example:

In the first run, partitions 1 and 2 were completed successfully, but the graph crashed while running partition 3
and only some rows were read from partition 3. On restart, the pipeline skips partitions 1 and 2 and then starts
processing from partition 3.

Different delivery guarantees are provided depending on the producer and writing modes selected. We
recommend that you use a combination that leads to exactly-once delivery guarantee whenever possible.
The table describes the behavior of the Structured Data Producer Operators.

Operator Mode Delivery Guarantee Note

Table Producer Append + Upsert exactly-once No duplicated data in the target.

Table Producer Append, Truncate, or
Overwrite

at-least-once Target could have some duplicated data from
a partition that was partially run, but it will not
lose any data.

Structured File
Producer

Overwrite exactly-once There is exactly one file per partition index.

Structured File
Producer

Append at-least-once Target could have some duplicated data from
a partition that was partially run, but it will not
lose any data.

Structured File
Producer

Overwrite or Append
+ Part-file

exactly-once Operator ensures that files within a part-file
directory are unique per partition index.

Application Producer Append at-least-once Target could have some duplicated data from
a partition that was partially run, but it will not
lose any data.

Cloud Table Producer Append or Truncate at-least-once Target could have some duplicated data from
a partition that was partially run, but it will not
lose any data.

Sample Graph

The sample graph com.sap.flowagent.gen2.resilient demonstrates how a resilient pipeline with partition can be
modeled.

180 PUBLIC
Modeling Guide

Working with Structured Data Operators



10 Operator Metrics

The operators publish a set of metrics as soon as the graph is executed. Each operator provides a different set
of metrics.

 Note
Operator Metrics is currently relevant only for the operators from the Structured Data Operators and
Connectivity (via Flowagent) categories.

Consumer Operators

• Optimized (Boolean): indicates whether the operator is optimized with other operators from the same
engine. When this metric is set to 1, the runtime metrics, such as row count, aren’t displayed.

• Row Count (rows): provides the number of rows read from the source.
• Column Count (columns): provides the number of columns read from the source.
• Partition Count (partitions): provides the number of partitions being read when the source is set to use

partitions.

Producer Operators

• Row Count (rows): provides the number of rows written to the target.
• Current row rate (rows/s): provides the number of rows per second written to the target.
• Batch count (batches): provides the number of batches written when the operator is set to write the data in

batches.
• Elapsed execution time (seconds): indicates the amount of time the graph has been running.

Metrics Available in Debug Mode

• Job CPU usage (percentage): indicates the CPU usage for the execution engine.
• Job memory usage (KB): indicates the memory usage for the execution engine.
• Operator CPU usage (percentage): indicates the CPU usage for the operator subengine.
• Job memory usage (KB): indicates the memory usage for the operator subengine.

Modeling Guide
Operator Metrics PUBLIC 181



11 Replicating Data

SAP Data Intelligence replication flows let you transfer small or large datasets, in batch or real-time, from a
source to a target using full or delta loading.

You create a replication flow by first configuring source and target connections. Then add one or more tasks,
each of which consists of a source object, its corresponding target, and any associated configuration options
such as filters or custom mappings. Finally, save it in your user space.

Deploying and Undeploying Replication Flows

After creating and validating a replication flow, you deploy it to the shared (tenant) repository, where you can
run it. Deployment also makes the replication flow available to other users of the tenant for viewing, importing,
or modification.

You can undeploy your replication flow for various reasons, such as:

• You want to delete that replication flow from the shared repository because it no longer needs to be run.
• You wish to modify the replication flow and redeploy it.

Undeploying deactivates the flow from the replication service and performs some housekeeping of the
connected source system and of runtime artifacts of the replication service within SAP Data Intelligence Cloud.
For more specific details, see Undeploy a Replication Flow [page 200].

The SAP Data Intelligence Monitoring application provides an interface where you can view and manage
replication flow and task processes.

 Note
To see the known limitations of the replication flow functionality in SAP Data Intelligence, see SAP Note
3223810 .

Possible Duplication of Records

If you use replication flows with any target system, the data replication process provides "at-least-once
delivery". Therefore, duplicate change records may be delivered to the target system, which results in eventual
consistency when the replication is recovering the data load in error situations.

However, when the target system is a database (such as HANA Cloud), the duplicates are eliminated during
the replication execution by using the UPSERT mechanism of the databases, thereby providing "exactly-once
delivery".

For other targets—for example, Amazon Web Service Storage Services (S3), Microsoft Azure Data Lake
Storage Gen2 (ADL_V2), Google Cloud Service (GCS), or HANA Data Lake (HDL) file, use Suppress Duplicates

182 PUBLIC
Modeling Guide

Replicating Data

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/3223810


to minimize the occurrence of duplicates during the initial load. For more information about duplicate
suppression, see Create a Replication Flow [page 183].

For duplicate records that can't be automatically eliminated in the target cloud storage, use the information
provided in the timestamp column to help you identify the currently valid record and ignore potential
duplicated records.

Also note that because source rows may be sent multiple times in an effort to maintain data consistency, the
replication may present a replication row count that is greater than the actual rows in the target.

Related Information

Create a Replication Flow [page 183]
Validate the Replication Flow [page 193]
Deploy the Replication Flow [page 193]
Run the Replication Flow [page 194]
Cloud Storage Target Structure [page 195]
Kafka as Target [page 198]
ABAP Cluster Table Replications with Delta Load [page 199]
Edit an Existing Replication Flow [page 200]
Undeploy a Replication Flow [page 200]
Delete a Replication Flow [page 202]
Clean Up Source Artifacts [page 202]

Monitoring SAP Data Intelligence [page 204]
Replication Flow Connections

11.1 Create a Replication Flow

The SAP Data Intelligence Modeler includes an interface for creating and running replication flows.

Prerequisites

Before you perform the following steps, ensure that the required source and target connections are created
and enabled for you in SAP Data Intelligence Connection Management.

For delta loading tasks in a Microsoft Azure SQL database source, the source must include a schema that has
the same name as the user name specified for the corresponding AZURE_SQL_DB connection. If this schema
doesn't exist, a database administrator must create it including the necessary write privileges. This schema is
required for storing internal objects for delta replication.

Modeling Guide
Replicating Data PUBLIC 183

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/f4327d3e2f7146a19e76924f8a79454a.html


Procedure

1. Start the SAP Data Intelligence Modeler.
2. Open the Replications tab in the navigation pane.

 Restriction
Even though the Schedule tab appears in the lower panel, scheduling isn't supported in Replications.

3. Select   (Create Replication Flow) in the Navigation pane menu toolbar.
4. Enter a name for the replication flow and select OK.
5. Optional: Add a description in the Properties tab.
6. Choose a source in Source section of the Properties tab by performing the following substeps:

a. Choose a source connection from the Source Connection list.

The list is sorted alphabetically. Only connections for which you have authorization are available.
b. Add a name or browse for the parent object that contains one or more datasets to replicate in

Container.

• To replicate a database table, choose the schema that includes the table.
• For SAP ECC/SLT sources, browse for and open the SLT folder and choose an SLT configuration.
• For CDS views, browse for and select the CDS root folder.

7. Repeat the connection and container steps for one or more of the following targets:

 Note
For cloud storage, the container name is limited to 64 characters. For Kafka, there is no character limit.

• Amazon Web Service Storage Services (S3)
• Microsoft Azure Data Lake Storage Gen2 (ADL_V2)
• Google Cloud Service (GCS)
• SAP HANA Data Lake (HDL)
• Kafka

8. Complete the options as described in the following table for a cloud storage target.

Option Description

Group Delta By Specifies whether you want to create additional folders
for sorting updates based on the date or hour.

For Load Type of Initial and Delta, choose one of the fol-
lowing options:

• None

• Date

• Hour

File Type For CSV:

184 PUBLIC
Modeling Guide

Replicating Data



Option Description

• File Delimiter: Specifies the character to use as a
delimiter for columns in CSV files.

• File Header: Specifies whether CSV files include a
header row with the column names.

For Parquet:

• File Compression: Specifies the compression algo-
rithm to use for Parquet files. Applicable algorithms
include the following:

• None

• GZIP

• Snappy

• Compatibility Mode: Specifies a compatibility mode
to use when replicating to object stores in Parquet.
Options include the following:

• None: Uses the default compatible data type
when you create a replication flow. For more
information, see Data Type Compatibility [page
191].

• Spark: Converts and stores time data type col-
umns to int64 in the Parquet files. The int64
data type represents microseconds after mid-
night. This conversion allows the columns to be
consumed by Spark.

For JSON:

• Encoding: Generated JSON files are encoded in
UTF-8 format.

• Orient: Specifies the internal structure of the pro-
duced JSON files. Internal structures include the fol-
lowing:

• “records”: [{column -> value}, ... ,
{column -> value}]

• “values”: [value, ... ,value]

For jsonlines:

Encoding: Generated JSON Lines files are encoded in
UTF-8 format.

Suppress Duplicates Options include the following:

• True: Minimizes the occurrence of duplicates during
the initial load.

• If necessary for replications from ABAP, apply
SAP Note 3302718  to the ABAP system.

Modeling Guide
Replicating Data PUBLIC 185

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/3302718


Option Description

• SAP Data Intelligence minimizes duplicates by
generating unique file names from the source
partitions and recording only once. For more in-
formation, see Cloud Storage Target Structure
[page 195].

• False: SAP Data Intelligence can deliver duplicate
change records to the target. When duplicate change
records are delivered to the target, the timestamp
column in the file name helps you to identify the cur-
rent valid record and to ignore potential duplicated
records.

9. Complete the options as described in the following table for a Kafka storage target.

Option Description

Serialization Type Choose JSON or Avro. The default is JSON.

Compression Choose one of the following compression types:
• No Compression
• GZIP
• Snappy
• LZ4
• Zstandard

Partitions Specifies the number of partitions to split the topic into.
The default is 1.

Replication Factor Specifies how many copies of data to store across several
Kafka brokers. The default is 1.

 Note
Replication Factor is limited to the number of Kafka
brokers.

 Note
The replication flow considers messages as written successfully when the message is accepted by all
in-sync replicas (ack=all).

10. Save the replication flow.

Next Steps

Next, create one or more tasks in the replication flow. Tasks are the executable components that consist of a
source dataset, its corresponding target, and any associated configuration options.

186 PUBLIC
Modeling Guide

Replicating Data



Related Information

Create Tasks [page 187]
Using SAP Data Intelligence Connection Management
Replication Flow Connections

11.1.1  Create Tasks

In a replication flow, a task is an executable component that consists of a source dataset, its corresponding
target, and any associated configuration options such as filters, mappings, and load type.

Context

A replication flow must contain at least one task.

When you create a task, the target dataset name matches that of the source dataset, but you can change it.

During execution, the system checks if the target dataset exists. For a database, the target dataset is a table;
for object stores and data lakes, the target dataset is a folder or set of files with the same prefix. If the target
dataset does not exist, the system creates the table or folder, respectively.

 Note
If you add a new name for an object store target, do not use the characters dot (.) or forward slash (/) in the
name.

Procedure

1. Choose the Tasks tab.
2. Choose Create.

The Add Datasets dialog displays.
3. In the Add Datasets dialog, navigate through the folder hierarchy, if necessary, or add a dataset name in the

search box (required for SLT sources). Choose one or more datasets from the list and choose OK.

Note that a given source dataset can't be used in more than one replication flow.
4. Add filters and custom mappings to the task.
5. To change the target to an existing object (table or folder), in the Target column, choose the Select Target

icon next to the target name and browse to the object. It is also possible to manually add a new target
name. The name is limited to 64 characters.

Modeling Guide
Replicating Data PUBLIC 187

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/974be4fbb13a48eda16f7b061508eb59.html
https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/f4327d3e2f7146a19e76924f8a79454a.html


 Note
When you change the target of an object store by choosing an existing folder, the folder must be empty;
if not, you must choose the Truncate option to enable task execution.

6. The default Load Type is Initial Only. To enable delta loading for this task, choose Initial and Delta.
7. To clear the content of the target before the task runs, choose Truncate.
8. Save the replication flow.

Next Steps

You can now validate the replication flow to ensure it's ready to deploy and run.

Related Information

Add a Filter [page 188]
Define the Mapping for a Dataset [page 189]
Data Type Compatibility [page 191]

Validate the Replication Flow [page 193]

11.1.1.1  Add a Filter

For a given task, you can optionally add one or more filters to a dataset to customize the target.

Procedure

1. In the Tasks list, browse to the replication flow to configure.
2. For the dataset to filter, in the Source Filter column, choose the Filter icon.
3. In the Provide Filter Values - <dataset_name> dialog, choose a column to filter.
4. Under Define values for <column_name>, choose an operator from the dropdown list and add a value in the

field.
5. To add more filters for this or other columns, click the + button to add another row.

• More than one filter on different columns applies the AND operator.
• More than one filter on the same column applies the OR operator.

For example, filtering a dataset on the product ID number 123 for the countries United States and Germany
results in the following:

(PRODUCT_ID = 123) AND (COUNTRY = 'US' OR COUNTRY = 'DE')

188 PUBLIC
Modeling Guide

Replicating Data



Columns that have filters applied are marked. You can display only the columns that have filters applied by
choosing the checkbox above the list.

6. Choose OK.

Results

The dataset's Source Filter column now displays Filtered. Hover over the word Filtered to view the columns that
have filters applied.

11.1.1.2  Define the Mapping for a Dataset

For existing target tables, you can edit the mapping of a dataset to customize it. Or, for a target table that
doesn't exist yet, SAP Data Intelligence replication flow lets you define the table by specifying column names
and data-type information.

Context

By default, SAP Data Intelligence replication flow copies all columns from the source dataset to the target
dataset. Custom mappings let you add, edit, or remove columns.

Procedure

1. View the Tasks list.
2. In the Mapping column, choose the Mapping icon.

The Target Mapping - <dataset_name> appears.
3. To filter the list of columns, add a value in the Search field.
4. The following table contains information about the various tasks, such as editing or defining the mapping

of a target column.

Task Action

Change the source mapping column Choose a different column from the Source Mapping list.

Add a custom mapping expression Enable the Expression field and add one or more values.
For example:

• String constant (must be surrounded by single
quotes).

• Numeric constant such as -123, 123, 123.45.

Modeling Guide
Replicating Data PUBLIC 189



Task Action

You can also use the following supported functions:

• CURRENT_UTCDATE

• CURRENT_UTCTIME

• CURRENT_UTCTIMESTAMP

Change (promote) the data type of a column Enabled only if the target doesn't exist yet.

SAP Data Intelligence replication flow maps the target
data type from the source data type in the mapping editor
automatically, ensuring the data type doesn't change. Ei-
ther maintain the same data type as the source data type,
or choose a compatible data type from the list.

 Note
The list contains all data types regardless of what's
compatible to the source data type.

For information about compatible data types, see Data
Type Compatibility [page 191].

 Example
SAP Data Intelligence maps a source data type of int8
to a target data type of int8 automatically.

You can promote values, such as field length, decimal,
scale, and precision, based on the data type.

 Example
Promote integer data types. When a source data type
is int8, promote the target to either int16, int32 or
int64.

SAP Data Intelligence replication flow supports only im-
plicit data type compatibility.

Identify the column as a primary key Enabled only if the target doesn't exist yet.

Choose the Key checkbox.

Add a column to the target Enabled only if the target doesn't exist yet.

Choose Create. A new row appears at the bottom of the
list.

• Add the new column name and the desired custom
mapping expression.

• Alternately, disable the Expression field to enable the
Source Mapping drop-down list and choose a different
source column.

190 PUBLIC
Modeling Guide

Replicating Data



Task Action

Delete a column from the target Enabled only if the target dataset doesn't exist yet.

Choose the column name and choose Delete.

Reorder the columns Enabled only if the target dataset doesn't exist yet.

Choose the column row and choose First, Up, Down, or
Last.

5. Choose OK to confirm the mapping changes.

Results

The dataset's Mapping column now displays Transformed. Hover over the word Transformed to view the
columns that have transformations applied.

11.1.1.3  Data Type Compatibility

SAP Data Intelligence replication flow maintains data type compatibility between source and target data types.

The following table specifies compatible data types so that you choose a compatible data type when you create
a replication flow.

Replication Management Service Data Type Compatibility

Source Data Type Compatible Target Data Type Additional Information

uint8 uint8
int16
int32
int64
uint64

N/A

int8 int8
int16
int32
int64

N/A

int16 int16
int32
int64

N/A

Modeling Guide
Replicating Data PUBLIC 191



Source Data Type Compatible Target Data Type Additional Information

int32 int32
int64

N/A

int64 int64 N/A

uint64 uint64
decimal (p,s)

decimal(p,s), where (p − s) >= 20.

bool bool
uint8
int8
int16
int32
int64

For int and uint data types:

• true = 1

• false = 0

decfloat16 decfloat16
decfloat34

N/A

decfloat34 decfloat34 N/A

float32 float32
float64

N/A

float64 float64 N/A

date date N/A

time time N/A

timestamp timestamp N/A

decimal (p,s) decimal (p,s) Verify length, precision (p), and scale
(s):

• Target length must be >= source
length.

• Target s must be >= source s.

• Target (p − s) must be >= source
(p − s).

string(n) string(m) m >= n

binary(n) binary(n) Target length must be >= source length.

192 PUBLIC
Modeling Guide

Replicating Data



11.2 Validate the Replication Flow

Validation ensures the minimum requirements have been specified for the replication flow for deployment and
execution.

Context

Validation checks the following criteria:

• Source and target connections and containers have been specified.
• Source and target connection and container combinations must be different.
• At least one task has been configured.
• Source and target datasets must be specified for each task.

Procedure

1. Open the replication flow to validate.

2. In the toolbar, choose the  (Validate) button.
3. Review the validation results that are displayed on the screen.
4. Resolve any errors to enable deployment.

Next Steps

Deploy the replication flow.

11.3 Deploy the Replication Flow

Deploy the replication flow to enable its execution.

Context

After creating the replication flow and configuring its tasks, you deploy the replication flow so it can be run.
Deployment also saves the replication flow in the shared repository where it will be available for other users to
view, import, or modify.

Modeling Guide
Replicating Data PUBLIC 193



Note that once deployed, you cannot change the replication flow's source and target connections or
containers.

Procedure

1. Display the replication flow to deploy.

2. Select the  (Deploy) icon in the toolbar.

The Activity Monitor displays the status of deployment. You can choose the error message text to display
and copy the full error message.

You can also view the Log tab for processing details.

Next Steps

You can now run the deployed replication flow.

11.4 Run the Replication Flow

Running replicates the datasets from the source to the target.

Prerequisites

You have created a replication flow with one or more tasks and saved, validated, and deployed the replication
flow to the shared repository.

Procedure

1. Open the replication flow to run.
2. Choose the Run icon in the toolbar.

The Activity Monitor displays the status. You can also view the Log tab for processing details.

Note that once it is running, you can suspend the execution using the toolbar button. To resume, choose
Run. These actions are also available on the Monitoring application for both replication flows and individual
tasks.

194 PUBLIC
Modeling Guide

Replicating Data



Results

You can now view the execution status and other details of the replication flows and tasks in the SAP Data
Intelligence Monitoring application.

Note that after the target has been populated, to reload the data again follow these steps:

1. In the Modeler, display the replication flow.
2. Choose Undeploy.
3. Choose Deploy.
4. Choose Run.

Related Information

Monitoring SAP Data Intelligence [page 204]

11.5 Cloud Storage Target Structure

Running a replication flow with a cloud storage target creates various files and structures.

For Amazon Web Service Storage Service (S3), Microsoft Azure Data Lake Storage Gen2 (ADL_V2), Google
Cloud Service (GCS), and HANA Data Lake (HDL), the replication flow proceeds as follows:

• When the initial load completes, the system writes a _SUCCESS file.
• Downstream applications that have direct access to the object store can use the _SUCCESS file to verify

that the replication completed successfully without checking the replication flow status.

The .sap.partfile.metadata objects include dataset metadata information. The objects exist in the root of
each data file directory and are created and referenced as part of replication flow processing. Additionally, you
can leverage these objects for interpreting and processing the dataset data files.

You can view the .sap.partfile.metadata objects in the Metadata Explorer as follows:

/<container-base-path>/
 
    .sap.rms.container
    <tableName>/
        .sap.partfile.metadata
        initial/                  
            .sap.partfile.metadata
            part-<unix_timestamp>-<workOrderID-1>-<deliminationNo-01>.<extension>
            ...
            part-<unix_timestamp>-<workOrderID-M>-<deliminationNo-N>.<extension>
            _SUCCESS
        delta/ (only there in case of delta load)
            <date(time)-optional>/
                .sap.partfile.metadata
                part-<unix_timestamp>-<workOrderID-X>-
<deliminationNo-01.<extension>
                ...
 
                part-<unix_timestamp>-<workOrderID-Y>-
<deliminationNo-01>.<extension>

Modeling Guide
Replicating Data PUBLIC 195



 Example

 Sample Code

/path/
 
   to/
    container1/
        .sap.rms.container
        table1.csv/
            .sap.partfile.metadata
            initial/                          
                .sap.partfile.metadata
                part-1634738166-a2480cda-2a7f-11ec-8d3d-0242ac130003-01.csv
                part-1634738167-a2480cda-2a7f-11ec-8d3d-0242ac130003-02.csv
                part-1634738169-acfe5bca-8086-4f04-9014-c1b92106cb23-01.csv
                part-1634738170-b89722fa-9ff5-43e9-abdf-3d73827447cb-01.csv
                _SUCCESS
            delta/
                .sap.partfile.metadata
                20211020/
                    .sap.partfile.metadata
                    part-1634738180-cde25008-53e2-4b41-949e-
b992f4f0f04d-01.csv
                    part-1634739123-d60a2652-2801-4db4-8d7b-
f20a6b09ef87-01.csv
                20211021/
                     .sap.partfile.metadata
                    part-1634824512-
f2c188d0-2a7f-11ec-8d3d-0242ac130003-01.csv
        table2.csv/
           .sap.partfile.metadata
           initial/
               .sap.partfile.metadata
               part-1634738166-2bac0984-3888-11ec-8d3d-0242ac130003-01.csv
               ... 
    container2/
        table2.parquet/                                  
            .sap.partfile.metadata
            initial/
                .sap.partfile.metadata 
                part-1634738166-
db1a8efa-3887-11ec-8d3d-0242ac130003-01.parquet
                part-1634738167-
db1a8efa-3887-11ec-8d3d-0242ac130003-02.parquet
 
                ...

If you set Suppress Duplicates to true, the file names in the initial folder contain an internal-id consisting of
33 base64URL characters.

The target structure may look like the following:

/<container-base-path>/
 
    .sap.rms.container
    <tableName>/
        .sap.partfile.metadata
        initial/                  
            .sap.partfile.metadata
            part-<internal-id>.<extension>
             ...
            part-<internal-id>.<extension>
            _SUCCESS
        delta/ (only there in case of delta load)
            <date(time)-optional>/
                .sap.partfile.metadata

196 PUBLIC
Modeling Guide

Replicating Data



                part-<unix_timestamp>-<workOrderID-X>-<deliminationNo-
Y>.<extension>
                ...
 
                part-<unix_timestamp>-<workOrderID-Y>-<deliminationNo-
Y>.<extension>

The replication flow creates multiple dataset files (part-*.<extension>) during initial and delta loading. The
number and size of the dataset files depends on the following factors:

• Source table size.
• Source table structure.
• Change frequency during delta loading.

Each dataset file contains the source columns. Source columns are defined in the dataset mapping in the
replication flow task. In addition, the system appends the column as described in the following table.

Column Name Description

__operation_type Identifies the type of target row. The possible values are as
follows:

• L: Written as part of the initial load.

• I: After the initial load completed, new source row
added.

• U: After the initial load completed, after image of an
update to a source row.

 Note
For some sources the system switches the value U
to A after you apply SAP Note 3044005 . The
APE_KEEP_UPDATE_OPERATION parameter is de-
scribed in the SAP Note.

• B: After the initial load completed, before image of an
update to a source row. These records are only sent by
some sources (like SAP HANA) and only when the after
image of the update is not passing the filters specified
in the replication task.

• X: After the initial load completed, source row deleted.
The only target columns to contain data for this opera-
tion code are codes that reflect the source key columns.
All other target columns are empty.

• M: After the initial load completed, archiving operations.

__sequence_number An integer value that reflects the sequential order of the
delta row in relation to other deltas. This column is empty for
initial load rows and isn't populated for all source systems
(for example, ABAP).

__timestamp The UTC date and time the system wrote the row.

Modeling Guide
Replicating Data PUBLIC 197

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/3044005


11.6 Kafka as Target

In a replication flow, every source dataset is transferred to a respective topic in the Kafka cluster.

The target dataset name is matched to the topic name in the Kafka cluster.

 Note
You can edit the name of the target topic, so it does not need to be the same as the source dataset.

Schema registries are not supported. If you choose AVRO as the serialization format, the schema is contained
in every message. For JSON serialization format, no schema information is provided.

Each record from the source system is transferred into a single message in the selected target topic. The
software does not load each batch set of data into a message.

The key of the messages is the combination of all primary key values of the record concatenated by "_".

Additional headers are set in the messages:

 Note
For information about configuring Kafka target options like number of partitions and replication factor, see
Create a Replication Flow [page 183].

• kafkaSerializationType: AVRO or JSON

 Note
If you select AVRO, the columnName must consist of only alphanumeric and underscore characters
and it must also start with a letter or an underscore

• opType: Identifies the type of target row:
• L: Written as part of the initial load.
• I: After the initial load completed, new source row added.
• U: After the initial load completed, after image of an update to a source row.

 Note
For some sources the system switches the value U to A after you apply SAP Note 3044005 . The
APE_KEEP_UPDATE_OPERATION parameter is described in the SAP Note.

• B: After the initial load completed, before image of an update to a source row. These records are only
sent by some sources (like SAP HANA) and only when the after image of the update is not passing the
filters specified in the replication task.

• X: After the initial load completed, source row deleted. The only target columns to contain data for this
operation code are codes that reflect the source key columns. All other target columns are empty.

• M: After the initial load completed, archiving operations.
• Seq: Sequence number, an integer value that reflects the sequential order of the delta row in relation to

other deltas. This column is empty for initial load rows and is not populated for all source systems (for
example, ABAP).

198 PUBLIC
Modeling Guide

Replicating Data

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/3044005


 Note
If the Kafka cluster is behind an SAP Cloud Connector (SCC), the Kafka cluster and the SCC must be
configured such that the broker addresses advertised by the cluster match the virtual hosts maintained
for the brokers in the SCC. The simplest solution is to use the same value for virtual and internal hosts
in the SCC and to maintain no dedicated advertised listeners for the Kafka brokers. If advertised listeners
are maintained, these must be used as virtual hosts in SCC and as broker addresses in the DI connection
definition.

Related Information

Create a Replication Flow [page 183]

11.7 ABAP Cluster Table Replications with Delta Load

Replications from ABAP cluster tables result in more complex operations on the target system if delta load is
involved.

There's one large underlying database table (the table cluster) that holds the data of multiple "logical" tables
(the cluster tables). The table cluster has a set of key columns that are common to all cluster tables. Every
cluster table can have additional key columns. (For more information about cluster tables, see Cluster Name.)

You must always select one of the "logical" cluster tables as the replication source.

When replicating cluster tables that include delta load, any change in the source table results in the following:

1. Deletion of all records in the target that match the respective values of the key columns of the underlying
table cluster.

2. Insertion of all records from the source table that match the corresponding values of the keys of the
underlying table cluster. This includes the newly inserted or modified records, and excludes the deleted
records.

If the target is a cloud storage or a Kafka cluster, the above-mentioned delete using the key values of the
underlying table cluster is indicated by a delete record, where the key columns that are only present in the
cluster table but not in the underlying table cluster aren't specified. For cloud storage targets in CSV format, a
"?" is used to indicate such an unspecified key value.

When replicating a cluster table that includes delta load to a Kafka cluster, the keys of the messages are
determined using only the key columns of the underlying table cluster.

Modeling Guide
Replicating Data PUBLIC 199

https://help.sap.com/docs/ABAP_PLATFORM/c238d694b825421f940829321ffa326a/3482ebd9107c4ee0b70eb912465df566.html?version=1709.011#loio5e78f50d3566438195471f9d806f3078


11.8 Edit an Existing Replication Flow

You can import, edit, and update replication flows that have been deployed by you or other users to the shared
repository.

Context

A replication flow that you create is saved in your user repository until you deploy it to the shared repository.
Then, other users can view, import, or update (overwrite) the replication flow.

The left pane of the Replications editor lists all of the replication flows available to you. Hover over a name to
see details for that replication flow.

Procedure

1. Right-click a replication flow to see the delete or import options. To import a replication flow, right-click it to
display the context menu and choose Import from shared repository.

The system copies the replication flow to your user repository, overwriting any existing versions.
2. You can now edit the configuration of the replication flow and save it without affecting the version in the

shared repository.

For example, to delete a dataset from the replication flow, on the Tasks tab, select the dataset and choose
Delete.

3. To replace (overwrite) the version in the shared repository, Deploy the replication flow.

A change list displays your changes plus any that might have been made to this replication flow by other
users at the same time.

11.9 Undeploy a Replication Flow

You can undeploy an SAP Data Intelligence replication flow (remove it from the shared repository) using the
Replications editor in the SAP Data Intelligence Modeler.

Context

You may want to undeploy replication flows for different reasons:

• You want to change the configuration of your existing replication flow; for example, to change the target
data set or to apply a filter to a task.

200 PUBLIC
Modeling Guide

Replicating Data



• You want to reset or reinitialize a replication flow, including all of its associated tasks, and remove
dependent artifacts on the connected source system.

You can undeploy a replication flow that is available in your personal user repository from the SAP Data
Intelligence shared repository by using the Undeploy icon in the modeling screen. Note that the undeploy
action can only be executed for replication flows that are already activated or running.

If you undeploy a replication flow, the system stops any running initial load or delta process for this task and it
deletes certain runtime objects that belong to your replication flow, but it does not delete the target table even
if the replication management system created the target table.

Procedure

1. To undeploy a replication flow from your user repository, start the SAP Data Intelligence Modeler.
2. In the navigation pane, choose the Replications tab.
3. Choose the replication flow in the list of available replication flows.
4. Click the Undeploy button available on the top menu bar.
5. In the confirmation dialog, click OK to continue with the undeploy action.

 Note
When undeploying a replication flow that copies data from a connected source system (for example:
SAP S/4HANA, SAP System via SLT, or Azure SQL), this removes the subscription to the source table
from the source system, which includes the triggers and logging tables. This applies to all of the source
systems, including SAP S/4HANA and relational databases, such as Azure SQL. In the case of SAP
S/4HANA, the undeploy action also removes the dependent runtime artifacts related to replication
when the undeployment process is successfully executed.

In order to not block the undeployment process indefinitely, SAP Data Intelligence retries three times
to successfully undeploy each task in a replication flow. Due to connection failure to source systems
or some other unexpected reasons, SAP Data Intelligence may not be able to successfully execute the
undeployment process in the source system. In case of an error during the undeployment process, it
can happen that not all dependent artifacts are deleted in the connected source system. Despite the
error, SAP Data Intelligence still deletes the definition of the replication flow, including its runtime data,
status, and metrics from its repository in order to complete undeployment requests and allow users to
proceed with completing the task of remodeling the replication flow. In this case, see Clean Up Source
Artifacts [page 202].

Modeling Guide
Replicating Data PUBLIC 201



11.10  Delete a Replication Flow

Delete SAP Data Intelligence replication flows or their associated tasks using the Replications editor in the
Modeler interface.

Prerequisites

Before you delete a replication flow from the shared repository, you must undeploy it. For more information,
see Undeploy a Replication Flow [page 200].

Context

You can delete a replication flow from your user repository or from the shared repository. In either case,
existing versions of the replication flow remain in the other repository.

If you delete or undeploy a replication flow, the system does not delete the target table or the tasks even if the
target table was created by the replication management system.

• To delete a replication flow from your user repository, do the following:
1. On the Replications tab of the Modeler, in the left pane right-click the replication flow to delete.
2. Choose Delete from user repository.

• To delete a replication flow from the shared repository, do the following:
1. On the Replications tab of the Modeler, display the replication flow to delete.
2. From the toolbar, choose the Undeploy icon.
3. Confirm the undeployment.

11.11  Clean Up Source Artifacts

Some situations, such as when an administrator deletes a tenant or connection, can result in unused source
artifacts that you need to delete to avoid performance issues.

For SAP S/4HANA cloud, deactivation of the communication channel (Communication Arrangement) results in
automated clean-up.

For Microsoft Azure SQL database:

202 PUBLIC
Modeling Guide

Replicating Data



Situation Result Actions

A connection associ-
ated with a replication
flow is deleted from
Connection Manage-
ment.

The replication
flow no longer
displays in the
Modeler or
Monitor.

Re-create the connection.

The audit log lists deleted connections with the event ConfigurationChange. See
Viewing Audit Logs.

Either the tenant was
deleted or a replica-
tion task was deleted.
but the system cannot
connect to the source
system after three at-
tempts.

Replication flow
can no longer
connect to the
source.

Run the following statements for each subscribed table to delete replication
artifacts where:

${<SourceSchema>} is the schema name of the source table.

${<SourceTableName>} is the source table name.

${<RmsSchema>} is the schema name of the replication artifacts, which is
the same as the database user name that was specified when creating a source
connection in Connection Management.

Drop triggers:

DROP TRIGGER ${<SourceSchema>}.$
{<SourceTableName>}_I_RMS_TRIG
  
DROP TRIGGER ${<SourceSchema>}.$
{<SourceTableName>}_D_RMS_TRIG
  
DROP TRIGGER ${<SourceSchema>}.$
{<SourceTableName>}_U_RMS_TRIG

Drop sequences:

DROP SEQUENCE ${<RmsSchema>}.RMS_$
{<SourceTableSchema>}_${<SourceTableName>}_SEQ1
  
DROP SEQUENCE ${<RmsSchema>}.RMS_$
{<SourceTableSchema>}_${<SourceTableName>}_SEQ2

Drop stored procedure:

DROP PROCEDURE ${<RmsSchema>}.RMS_$
{<SourceTableSchema>}_${<SourceTableName>}_PROC_V1

Drop shadow table for logging changed data:

DROP TABLE ${<RmsSchema>}.RMS_SHADOW_$
{<SourceTableSchema>}_${<SourceTableName>}

Modeling Guide
Replicating Data PUBLIC 203

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/456b1dcbec334329930ce4b24b5e589f.html


12 Monitoring SAP Data Intelligence

SAP Data Intelligence provides a stand-alone monitoring application to monitor the status of graphs run in the
Modeler. The Monitoring application provides capabilities to visualize the summary of graphs run in the SAP
Data Intelligence Modeler with relevant charts.

The Monitoring application also allows you to schedule graph runs. For each graph instance, the Monitoring
application provides details for processes like the following:

• Graph run status.
• Time of graph run.
• Graph type.
• Graph source.

The Monitoring application allows you to open a graph in the Modeler, view graph configurations, or stop
process runs.

You can also view the execution and configuration of replication flows and their associated tasks.

Monitoring Policy

Developer member users assigned the sap.dh.monitoring policy can view analytics and instances of graphs
for all tenant users. However, the policy doesn't provide member user access to schedules.

Without the policy, member users can monitor only their own graphs.

Related Information

Log in to SAP Data Intelligence Monitoring [page 205]
Using the Monitoring Application [page 205]
Pre-Delivered Policies

204 PUBLIC
Modeling Guide

Monitoring SAP Data Intelligence

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/b5e4e3e280aa44c3a9d9e5fdfd7c41f7.html


12.1 Log in to SAP Data Intelligence Monitoring

Access the SAP Data Intelligence Monitoring application from the SAP Data Intelligence Launchpad or directly
launch the application with a stable URL.

Prerequisites

You must have administrator permission to perform this task.

Procedure

1. Open the SAP Data Intelligence Launchpad URL in a browser.
The welcome screen opens.

2. Log into the SAP Data Intelligence Launchpad using the following information:

• Tenant name
• Username
• Password

For new instance, the tenant name is "default". For user name and password, use the credentials that you
used when you created a service.

 Note
If you enter an incorrect password five consecutive times within a minute, your account is temporarily
locked. Wait 10 seconds until your next attempt.

The SAP Data Intelligence Launchpad opens and displays the initial home page. To view user details, such
as the tenant ID, select the profile icon in the upper right of the screen.

The home page displays the application tiles available in the tenant based on your assigned policies.
3. Select the Monitoring tile.

The Monitoring application opens to the Analysis tab.

12.2 Using the Monitoring Application

The SAP Data Intelligence Monitoring application offers the following capabilities.

Tenant administrator users, and developer member users with the sap.dh.monitoring policy can view all tenant
users statistics. Member users without the monitoring policy can view information only for their graphs.

Modeling Guide
Monitoring SAP Data Intelligence PUBLIC 205



 Note
Developer member users with the sap.dh.monitoring policy can filter the information based on specific
users.

206 PUBLIC
Modeling Guide

Monitoring SAP Data Intelligence



Actions Description

Visualize various aspects of graph exe-
cution in the Analytics tab.

The Analytics tab is a dashboard that contains various tiles with targeted informa-
tion about graphs. The following table describes each tile of the Analytics tab.

Tile Description

Status A pie chart with the following informa-
tion:

• The number of graph instances
executed in the Modeler.

• The status of graph instances exe-
cuted. Each sector in the pie chart
represents a graph state.

Runtime Analysis A scatter chart that includes a time pe-
riod axis and duration of graph execu-
tion (in seconds) axis. This chart pro-
vides information on each graph exe-
cution and plots them in the scatter
chart against the time and duration of
execution.

Each point in the chart represents
a graph instance. Place your cursor
on one instance point for more infor-
mation about that particular graph in-
stance.

Configure the chart to view results for
a selected time period. Use the filter
in the chart header to select the time
period (hour, day, and week).

Recently Executed Displays the top five instances and ex-
ecution status. To view all the instan-
ces, select Show All.

Memory Usage A line chart for the memory consump-
tion of graphs. Use the filter to display
by graph, status, and submission time.
You can also see the resource usage in
the last hour, day, 2 days, or set the
custom time range for which to view
the resource consumption.

CPU Usage A line chart for the CPU consumption
of graphs. Filter to display by graph,
status, user, or submission time. Also
see the resource usage in the last hour,
day, 2 days, or set the custom time
range for which you want to view the
resource consumption.

Modeling Guide
Monitoring SAP Data Intelligence PUBLIC 207



Actions Description

 Note
The tiles in the Analytics tab don't include the information on the archived
graph instances.

View execution details of individual
graph instances in the Instances tab.

Use the Instances tab of the SAP Data Intelligence Monitoring application to view
execution details of individual graph instances.

 Note
If you're a tenant administrator, you can see graph instances of all users. By
default, there's a filter that shows only the administrator's graph instances.
Modify the filter to view graph instances of select tenant users on which you
can perform limited actions.

 Note
If you're a developer member user with the sap.dh.monitoring policy, you can
see graph instances of all users just like a tenant administrator.

For each graph instance, the Monitoring application provides information, such as
the status of the graph execution, the graph execution name, the source of the
graph in the repository, and the time of execution.

To open the execution details pane, select a graph instance. The execution details
pane displays more execution details that help you monitor the graph execution.

 Note
By default, a filter is applied to exclude the subgraphs and the archived
instances from the Instances list. You can remove the filter by selecting the
  icon that corresponds to a filter in the Filters bar. Alternately, select the
  Filter icon to set or remove filters.

208 PUBLIC
Modeling Guide

Monitoring SAP Data Intelligence



Actions Description

View subgraph execution details in the
Instances tab.

When a graph execution triggers or spawns the execution of another graph, the
spawned execution is called a subgraph.

You can filter the view of the Monitoring application to view execution details of all
subgraph instances.

To view subgraphs, remove the filter Exclude Subgraphs by selecting the   Delete
icon that corresponds to a filter in the Filters bar. Or use the   Filter icon to set
or remove filters. The application refreshes the list view and displays all subgraph
instances along with all other graph instances.

 Note
All subgraph instances are named as subgraph.

To open the execution details pane, select a subgraph instance. The subgraph
instance pane displays additional execution details.

View subgraph hierarchy details in the
Instances tab.

View the parent graph of a selected subgraph, or view the complete hierarchy of
graph instances associated with the subgraph.

1. Open the Instances tab.

2. Select the   Select an Action icon next to the applicable subgraph instance.
3. Select Show Hierarchy.

The Hierarchy dialog box opens displaying all graph instances associated
with the selected subgraph in hierarchical order.

4. Select an applicable graph.
5. Select View details.

Filter graph instances in the Instances
tab.

Use the filter tool to control the graphs to view:

1. Open the Instances tab.

2. Select the   Add Filter icon.
3. Define the required filter conditions.

Filter the listed graphs based on attributes, such as the source name, execu-
tion status, time of execution and more.

4. To filter and view graph instances executed on the same day, hour, or week,
select Hour, Day, or Week in the menu bar and the view changes to records
for that time frame.

If you're a tenant administrator, you can modify the filter to view graph instances
of other users.

Developer member users can modify the filter to view graph instances of other
users when they are assigned the sap.dh.monitoring policy.

Modeling Guide
Monitoring SAP Data Intelligence PUBLIC 209



Actions Description

Open source graph in the Instances tab. For any selected graph instance, launch the source graph in the Modeler applica-
tion from the Monitoring application.

1. Open the Instances tab.
2. Select an instance.

The application opens a graph overview pane at right that displays the
source graph of the selected graph instance.

3. Select Open Source Graph in the menu bar of the overview pane.
The Monitoring application opens the Modeler application in a new browser
tab with the source graph of the selected instance opened in the graph
editor.

4. View or edit the graph configuration.

View graph configurations in the
Instances tab.

For any selected graph instance, you can view the configurations defined for its
source graph.

1. Open the Instances tab.
2. Select an instance.

The application opens a graph overview pane at right that displays the
source graph of the selected graph instance.

3. Select the   Show Configuration icon.
The application opens the Configuration pane at right where you can view
read-only graph configuration information.

4. Optional: Right-click an operator in the graph overview pane and choose
Open Configuration.
The Configuration pane shows read-only operator configuration information.

Stop a graph instance execution in the
Instances tab.

Stop the execution of a graph instance when it's the running or pending state.

1. Open the Instances tab.
2. Select a graph instance that has a running status.

The graph overview pane opens at right.

3. Select the   Stop Execution icon in the menu bar.

Search graph instances in the Instances
tab.

To search for any graph instance, use the search bar in the Instances tab. Search
for any graph instance based on the instance name or its source graph name.

Archive graph instance in the Instances
tab.

Archive a completed or dead graph instance from the Pipeline Engine only.

1. Open the Instances tab.
2. Select the   Select an Action icon in the Actions column of the applicable

instance.
3. Select Archive.

 Note
The archived instances remain in the system for a default period of 90 days.
The tenant administrator can configure the retention time via the System
Management application.

210 PUBLIC
Modeling Guide

Monitoring SAP Data Intelligence



Actions Description

Download diagnostics information and
view logs in the Instances tab.

Use the Monitoring application to download graph diagnostics information and
view logs to help diagnose and solve errors with graphs.

View logs generated for certain operators, such as the data workflow operator,
when you execute the graph.

1. Open the Instances tab.
2. Select the   Select an Action icon in the Actions column of the applicable

instance.
3. Select Download Diagnostic Info.

The application downloads a zipped archive of graph information automatically.

For certain operators, such as the data workflow operators, view logs generated
for the operator execution. To view these logs:

1. Open the Instances tab.
2. Select the graph.

The graph overview pane opens at right.
3. Select the Process Logs tab in the lower pane.

The Logs tab contains a list of logs for the selected graph.
4. Use the filter lists at the top of the tab to filter for specific groups and

processes, or search for the specific log. Scroll through the processes to read
the log texts.

Manage schedules in the Schedules tab. View graphs that are scheduled for execution and create, edit, or delete sched-
ules.

For more information about scheduling graphs for execution, see “Schedule
Graph Executions” in the Modeling Guide.

A tenant administrator can view their schedules and the schedules of other users
in the Monitoring application. If you're a tenant administrator, you can perform
the following tasks in the Schedules tab on other users' schedules:

• View schedules by applying filters.

• Edit or stop schedules.

• Suspend or resume schedules.

• View executed instances of schedules.

Modeling Guide
Monitoring SAP Data Intelligence PUBLIC 211



Actions Description

Monitor the execution of replication
flows in the Replications tab.

View information about replication data flows, including connection details, load
progress, and user information.

For tasks, the Replications tab displays information, such as the number of tasks
in different states, priority settings, number of operations and partitions, and
execution timestamps. (The number of operations displayed may be higher than
the actual amount of records transferred as data may be transferred twice in
case of error situations.) Use the Search box in the menu bar to filter the list of
replications on any metadata value.

Select a replication flow to perform the following tasks:

• Display the replication in the Modeler application by selecting Go to
Monitoring in the menu bar.

• Select the   Settings icon to configure the following settings:

• Replication Priority: Select High, Medium, or Low. Selecting High runs
this replication flow before others. The default is Medium.

• Source Maximum Connections: Increase or limit the number of source
connections permitted to the source. The default is 10.

• Target Maximum Connections: Increase or limit the number of target
connections permitted to the target. The default is 10.

• To start the replication flow, select the   Start Execution icon.

• To suspend the execution of the replication flow, select the   Suspend
Execution icon.

• To refresh the list of replication flows, select the   Refresh icon.

• Select a replication to display the tasks in the lower pane. Perform the follow-
ing tasks in the Tasks area, after selecting a task:

• Select the   Settings icon to configure Task Priority for the task. For ex-
ample, select High to run this task before others. The default is Medium.

• Select the   Start Execution icon to run the task.

• Select the   Suspend Execution icon to suspend execution of the task.

• Select the   Refresh icon to refresh the list of tasks.

Related Information

Schedule Graph Executions [page 84]

212 PUBLIC
Modeling Guide

Monitoring SAP Data Intelligence



13 Integrating SAP Cloud Applications with
SAP Data Intelligence

SAP Data Intelligence enables you to integrate SAP cloud applications with SAP Data Intelligence for holistic
data management. The integration is supported using the Cloud Data Integration API, which is based on the
OData V4 specifications.

SAP Cloud Application Data Integration – Providers and Consumers

Cloud Data Integration API

SAP cloud applications implement the Cloud Data Integration API, which consists of two types of OData
services. The first type is the Administrative service that exists once per system. The structure of the
administrative service is as below.

Modeling Guide
Integrating SAP Cloud Applications with SAP Data Intelligence PUBLIC 213



The administrative service provides a catalog of providers that are organized along namespaces. Each provider
represents a business object and consists of one more entity sets that semantically belong together.

 Note
Every implementation must produce the same $metadata.

The second type of service exists once per data provider, and the structure of these providers depends on the
entity sets of the provider. This service provides access to the metadata and the data of the entity sets.

In the current version, you can integrate the following SAP Cloud applications with SAP Data Intelligence.

• SAP Fieldglass
• SAP Sales Cloud
• SAP Service Cloud

Creating a Connection

In the SAP Data Intelligence Connection Management application, you can use the connection type,
CLOUD_DATA_INTEGRATION to create connections to SAP Cloud applications. In the connection definition,
configure the service endpoints. For more information see, CLOUD_DATA_INTEGRATION

Capabilities

Creating a connection to an SAP Cloud application enables you to use entity sets of the service providers as
datasets in the Metadata explorer. Additionally, the connection also maps the namespaces and providers to
folders in the Metadata Explorer. As a result, you can view the metadata of entity sets and preview them in the
Metadata Explorer application.

You can use the Cloud Data Integration Operator in the SAP Data Intelligence Modeler for data ingestion. For
more information see, Cloud Data Integration Consumer

The following graphical representation shows a snapshot of streaming replications using the Flowagent.

214 PUBLIC
Modeling Guide

Integrating SAP Cloud Applications with SAP Data Intelligence

https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/ff10e8a1238c41898ae9008b893538c5.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/f1f6af01992145e288970f956aae5da9.html


Modeling Guide
Integrating SAP Cloud Applications with SAP Data Intelligence PUBLIC 215



14 Service-Specific Information

Related Information

Alibaba Cloud Object Storage Service (OSS) [page 216]
Amazon Simple Storage Service (AWS S3) [page 220]
Google Cloud Storage (GCS) [page 223]
Hadoop Distributed File System (HDFS) [page 225]
Microsoft Azure Data Lake (ADL) [page 226]
Microsoft Azure Blob Storage (WASB) [page 228]
Local File System (/file) [page 230]
WebHDFS [page 230]

14.1 Alibaba Cloud Object Storage Service (OSS)

Many of the SAP Data Intelligence storage operators support the Alibaba Cloud OSS, and there are common
characteristics that this service has across the operators.

 Note
This topic sometimes refers to an “object” as a “file”, and to an object's “prefix” as a “directory” when the
term fits the context of the operator.

Connection

To use any operator that connects to Alibaba OSS, either use a connection ID (Connection Management
application) or set a manual connection using the values in the following table.

Value Description Parameters

Endpoint Required. Allows using an endpoint to
access Alibaba Cloud OSS.

• ID: endpoint
• Type: string
• Default: “oss-cn-

hangzhou.aliyuncs.com”

216 PUBLIC
Modeling Guide

Service-Specific Information



Value Description Parameters

Protocol Required. Sets the protocol to use. This
value overwrites the protocol prefixed in
the endpoint configuration, if any.

• ID: Protocol
• Type: string
• Default: “HTTPS”

Possible values include “HTTP” or
“HTTPS”.

Region The Alibaba Cloud region to which the
configured bucket belongs. The bucket
name is in the root path.

• ID: region
• Type: string
• Default: “oss-cn-hangzhou”

Access Key Required. The Access Key ID to authen-
ticate to the service. To authenticate,
the Access Key ID pairs with the Secret
Key.

• ID: accessKey
• Type: string
• Default: “OSSAccessKeyID”

Secret Key Required. The Secret Key to authenti-
cate to the service. To authenticate, the
Secret Key pairs with the Access Key.

• ID: secretKey
• Type: string
• Default: “”

Root Path The bucket name and an optional root
path name for browsing. The path
starts with a forward slash (/) and then
the bucket name. Optionally add an-
other forward slash and the root path.

 Example
/<MyBucket>/<My Folder>

Dataset names for this connection
don't contain segments of the rootPath;
instead, the first segment of the dataset
is a subdirectory of the root path.

• ID: rootPath
• Type: string
• Default: “/<MyBucket>/<My

Folder>”

Permissions

Permissions in Alibaba Cloud are required to operate over Alibaba Cloud OSS objects. For more information,
see Access and Control  in the Alibaba Cloud OSS documentation.

Alibaba OSS provides an Access Control List (ACL) for bucket-level access control. One of the following
permissions are required:

• public-read-write
• public-read
• private

For descriptions of the permissions, see ACL types  in the Alibaba Cloud OSS documentation.

Modeling Guide
Service-Specific Information PUBLIC 217

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fen%2Foss%2Fuser-guide%2Faccess-and-control%2F%3Fspm%3Da2c63.p38356.0.0.36b87fdf5IYJmA
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fen%2Foss%2Fuser-guide%2Fbucket-acl-2


If you don't set an ACL for a bucket when you create it, the bucket's ACL is set to private automatically. If the
ACL rule of the bucket is set to private, only authorized users can access and operate on objects in the bucket.
To authorize other users to access your Alibaba Cloud OSS resources, refer to Bucket Policy  in the Alibaba
Cloud OSS documentation.

Read File Permissions

To read a single object ("file"), you need the permission oss:GetObject for the given object. For more
information, see GetObject  in the Alibaba Cloud OSS documentation.

To read multiple objects in a prefix ("directory"), you need the permission oss:GetBucket for the bucket
where the prefix is to be listed. The permission can be narrowed to a directory inside the bucket, and the prefix
is subject to this restriction. For more information, see GetBucket (ListObjects)  in the Alibaba Cloud OSS
documentation.

Write File Permissions

To write an object ("file"), you need the permission oss:PutObject for the bucket to receive the object.

If using mode "Append", you also need oss:GetObject for the given object.

Remove File Permissions

To remove an object ("file"), you need the permission oss:DeleteObject for the given object.

Move File Permissions

Because moving consists of copying and removing in Alibaba Cloud OSS, you need the permissions
documented in Remove File Permissions and Copy File Permissions.

Copy File Permissions

To copy an object ("file"), you need the following permissions:

• oss:GetObject for the source object.
• oss:PutObject for the bucket to receive the copied object.

For more information, see Alibaba Cloud OSS Multipart Upload Operations documentation .

If copying by prefix ( "directory"), the operation is bound to the same permissions documented in Read File
Permissions.

Restrictions

Directory Restrictions

• Directories: For a path to be interpreted as a directory, end the path with a forward slash (/). For
example: /tmp/ is a directory, while /tmp is a file named tmp.

• Working directory: Because there's no concept of a "working directory", any relative directory given to or by
this service has the root directory (/) as working directory.

218 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fen%2Foss%2Fuser-guide%2Foverview%23concept-ahc-tx4-j2b
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fen%2Foss%2Fdeveloper-reference%2Fgetobject%23reference-ccf-rgd-5db
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fen%2Foss%2Fdeveloper-reference%2Flistobjects
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fhelp%2Fdoc-detail%2F31991.htm%3Fspm%3Da2c63.p38356.b99.830.12624ce0ZP9QZy


Write File Restrictions
Alibaba Cloud OSS API doesn't support the “Append” mode. If you use the “Append” mode, the operation
retrieves the whole file from the service and then writes the data back to OSS, which compromises the
operation's efficiency.

Move File Restrictions
Alibaba Cloud OSS API doesn't support the “move” operation. If you use the move operation, the operation
copies the file and then removes the source file. However, if there's a failure, the operation may copy the file but
not remove the source file.

Copy File Restrictions
Because the “copy” operation has a source and a destination path, the following restrictions apply:

• If the destination is a file, the source must also be a file.
• If the destination is a directory, the directory must be empty.

 Example
In the given file structure:

.
 
|
+-- a
|   +-- file1.txt
|   +-- file2.txt
+-- b
    +-- f1.txt
 
    +-- f2.txt

The copy operation has the following results:

• Copying source a/file1.txt to destination newfile.txt succeeds because the destination doesn't
exist.

• Copying source a/file1.txt to destination b/f1.txt succeeds and overwrites b/f1.txt, because
the destination is an existing file.

• Copying source a/file1.txt to destination: b/ fails because b/ already exists and is empty.
• Copying source a/ to destination b/ fails because b/ already exists and isn't empty.
• Copying source a/ to destination b/dir/ succeeds because b/dir/ doesn't exist.

Related Information

Alibaba Cloud's Official Website

Modeling Guide
Service-Specific Information PUBLIC 219

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.alibabacloud.com%2Fproduct%2Foss


14.2 Amazon Simple Storage Service (AWS S3)

Many of the SAP Data Intelligence connectors support AWS S3, and there are common characteristics that this
service has across the operators.

 Note
This topic sometimes refers to an “object” as a “file”, and to an object's “prefix” as a “directory” when the
term fits the context of the operator.

AWS S3 is an object store service, which is documented in the AWS S3  Website.

 Restriction
SAP has tested the following services to ensure that they support AWS S3 API: Rook, Minio, and Swift. SAP
doesn't guarantee any other service that supports the AWS S3 API to be compatible.

Connection

To use any operator that connects to AWS S3, use a connection ID from the Connection Management
application. Set further connection configurations, which aren't in the Connection Management application,
described in the following table.

Value Description Parameters

Bucket Optional bucket name to access. The
Bucket works as a “fallback” of the con-
nection root path configuration.

 Example
If there's no bucket name, in the
root path, the value from the
Bucket is used.

• ID: awsBucket
• Type: string
• Default:

“com.sap.datahub.test”

Proxy Optional proxy to use in the connection
to the service.

• ID: awsProxy
• Type: string
• Default: “”

Use SSL Specifies whether to use SSL/TLS
when connecting to the service.

• ID: useSSL
• Type: Boolean
• Default: true

220 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2Fs3%2F


Permissions

Permissions in AWS are required to operate over AWS S3 objects. Each operator can require a determined set
of permissions to operate successfully.

Read File Permissions

To read an object ("file") or objects, you need the following permissions:

• s3:GetObject for the given object. See also AWS S3 GET Object  in the AWS documentation.
• s3:GetObjectVersion for the given object.
• s3:ListBucket to read multiple objects in a prefix ("directory"). ASW requires the permission for the

bucket where the prefix is to be listed.

 Note
You can narrow the permission to a directory inside the bucket, and the prefix is subject to this
restriction. For more information, see ListBuckets  in the AWS documentation.

• s3:DeleteObject for the given object when you use Delete After Send. For more information, see
DELETE Object  in the AWS documentation.

Write File Permissions

To write an object ("file"), you need the permission s3:PutObject for the bucket to receive the object. For
more information, Policies and Permissions in Amazon S3  in the AWS documentation.

If you use the mode "Append", you also need the permission s3:GetObject for the given object. This
permission is required because of the write file permission restriction documented in Restrictions [page 218].
For more information, see GetObject  in the AWS documentation.

Remove File Permissions

To remove an object ("file"), you need the permission s3:DeleteObject for the given object. For more
information, see DeleteObject  in the AWS documentation.

Move File Permissions

Because moving files consists of copying and removing in AWS S3, use the permissions documented in
Remove File Permissions and Copy File Permissions sections.

Copy File Permissions

To copy an object ("file"), you need the following permissions:

• s3:GetObject for the source object.
• s3:PutObject for the bucket to receive the copied object.

If copying by prefix ("directory"), the operation is bound to the same permissions documented in Read File
Permissions.

Modeling Guide
Service-Specific Information PUBLIC 221

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FRESTObjectGET.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FAPI_ListBuckets.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FRESTObjectDELETE.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2Fuserguide%2Faccess-policy-language-overview.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FAPI_GetObject.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FAPI_DeleteObject.html


Restrictions

Directory Restrictions

• Directories: For a path to be interpreted as a directory, end the path with a forward slash (/). For
example: /tmp/ is a directory, while /tmp is a file named tmp.

• Working directory: Because there's no concept of a "working directory", any relative directory given to or by
this service has the root directory (/) as working directory.

Write File Restrictions

AWS S3 API doesn't support the "Append" mode. If you use the “Append” mode, the operation retrieves the
whole file from the service, and then writes the data back to AWS S3, which compromises the operation's
efficiency.

Move File Restrictions

AWS S3 API doesn't support the “move” operation. If you use the “Move” operation, the operation copies the
file and then removes the source file. However, if there's a failure, the operation may copy the file but not
remove the source file.

Copy File Restrictions

Because the “copy” operation has a source and a destination path, the following restrictions apply:

• If the destination is a file, the source must also be a file.
• If the destination is a directory, the directory must be empty.

 Example
In the give file structure:

.
 
|
+-- a
|   +-- file1.txt
|   +-- file2.txt
+-- b
    +-- f1.txt
 
    +-- f2.txt

The copy operation has the following results:

• Copying source a/file1.txt to destination newfile.txt succeeds because the destination doesn't
exist.

• Copying source a/file1.txt to destination b/f1.txt succeeds and overwrites b/f1.txt because
the destination is an existing file.

• Copying source a/file1.txt to destination b/ fails because b/ already exists and isn't empty.
• Copying source a/ to destination b/ fails because b/ already exists and is empty.
• Copying source a/ to destination b/dir/ succeeds because b/dir/ doesn't exist.

222 PUBLIC
Modeling Guide

Service-Specific Information



Related Information

Amazon S3 Owner's Page

14.3 Google Cloud Storage (GCS)

GCS is Google's Object Storage cloud service. Additional information, including the documentation, can be
found at the official GCS Homepage.

Many of the Storage operators offer support for GCS. This documentation regards the common characteristics
that this service has across operators.

This document may refer to an object as a "file", and to an object's prefix as a "directory", if it fits the context of
the operator.

Connection

 Note

In order to use any operator that connects to GCS, you may use a Connection ID from the Connection
Management.

Further connection configurations may be set, which are not in the Connection Management. Such as:

• Bucket
Optional bucket name to be accessed. It works as a "fallback" of the Connection's Root Path configuration.
For instance, if no bucket is given in the Root Path, the value from Bucket is used.
• ID: gcsBucket
• Type: string
• Default: "bucket"

• Content Type
Informs the type of data being sent, allowing the correct rendering of objects. For instance, if you send
a JSON file, this should be set to application/json. Additional information here: Working With Object
Metadata .
• ID: gcsContentType

Type: string
Default: ""

Permissions

GCS Permissions  for manipulating objects are described in the Access Control List  documentation as
WRITER, READER and OWNER. Each operator may require a determined set to successfully operate.

Modeling Guide
Service-Specific Information PUBLIC 223

http://help.sap.com/disclaimer?site=https%3A%2F%2Faws.amazon.com%2Fs3%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Fgsutil%2Faddlhelp%2FWorkingWithObjectMetadata
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Fgsutil%2Faddlhelp%2FWorkingWithObjectMetadata
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Faccess-control%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Faccess-control%2Flists%23permissions


Read File Permissions
To read a single object ("file"), you need READER and WRITER permissions on the bucket.

Write File Permissions
To write an object ("file"), you need WRITER permission on the bucket.

Remove File Permissions
To remove an object ("file"), you need the READER and WRITER permissions on the bucket.

Move File Permissions
To move an object ("file"), you need the READER and WRITER permissions on the origin bucket plus the READER
and WRITER permissions on the destination bucket.

Copy File Permissions
To copy an object ("file"), you need the READER permission on the origin bucket, plus the READER and WRITER
permission on the destination bucket.

Restrictions

• Directories:
In order for a path to be interpreted as a directory, it should end with /. For example: /tmp/ is a directory,
while /tmp is a file named tmp.

• Working directory:
Since there is no concept of a "working directory", any relative directory given to/by this service will have
the root directory (/) as working directory.

Move File Restrictions
As the GCS API does not support the move operation, the operation consists of a copy followed by removing
the source file. Thus, in cases of failure, the file may be copied and not removed.

Copy File Restrictions
Taking that the operation has a "source" and a "destination" path:

• If the destination is a file, source must also be a file.
• If the destination is a directory, it must be empty.

For instance, in the given file structure:

.
 
|
+-- a
|   +-- file1.txt
|   +-- file2.txt
+-- b
    +-- f1.txt
 
    +-- f2.txt

• Copying source: a/file1.txt to destination: newfile.txt, would succeed, since the destination does
not exist.

224 PUBLIC
Modeling Guide

Service-Specific Information



• Copying source: a/file1.txt to destination: b/f1.txt, would succeed and overwrite b/f1.txt, since
the destination is an existing file.

• Copying source: a/file1.txt to destination: b/, would fail, since b/ already exists and is not empty.
• Copying source: a/ to destination: b/ would fail, since b/ already exists and is not empty.
• Copying source: a/ to destination: b/dir/ would succeed, since b/dir/ does not exist.

Related Information

Official GCS Documentation

14.4 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is Apache's distributed storage solution. For more information, see the official
HDFS documentation.

 Note
Some configurations are only supported with connections defined via Connection Management.

Many of the SAP Data Intelligence storage operators offer support for HDFS. This documentation covers the
common characteristics that this service has across operators.

Connection

In order to use any operator that connects to HDFS, you may use a Connection ID from the Connection
Management.

Permissions

The HDFS Permissions  for files and directories are based on the POSIX model, that is, for each file
or directory there are W, R and X permissions that may be attributed separately to the owner, the group
associated with the file/directory and the group of remaining users.

For a finer control, it is possible to define an Access Control List , which allows the definition of specific rules
for each user or each group of users.

Read File Permissions
To read a file, you need W and R permissions on the file.

Modeling Guide
Service-Specific Information PUBLIC 225

http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsPermissionsGuide.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsPermissionsGuide.html%23ACLs_Access_Control_Lists


Write File Permissions
To write a new file, you need W permission on the directory where the file will be created.

To append or overwrite an existing file, you need W permission on the file.

Remove File Permissions
To remove a file or directory, you need W and R permissions on the corresponding file/directory.

Move File Permissions
• Moving a File:

To move a file you need W permission on the original file and R permission on the original directory.
If the destination file already exists and is being overwritten, you need W permission on the destination file.
On the other hand, if the file does not exist on the destination, you need W permission on the destination
directory.

• Moving a Directory:
To move a directory, you need W and R permissions on the original directory and W permission on every file
within it.
On the destination folder, you need W permission.
If any of the files already exist at the destination and needs to be overwritten, you need the W permission on
the destination file as well.

Restrictions

• Working directory:
Since there is no concept of a "working directory", any relative directory given to/by this service will have
the root directory (/) as working directory.

Copy File Restrictions
Since the HDFS API does not support the copy operation, this behavior can be achieved through Read +
Write.

Related Information

Official HDFS Documentation

14.5 Microsoft Azure Data Lake (ADL)

Azure Data Lake (ADL) is Microsoft's Data Lake cloud storage service. Additional information, including the
documentation, can be found at the official ADL Homepage.

Many of the SAP Data Intelligence storage operators offer support for ADL. This documentation covers the
common characteristics that this service has across operators.

226 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsDesign.html


Connection

In order to use any operator that connects to ADL, you may use a Connection ID from the Connection
Management.

Permissions

The ADL interface is based on the WebHDFS service, thus the ADL Permissions  for files and directories are
based on the POSIX model, that is, for each file or directory there are W, R and X permissions that may be
attributed separately to the owner, the group associated with the file/directory and the group of remaining
users.

For a finer control, it is possible to define an Access Control List , which allows the definition of specific rules
for each user or each group of users.

Read File Permissions
To read a file, you need W and R permissions on the file.

Write File Permissions
To write a new file, you need W permission on the directory where the file will be created.

To append or overwrite an existing file, you need W permission on the file.

Remove File Permissions
To remove a file or directory, you need W and R permissions on the corresponding file/directory.

Move File Permissions

• Moving a File:
To move a file you need W permission on the original file and R permission on the original directory.
If the destination file already exists and is being overwritten, you need W permission on the destination file.
On the other hand, if the file does not exist on the destination, you need W permission on the destination
directory.

• Moving a Directory:
To move a directory, you need W and R permissions on the original directory and W permission on every file
within it.
On the destination folder, you need W permission.
If any of the files already exist at the destination and needs to be overwritten, you need the W permission on
the destination file as well.

Restrictions

• Working directory: Because there is no concept of a "working directory," any relative directory given to or
used by this service will have the root directory (/) as its working directory.

Modeling Guide
Service-Specific Information PUBLIC 227

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fdata-lake-store%2Fdata-lake-store-access-control
http://help.sap.com/disclaimer?site=https%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsPermissionsGuide.html%23ACLs_Access_Control_Lists


• Copying: Because the ADL API does not support the copy operation, this behavior can be achieved through
Read + Write.

Related Information

Official ADL Homepage

14.6 Microsoft Azure Blob Storage (WASB)

Azure Storage Blob (WASB) is one of Microsoft's cloud storage services. Additional information, including the
documentation, can be found at the official WASB homepage.

Many of the SAP Data Intelligence storage operators offer support for WASB. This documentation covers the
common characteristics that this service has across operators.

This document may refer to an object as a "file" and to an object's prefix as a "directory" if it fits the context of
the operator.

Connection

To use any operator that connects to WASB, you may use a Connection ID from the Connection Management.

Further connection configurations may be set, which are not in the Connection Management:

• Container. Optional container name to be accessed. It works as a "fallback" of the Connection's Root Path
configuration. For example, if no bucket is given in the Root Path, the value from Container is used.
• ID: containerName
• Type: string
• Default: "mycontainer"

• Blob Type. Only used in Write File operator. It sets the blob type of the destination blob ("file").
• ID: wasbBlobType

Type: string
Default: "BlockBlob"

• Values:
• "BlockBlob"
• "PageBlob"
• "AppendBlob"

228 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=https%3A%2F%2Fazure.microsoft.com%2Fen-us%2Fsolutions%2Fdata-lake%2F


Permissions

Permissions in Azure Blob Storage are required to operate over blobs. WASB currently restricts access to blobs
through the container's policy:

• Full public read access
• Public read access for blobs only
• No public read access

Learn more at Set Container ACL  and Authorize requests to Azure Storage .

Operators will need full access to the data, thus the container should have "Full public read access" if the given
credentials are not from the owner of the container; otherwise, any permission should be enough.

Restrictions

• Directories. For a path to be interpreted as a directory, it should end with /. For example: /tmp/ is a
directory, while /tmp is a file named tmp.

• Working directory. Because there is no concept of a "working directory", any relative directory given to or
by this service will have the root directory (/) as working directory.

Move File Restrictions

As the WASB API does not support the move operation, the operation consists of a copy followed by removing
the source file. Thus, in cases of failure, the file may be copied and not removed.

Copy File Restrictions

Given that the operation has a "source" and a "destination" path:

• If the destination is a file, source must also be a file.
• If the destination is a directory, it must be empty.

For instance, consider this file structure:

.
 
|
+-- a
|   +-- file1.txt
|   +-- file2.txt
+-- b
    +-- f1.txt
 
    +-- f2.txt

• Copying the source a/file1.txt to the destination newfile.txt would succeed because the
destination does not exist.

• Copying the source a/file1.txt to the destination b/f1.txt would succeed and overwrite b/f1.txt
because the destination is an existing file.

• Copying the source a/file1.txt to the destination: b/ would fail because b/ already exists and is not
empty.

• Copying the source a/ to the destination b/ would fail because b/ already exists and is not empty.

Modeling Guide
Service-Specific Information PUBLIC 229

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Frest%2Fapi%2Fstorageservices%2Fset-container-acl
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Frest%2Fapi%2Fstorageservices%2Fauthorization-for-the-azure-storage-services


• Copying the source a/ to the destination b/dir/ would succeed because b/dir/ does not exist.

Related Information

Official WASB Homepage

14.7 Local File System (/file)

Many of the SAP Data Intelligence storage operators offer support for the local file system.

The local file system is subject to the cluster's file system. The /files/ folder seen in the System
Management application can be accessed through the /vrep/ path. For example: /files/myfile.txt
becomes /vrep/myfile.txt.

Restrictions

• /vrep is deprecated: The usage of the /vrep folder in graphs is deprecated. The /vrep path is not meant
to be used for writing and reading files. If your graphs and operators need temporary storage, consider
using the /vrep connection type only to access a folder local to the graph container. If you need to share
files between subengines or groups, consider using blob storage such as S3.

• Temporary files: Operators can write files to the /tmp folder, which is a folder local to the graph container.
However, /tmp is not a shared folder, so when working with groups and subengines it can't be used for file
sharing.

• Working directory: For any path that is given to or by this service, the current working directory (.) will be
the HOME directory of the user running the local graph container. The HOME directory is /home/vflow/
in the base docker image. You can't access other directories using absolute paths (..) to access the parent
directory, because the user /vflow doesn't have the necessary permission.

• Copy file: Because the local file system API doesn't support the copy operation, you must copy files using
Read + Write.

14.8 WebHDFS

WebHDFS supports Hadoop Distributed File System through the REST API. It is one of the protocols of
Apache's distributed storage solution. For more information, see the official WebHDFS home page.

 Note
Some configurations are only supported with connections defined via Connection Management.

230 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=https%3A%2F%2Fazure.microsoft.com%2Fen-us%2Fservices%2Fstorage%2Fblobs%2F


Many of the SAP Data Intelligence storage operators offer support for WebHDFS. This documentation covers
the common characteristics that this service has across operators.

Connection

In order to use any operator that connects to WebHDFS, you may use a Connection ID from the Connection
Management.

Further connection configurations may be set, which are not in the Connection Management. Such as:

• Token
The Token to authenticate to WebHDFS with.
• ID: webhdfsToken
• Type: string
• Default: ""

• OAuth Token
The OAuth Token to authenticate to WebHDFS with.
• ID: webhdfsOAuthToken
• Type: string
• Default: ""

• Do As
The user to impersonate. Has to be used together with User.
• ID: webhdfsDoAs
• Type: string
• Default: ""

Permissions

The WebHDFS Permissions  for files and directories are based on the POSIX model, that is, for each file
or directory there are W, R and X permissions that may be attributed separately to the owner, the group
associated with the file/directory and the group of remaining users.

For a finer control, it is possible to define an Access Control List , which allows the definition of specific rules
for each user or each group of users.

Read File Permissions
To read a file, you need W and R permissions on the file.

Write File Permissions
To write a new file, you need W permission on the directory where the file will be created.

To append or overwrite an existing file, you need W permission on the file.

Remove File Permissions
To remove a file or directory, you need W and R permissions on the corresponding file/directory.

Modeling Guide
Service-Specific Information PUBLIC 231

http://help.sap.com/disclaimer?site=https%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsPermissionsGuide.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-hdfs%2FHdfsPermissionsGuide.html%23ACLs_Access_Control_Lists


Move File Permissions
• Moving a File:

To move a file you need W permission on the original file and R permission on the original directory.
If the destination file already exists and is being overwritten, you need W permission on the destination file.
On the other hand, if the file does not exist on the destination, you need W permission on the destination
directory.

• Moving a Directory:
To move a directory, you need W and R permissions on the original directory and W permission on every file
within it.
On the destination folder, you need W permission.
If any of the files already exist at the destination and needs to be overwritten, you need the W permission on
the destination file as well.

Restrictions

• Working directory:
Since there is no concept of a "working directory", any relative directory given to/by this service will have
the root directory (/) as working directory.

Copy File Restrictions
Since the WebHDFS API does not support the copy operation, this behavior can be achieved through Read +
Write.

Related Information

Official WebHDFS Homepage

232 PUBLIC
Modeling Guide

Service-Specific Information

http://help.sap.com/disclaimer?site=https%3A%2F%2Fazure.microsoft.com%2Fen-us%2Fservices%2Fstorage%2Fblobs%2F


15 Changing Data Capture (CDC)

SAP Data Intelligence supports CDC technology for some connection types.

Databases

The following databases support CDC capability by using a trigger-based approach for capturing changes:

• DB2
• HANA
• MSSQL
• MySQL
• Oracle

Because creating the graph can become complex, SAP Data Intelligence provides a Table Replicator V3
(Deprecated) operator that helps you create the appropriate graphs.

Cloud Data Integration

Cloud Data Integration (CDI) supports polling-based CDC technology.

Related Information

Improving CDC Graph Generator Operator Performance
CDC Graph Generator (Deprecated)

Modeling Guide
Changing Data Capture (CDC) PUBLIC 233

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/79fcadb91f584f868a6662111b92f6e7.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/79fcadb91f584f868a6662111b92f6e7.html
https://help.sap.com/viewer/300d97f4d57c4b329df8c83858ff67fb/Dev/en-US/8709ef1f2c03489eb404496f20484411.html
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/a69c62fbe76547e4b88617b2a0e7f700.html


16 Subengines

Subengines in the SAP Data Intelligence Modeler allow you to use operators for different runtimes apart from
the main engine. The main engine coordinates graph and native operator executions.

Subengines allow a graph to contain operators that run as follows:

• One operator runs in the main engine.
• Other operators are implemented in Python and run in a Python subengine.
• Other operators are implemented in C++ and run in the C++ subengine.

Operators can have implementations for more than one engine, including the main engine and subengines.
With multiple engines, you can select a subset of the available engines in the operator's configuration panel
from which the optimizer chooses. The optimizer assigns an engine for each operator to minimize the number
of edges crossing different engines. When you schedule a cluster of connected operators to run in the same
engine, all operators run in the same operating system process.

The available subengines in SAP Data Intelligence are:

• ABAP
• C++
• Node.js
• Python 3.9

 Note
When you build a graph with subengines, communication between the engines incurs different
communication costs.

 Example
A File Consumer operator runs only in the main engine. If a File Consumer operator sends data to the
Python3 Operator, the Modeler must first serialize the data, send the data through a pipe to another
operating system process, and finally deserialized the data.

Advantages of using subengines include the following:

• Run connected operators that belong to the same subengine in a single process.
Running in a single process is better than using the Process Executor operator that executes an external
script to launch a new process for each operator.

• Use scriptable operators in different languages, such as Python3 Operator and Node Base Operator on
Node.js.
Edit the scripts for these operators in the Modeler user interface without the requirement to handle
serializing and deserializing outgoing and incoming data.

• SAP can develop and deliver operators in programming languages other than the language used in the
main engine.

• Create and add new operators to the SAP Data Intelligence Modeler in different programming languages.
For the Python subengine, you can extend the script operator Python3 Operator with new behavior.
However, you can also develop new operators in your own machine, and then upload the new operators to

234 PUBLIC
Modeling Guide

Subengines



the cluster through SAP Data Intelligence System Management. For more information about the Python
subengine, see Create Operators with the Python Subengine [page 257].

Related Information

Working with the C++ Subengine to Create Operators [page 235]
Create Operators with the Python Subengine [page 257]
Working with the Node.js Subengine to Create Operators [page 274]
Working with Flowagent Subengine to Connect to Databases [page 286]
SAP Data Intelligence Operators

16.1 Working with the C++ Subengine to Create Operators

The SAP Data Intelligence Modeler C++ subengine lets you code your own operators in C++ and make them
available for use from the Modeler application.

Introduction

 Note
The C++ Subengine is deprecated. It will be removed in a future SAP Data Intelligence release.

The C++ subengine detects and runs operators that are compiled into shared objects ( *.so ). When you run a
graph in the modeler application, the main engine (which also serves the user interface over HTTP) breaks the
graph into large subgraphs. With large subgraphs, the same subengine runs every operator in a subgraph. The
main engine then runs a subengine process for each subgraph.

When launched, the C++ subengine performs the following tasks:

1. Looks for and registers operators.
2. Initializes the mechanisms for communicating with the main engine.
3. Receives its subgraph from the main engine.
4. Instantiates the processes in the subgraph and initializes them.
5. Sets up the connections among processes.
6. Starts the graph, handles its input, invokes user-supplied handlers, and writes the output.
7. When instructed by the main engine to stop, or when a fatal error occurs, it cleans up and terminates.

Modeling Guide
Subengines PUBLIC 235

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/acd32810819a4b2893c9f8698e2ec55c.html


Quick Start

#include <v2/subengine.h>
 
// Port handler
const char* echo_input( v2_process_t proc, v2_datum_t datum )
{
  // Write the input unchanged
  v2_process_output( proc, "output", datum );
  return NULL; // No error
}
// Shutdown handler (optional)
const char* echo_shutdown( v2_process_t proc )
{
  // Clean up echo's resources here.
  return NULL;
}
// Init handler
const char* echo_init( v2_process_t proc )
{
  // Call echo_input whenever port "input" receives data
  v2_process_set_port_handler( proc, "input", echo_input );
  // Call echo_shutdown when the process is stopped
  v2_process_set_shutdown_handler( proc, echo_shutdown );
  return NULL;
}
// Init function
// Remove `extern "C"` when compiling as pure C
extern "C" V2_EXPORT void init( v2_context_t ctx )
{
  // Create an operator called "Echo" with ID "demo.echo" and call
  // echo_init when initializing its processes.
  auto op = v2_operator_create( ctx, "demo.echo", "Echo", echo_init );
  // Add an input port called "input" of type string.
  v2_operator_add_input( op, "input", "string" );
  // Add an output port called "output" of type string.
  v2_operator_add_output( op, "output", "string" );
 
}

Related Information

Getting Started with the C++ Subengine [page 237]
Creating an Operator [page 237]
Logging and Error Handling [page 239]
Port Data [page 240]
Setting Values for Configuration Properties [page 243]
Process Handlers [page 243]
API Reference [page 245]

236 PUBLIC
Modeling Guide

Subengines



16.1.1  Getting Started with the C++ Subengine

At initialization, the C++ subengine iterates recursively over the contents of its lib/ directory (in the root
folder of the subengine) and loads each shared object (.so) file.

Use the recursive iteration to organize your libraries into subdirectories, as necessary. The subengine
processes only shared object (.so) files and ignores other file types.

The C++ subengine also expects to find a symbol called init in each of the shared objects. This function in
pure C is a function with signature as follows:

V2_EXPORT void init( v2_context_t ctx ) { ... }

 Note
If you compile your library from C++, you must prepend the function declaration with extern "C" to
prevent name mangling.

The signatures of the init function use the V2_EXPORT macro to ensure that the symbol is visible from
the engine executable. The main role of the init function is to tell the C++ subengine about the operators
implemented by this library. Therefore, before its subgraph is received, the application calls the init function
once when the engine starts running.

16.1.2  Creating an Operator

To register an operator, call v2_operator_create from init :

extern "C" V2_EXPORT void init( v2_context_t ctx )
 
{
  v2_operator_t op = v2_operator_create(
    ctx,             // the context passed by the engine to init
    "demo.strlen",   // operator ID; must be globally unique
    "Strlen Demo",   // user-friendly operator name
    init_strlen      // initialization handler (see below)
  );
  // Add an input port so the operator can receive and process data:
  v2_operator_add_input(
    op,         // pointer returned by v2_operator_create
    "inString", // port name; must be unique within this operator
    "string"    // port type
  );
  // Add an output port so the operator can send data:
  v2_operator_add_output( op, "outLength", "int64" );
 
}

The subengine does not impose any special format for port names, but we recommended prefixing them with
in or out. The prefixing makes it easier to identify them apart when their names appear in the logs.

 Note
We recommend that you namespace your operator IDs with a meaningful and unique prefix to avoid name
clashes. For example, you can prefix with the operator IDs with the organization name.

Modeling Guide
Subengines PUBLIC 237



op has an input port of type string and an output port of type int64 . Now, define its initialization handler
(init_strlen) that will be called every time a process is created to instantiate the "demo.strlen" operator:

const char* init_strlen( v2_process_t proc )
 
{
  v2_process_set_port_handler(
    proc,             // the process, created by the engine
    "inString",       // which port this handler is associated with
    strlen_on_input   // the actual handler (below)
  );
  return NULL; // no error
}
const char* strlen_on_input( v2_process_t proc, v2_datum_t datum )
{
  // Extract the string contained in `datum`
  const char* str = v2_datum_get_string( datum );
  size_t len = strlen( str );
  // Create the output datum containing the length
  // of the input string
  v2_datum_t out = v2_datum_from_int64( (int64_t)len );
  // Write it to the output port
  v2_process_output( proc, "outLength", out );
  // Release the `out` handle (see explanation below)
  v2_datum_release( out );
  return NULL; // no error
 
}

Result

You have created a basic operator. The initialization and termination, configuration properties, and timed
handlers (timers) are described in the subsequent chapters of this guide.

Compiling an Operator Library

Compile the code to create an operator into a dynamic library (shared object), so that it can be consumed by
the C++ subengine executable.

The minimal commands to compile are:

# Compile C/C++ sources into position-independent object files (.o)
 
$ gcc -c -fPIC <sources>
# Link the object files together into a shared object
 
$ gcc -shared -o <output-name>.so <object-files>

After compiling, you can place the <output-name>.so file in the lib/ directory of the subengine and call
run.sh -j. This call helps generate the JSON descriptions for your new operator.

Standard and External Libraries

The C++ subengine runs in a Docker container with Debian 9.2. This operating system provides libstdc+
+.so.6 that the C++ subengine executable requires to consume the operators.

If your dynamic libraries use a different version or vendor, then you must either:

238 PUBLIC
Modeling Guide

Subengines



• Compile with -static-libstdc++; or
• Write a custom Dockerfile based on Debian 9.2 in which your desired Standard Library version or vendor is

installed and available.

 Caution
Do not replace libstdc++.so.6 provided by the operating system.

Next, associate your operator with the docker image by adding a tag using the v2_operator_add_tag
function in your operator library.

The same concept applies to all external libraries on which the operators may depend. You can either link to
them statically or include them in a custom Dockerfile.

16.1.3  Logging and Error Handling

The C++ subengine defines the following logging levels:

• INFO

• DEBUG

• WARNING

• ERROR

• FATAL

The engine is in the debug mode when the debug tracing is enabled for the main engine. The debug messages
are printed only when the engine is in the debug mode.

 Remember
Fatal messages stop the graph execution. Error messages do not cause the graph execution to stop.

To log a single string, use the v2_log_<level>_string set of function that are declared in v2/
subengine.h.

For convenience, the variadic functions (such as, printf-like) are declared and implemented in the optional
v2/log.h header. If you want to include their implementation in your operator library, then before including
v2/log.h in a source file, define the V2_LOG_IMPLEMENTATION macro.

 Tip
Include in only one of your source files to avoid multiple definitions of those symbols.

For example:

#define V2_LOG_IMPLEMENTATION
 
#include <v2/log.h>
 
#undef V2_LOG_IMPLEMENTATION

This helps to include the header from multiple files at wherever those function declarations are required, and
still continue to keep their implementation in a single place.

Modeling Guide
Subengines PUBLIC 239



Error Handling

All types of handlers, which users can provide to the subengine have the return type, const char*. This
return type is a null-terminated string containing the error message or a NULL value, if no error occurred. Errors
returned by handlers are always fatal (otherwise, use v2_log_error_string or v2_log_error instead).

16.1.4  Port Data

Port types are not known at compile time. The subengine uses the handle, v2_datum_t to carry the generic
inputs and outputs between the operators. The v2_datum_t handle is a reference-counted handle to an
underlying piece of data.

Also, because this is a pure C API, you cannot use constructors and destructors to acquire and release these
handles. Therefore, we recommend that you follow these guidelines:

• If you get a datum as a parameter in the port handler, do not release it. The engine does that.
• If you create a datum using the v2_datum_create set of functions, release it before it gets out of

scope. Not releasing it may result in memory leaks. It is also important to release it even if you output
the datum because this datum is going to be given to the next operator downstream, and the call
to v2_process_output increases its reference count by one. This is similar to making a copy of a
std::shared_ptr.

 Tip
You can explicitly increase reference count of datum by calling v2_datum_acquire. This increase can
be useful if you want to store a datum given to a port handler. But, do not forget to release it later.

Data Types

A datum may contain any one of the following types:

Modeler type C type ID ( v2_type_t ) Size (bytes)

string char* V2_TYPE_STRING Length of the string

int64 int64_t V2_TYPE_INT64 8

float64 double V2_TYPE_DOUBLE 8

blob blob V2_TYPE_BLOB Size of the blob

uint64 uint64_t V2_TYPE_UINT64 8

240 PUBLIC
Modeling Guide

Subengines



Modeler type C type ID ( v2_type_t ) Size (bytes)

message v2_message_t V2_TYPE_MESSAGE 0 (Size of a message is only
known when it is serialized,
so it cannot be queried).

byte char V2_TYPE_BYTE 1

User-defined data types void* V2_TYPE_CUSTOM 0 (Engine does not know
the size of user-defined data
types.)

For each data type, the ID column in the table shows the return value of v2_datum_get_type. This allows you
to have generic operators (for example, ports with type any) that can check their input type at runtime.

The Size column in the table shows the return value of v2_datum_get_size.

 Restriction
Array types are not supported in the current version.

Ownership

Whenever the reference count of datum reaches zero, the engine deallocates the memory that belongs to
the datum. For string, blob, message, and custom types this behavior can have one further consequence:
whether or not to free the memory associated with the data itself. So, when creating a datum from one of those
types, you can choose whether or not you want it to own the data:

• A nonowning datum is created using the v2_datum_from_<type> functions, which do not deallocate the
given data pointer. Thus, ensure that the functions remain available throughout the lifetime of the datum.
This behavior is typical of static lifetime variables. For example:

const char* YES = "yes";
 
const char* NO  = "no";
// A port handler
const char* is_even_input( v2_process_t proc, v2_datum_t datum )
{
  int64_t i = v2_datum_get_int64( datum );
  v2_datum_t out;
  if ( i % 2 ) // not even
    out = v2_datum_from_string( NO, 2 );
  else
    out = v2_datum_from_string( YES, 3 );
  v2_process_output( proc, "outEven", out );
  // Release local handle
  v2_datum_release( out );
  return NULL;
 
}

• An owning datum is created using the v2_datum_own_<type> functions. These functions take not only
the pointer to the data, but also a "destructor" function pointer, which will be invoked with the data pointer
as the argument. For example, an operator that concatenates the strings it receives two by two:

// Port handler

Modeling Guide
Subengines PUBLIC 241



 
const char* concat_on_input( v2_process_t proc, v2_datum_t datum )
{
  v2_datum_t previous = (v2_datum_t)v2_process_get_user_data( proc );
  if ( previous == NULL ) {
    // Store this datum for later use
    v2_process_set_user_data( proc, datum );
    // Let the engine know we've just stored an additional
    // reference to this datum
    v2_datum_acquire( datum );
  } else {
    char*    prev_str  = v2_datum_get_string( previous );
    uint64_t prev_size = v2_datum_get_size( previous );
    char*    curr_str  = v2_datum_get_string( datum );
    uint64_t curr_size = v2_datum_get_size( datum );
    // Allocate enough memory for both strings together. Null-terminating it
    // is optional, since we provide its length to v2_datum_own_string.
    uint64_t out_size = prev_size + curr_size;
    char* out_string = (char*)malloc( out_size );
    // Copy them to out_string
    strncpy( out_string, prev_str, prev_size );
    strncpy( out_string + prev_size, curr_str, curr_size );
    // Since out_string is on the heap, we need an owning datum
    // so it will call `free` on the string once its done.
    v2_datum_t out = v2_datum_own_string( out_string, out_size, free );
    v2_process_output( proc, "output", out );
    // Cleanup
    v2_datum_release( out );
    v2_datum_release( previous );
    v2_process_set_user_data( proc, NULL );
  }
  return NULL;
 
}

 Note
The datum never makes a copy of the data you provide regardless of the ownership. It only stores the given
pointer.

 Note
Both datum constructors for type string require the length of the string as a parameter. This requirement
not only ensures safety (if the string is not null-terminated, buffer overruns might occur), but also enables
different datum objects to point to different substrings of the same string without making any copies.

User-defined Types

Declare the Modeler name for a user-defined types in the meta.json file that is under the root directory of the
subengine. Typically, it is <repo-root>/subengines/<sub-engine-id>/meta.json .

For example, if you are creating image-processing operators, you may want to define your own "image" type.
This user-defined type helps the data to flow among such operators without having to conform to the standard
types in the modeler. In this example, your meta.json might look like this:

{
 
  "versions": ["1.0"],
  "types": ["image"]
 
}

242 PUBLIC
Modeling Guide

Subengines



Adding a type to meta.json enables the main engine to recognize its existence and accept graphs that use
these types as valid.

 Remember
The underlying structure of this type is completely unknown to both the main engine and the subengine.
Thus, you cannot convey user-defined types between two operators pertaining to different subengines.

16.1.5  Setting Values for Configuration Properties

You set the configuration properties at the operator level and each property is associated with a default value.

If you have provided new values to the properties through the user interface of the Modeler application,
then the main engine sends the value to the subengine, when you execute the graph. To set an operator
configuration property along with its default value, use the v2_operator_config_add_<type> set of
functions.

Using the v2_process_t handle, which is first obtained in the init handler of that operator, you can query
the actual values for each property by calling the v2_process_config_get_<type> functions.

If the defined value for a property does not correspond to its declared value, the engine throws an error for the
type mismatch. The only exception is for double configurations that can receive an integer value by implicitly
converting it to double .

16.1.6  Process Handlers

You can use the handler types to have more control over the behavior of the operators.

The following are the handler types that you can use.

Initialization Handler

The initialization handler is set for an operator when it is created (v2_operator_create) and is invoked for
every process that is instantiated for that operator.

The role of this handler is to initialize per-process data, resources, and connections, as required. Typically, the
configuration values are also queried here.

Modeling Guide
Subengines PUBLIC 243



Shutdown Handlers

In some cases, you use the init handler to only set a port handler. But, if it was a more complex case, you may
have acquired some resources or allocated memory for that process individually. The place to clean up such
resources is the shutdown handler:

// shutdown handler
 
const char* proc_shutdown( v2_process_t proc )
{
  // free proc's memory and resources here
}
// init handler
const char* proc_init( v2_process_t proc )
{
  ...
  v2_process_set_shutdown_handler( proc, proc_shutdown );
  ...
 
}

Shutdown handlers are called when the graph stops if (and only if) the init handler for that process was called
(regardless of its returned status). This means that, the only case in which the shutdown handler will not be
called is when the init handler is not even called because a previous process failed to initialize.

Input Handlers

Operator input is given to the handler bound to the port that received the data. Port handlers are set per
process instead of per operator. The handlers allow you to change the behavior of a process depending on its
configuration properties. This means that, your operator can have different "modes" without having to check
which one was set at every input.

An input port will be blocked while its handler is still running on the last piece of data it received. Therefore,
the handler of a given port will never be called multiple times simultaneously, but rather sequentially for
every consecutive piece of data. On the other hand, handlers for different ports may be called simultaneously
depending on when each port received the input.

One port may not have multiple handlers. Calling v2_process_set_port_handler on an already bound port
will replace the existing handler. This call can be useful to change the behavior of the process at runtime.

Timers

Timed handlers are a way of executing logic repeatedly without having to wait for the input on a
port. They are completely independent from input ports and may, if desired, produce output. Use
v2_process_add_timed_handler to register a timer.

Timed handlers are the only ones that may be registered multiple times, as they behave independently from
one another, calling the provided callback function at every period.

244 PUBLIC
Modeling Guide

Subengines



For example, you can use a timer in an operator whose purpose is to generate random numbers at a specific
interval:

// Timed handler
 
const char* gen_tick( v2_process_t proc )
{
  v2_datum_t datum = v2_datum_from_int64( rand() );
  v2_process_output( proc, "output", datum );
  v2_datum_release( datum );
  return NULL;
}
// Init handler
const char* gen_init( v2_process_t proc )
{
  ...
  v2_process_add_timed_handler(
    proc,
    "gen",     // Name to be used in the logs to tell handlers apart
    gen_tick,  // Handler function
    0,         // Repeat count (zero for unlimited)
    1000       // Interval (ms)
  );
  ...
 
}

16.1.7  API Reference

Use the C++ API to create operators and to work with the SAP Data Intelligence subengine.

Required header files to work with the C++ subengine:

• log.h
• subengine.h

Related Information

log.h [page 245]
subengine.h [page 246]

16.1.7.1  log.h

Declares and implements convenience wrappers for logging.

In one of your source files, add

 Source Code

#define V2_LOG_IMPLEMENTATION
 
#include "v2/log.h"
 

Modeling Guide
Subengines PUBLIC 245



#undef V2_LOG_IMPLEMENTATION

 Remember
Always add the code block in only one of your source files.

This helps to compile the code with not only their declarations, but with also the definition of these functions.
Everywhere else in your code, when log.h is included without the macro, it brings over the declarations only.

We recommend adding the code in only one of your source file, because it includes variadic functions that
cannot be implemented within the engine for consumption from another binary. If you add them in more than
one file, the executable would make assumptions about the implementation (for plugin) of variadic arguments
that may not hold for different compiler vendors and versions.

 Tip
If you do not prefer to use the convenience functions, and if you want to call only the _string-
suffixed ones declared in the subengine.h header file, then it is not required to define the
V2_LOG_IMPLEMENTATION macro or to include log.h.

Formatted Logging

The following are convenience functions to send sprintf-formatted strings to the engine log.

• void v2_log_info (const char *fmt,...)

• void v2_log_debug (const char *fmt,...)

• void v2_log_warning (const char *fmt,...)

• void v2_log_error (const char *fmt,...)

• void v2_log_fatal (const char *fmt,...)

16.1.7.2  subengine.h

Establishes the core set of functions for the subengine interface.

Macros

#define V2_TYPE_ARRAY 0x0B

#define V2_TYPE_BLOB 0x03

#define V2_TYPE_BOOL 0x08

#define V2_TYPE_CUSTOM 0x07

#define V2_TYPE_DOUBLE 0x02

246 PUBLIC
Modeling Guide

Subengines



#define V2_TYPE_INT64 0x01

#define V2_TYPE_MAP 0x0A

#define V2_TYPE_MESSAGE 0x05

#define V2_TYPE_NULL 0x09

#define V2_TYPE_STRING 0x00

#define V2_TYPE_UINT64 0x04

Typedef

Typedef Description

typedef void* v2_context_t Handle to the internal data that the engine may need to relay from the init()
function to some other with the help from the plugin .

typedef struct v2_datum*

v2_datum_t

Handle to a piece of data exchanged between two ports.

 Note
A datum can hold any of the types known to the engine or a pointer to a
user-defined type. In the latter, the datum should not cross the subengine
boundaries, as there is no guarantee that other subengines or the main
engine will recognize this type.

typedef void* v2_map_t Handle to a JSON-like object, which is a mapping of const char* keys to
v2_value_t.

typedef void* v2_message_t Handle to a message, when the data type transferred between ports of type
"message".

typedef void* v2_process_t Handle to a process (a running instance of an operator), which is created inter-
nally by the engine and supplied to the plugin in a call to the init handler of the
operator.

typedef void* v2_value_t Handle to a JSON-like value.

This can contain one of the following:

• string (const char*)

• integer (int64_t)

• decimal (double)

• byte (char)

• null (see v2_value_is_null())

• object (v2_map_t)

• array (v2_array_t)

Modeling Guide
Subengines PUBLIC 247



Functions

• V2_EXPORT v2_datum_t v2_datum_acquire (v2_datum_t datum)

Use:
Notifies that a new handle to datum is being held, incrementing its (handle) internal reference counter.
Description:
If datum were an std::shared_ptr, this function would be analogous to the copy constructor.
Returns
datum

 Note
Every call to acquire must be paired with a call to release. If it is not paired, the memory for the datum
will be leaked.

• V2_EXPORT v2_datum_t v2_datum_copy (v2_datum_t datum)

Use:
Creates a new datum that contains a copy of the value of the datum.
Description:
If datum contains a string, blob, or message, a deep copy will be made and the resulting datum will own
this copy.
If datum contains custom data, this function will raise an error. To make a copy of a custom type:

void* ptr = v2_datum_get_custom( my_datum );
 
void* ptr_copy = copy_my_type( (my_type*)ptr );
 
v2_datum_t my_datum_copy = v2_datum_own_custom( ptr_copy, free_my_type );

Here, it is assumed that copy_my_type allocates a new my_type value that can later be deallocated with
free_my_type.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_blob (void * buf, uint64_t size )

Use:
Creates a nonowning datum that refers to an existing blob.
Description:
The blob will not be copied and will not be deallocated when the datum is destroyed.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_byte (char b)

Use:
Creates a datum containing a byte.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

248 PUBLIC
Modeling Guide

Subengines



• V2_EXPORT v2_datum_t v2_datum_from_custom (void * ptr)

Use:
Creates a nonowning datum that refers to a user-defined area in the memory.
Description:
The contents of this area will not be copied and the area will not be deallocated when the datum is
destroyed.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_double (double d)

Use:
Creates a datum containing a double.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_int64 (int64_t i)

Use:
Creates a datum containing an int64_t.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_message (v2_message_t message)

Use:
Creates a nonowning datum that refers to an existing message.
Description:
The message will not be copied and will not be deallocated when the datum is destroyed.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_from_string (char * s, uint64_t size)

Use:
Creates a nonowning datum that refers to an existing string.
Description:
The string will not be copied and it will not be deallocated when the datum is destroyed.
Parameters
[in] s: pointer to the start of the string
[in] size: the size of the string in bytes, excluding the terminating null byte

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

Modeling Guide
Subengines PUBLIC 249



• V2_EXPORT v2_datum_t v2_datum_from_uint64 (uint64_t u)

Use:
Creates a datum containing a uint64_t.

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT void* v2_datum_get_blob (v2_datum_t datum)

Use:
Returns datum as a blob.
Description:
This function will not check if the contained data is a blob (see, v2_datum_get_type()). Also, you can use
v2_datum_get_size() to get the size of the blob.

• V2_EXPORT char* v2_datum_get_byte (v2_datum_t datum)

Use:
Returns datum as a byte.
Description:
This function will not check if the contained data is a byte (see, v2_datum_get_type()).

• V2_EXPORT void* v2_datum_get_custom (v2_datum_t datum)

Use:
Returns datum as custom data.
Description:
This function will not check if the contained data is a custom pointer (see, v2_datum_get_type()).

• V2_EXPORT double* v2_datum_get_double (v2_datum_t datum)

Use:
Returns datum as a double.
Description:
This function will not check if the contained data is a double (see, v2_datum_get_type()).

• V2_EXPORT int64_t* v2_datum_get_int64 (v2_datum_t datum)

Use:
Returns datum as an int64_t.
Description:
This function will not check if the contained data is an int64_t (see, v2_datum_get_type()).

• V2_EXPORT v2_message_t v2_datum_get_message (v2_datum_t datum)

Use:
Returns datum as a message.
Description:
This function will not check if the contained data is a message (see, v2_datum_get_type()).

• V2_EXPORT uint64_t v2_datum_get_size (v2_datum_t datum)

Use:
Returns the size in bytes of the data held by the datum.
Description:
The return value for each contained type is:
• V2_TYPE_STRING: the length of the string in bytes, excluding the terminating null byte.
• V2_TYPE_INT64: 8
• V2_TYPE_DOUBLE: 8
• V2_TYPE_BLOB: the size of the blob in bytes.

250 PUBLIC
Modeling Guide

Subengines



• V2_TYPE_UINT64: 8
• V2_TYPE_MESSAGE: 0 (only known when the message is serialized)
• V2_TYPE_BYTE: 1
• V2_TYPE_CUSTOM: 0 (not known by the engine)

• V2_EXPORT char* v2_datum_get_string (v2_datum_t datum)

Use:
Returns datum as a null-terminated string.
Description:
This function will not check if the contained data is a string (see, v2_datum_get_type()). Also, you can
use v2_datum_get_size() to get the size of the string (not including the terminating null byte).

• V2_EXPORT v2_type_t v2_datum_get_type (v2_datum_t datum)

Use:
Returns a v2_type_t constant that describes the type held by datum.
Description:
The possible values are:
• V2_TYPE_STRING

• V2_TYPE_INT64

• V2_TYPE_DOUBLE

• V2_TYPE_BLOB

• V2_TYPE_UINT64

• V2_TYPE_MESSAGE

• V2_TYPE_BYTE

• V2_TYPE_CUSTOM

• V2_EXPORT uint64_t* v2_datum_get_uint64 (v2_datum_t datum)

Use:
Returns datum as a uint64_t.
Description:
This function will not check if the contained data is a uint64_t (see, v2_datum_get_type()).

• V2_EXPORT v2_datum_t v2_datum_own_blob (void * buf, uint64_t size,

v2_destructor_t destructor)

Use:
Creates a datum that takes ownership of an existing blob.
Description:
The blob is not copied, and it will be deallocated when the data is destroyed by calling destructor(s).

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_own_custom (void * ptr, v2_destructor_t

destructor)

Use:
Creates a datum that takes ownership of a user-defined area in the memory.
Description:
The contents of this area will not be copied, and the area will be deallocated when the data is destroyed by
calling destructor(s).

Modeling Guide
Subengines PUBLIC 251



 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_own_message (v2_message_t message)

Use:
Creates a datum that takes ownership of an existing message.
Description:
The message will not be copied, and the message will be deallocated when the data is destroyed by calling
destructor(s).

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT v2_datum_t v2_datum_own_string (char * s, uint64_t size,

v2_destructor_t destructor)

Use:
Creates a datum that takes ownership of an existing string.
Description:
The string will not be copied, and the string will be deallocated when the data is destroyed by calling
destructor(s).

 Remember
Release the returned datum (even if it was outputted) once you are done with it. See,
v2_datum_release().

• V2_EXPORT void v2_datum_release (v2_datum_t datum)

Use:
Notifies that the handle datum is being released.
Description:
After this call, it cannot be guaranteed that the actual data underlying the handle will be available.
Therefore, you should no longer use datum. If datum were an std::shared_ptr, this function would
be analogous to the destructor.

 Note
Every call to v2_datum_acquire, v2_datum_from_*, v2_datum_own_*, or v2_datum_copy
must be paired with a call to release, if not the memory for the datum will be leaked. If you output
such a datum before releasing, the engine will ensure that it survives the call to release and that the
downstream operators have access to it.

• V2_EXPORT void v2_log_debug_string (const char * str)

Use:
Logs the debug information.
Description:
If either the main engine was run in debug mode, or if the subengine was forced into debug mode by the
run.sh script, then this debug information will show up in the output of the main engine,

• V2_EXPORT void v2_log_fatal_string (const char * str)

252 PUBLIC
Modeling Guide

Subengines



Use:
Logs a string as a fatal error that will cause the main engine to terminate the subengine, its graph, and
processes.

• V2_EXPORT void v2_message_destroy (v2_message_t msg)

Use:
Frees the memory associated with a message.
Description:
Call this function only if you obtained the message using v2_message_create().

• V2_EXPORT v2_value_t v2_message_get_attribute (v2_message_t msg, const char *

key)

Use:
Returns the value associated to a message attribute.
Description:
This is a convenience for v2_map_find( v2_message_get_attributes( msg ), key ).

• V2_EXPORT void v2_message_set_body (v2_message_t msg, v2_datum_t body)

Use:
Sets the message body by releasing the previous one (if any) and by calling
v2_datum_acquire( body ).

• V2_EXPORT void v2_operator_add_input (v2_operator_t op, const char * port_id,

const char * port_type)

Use:
Adds an input port called port_id to op.
Description:
port_type is a null-terminated string describing the type accepted by the port. The possible port types
are:
• "string"
• "blob"
• "int64"
• "uint64"
• "float64"
• "message"
• "byte"
• anything else will be regarded as a custom (user-defined) type, which can be conveyed between any

two operators, provided they are both implemented by the same subengine.
• V2_EXPORT void v2_operator_add_output (v2_operator_t op, const char * port_id,

const char * port_type)

Use:
Adds an output port called port_idop.
Description:
port_type will be treated as described in v2_operator_add_input().

• V2_EXPORT v2_array_t v2_operator_config_add_array (v2_operator_t op, const char

* key)

Use:
Creates and returns a JSON array configuration value named key to op.
Description:
You can modify the returned array to customize the initial value for this property.

Modeling Guide
Subengines PUBLIC 253



 Caution
The array may be relocated in memory in a subsequent call to v2_operator_config_add_*. Thus,
ensure you are modifying it immediately after obtaining it. Do not store the array for later use.

• V2_EXPORT v2_map_t v2_operator_config_add_map (v2_operator_t op, const char *

key)

Use:
Creates and returns a JSON object configuration value named key to op.
Description:
You can modify the returned map to customize the initial value for this property.

 Note
The map may be relocated in memory in a subsequent call to v2_operator_config_add_*. Thus,
ensure you are modifying it immediately after obtaining it. Do not store the array for later use.

• V2_EXPORT void v2_operator_config_add_string (v2_operator_t op, const char *

key, const char * default_value)

Use:
Adds a string configuration value named key to op.
Description:
default_value must be a null-terminated string containing the initial value for this property.

• V2_EXPORT v2_operator_t v2_operator_create (v2_context_t ctx, const char * id,

const char * name, v2_init_handler_t init)

Use:
Creates an operator.
Parameters
[in] ctx: the context handle supplied to the init() function
[in] id: the operator ID
[in] name: the operator name, which will be visible on the GUI
[in] init: the callback function that the engine will call when a process is instantiated from this
operator.
Description:
The init handler can (not necessarily in this order):
• Access configuration values: use the v2_process_get_config_* set of functions to get the actual

configuration values for your process. These values remain available throughout the lifetime of the
processes, but the init handler is usually the first (rarely) place where they are read.

• Set input handlers: if your operator has input ports, the process is expected to set a handler for
each of them (see, v2_process_set_port_handler()). It is not an error to leave a port unhandled,
provided it is never connected. It is also possible to conditionally set input handlers depending on the
configuration values.

 Note
Connected ports that are unhandled results in an error and cause the engine to stop.

• Set the shutdown handler: if your operator needs to clean up after running. This callback will be
invoked by the engine when the graph is stopped. This is also usually the place to release resources
acquired in the init handler.

• V2_EXPORT void v2_operator_set_visibility (v2_operator_t op, int visible)

254 PUBLIC
Modeling Guide

Subengines



Use:
Sets whether or not op should be visible.
Description:
Visible components have their JSON descriptions automatically generated by the subengine so that they
show up on the user interface.

• V2_EXPORT void v2_process_add_timed_handler (v2_process_t proc, const char *

name, v2_timed_handler_t handler, uint64_t repeat, uint64_t interval_ms)

Use:
Adds a timed handler.
Parameters
[in] proc

[in] name: an optional name for the handler (for clearer logging). It can be NULL or empty too. It does
not have to be unique.
[in] handler: the callback function
[in] repeat: the number of times the handler is to be called, or zero for unlimited (as long as the graph
is running).
[in] interval_ms the period in milliseconds for the timer

• V2_EXPORT double v2_process_config_get_double (v2_process_t proc, const char *

key)

Use:
Returns the final value for a double configuration property.

 Note
Properties originally declared with v2_operator_config_add_int64() can also be retrieved using
this function. It automatically converts the integer to double.

• V2_EXPORT v2_bool_t v2_process_config_is_null (v2_process_t proc, const char *

key)

Use:
Returns whether the final value for a configuration property is the JSON keyword null.

• V2_EXPORT const char* v2_process_get_id (v2_process_t proc)

Use:
Returns the process ID, which uniquely identifies it in the graph.

 Remember
This is not the same as the operator ID.

• V2_EXPORT void v2_process_output (v2_process_t proc, const char * port_id,

v2_datum_t data)

Use:
Sends output to a port.
Description:
This call will block until the destination (the process downstream) is ready to consume.

• V2_EXPORT void v2_process_set_port_handler (v2_process_t proc, const char *

port_id, v2_port_handler_t handler)

Use:
Sets a callback function to be invoked when the input port named port_id receives data.

Modeling Guide
Subengines PUBLIC 255



Description:
Calls to handler will be made sequentially, never concurrently. Successive calls to this function replace
the currently set handler.

• V2_EXPORT void v2_process_set_user_data (v2_process_t proc, void * data)

Use:
Stores a user-supplied pointer.
Description:
This function is useful if you need each instance of an operator to carry some individual information (for
example, a file descriptor, a connection object, and so on). The initial value is NULL.

• V2_EXPORT v2_array_t v2_value_get_array (v2_value_t v)

Use:
Returns the array contained in v.
Description:
If v does not contain an array, it will raise an error.

• V2_EXPORT v2_bool_t v2_value_get_bool (v2_value_t v)

Use:
Returns the boolean contained in v.
Description:
If v does not contain a boolean, it will raise an error.

• V2_EXPORT double v2_value_get_double (v2_value_t v)

Use:
Returns the decimal contained in v.
Description:
If v does not contain a decimal, it will raise an error.

• V2_EXPORT int64_t v2_value_get_int64 (v2_value_t v)

Use:
Returns the integer contained in v.
Description:
If v does not contain an integer, it will raise an error.

• V2_EXPORT v2_map_t v2_value_get_map (v2_value_t v)

Use:
Returns the object contained in v.
Description:
If v does not contain an object, it will raise an error.

• V2_EXPORT const char* v2_value_get_string (v2_value_t v)

Use:
Returns the string contained in v.
Description:
If v does not contain a string, it will raise an error.

• V2_EXPORT v2_type_t v2_value_get_type (v2_value_t v)

Use:
Returns the type contained in a JSON value.
Description:
The possible values are:
• V2_TYPE_STRING

• V2_TYPE_INT64

• V2_TYPE_DOUBLE

• V2_TYPE_BOOL

256 PUBLIC
Modeling Guide

Subengines



• V2_TYPE_NULL

• V2_TYPE_MAP

• V2_TYPE_ARRAY

16.2 Create Operators with the Python Subengine

Create operators in Python using the Python subengine, and use them to build graphs in the SAP Data
Intelligence Modeler.

When you run a graph in the Modeler, the main engine that coordinates all subengines breaks the graph into
large subgraphs. The advantage is that every operator in the same subgraph is run by the same subengine. The
main engine then starts a subengine process for each subgraph.

 Note
Python 2.7 is deprecated as of SAP Data Intelligence 1911. Currently, SAP Data Intelligence supports
only Python 3.9. You can no longer create new operators based on Python 2.7. Port any existing custom
operators based on Python 2.7 to Python 3.9.

 Note
When you create a new dockerfile to use in graphs that have Python operators, at minimum you must
associate the following tags with the dockerfile: 'tornado': '6.1.0', 'sles': '' and 'python':
'3.9'. Make sure that the resources are installed on the dockerfile.

Data Type Mapping

The following table shows the data type mapping between the Modeler and the Python subengine.

Modeler Data Type Python Subengine Data Type

string str

blob bytes

int64 int

uint64 int

float64 float

byte int

message Message

Modeling Guide
Subengines PUBLIC 257



Modeler Data Type Python Subengine Data Type

[ ]x

Replace the letter x with any of the allowed data types,
excluding message. For example, [ ]string, [ ]uint64, [ ]blob,
and so on.

list

If you create operators that receive or send data types that have no direct mapping to Modeler data types, you
must create ports with type python 3.9.

 Example
You can connect many Python 3 operators in a graph, all of which have in ports and out ports of type
python 3.9.

Operators created with ports of type python 3.9 can communicate with any Python object, including
objects with no corresponding Modeler type, such as set, numpy arrays, and so on. There's one exception:
Subengine-specific types can't cross the boundary between two Modeler groups. However, if you place your
Python-specific object inside the body of a message, then the body is correctly serialized and deserialized with
pickle (a Python module) when crossing the boundary between two groups.

 Note
The behavior of serialization of the body with pickle is specific to the Python subengine; don't expect it to
work with other subengines.

Create the message type using the format Message(body, attributes), where:

• body can be any object.
• attributes is a dictionary-mapping string to any object.

If m is an object of type message, then you can use the commands m.body and m.attributes to access the
fields initialized in the class constructor. The attributes argument is optional in the message constructor. If
you want an empty attributes string, you can construct your message using the format Message(body).

SAP recommends that you don't use a message inside the body of another message. Instead, use a dictionary
inside the body of a message. The dictionary must have the keys "Body" and "Attributes". Using a message
object as the body of another message can result in unexpected behavior when you transfer the message
across the boundary of different subengines.

 Example
The inner message can be converted automatically to a dictionary when crossing the boundaries of
different subengines, but it isn't converted back to a message when coming back to your operator's
subengine.

Therefore, SAP recommends to always prefer dictionaries over messages inside the body of a message,
because it won't change type during the communication.

# DO NOT DO THE FOLLOWING:
 
inner_msg = Message("body_of_inner_msg")
 
outer_msg = Message(body=inner_msg, attributes={})

258 PUBLIC
Modeling Guide

Subengines



# If you want to have a message as the body of another message, do this instead:
 
inner_msg = {"body": "body_of_inner_msg"}
 
outer_msg = Message(inner_msg)

Methods to Create Python Operators

Use one of the following two methods to create your own Python operators:

• Normal usage: To create normal Python subengines, use only the Modeler user interface.
• Advanced usage: To create new Python operators, use the advanced method, which shows you how to

use your own machine and then upload the new operators to SAP Data Intelligence. The advanced usage
method of creating operators is useful when you want to code in your own IDE and create unit tests for
your operators.

Related Information

Normal Usage [page 259]
Advanced Usage [page 261]

16.2.1  Normal Usage

If you want to create simple scripts quickly, we recommend that you customize the behavior of operators using
the SAP Data Intelligence Modeler user interface.

There are two ways to customize the behavior of a Python3 Operator:

• Drag the Python3 Operator to the graph canvas and edit the script of the operator by right-clicking on it
and clicking the open script option.

• Create a new operator in the Repository tab and select Python3 Operator as the base operator to be
extended.

The advantage of the second approach is that you can reuse your new operator across many graphs, while in
the first approach, the edited script is specific to the given graph and operator instance.

To create a new operator in the Repository tab using the Python3 Operator:

1. Open the Repository tab and expand the Operators section.
2. To create an operator, right-click the appropriate Operators subfolder, and select Create Operator.
3. In the dialog, enter the operator name, display name, and base operator and choose Python3 Operator as

the base operator.
4. In the operator editor view, you can create input ports, output ports, tags, and configuration parameters,

and write your script.

Modeling Guide
Subengines PUBLIC 259



Related Information

Using Python Libraries [page 260]

16.2.1.1  Using Python Libraries

To make Python libraries available to your operator, you can add tags to it so that upon graph execution, the
appropriate docker image can be chosen.

You can create or extend dockerfiles through the user interface and add tags to associate it with an operator.
The following example details the necessary steps.

Suppose that you want to use the numpy library (version 1.16.1) on your custom Python operator.

First, create a new dockerfile:

1. Open the Repository tab and select a subfolder.
2. Right-click the subfolder and select Create Docker File.
3. Provide a name and choose OK.

There are many ways to create a dockerfile that contains Python and the numpy library. For example,
you can enter FROM <public_numpy_docker_image> in the first line. If you use a public image, make
sure that it also contains the requirements to run the Python subengine, which are: tornado==6.1.0 and
python3.9. The tag key-value pairs for the requirements are: 'tornado': '6.1.0' and 'python39':
''.
Alternatively, you can inherit from the default Modeler python3 dockerfile and add numpy to it. In this way,
all of the requirements for the standard Python3 Operator are already satisfied. The following dockerfile
shows one way that you can accomplish this:

FROM $com.sap.sles.base
  
RUN python3.9 -m pip install --user numpy="1.16.1"

4. After you write the dockerfile content, add tags on the configuration panel for every relevant resource that
this dockerfile offers, in addition to the tags from its parent dockerfile. That is, you don't need to repeat the
tags that the parent dockerfile already has. For example, the numpy for python3 dockerfile needs only the
following tag numpy39: 1.16.1.

 Note
Make sure you are installing the library for the right version of Python, which is 3.9. Notice that we
added the suffix `36` to the numpy tag to reflect the Python version where they were installed. This
can be useful if, in the future, we create a new subengine that uses a different python version.

5. The final step is to add the new tag to your operator in the operator editor view. Add the tag "numpy39":
"1.16.1" to your Python operator. Alternatively, you can also add tags to a group defined on the graph.

For more information, see Python3 Operator documentation.

260 PUBLIC
Modeling Guide

Subengines

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/021180336add475bbd712b0ce5d393c1.html


Related Information

Creating Dockerfiles [page 291]

16.2.2  Advanced Usage

You can create operators without using the Modeler user interface.

 Note
This method of creating operators requires that you restart the Modeler instance for the changes to take
effect.

The following example assumes that you use a UNIX-like system to develop your operators. To run tests, you
must download the pysix_subengine package on your local machine.

To download the pysix_subengine package, follow these steps:

1. Log in to SAP Data Intelligence System Management as an administrator.
2. Click the File button.
3. Click the Union View button.
4. Navigate to files/vflow/subdevkits on the file explorer.
5. Right-click the pysix_subengine folder and select Export File.

To create Python 3.9 operators, you must structure your solution (a package that can be imported by SAP Data
Intelligence System Management) as follows:

my_solution/ 
 
    vrep/vflow/
        subengines/com/sap/python3.9/operators/ 
            myOperator1/
                operator.py
                operator.json
            com/
                mydomain/
                    myOperator2/
                        operator.py
                        operator.json
 
    vsolution.json

The vsolution.json file should look like the following:

{
 
    "name": "vsolution_vflow_my_solution",
    "description": "My Solution",
    "license": "my license"
 
} 

 Note
Python 2.7 is deprecated as of SAP Data Intelligence 1911; only Python 3.9 is now supported. The creation
of new operators based on Python 2.7 is now disabled. Any existing custom operators based on Python 2.7
should be ported to Python 3.9.

Modeling Guide
Subengines PUBLIC 261



Define the Operator Attributes and Behavior

The operator.py script defines both the operator attributes and the operator behavior.

 Note
The script must be called operator.py.

The following is example code in the operator.py file:

from pysix_subengine.base_operator import PortInfo, OperatorInfo
 
from pysix_subengine.base_operator import BaseOperator
# The operator class name (which inherits BaseOperator) should have the same 
name as
# the operator's folder, except that its first letter should be uppercase.
class AppendString(BaseOperator):
    def __init__(self, inst_id, op_id):
        super(AppendString, self).__init__(inst_id=inst_id, op_id=op_id)
        # Default configuration fields. They will be shown in the UI.
        self.config.stringToAppend = ""
        self.config.method = "NORMAL"
        # Adds a callback '_data_in' that is called every time the
        # operator receives data in the inport 'inString'.
        self._set_port_callback('inString', self._data_in)
        self.__transform_data = None
    # This method is mandatory.
    # The operator.json will be generated based mostly on the OperatorInfo 
returned by this method.
    def _get_operator_info(self):
        inports = [PortInfo("inString", required=True, type_="string")]
        outports = [PortInfo("outString", required=True, type_="string")]
        return OperatorInfo("Append String",
                            inports=inports,
                            outports=outports,
                            icon="puzzle-piece",
                            tags={"numpy36": "1.16.1"}
                            dollar_type="http://sap.com/vflow/
com.mydomain.appendString.schema.json#")
    def _set_websocket(self, handler):
        self.web_handler = handler
        self.web_handler.set_message_callback(self._on_message)
    def _on_message(self, message):
        self.web_handler.write_message(str(message))
        self._send_message("outString", message)
    def _data_in(self, data):
        self.metric.include_value(1)
        self._send_message('outString', self.__transform_data(data + 
self.config.stringToAppend))
    # Configs set in the UI are already available when this method is called.
    # _init is called before any operator main loop has started.
    def _init(self):
        metric_infos = []
        metric_infos.append(self._registry.create_metric_info(u'count', 1, 
u'name', u'display_name', u'unit'))
        self.metric = self.register_metric(u"int", u"TEST", metric_infos)
        self.register_websocket_route('/socket', 'test', self._set_websocket)
        self.register_static_route('/ui', 'static')
        self.register_rproxy_route('/rproxy/*path', 'http://localhost:' + 
str(self.config.port) + '/')
       
        if self.config.method == "NORMAL":
            self.__transform_data = lambda x: x
        elif self.config.method == "UPPERCASE":
            self.__transform_data = lambda x: x.upper()
        else:

262 PUBLIC
Modeling Guide

Subengines



            raise ValueError("Unknown config set in configuration: '%s'." % 
self.config.method)
    # Called before the operator's main loop execution.
    # Other operators may already have started execution.
    def _prestart(self):
        pass
    # Called when the graph is being terminated.
    def shutdown(self):
 
        pass

Let's examine the script step-by-step. First, look at the class definition:

class AppendString(BaseOperator):

As you can see, the AppendString class extends the built-in BaseOperator class.

 Note
The class name must have the same name as the folder, except the first letter must be uppercase, while
the folder's first letter is lowercase. For example, if the folder is named appendString, the class should be
named AppendString.

Now let's examine each of the methods:

def __init__(self, inst_id, op_id):
 
    super(AppendString, self).__init__(inst_id=inst_id, op_id=op_id)
    # Default configuration fields. They will be shown in the UI.
    self.config.stringToAppend = ""
    self.config.method = "NORMAL"
    # Adds a callback '_data_in' that is called every time the
    # operator receives data in the inport 'inString'.
    self._set_port_callback('inString', self._data_in)
 
    self.__transform_data = None

This method is the class constructor. First it calls super(AppendString,
self).__init__(inst_id=inst_id, op_id=op_id).

In the next line, the method creates two new configuration fields called stringToAppend and method, and the
default values "" and "NORMAL" are assigned to it, respectively. All configuration fields that you create appear
in the user interface and are configurable by the user. You can always access these values in the script, as we
will do soon.

Next, we set a callback called _data_in, which is called every time the operator receives data in the inport
inString. To set the callback, use the method _set_port_callback defined by the BaseOperator class.

def _get_operator_info(self):
 
    inports = [PortInfo("inString", required=True, type_="string")]
    outports = [PortInfo("outString", required=True, type_="string")]
    return OperatorInfo("Append String",
                        inports=inports,
                        outports=outports,
                        icon="puzzle-piece",
                        tags={"numpy36": "1.16.1"}
 
                        dollar_type="http://sap.com/vflow/
com.mydomain.appendString.schema.json#")

All of the operators that you create in this way must always implement the _get_operator_info method.
The _get_operator_info method is used to generate the operator json automatically, so you must specify

Modeling Guide
Subengines PUBLIC 263



the operator attributes here. To specify the operator attributes, the method must return an OperatorInfo
object. The OperatorInfo object has the following attributes:

class OperatorInfo(object):
 
    """
    Attributes:
        description (str): Human readable name of the operator.
        icon (str): Icon name in font-awesome.
        iconsrc (str): Path to a icon image. Alternative to the option to a icon 
from font-awesome.
        inports (list[PortInfo]): List of input ports.
        outports (list[PortInfo]): List of output ports.
        tags (dict[str,str]): Tags for dependencies. dict[library_name, 
lib_version].
        component (str): This field will be set automatically.
        config (dict[string,any]): This field will be set automatically.
        dollar_type (str): Url to $type schema.json for this operator.
 
    """

You can specify all of the attributes using the get_operator_info method. In the example, we specify an
input port called inString that receives a string, an output port called outString that also receives a string, the
built-in icon puzzle-piece as the operator's icon, and Append String as operator description.The inString port
name is used in the constructor to set the correct callback to the port.

def _init(self):
 
     metric_infos = []
    metric_infos.append(self._registry.create_metric_info(u'count', 1, u'name', 
u'display_name', u'unit'))
    self.metric = self.register_metric(u"int", u"TEST", metric_infos)
    self.register_websocket_route('/socket', 'test', self._set_websocket)
    self.register_static_route('/ui', 'static')
    self.register_rproxy_route('/rproxy/*path', 'http://localhost:' + 
str(self.config.port) + '/')
    
    if self.config.method == "NORMAL":
        self.__transform_data = lambda x: x
    elif self.config.method == "UPPERCASE":
        self.__transform_data = lambda x: x.upper()
    else:
 
        raise ValueError("Unknown config set in configuration: '%s'." % 
self.config.method)

The method is overridden by the BaseOperator superclass. The method is called after the user-
defined configurations have already been set. The method is called for all graph operators before any
operator has been started. Here, we are deciding which transform_data function to use based on
the self.config.method parameter set by the user in the interface. In this method, the user can
register metrics (`register_metric`) and routes (`register_websocket_route`, `register_static_route` and
`register_rproxy_route`). It is only possible to register these functionalities using the following function:

def _data_in(self, data):
  
                 self.metric.include_value(1)
  
                 self._send_message('outString', self.__transform_data(data + 
self.config.stringToAppend))

The function is the callback that we create to handle inputs to the inString input port. Here, we append the
input data with our stringToAppend configuration field, apply the function to it, and use the BaseOperator
_send_message method to send the result to our output port outString. In addition, we set a new value in

264 PUBLIC
Modeling Guide

Subengines



the self.metric value, because the only MetricInfo is of type cound, we update the counter of processed
strings.

def _set_websocket(self, handler):
 
 self.web_handler = handler
 self.web_handler.set_message_callback(self._on_message)
def _on_message(self, message):
 self.web_handler.write_message(str(message))
 self._send_message("outString", message)
 

The method is overridden by the BaseOperator superclass. It contains code that is executed before the
operator main loop is started:

def _prestart(self):
  
    pass

The method is overridden by the BaseOperator superclass. It contains code that is executed after the
operator main loop is finished:

def shutdown(self):
  
    pass

A list of all methods is available at List of BaseOperator Methods [page 268].

Create an Operator

After you implement the operator.py file to define the operator, run a bash script to create the operator.

To create an operator, create a folder (or a series of folders) inside the <ROOT>/subengines/com/sap/
python36/operators/ directory, where <ROOT> is my_solution/vrep/vflow in the example structure.
For example, to create an operator with the ID com.mydomain.util.appendString, create the folders for
the path <ROOT>/subengines/com/sap/python36/operators/com/mydomain/util/appendString
and place two files inside the last directory: operator.py and operator.json. To automatically generate the
operator.json file, run the script gen_operator_jsons.py, which is located inside the pysix_subengine
package.

The following bash script shows how you can use gen_operator_jsons.py in your solution:

SCRIPT_PATH=<PYSIX_SUBENGINE_PATH>/scripts
 
SUBENGINE_ROOT=<ROOT>/subengines/com/sap/python36
START_DIR=operators
 
python $SCRIPT_PATH/gen_operator_jsons.py --subengine-root $SUBENGINE_ROOT --
start-dir $START_DIR "$@"

After you create an operator, restart the Modeler instance for the changes to take effect.

Related Information

Using Python Library [page 266]
Adding Documentation [page 266]

Modeling Guide
Subengines PUBLIC 265



Creating Tests [page 267]
List of BaseOperator Methods [page 268]
List of BaseOperator Attributes [page 270]
List of Metric Methods [page 271]
Logging [page 271]
Uploading to SAP Data Intelligence System Management [page 272]

16.2.2.1  Using Python Library

Create a dockerfile as specified in the Using Python Library sub-section in the Normal Usage section and add
the relevant tags to the _get_operator_info method of BaseOperator.

Related Information

Using Python Libraries [page 260]

16.2.2.2  Adding Documentation

Create the operator documentation in a file named README.md in the operator's folder. For example, to create
the documentation for the dummy operator AppendString, create a new README.md file in the following path:

{ROOT}/subengines/com/sap/python36/operators/com/mydomain/util/appendString/
README.md

The documentation is written using Markdown syntax (more information here ). You can check the result by
right-clicking your operator and choosing Open Documentation, in the SAP Data Intelligence Modeler UI.

To add a custom icon for your operator, copy the icon to the operator's folder; for example:

{ROOT}/subengines/com/sap/python36/operators/com/mydomain/util/appendString/
icon.png

Then, make sure that your _get_operator_info method sets the icon.png file (or another file) as the
iconsrc field, as shown in the following example:

def _get_operator_info(self):
 
        ...
        return OperatorInfo(...,
                            iconsrc="icon.png",
 
                            ...)

Last, you must regenerate the operator's json.

266 PUBLIC
Modeling Guide

Subengines

http://help.sap.com/disclaimer?site=https%3A%2F%2Fguides.github.com%2Ffeatures%2Fmastering-markdown%2F


16.2.2.3  Creating Tests

When you create a new operator extending BaseOperator, you can also create unit tests using the Python unit
testing framework.

We recommend that you create a folder called test in your project root (parallel with the folder "my_solution"
in our sample hierarchy) and in it, use the same folder structure that you used when creating the operator. For
example, for the operator appendString, we create the following folders:

test/operators/com/mydomain/util/appendString/

Create a file named test_append_string.py inside the appendString folder:

import unittest
 
from Queue import Queue
from operators.com.mydomain.appendString.operator import AppendString
class TestAppendString(unittest.TestCase):
    def testUpper(self):
        op = AppendString.new(inst_id="1", op_id="anything")
        qin1 = Queue(maxsize=1)
        op.inqs["inString"] = qin1
        qout1 = Queue(maxsize=1)
        op.outqs["outString"] = qout1
        input_config = "config_test"
        op.config.stringToAppend = input_config
        op.config.method = "UPPERCASE"
        op.base_init()  # This will execute the _init method and also other 
things.
        op.start()  # Start the operator's thread.
        try:
            input_str = "input_test|"
            qin1.put(input_str)  # Send data in the 'inString' input port.
            ret = qout1.get()  # Gets data from the 'outString' output port.
            self.assertEqual((input_str + input_config).upper(), ret)  # Verify 
that the output is equal to the expected result.
        finally:
 
            op.stop()  # stop the operator no matter what happens. Otherwise the 
test may hang forever.

To run unit tests for all Python files that start with the prefix "test", create a script such as the following:

PYSIX_PATH=<PYSIX_SUBENGINE_PATH>  # replace <PYSIX_SUBENGINE_PATH> by the path 
to your pysix_subengine folder.
 
SCRIPT_DIR=$(dirname "$0")
cd $SCRIPT_DIR  # changes working dir to the folder where the script is located 
(which should be the 'test' folder).
SUBENGINE_ROOT=$(realpath ../my_pysolution/vrep/vflow/subengines/com/sap/
python36)  # Gets absolute path of python36 folder.
export PYTHONPATH=$PYTHONPATH:$PYSIX_PATH:$SUBENGINE_ROOT  # Append paths to 
pythonpath.
python3.6 -m unittest discover -s . -p "test*.py" -v
 
cd -

Place the script in the test directory that you created.

To check the official documentation of the Python unit test module, see https://docs.python.org/2/library/
unittest.html .

Modeling Guide
Subengines PUBLIC 267

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.python.org%2F2%2Flibrary%2Funittest.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.python.org%2F2%2Flibrary%2Funittest.html


16.2.2.4  List of BaseOperator Methods
When subclassing BaseOperator, you will need to use a set of methods to set callbacks, send messages, etc.
The list below summarizes the BaseOperator methods you might need.

 Note
Each callback registered in the script runs in a different thread.

As the script developer, you should handle potential concurrency issues such as race conditions. You can,
for instance, use primitives from the Python threading module to get protected against those issues.

For more information, see the official documentation at python.org.

_get_operator_info(self)
This method should be overridden by a subclass. It should return the OperatorInfo
of this operator. OperatorInfo defines some key features of the operator such as port
names and other things.

Returns:

OperatorInfo

_init(self)
This method can be overridden by a subclass. This method will be called after the user
defined configurations have already been set. This method will be called for all graph's
operators before any operator has been started.

_prestart(self)
This method can be overridden by a subclass. It should contain code to be executed
before the operator's callbacks start being called. The code here should be non-
blocking. If it is blocking, the callbacks you have registered will never be called. You
are allowed to use the method self._send_message inself._prestart. However, bare in
mind that other operators will only receive this data sent when their _prestart have
already finished. This is because their callback will only be active after their _prestart
have finished

shutdown(self)
This method can be overridden by a subclass. It should contain code to be executed
after the operator's main loop is finished.

_send_message(self, port, message)
Puts an item into an output queue.

Args:

• port (str): name of output port
• message (...): item to be put

_set_port_callback(self, ports, callback)
This method associate input 'ports' to the 'callback'. The 'callback' will only be called
when there are messages available in all ports in 'ports'. If this method is called multiple
times for the same group of ports then the old 'callback' will be replaced by a new one.
Different ports group cannot overlap.

Args:

268 PUBLIC
Modeling Guide

Subengines

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.python.org%2F3%2Flibrary%2Fthreading.html


• ports (str|list[str]): input ports to be associated with the callback. 'ports' can be a
list of strings with the name of each port to be associated or a string if you want to
associate the callback just to a single port.

• callback (func[...]): a callback function with the same number of arguments as
elements in 'ports'. Also the arguments will passed to 'callback' in the same order
of their corresponding ports in the 'ports' list.

_remove_port_callback(self, callback)
Remove the 'callback' function. If it doesn't exist, the method will exit quietly.

Args:

• callback: Callback function to be removed.

_add_periodic_callback(self, callback, milliseconds=0)
Multiple distinct periodic callbacks can be added. If an already added callback is added
again, the period 'milliseconds' will be replaced by the new one. If you want two
callbacks with identical behavior to be run simultaneously then you will need to create
two different functions with identical body.

Args:

• callback (func): Callback function to be called every 'milliseconds'.
• milliseconds (int|float): Period in milliseconds between calls of 'callback'. When not

specified it is assumed that the period is zero.

_change_period(self, callback, milliseconds)
Args:

• callback (func): Callback for which the period will be changed. If callback is not
present on the registry, nothing will happen.

• milliseconds (int\float): New period in milliseconds.

_remove_periodic_callback(self, callback)
Args:

• callback (func): Callback function to be removed.

register_metric(self, metric_type, name, metric_infos=[])
Register a new metric and its respective 'MetricInfo' (to create it check next section).

Args:

• name (str): It is the metric name defined in the operator (this should be a string
without spaces).

• metric_type (str): It defines the type of the updated value. They can be 'consumer',
'producer', 'float' or 'int'.
Consumer and producer aggregators are 'int' and already have the 'metric_infos'
field pre-configured, so these aggregators ignore it.

• metric_infos (list[MetricInfo]): It is the list of information to be presented about a
specific metric.
Returns:
• Metric: a metric instance which allows the operator to update its value.

create_metric_info(self, metric_type, scale, name, display_name, unit)

Modeling Guide
Subengines PUBLIC 269



This method is a helper function to create 'MetricInfo' in order to register metrics for
the operator.

Args:

• metric_type (str): It is the metric type and it can be: 'value', 'sum', 'max', 'min',
'count', 'avg', 'rate'.

• scale (int): It is an integer factor that multiplies all 'MetricInfo' output values.
• name (str): It is a metric name following the previous 'Name' pattern.
• display_name (str): The name displayed to the user (it should be friendlier).
• unit (str): It is a string with the metric unit. The following units are pre-configured

to scale up when necessary: 'Bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'Bytes/s', 'KB/s',
'MB/s', 'GB/s', 'TB/s' and 'PB/s'. For example, when a value of unit 'Bytes' reaches
'1024' it automatically becomes 'KB'.
Returns:
• MetricInfo

register_websocket_route(self, path, target, handler)

Args:

• path (str): operator complete url.
• target (str): target path to possible websocket connection to be used.
• handler (func[websocket_handler]): function that will be called with the websocket

handler as argument.

register_static_route(self, path, target)
Registers a new static route for the operator. This method only works as expected when
called during the operator initialization.

Args:

• path (str): path for the operator complete url.
• Registers a new websocket route for the operator. This method only workstarget

(str): target path to directory whose elements will be served.

register_rproxy_route(self, path, target)
Registers a new rproxy route for the operator. This method only works as expected
when called during the operator initialization.

Args:

• path (str): path from the operator complete url.
• target (str): target url.

16.2.2.5  List of BaseOperator Attributes

self._inst_id
Operator instance identifier in the graph.

self._op_id

270 PUBLIC
Modeling Guide

Subengines



Operator identifier. For example: com.sap.dataGenerator.

self._repo_root
Path to the modeler root directory.

self._subengine_root
Path to the dub-engine root directory.

self._graph_name
Graph identifier. For example: com.sap.dataGenerator.

self._graph_handle
Unique graph instance identifier.

self._group_id
Group at which the subgraph is being executed. If no graph is specified the default is:
default.

16.2.2.6  List of Metric Methods

include_value(self, value)
This method allows the user to update a metric value. Depending on the 'metric_info' of
that metric the update will be different.

Args:

• value (int\float): New metric value, the value type should follow 'metric_type'.

16.2.2.7  Logging

There are a set of built-in methods to enable logging in the Python subengine. The table below summarizes the
set of methods you can use to log information.

Subclassing BaseOperator Description

self.logger.info(str) Log with level INFO

self.logger.debug(str) Log with level DEBUG

self.logger.error(str) Log with level ERROR

self.logger.warning(str) Log with level WARNING

self.logger.fatal(str) Log with level FATAL (stops the graph)

self.logger.critical(str) Log with level CRITICAL (stops the graph)

Modeling Guide
Subengines PUBLIC 271



 Note
If you want to report an error and stop the graph from inside the operator code, raise an exception
instead of logging with the logger.fatal("") or logger.critical("") command. Using those will
have unintended consequences.

 Note
If you start a new thread inside your operator then you should capture your exceptions inside this thread
and use self._propagate_exception(e) function so that the main thread can handle it.

You can check all logs using SAP Data Intelligence Modeler's UI. To do that, you must click the Trace tab. You
can filter the logging messages by level or you can even search for a specific log. You can also download the
logging history as a CSV file.

You can also send the logging messages to SAP Data Intelligence Modeler's external log. To achieve that, open
Trace Publisher Settings, next to the search bar. Turn on Trace Streaming and configure the set of logging
messages you want to publish. For example, if you wanted to publish all logging messages which have level fatal
or error, you would have to change Trace Level to ERROR.

16.2.2.8  Uploading to SAP Data Intelligence System
Management

You can either upload your solution to the SAP Data Intelligence cluster as a new solution (need to be logged as
an admin) or you can upload your solution into your tenant or user workspace.

Related Information

Uploading Solution in System Management [page 272]
Uploading Solution in System Management to Tenant or User Workspace [page 273]

16.2.2.8.1  Uploading Solution in System Management

Procedure

1. First you need to compress your solution to a .tar.gz format: tar -czf my_pysolution.tar.gz -C
my_pysolution/ .

2. Log into SAP Data Intelligence System Management as Tenant Administrator.

272 PUBLIC
Modeling Guide

Subengines



3. Choose the Tenant tab on the horizontal bar at the top of the screen.

4. Click Solutions tab under Cluster Management and then the   (Add Solution) to create a new solution.
Give a name in the File name field and find the my_solution.tar.gz file in your system and click Open.

5. Add this new layer to an existing strategy or create a new one by clicking the Strategies tab.

If you create a new strategy you will need to associate it with a tenant in the Tenants tab.

Results

If you log into a user from the tenant that you just associated the strategy containing the new layer, you will be
able to see the operators from your solution when you launch a new SAP Data Intelligence Modeler instance or
when you restart an existing one.

16.2.2.8.2  Uploading Solution in System Management to
Tenant or User Workspace

Context

In this option you will upload your solution to the workspace of a given tenant or user in the SAP Data
Intelligence cluster. The downside of this option is that it cannot be reversed easily. In the first option you can
always remove a solution from a given strategy. On the other hand, in this option if some of the files in your
solution overwrote some existing files in the tenant or user workspace, this will not be able to be reversed.

Procedure

1. First you need to compress your solution to a .tar.gz format: tar -czf my_pysolution.tar.gz -C
my_pysolution/ .

2. Log into your user in SAP Data Intelligence System Management and click the File tab at the top of the
screen.

3. Make sure no folder is selected in the File window.
a. For the current user - Click on Import File > Import Solution File button on the My Workspace section.
b. For all users in your current tenant (only possible for the tenant admin) - Click on Import File > Import

Solution File button on the Tenant Workspace section
4. In the popup window, select your tar.gz file and your solution will then be uploaded to the selected

workspace.

Modeling Guide
Subengines PUBLIC 273



Results

You will be able to see the operators from your solution when you launch a new SAP Data Intelligence Modeler
instance or restart the application.

16.3 Working with the Node.js Subengine to Create
Operators

Use the Node.js subengine to code custom operators in a specified programming language to use in the SAP
Data Intelligence Modeler application.

The Node.js subengine runs Node.js operators with other operators designed for different platforms, like
Go, Python, and C++. The Node.js subengine runs individual operators or entire subgraphs. The more you
directly interconnect Node.js operators, the bigger the pure Node.js subgraph.

The Node.js subengine provides the following features:

• Use modern JavaScript, such as ECMAScript V6, to develop operators.
• Use the Node JavaScript runtime environment built on Google Chrome V8.
• Use your preferred language that can be compiled into JavaScript, such as TypeScript.
• Use your own requried set of third-party libraries.

Related Information

Node.js Operators and Operating System Processes [page 274]
Use Cases for the Node.js Subengine [page 275]
The Node.js Subengine SDK [page 276]
Node.js Data Types [page 279]
Node.js Safe and Unsafe Integer Data Types [page 279]
Create a Node.js Operator [page 280]
Node.js Project Structure [page 282]
Node.js Project Files and Resources [page 282]
Node.js Subengine Logging [page 285]

16.3.1  Node.js Operators and Operating System Processes

Every Node.js operator runs in its own operating system process, which allows the Node.js subengine to use
multicore CPUs and parallel system architectures.

Running Node.js operators in their own operating system provides isolation between Node.js operators for
enhanced security.

274 PUBLIC
Modeling Guide

Subengines



Node.js processes communicate by TCP socket-based IPC (interprocess communication), which is
coordinated by the Node.js subengine. In turn, the Node.js subengine runs in its own process. There's
one coordinating Node.js subengine process per subgraph that consists of only Node.js operators.

 Note
All multiplexers run directly in the Node.js subengine process, which reduces communication overhead.
Therefore, ensure that you set the Subengine to com.sap.node in the Node.js subgraph configuration
pane. Otherwise, the subgraph divides into two Node.js subgraphs with a multiplexer in between running
in Go or another subengine.

 Example
A subgraph consists of 10 Node.js operators. Three of the nodes are multiplexer. The multiplexer
nodes are configured to run in subengine 'com.sap.node'. The number of operating system processes
computes to eight operating system processes as follows:

1 (Node.js Subengine) + 10 (Node.js operators) - 3 (Node.js Multiplexer) = 8 
operating system processes.

 Note
A graph can result in multiple Node.js subgraphs, depending on which operators are interconnected.

16.3.2  Use Cases for the Node.js Subengine

There are two use cases for the Node.js subengine: Use the Node.js subengine in the SAP Data Intelligence
Modeler application, or use a dedicated local Node.js project to develop a Node.js operator.

The Node.js subengine consists of two major building blocks:

• Node.js subengine core
• Node.js Subengine SDK

While you probably never work directly with the core engine, you'll work with the Node.js Subengine SDK to
develop your operators. For more information about the SDK, see The Node.js Subengine SDK [page 276].

Use Node.js in the Modeler

Using the SAP Data Intelligence Modeler is the easiest way to change or add graph functionality quickly. Just
add a Node.js Script operator to existing graphs, or modify the JavaScript code of existing Node.js script
operators.

 Note
The only external node-module that can be required inside the SAP Data Intelligence Modeler is '@sap/
vflow-sub-node-sdk'.

Modeling Guide
Subengines PUBLIC 275



Use Node.js in a Dedicated Project

To develop a Node.js operator, use a dedicated local Node.js project. Using a dedicated project allows you to
use your own tools and frameworks, and code Node.js operators like any other Node.js program.

Some of the advantages of using a dedicated project include the following:

• Use JavaScript libraries that you've already created.
• Use your own required set of third-party node modules.
• Use test driven development.
• Use other languages that compile to JavaScript, such as TypeScript.

Related Information

Availability of the Node.js Subengine SDK [page 277]

16.3.3  The Node.js Subengine SDK

The Node.js subengine SDK module simplifies the development of Node.js operators.

The Node.js subengine SDK is a Node.js module named '@sap/vflow-sub-node-sdk'. The Node.js module
allows easy access to the following elements:

• In and out ports defined in the operator.json file.
• Static operator configuration defined in the operator.json file.
• Additional ports that you add directly in the SAP Data Intelligence Modeler.
• Dynamic configuration that you add directly in the SAP Data Intelligence Modeler.
• System-logging API with which you send status information about the operator.

The Node.js SDK also supports a shutdown hook for the operator. The shutdown hook cleans resources, if
necessary, such as closing files or logging out from remote systems before terminating the operator.

Related Information

Availability of the Node.js Subengine SDK [page 277]
Node.js SDK API Reference [page 277]

276 PUBLIC
Modeling Guide

Subengines



16.3.3.1  Availability of the Node.js Subengine SDK
The Node.js SDK is included into the Node.js subengine, but you can also download and install it.

Configure any Node.js operator to require the Node.js SDK at runtime. The Node.js operator uses the Node.js
subengine SDK module named '@sap/vflow-sub-node-sdk' as follows:

const { operator } = require("@sap/vflow-sub-node-sdk");
  
const operator = Operator.getInstance();

However, if you use a dedicated local Node.js development project, download and install the Node.js subengine
SDK so that you can program against its API.

16.3.3.2  Node.js SDK API Reference
To use the Node.js SDK, use the API commands as described in this reference.

getInstance(basePath)

• basePath <string> Optional. The path to the operator descriptor (operator.json)
directory. Default basePath is the directory where the operator's script file is
located.

• Returns: <Operator>

Creates an operator instance (singleton).

config

• Returns: <object>

operator.config returns the configuration of this operator. If you change this
operator in the Modeler application, the command returns the runtime configuration.
Otherwise it returns the design time configuration, which is specified in the
operator.json.

addShutdownHandler(handler)

• handler <Function> The handler to call before terminating this operator.
• Returns: <void>

operator.addShutdownHandler() adds a shutdown handler when terminating the
process. The method accepts a callback function that takes only one optional error
parameter, for example, taking an (err) => ... callback.

The operator fails when the shutdown handler is not a function or it is undefined.

The following code snippet shows how to use a callback function:

const handler = (cb: (err?: Error) => void): void => {
 
  // do something …
  cb(…); // callback with void or an error
};
const operator: Operator = Operator.getInstance();
 
operator.addShutdownHandler(handler);

done()

Modeling Guide
Subengines PUBLIC 277



• Returns: <void>

Terminates the operator process with exit code 0.

fail(message)

• message <string> Error message to write when the operator fails.
• Returns: <void>

Terminates this operator process with exit code 1, then writes an error message to
process.stderr.

getInPort(name)

• name <string> The name of the input port.
• Returns: <InPort>

Finds a single input port by its name and returns the name.

The operator fails if it doesn't find the port.

getOutPort(name)

• name <string> The name of the output port.
• Returns: <OutPort>

Finds a single output port by its name and returns the name.

The operator fails if it doesn't fine the port.

getInPorts()

• Returns: <Map<string, InPort>>

Returns all input ports of this operator. Returns an empty map when it doesn't find any
input ports.

getOutPorts()

• Returns: <Map<string, OutPort>>

Returns all output ports of this operator. Returns an empty map when it doesn't find
any output ports.

logger

• Returns: <Logger>

Returns a logger instance to use for logging. For more information, see Node.js
Subengine Logging [page 285].

278 PUBLIC
Modeling Guide

Subengines



16.3.4  Node.js Data Types

SAP Data Intelligence maps Modeler data types to the Node.js JavaScript data types.

Inside a Node.js operator, you use JavaScript types and data structures. The following table shows the SAP
Data Intelligence Modeler data types and the corresponding JavaScript data types:

Modeler Data Type JavaScript Data Type

string String

blob Buffer

int64 Number

uint64 Number

float64 Number

byte Number

message Object

[ ]x Array

Replace the letter x in [ ]x (the last row of the table) with any of the allowed data types (except for message).
For example, [ ]string, [ ]uint64, [ ][ ]blob, and so on. The Node.js subengine always does the conversion. If
data reaches the Node.js operator script, it's converted already based on the conversions shown in the table.

 Note
Always use the SAP Data Intelligence Modeler data types to specify the data types of the in and out ports
in the operator.json file. This mapping is necessary, for example, if you develop a vsolution using an
external project.

16.3.5  Node.js Safe and Unsafe Integer Data Types

Because JavaScript doesn't have an integer data type, there are safe and unsafe integer data types when you
use the Node.js subengine.

SAP Data Intelligence Modeler converts JavaScript number data type to uint64 or int64. The Modeler
represents a number data type internally as an IEEE-754 double precision float. Therefore, for Node.js, SAP
Data Intelligence Modeler represents only integer values up to 53 bits. Any integer value greater than 53 bits is
an unsafe integer data type.

To prevent silent and undetected problems with the JavaScript number conversion, the Node.js subengine
stops with a corresponding error message when it receives or sends an unsafe integer value. If a Node.js
operator has an unsafe integer value, the corresponding graph also stops.

An unsafe integer value is defined as follows:

 Sample Code

Number.isSafeInteger(data) === false

Modeling Guide
Subengines PUBLIC 279



The safe integers consist of all integers from -(253 — 1) to 253 — 1 (inclusive). Therefore, the full range of SAP
Data Intelligence Modeler types uint64 and int64 can't be represented in Node.js JavaScript.

type uint64 - range: 0 … 2**64 -1 (0 through 18446744073709551615)
  
type int64: -(2**63 -1) … 2**63 –1 (-9223372036854775808 through 
9223372036854775807)

If converted into number, the mathematical rules of equality can be violated in JavaScript as shown in the
following example code snippet:

 
( 1 === 2 ) === false // <- this always evaluates to false and is mathematically 
exact
    
// Now, add MAX_SAFE_INTEGER to both sides:
( 1 + Number.MAX_SAFE_INTEGER === 2 + Number.MAX_SAFE_INTEGER ) === true // <- 
results to true       
 
// Also a legal expression, it is mathematically incorrect 

For more information about safe integers, see the external link developer.mozilla.org, datatype (IEEE-754) .

16.3.6  Create a Node.js Operator

Create Node.js operators using a dedicated Node.js project.

Prerequisites

You must be a cluster administrator to perform this task.

Before performing the following steps, download the Node.js subengine SDK from an SAP Data Intelligence
System. For more information, see The Node.js Subengine SDK [page 276].

Procedure

1. Log in to SAP Data Intelligence System Management as a cluster administrator.
2. Open Files and then open Union View.
3. Expand the following nodes: files/vflow/subengines/com/sap/node.
4. Select vflow-sub-node-sdk.tar.gz and choose the Export files or solutions icon in the toolbar.
5. Export the file to your local Node.js project. Save it to an appropriate location inside your project.
6. Install the SDK file vflow-sub-node-sdk.tar.gz using the Node.js package manager so that it's

available to your JavaScript code.

npm install --save [path_to]/vflow-sub-node-sdk.tar.gz

7. Check that the export added the (runtime-) dependency to your package.json.

{
 

280 PUBLIC
Modeling Guide

Subengines

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FJavaScript%2FReference%2FGlobal_Objects%2FNumber%2FisSafeInteger


    "name": …,
    "version": …,
    "dependencies": {
        "@sap/vflow-sub-node-sdk": "file:vflow-sub-node-sdk.tar.gz",
        …
    }
 
}

8. Optional: Personalize the Node.js operator behavior in the Modeler in one of the following ways:

Method Directions

Use Node.js Script operator The edited script using this method is specific to the given
graph and operator instance.

1. Drag and drop the Node.js Script operator to
the graph canvas in the Modeler.

2. Open the script editor.

Create a new operator The advantage of the following method is that you can
reuse the new operator across many graphs.
1. Create a new operator in a select subfolder in the

Operators node of the Repository tab.
2. Choose Node Base Operator for Base Operator in the

Create Operator dialog box.
3. Create input and output ports, tags, configuration pa-

rameters, and custom script as necessary.

Related Information

Requiring Node Modules [page 281]

16.3.6.1  Requiring Node Modules

A Node.js operator runs in its own process, therefore, it can also require its own individual set and version of
node modules.

A Node.js operator with its own set of node modules, provides you with greater flexibility, for example:

• Reuse your JavaScript libraries.
• Reuse your third-party Node.js modules.

Modeling Guide
Subengines PUBLIC 281



16.3.7  Node.js Project Structure

To deploy a Node.js operator to an To deploy your operator later to a different SAP Data Intelligence system,
create a project structure.

Structure your Node.js project as in the following script:

|- my_solution/
 
    |- vsolution.json
    |- vrep/vflow/
        |- subengines/com/sap/node/operators/
            |-- example
               |-- operator.json
               |-- script.js
 
               |-- icon.svg

Before you deploy this project structure to a different SAP Data Intelligence system, you must first archive it. To
create an archive, use the tar archiver (on macOS and Linux) as in the following script:

tar -C <path to my_solution> -czf my_solution.tar.gz

 Note
To verify the structure of your archive, ensure that the folder vrep is at the top level of the archive, beside
the file 'vsolution.json'.

16.3.8  Node.js Project Files and Resources

Creating a Node.js operator requires a Node.js project file and other resources.

The resources in a Node.js project includes the following files:

• vsolution.json
• operator.json
• script.js
• README.md
• operator icon (*.svg, *.png, *.jpeg)

vsolution.json

The vsolution.json file describes the solution. The following script is an example vsolution.json file:

 Example

{
 
    "name": "vsolution_vflow_my_solution",
    "version": "n.n.n",
    "description": "my Solution",
    "license": "my license"
 

282 PUBLIC
Modeling Guide

Subengines



} 

Increment the version number after every change. If you don't increment the version number after every
change, the SAP Data Intelligence system doesn't overwrite a deployed version.

operator.json

The operator.json specifies the base operator (component), the interface (in ports, out ports),
configuration data, and other details of the operator. The following script is an example operator.json file:

 Example

{
 
  "component": "com.sap.node.operator", // extend the basic node operator
 
  "description": "Operator description", // visible title of the operator in 
operators explorer in SAP Data Intelligence Modeler
 
  "iconsrc": "icon.svg",
  "inports": [
    {
      "name": "in1",
      "type": "string"
    }
  ],
  "outports": [
    {
      "name": "out1",
      "type": "string"
    }
  ],
  "config": {
    "codelanguage": "javascript",
    "script": "file://script.js"
  }
 
}

If the Node.js operator doesn't have any ports, you can omit the in ports and out ports, or leave them empty.
If there is more than one port, the port names must be unique. In the unique port names, exclude special
characters, such as white spaces.

You must specify the script configuration under the following circumstances:

• You don't save the script file to the same root path as the operator.json file.
• You name the script file differently than the operator name.

If you don't specify the script configuration under these circumstances, SAP Data Intelligence can leave the
operator.json file out.

Modeling Guide
Subengines PUBLIC 283



Operator Script

The script.js file is the entry point of your operator. The following sample code of a script.js file is from
the operator 'Node.js Counter', which is also available in the SAP Data Intelligence Modeler:

 Example

const SDK = require("@sap/vflow-sub-node-sdk");
 
const operator = SDK.Operator.getInstance();
let counter = 0;
/**
 * This operator receives messages on port "in1",
 * increases a counter and forwards the counter value
 * to port "out1".
 */
operator.getInPort("in1").onMessage((msg) => {
  // The content of the actual message is ignored.
  // We will only count the number of messages here.
  counter++;
  operator.getOutPort("out1").send(counter.toString());
});
/**
 * A keep alive hook for the node process.
 * @param tick length of a heart beat of the operator
 */
function keepAlive(tick) {
  setTimeout(() => {
    keepAlive(tick);
  }, tick);
}
// keep the operator alive in 1sec ticks
 
keepAlive(1000);

Whenever the Node.js Counter operator receives a message at input port 'in1', it increments a counter and
sends the current counter value to output port 'out1'. To prevent the Node.js process from terminating
immediately after the start, a 'keepAlive' timer has been added. It resets a time-out every 1000 milliseconds.

Operator Documentation

Create the operator's documentation in a file named README.md in the operator's folder.

 Example
To create the documentation for the example operator named Counter, create a new README.md file in the
following path:

my_solution/subengines/com/sap/node/operators/com/mydomain/util/counter/
README.md

Use Markdown syntax to write the documentation. For more information about Markdown syntax, see Basic
Writing and Formatting Syntax  in the GitHub documentation.

284 PUBLIC
Modeling Guide

Subengines

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.github.com%2Fen%2Fget-started%2Fwriting-on-github%2Fgetting-started-with-writing-and-formatting-on-github%2Fbasic-writing-and-formatting-syntax
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.github.com%2Fen%2Fget-started%2Fwriting-on-github%2Fgetting-started-with-writing-and-formatting-on-github%2Fbasic-writing-and-formatting-syntax


Operator Icon

You can add a custom icon (file format: svg, .jpg or .png) for your operator by copying the icon to the operator's
folder:

 Example

my_solution/subengines/com/sap/node/operators/com/mydomain/util/counter/
icon.svg

16.3.9  Node.js Subengine Logging

The logging library provides different logging APIs that propagate logging information to the Node.js subengine.
In local development that isn't running with Node.js subengine core, the console is used for logging.

Logging Levels

Logging levels use the npm severity ordering, which ascends from the most important to the least important. In
the following example, errors are the most important and debug level is the least important:

 Example
 
{
  ERROR: 0,
  WARN: 1,
  INFO: 2,
  DEBUG: 3,
 
}

Setting Logging Levels

By default, the logging level is set to INFO. You can change the log level as shown in the following code snippet:

const operator: Operator = Operator.getInstance();
  
operator.logger.logLevel = "ERROR"; // case insensitive

Modeling Guide
Subengines PUBLIC 285



Use the Logging API

The logging APIs are directly accessible from the operator instance. The following code snippet shows the
logging APIs:

const operator: Operator = Operator.getInstance();
 
// if not running in subengine, log is outputted to console
operator.logger.info("message", ...); // log level INFO
// DEBUG level
operator.logger.debug("message", ...);
// WARNING level
operator.logger.warn("message", ...);
// ERROR level
 
operator.logger.error("message", ...);

You can also create a logger instance in your operators as shown in the following code snippet:

import { Logger } from "@sap/vflow-sub-node-sdk";
 
const logger: Logger = new Logger("LOG_LEVEL");
 
logger.info("message");

Log Message Format

The log message accepts zero or more placeholder tokens. The system replaces each placeholder with the
converted value from the corresponding argument. The log message is then a printf-like format string. For
supported placeholders, see nodejs.org  on the Nodejs.org website.

operator.logger.debug("debug message %j", { foo: "bar" });
  
// 2018-11-22T13:03:01.088Z - debug: Operator "sampleiotdevicegeneratingdata1" 
(pid: 11912)|debug message { "foo": "bar" }

16.4 Working with Flowagent Subengine to Connect to
Databases

Partitioning the source data allows us to load data in chunks there by overcome memory pressure and by doing
it in parallel we can load data faster and improve overall performance.

Partitioning

Below are supported partitioning methods with the Connectivity (via Flowagent) operators.

Logical Partition
Logical Partitions are user-defined partitions on how to read data from source. For Table Consumer, the user
can choose the partition type then add the partition specification as described below.

286 PUBLIC
Modeling Guide

Subengines

http://help.sap.com/disclaimer?site=https%3A%2F%2Fnodejs.org%2Fdist%2Flatest-v8.x%2Fdocs%2Fapi%2Futil.html%23util_util_format_format_args
https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/4055624226f14da5923278c36ec23a0e.html


• defaultPartition: The partition which fetches all rows that are not filtered by the other partitions (you
can disable it by setting defaultPartition to false);

• conditions: Each condition represents a set of filters that are performed on a certain column;
• columnExpression: The column where the filters are applied. It can be either the column name or a

function on it (for example: TRUNC(EMPLOYEE_NAME));
• type: The filter type. It can be either "LIST" (to filter exact values) or "RANGE" (to filter a range of

values);
• dataType: The data type of the elements. It can be either "STRING", "NUMBER" or "EXPRESSION";
• elements: Each element represents a different filter, and its semantics depends on the "type" (see

above).
• When more than one condition is presented, a cartesian product performed among the elements of each

condition. For example:
• Condition A: [C1, C2]
• Condition B: [C3, C4]
• Resulting filters: [(C1, C3), (C1, C4), (C2, C3), (C2, C4)]

Ex: Let's assume we have a source table called EMPLOYEE that has the following schema:

CREATE TABLE EMPLOYEE(
 
    EMPLOYEE_ID NUMBER(5) PRIMARY KEY,
    EMPLOYEE_NAME VARCHAR(32),
    EMPLOYEE_ADMISSION_DATE DATE
 
);

RANGE

A JSON representing a RANGE partition is shown below, where the elements represent ranges. Thus, they need
to be sorted in ascending order.

Numeric Partitions

{
 
  "defaultPartition": true,
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_ID",
      "type": "RANGE",
      "dataType": "NUMBER",
      "elements": [
        "10",
        "20",
        "30"
      ]
    }
  ]
 
}

String Partitions

{
 
  "defaultPartition": true,
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_NAME",
      "type": "RANGE",
      "dataType": "STRING",
      "elements": [
        "M",

Modeling Guide
Subengines PUBLIC 287



        "T"
      ]
    }
  ]
 
}

Expression Partitions

{
 
  "defaultPartition": true, 
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_ADMISSION_DATE",
      "type": "RANGE",
      "dataType": "EXPRESSION",
      "elements": [
        "TO_DATE('2012-01-01', 'YYYY-MM-DD')",
        "TO_DATE('2015-01-01', 'YYYY-MM-DD')"
      ]
    }
  ]
 
}

LIST

List partitions can be used to filter exact values. Each element represents a different filter.

Numeric partitions

{
 
  "defaultPartition": true, 
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_ID",
      "type": "LIST",
      "dataType": "NUMBER",
      "elements": [
        "10",
        "20",
        "50"
      ]
    }
  ]
 
}

String partitions

{
 
  "defaultPartition": false,
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_NAME",
      "type": "LIST",
      "dataType": "STRING",
      "elements": [
        "Jhon",
        "Ana",
        "Beatrice"
      ]
    }
  ]
 
}

288 PUBLIC
Modeling Guide

Subengines



Expression partitions

{
 
  "defaultPartition": false,
  "conditions": [
    {
      "columnExpression": "TRUNC(EMPLOYEE_ADMISSION_DATE)",
      "type": "LIST",
      "dataType": "EXPRESSION",
      "elements": [
        "TO_DATE('2012-07-17', 'YYYY-MM-DD')"
      ]
    }
  ]
 
}

COMBINED

{
 
  "defaultPartition": true, 
  "conditions": [
    {
      "columnExpression": "EMPLOYEE_NAME",
      "type": "LIST",
      "dataType": "NUMBER",
      "elements": [
        "Beatrice",
        "Ana"
      ]
    },
    {
      "columnExpression": "EMPLOYEE_ADMISSION_DATE",
      "type": "RANGE",
      "dataType": "EXPRESSION",
      "elements": [
        "TO_DATE('2015-01-01', 'YYYY-MM-DD')",
        "TO_DATE('2016-01-01', 'YYYY-MM-DD')"
      ]
    }
  ]
 
}

 Note

• Operator auto-generates the default partition, so you don't have to define it. It can be disabled by
setting the property "defaultPartition": false.

• For range partition the default partition is greater than last element. So ensure that the elements are
ordered in ascending order.

Physical Partition

 Note
Applicable to Oracle Table Consumer (Deprecated) only.

Physical partitions are partitions defined directly on the source, using Oracle partitioning concept.

Limitations:

• Hash partitioning is not supported.
• Sub-partitioning is not supported.

Modeling Guide
Subengines PUBLIC 289

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/42350ab198a649fdb047d6f2bdbbd072.html


Row ID Partition

 Note
Applicable to Oracle Table Consumer (Deprecated) only.

Row ID partitions are partitions generated automatically based on the row id of the columns. You must supply
the number of partitions, and the range of row id partitions is generated automatically based on it.

Parallel Load With Partitioning
When an operator has partitions, it sends SQL statements in the output port equal to the number of partitions
(including the default partition), each SQL with a WHERE condition equivalent to the partition. In order to
enable parallel load of partitions, it is necessary to put the next Flowagent producer in the pipeline inside a
group with multiplicity higher than one, preferentially with multiplicity equal to the number of partitions to
enable parallel load of all partitions at the same time.

Note that each producer inside the group generates an output. If you want to prevent the next operator
after the producer to be triggered before all partitions are finished (example: Graph Terminator), connect the
producer to a Constant Generator with counter equal to the number of partitions.

Partition Recovery
Currently there are none automatic recovery mechanism in place. In case any partition fail during the load, the
graph stops (unless the error port of the producer is mapped).

Consider the following for partition recovery:

• Retrigger the graph again with table producer mode set to truncate or overwrite;
• Use a Javascript operator to retrigger only the failed partitions (see the sample graph provided here).

290 PUBLIC
Modeling Guide

Subengines

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/42350ab198a649fdb047d6f2bdbbd072.html


17 Creating Dockerfiles

Dockerfiles contain all commands that you call on a command line to assemble a docker image.

Context

In the Modeler application, you can create a library of Dockerfiles. Dockerfiles provide a predefined runtime
environment to run the operators in a graph (pipeline). The Modeler stores Dockerfiles in the repository in a
Dockerfile folder.

Procedure

1. Open the Repository tab in the navigation pane of the Modeler application.
2. Create a folder.

a. Right-click the Dockerfiles category folder and choose Create Folder.
b. Enter a name for the root folder in Name your folder text box and select Create.

 Note
To create a folder structure (subdirectories) in the root folder, create a new folder in a subdirectory
under the dockerfiles folder.

The Modeler creates a new folder in which you create a Dockerfile.
3. Create a Dockerfile.

a. Right-click the folder in which to create the Docker file and choose Create Docker File.
b. Enter a name in Name.
c. Choose OK.
d. In the editor, write the script that defines your Dockerfile.

 Note
For security reasons, SAP recommends that you start the image with the non-root user.

4. Create tags.
Tags describe the runtime requirements of operators and are the annotations of Dockerfiles that you
create.

a. In the editor toolbar, choose   (Show Configuration).
b. In the Configuration pane, choose   (Add Tag).
c. Choose a tag from the first text box list.
d. Enter a version in the second text box.

Modeling Guide
Creating Dockerfiles PUBLIC 291



5. In the editor toolbar, choose   (Save).
6. Build a docker image.

a. In the editor toolbar, choose   (Build) to build a docker image for the Dockerfile.
b. Optional: Select   (Force Build). in the editor toolbar.

Force Build rebuilds the existing Docker image. The Modeler finds changes in the Docker image and
rebuilds based on the changes.

Next Steps

For security reasons, the Modeler application has stopped supporting images that run with a root user.

RUN groupadd -g 1972 vflow && useradd -g 1972 -u 1972 -m vflow
 
USER 1972:1972
WORKDIR /home/vflow
 
ENV HOME=/home/vflow

 Restriction
Use numeric IDs in the USER directive instead of using group names. Otherwise the graph run fails.

Make sure that the commands you run after the USER directive operate with the new environment. Therefore,
consider the following situations:

• If you install new Python packages with pip, ensure that you have the --user flag for local installations.
• If you install software without using the package manager, or you install software that doesn't support local

installation, then you must install the software manually inside the user home directory, such as /home/
vflow. Do the same for any other files added to the image.

Related Information

Dockerfile Inheritance [page 292]
Referencing Parent Docker Images [page 294]

17.1 Dockerfile Inheritance

The Dockerfile inheritance feature in SAP Data Intelligence allows inheriting attributes, such as tags, from other
Dockerfiles defined in the Modeler.

It's possible to inherit attributes from other Dockerfiles defined in the Modeler by using the following syntax:

docker
 
FROM $<dockerfile_id>
 
...

292 PUBLIC
Modeling Guide

Creating Dockerfiles



Dockerfiles in the Modeler repository each have a corresponding file named Tags.json, which is always
located in the same directory as the Dockerfile. Along with the software modules used by the Dockerfile, the
Tags.json file contains the following information about the Dockerfile:

• Runtimes to use, such as Python.
• Tools to use, such as Zypper, tar, and gzip.
• Compilers to use, such as g-cc or gcc+.

The information in the Tags.json file allows the Modeler to select the correct Docker image at runtime for the
operators and groups in a graph. For more information about Dockerfiles, see Groups, Tags, and Dockerfiles
[page 94].

The Modeler determines whether a child Dockerfile inherits tags from a parent Dockerfile using the criteria in
the following table.

Tag Origin Inherited Not Inherited

Child Dockerfile (not in the parent
Dockerfile)

X

Parent Dockerfile (not in the child Dock-
erfile)

X

Child and parent Dockerfile (uses the
tag value from the child Dockerfile)

X

Parent Dockerfile, marked as special
“default”

X

 Note
The Modeler never transfers the special tag “default” from the parent to the child Dockerfile, but it still
transfers the tag “deprecated”.

 Example
To create a new Dockerfile with instructions to install the NumPy library to use in a Python3 operator, use
the prebuilt com.sap.sles.base Docker image. This Docker image already satisfies the requirements of
the Python3 operator. The following code snippet shows the entry in the new Dockerfile:

docker
 
FROM $com.sap.sles.base
RUN pip3.9 install numpy
 

For the new Dockerfile, add the tag “numpy39” to the Tags.json file located in the same directory as the
new Dockerfile:

 
{
    "numpy39": ""
}
 

The Modeler expands the new Dockerfile tags automatically to include the tags from the com/sap/sles/
base/Tags.json file at runtime because of the automatic tags inheritance feature.

Modeling Guide
Creating Dockerfiles PUBLIC 293



 Note
For more control over the Docker image, such as installing additional compilers and tools with Zypper,
create a Dockerfile that only you control. To create this Dockerfile, SAP includes a Dockerfile template
named org.opensuse in the repository at dockerfile/org/opensuse. Use the template to create a
customized copy. For more information about the org.opensuse template, see the README.md file in the
Modeler's navigation pane, under the Repository tab: dockerfiles/org/opensuse/.

Added Security

For security reasons, SAP stopped supporting images that run with a root user in SAP Data Intelligence
on-premise version 3.0 and cloud version 2003. Therefore, SAP modified the Docker images to create and use
nonroot users. If you own a custom Dockerfile that doesn't inherit from a Dockerfile delivered by SAP, add code
to your Dockerfile similar to the following example:

 Example
 
RUN groupadd -g 1972 vflow && useradd -g 1972 -u 1972 -m vflow
USER 1972:1972
WORKDIR /home/vflow
ENV HOME=/home/vflow
 

SAP requires that you use numeric IDs in the USER directive instead of the user and group names. If you don't
use numeric IDs, the graph doesn't run. Ensure that the commands you execute after the USER directive work
with the new environment as follows:

• When you install new Python packages with “pip”, the install must have the “user” flag for local installation.
• When you install other software without the package managers that support user local installation, you

must install the software manually inside your home directory, such as /home/vflow. Install any other
files added to the image in the same way.

Related Information

Python3 Operator V2

17.2 Referencing Parent Docker Images

To create a new Docker image, SAP Data Intelligence Modeler allows you to reference a parent Docker image,
which can be an existing Dockerfile from the repository or a prebuilt Docker image.

In a Dockerfile, use the FROM instruction to specify the parent Docker image from which to build a new image.
The following sections contain information about each type of parent Docker image to use, and includes the
method with additional considerations.

294 PUBLIC
Modeling Guide

Creating Dockerfiles

https://help.sap.com/viewer/9182d964573745e89f523395d7c43e53/Dev/en-US/1b5cca1e8f3f418593d042661cc135ad.html


Use an Existing Dockerfile with the '$' Symbol.

Parent Docker Image

Existing Dockerfile

Method

FROM $

Details

Use the '$' symbol to name an existing Dockerfile from the repository. The '$' symbol provides inheritance of
the tags and the resource limits of the referenced Dockerfile. The inheritance is transitive; the Docker image
can inherit from a Dockerfile that already inherits from another Dockerfile. The inheritance ends when the
system encounters either a reference to a custom Dockerfile or a '$' reference.

When you build a Dockerfile that uses inheritance, the system builds all necessary images in the inheritance
chain as needed. However, you can't reference a specific version of the parent Docker image directly using
the '$' symbol because the topmost Dockerfile in the inheritance chain has already defined the version of the
parent Docker image to use. For more information about inheritance, see Dockerfile Inheritance [page 292].

 Note
Compared to the '§' symbol, the '$' symbol references another Dockerfile and not a prebuilt Docker image.

In the following Dockerfile example, the Dockerfile inherits all properties from the existing Dockerfile
com.sap.sles.base. The definition of the referenced Dockerfile is in the repository at com/sap/sles/base.
The new parent Docker image inherits all tags and resource limits of the referenced Dockerfile.

 Example

FROM $com.sap.sles.base
 
...
 

 Note
If you want to specify a specific version of the parent Docker image, use the '§' symbol method, which
bases your Docker image on a prebuilt Docker image.

Considerations for Using an Existing Dockerfile

Advantages Disadvantages

• Ready to use
• Inherited tags from parent Docker image
• Automatic updates
• Few customizations needed

No control over updates

Modeling Guide
Creating Dockerfiles PUBLIC 295



Use a Prebuilt Docker Image with the '§' Symbol

Parent Docker Image
Prebuilt Docker image

Method
FROM §

Details
SAP Data Intelligence includes prebuilt Docker images with the software package and stores the images in the
Docker registry. The '§' symbol is a placeholder for the SAP Data Intelligence Docker registry address. In the
Dockerfile, enter the name and version of the parent Docker image after the location.

 Note
Compared to the '$' symbol, the '§' symbol references a prebuilt Docker image and not another Dockerfile.

The following example Dockerfile references the address for the Docker registry that contains the prebuilt
Docker image and version vflow-customer-sles:<version>:

 Example

FROM §/com.sap.datahub.linuxx86_64/vflow-customer-sles:<version>
 
...
 

 Note
When you reference a specific version, there's a risk that the image isn't available over time. However, SAP
guarantees certain versions and duration of availability of the Docker image vflow-customer-sles. For
details, see 3320629 . SAP recommends that you check this SAP Note before every system upgrade.

Considerations for Using a Prebuilt Docker Image

Advantages Disadvantages

• Explicit image URL
• Controllable updates

• SAP controls the image updates
• Tags are provided on inheriting image
• More customizations needed

Use a Prebuilt Image from a Custom Docker Registry

Parent Docker Image
Prebuilt Docker image from custom Docker registry

Method
FROM

296 PUBLIC
Modeling Guide

Creating Dockerfiles

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/3320629


Details
Use this method to create a new Docker image based on a prebuilt image that you store in a custom Docker
registry.

In the following example, the Dockerfile references a prebuilt Docker image, my-image:1.0.0, from a custom
Docker registry, <custom-registry>:

 Example

FROM <custom-registry>/my-image:1.0.0
  
...

For details on how to configure a custom Docker registry, see Manage Modeler Custom Registry Secret.

Considerations for Using a Prebuilt Image From a Custom Docker Registry

Advantages Disadvantages

• Full control over image content (except for SAP require-
ments)

• Full control over image lifecycle (except for SAP require-
ment changes)

• Greater initial effort
• Required to provide operator and subengine require-

ments to use SAP standard
• Manual updates
• No SAP testing

Modeling Guide
Creating Dockerfiles PUBLIC 297

https://help.sap.com/docs/SAP_DATA_INTELLIGENCE/ca509b7635484070a655738be408da63/f91ebfeccb3d434980e33f856f1fcb5a.html?version=Cloud


18 Creating Configuration Types

Configuration types are JSON files that allow you to define properties and bind them with data types. You can
also associate the properties with certain validations, define its UI behavior, and more.

Context

Configuration types are based on JSON schema, but you can create them in the SAP Data Intelligence
Modeler application. Reuse your configuration types, for example, in the type definition to define the operator
configurations or of specific parameters within the operator configuration definition.

The Modeler also provides global configuration types, which are associated with the configuration parameters
of certain default operators (base operators) available within the application. To create a new configuration
type, perform the following steps in the Modeler application:

Procedure

1. Open the Configuration Types tab in the navigation pane.

2. Choose   (Create Configuration Type) in the navigation pane toolbar.
3. Optional: Type a helpful description for the new configuration type in the Description text field.

4. Choose   (Add property). in the Properties pane.
Configuration types can have more than one property.

5. Type a name and display name for the property, and optionally enter a description.
The application uses the value in the Title as the display name for the property in the UI.

 Note
If you don’t provide a Title, then the application uses the value in the Name text field as the display
name.

6. Select the required data type value from the Type list based on the descriptions in the following table.

298 PUBLIC
Modeling Guide

Creating Configuration Types



Value Description

String Define helpers for properties of data type string. Helpers allow you to identify the property type
and define values accordingly. Complete the following properties as helpers:

• Format: Select the applicable format.

 Note
Applicable only when you select Auto for UI Control. The Modeler supports the formats,
Datetime, Email, URL, Password, or com.sap.dh.connection.id for properties of data
type string.

• Value Help: Select one of the following values:
Pre-defined Values: Preconfigure the property with a list of values that your users can
choose from the user interface. The Modeler displays the property as a dropdown list of
values. When you select Pre-defined Values, you must also provide a list of values in the
Values text field.
Value from Service: Specify a URL to obtain the property values from the REST API. The
application displays the response from the service call as auto-suggestions to users. In the
Url text field, specify the service URL. The response from the REST API can be an array of
strings or an array of objects. If the response is an array of objects, in the Value path field,
provide the name of an object property. The application renders the values of this object
property in a dropdown list in the UI to define the operator configuration. If the response is
object, in the Data path field, provide the name of an object property.

 Restriction
The URL should be of the same origin. Cross-origin requests aren’t supported.

Object For properties of data type object, the application lets specify the schema of the object by
drilling down into the object definition. In the Properties section, double-click the property to
drilldown further and define the object schema.

Array For properties of data type array, you can specify the data types of items in the array. In the Item
Type dropdown list, select a value. The application supports string, number, object, and custom
as data types for array items.

If the Item Type is Object, in the Properties section, double-click the property to drilldown further
and define the object schema.

If the Item Type is Custom, select and reuse any of the predefined types for the property
definition.

Number For properties of data type number, you can provide numbered values to the property.

Boolean For properties of data type Boolean, you can provide Boolean values to the property.

Integer For properties of data type integer, you can provide integer values to the property.

Modeling Guide
Creating Configuration Types PUBLIC 299



Value Description

Custom Type Custom data types enable you to set the data type of a property to another user-defined type.
In the Type dropdown list, select a value. The application populates the dropdown list with the
global schema types.

7. Optional: Set the Required toggle to true (on).
When on, users must provide values to the property in the user interface. The property value can’t be
empty.

8. Optional: Set ReadOnly to true (on).
Applicable for certain types. When on, the Modeler doesn’t allow any edits to the property from the user
interface.

9. Optional: Control property visibility by selecting one of the following options:

• Visible: All properties are visible in the user interface.
• Hidden: Some properties are visible in the user interface.
• Conditional: Properties are visible in the user interface based on set conditions. The application

performs AND operation of all conditions to determine whether the property is visible or hidden.
10. Create additional properties as necessary.

11. Choose   (Save) and enter a name that includes the fully qualified path to the new configuration type.

For example, com.sap.others.<typename>.

The Modeler stores the configuration type in a folder structure in the repository.

12. Optional: To save another instance of the configuration type, choose   (Save As) and enter a different
name with the fully qualified path.

Related Information

Creating Operators [page 36]

300 PUBLIC
Modeling Guide

Creating Configuration Types



19 Security and Data Protection

When you develop a threat model, you must consider how to protect your data and keep personal identifiable
information (PII) private.

Data Protection and Privacy (DPP)

You, as a user of SAP Data Intelligence, are responsible for keeping the PII in your data private and secure.
While SAP Data Intelligence acts as the data processor, you control the input and output of data processed
through SAP Data Intelligence.

 Example
The Modeler application runs graphs. However, you instruct the Modeler to process data in the graph in a
specific way, and you initiate the graph to run.

SAP Data Intelligence doesn't audit log the input of personal or sensitive data from source systems, nor does
it audit log transformations or ingestions into target systems. You, as the data owner (the owner of the source
and target systems) are responsible to ensure traceability. You must instruct source and target systems to
properly generate relevant audit logs so that you're compliant with local data protection and privacy laws.

Sensitive Information in Logs

The Modeler creates trace information logs and includes design time objects, such as solution files, custom
operators, and pipeline descriptions. Therefore, ensure that you don't include sensitive information statically
in those types of design time objects. Instead, use alternative methods for securing storage of connectivity
information, such as the Connection Manager.

Audit Logging Recommendations

SAP Data Intelligence uses the Modeler to create and run data pipelines (graphs) that access source and target
systems. Based on your DPP requirements, consider SAP Data Intelligence audit logging behavior. Then revise
audit logging configuration in your source and target systems to comply with established DPP regulations,
such as GDPR, to log security, configuration, personal data read, and change events for relevant data.

For more information about DPP, see “Data Protection and Privacy in SAP Data Intelligence” in the
Administration Guide.

Modeling Guide
Security and Data Protection PUBLIC 301



20 Using Data Types

SAP Data Intelligence uses data types for compatibility, structure, and ease of converting data types between
operators.

Data types provide a strong type system for graphs (pipelines). Data types provide the following advantages:

• Compatibility checks for connections between operators.
• A structured way of specifying messages and carrying metadata through the graph.
• Converts data types without the need for specific type converter operators.

 Note
The Modeler stores all default data types in the Data Types tab in the navigation pane.

Data Type Categories

In SAP Data Intelligence, data types have the following data type categories:

Category Description

Scalars Primitive data types used as base for structures and tables.

 Example
Integers, floats, strings, and dates.

Create new scalar data types only in the local scope. You
can't create new scalars in the Global Scope.

Structures Collection of fields where each field has a name and a value.
Field names are strings, but values can be any existing scalar
data type.

Tables Complex data types composed of fields (as columns). Each
field has a list of values. The fields are meant to model tabu-
lar entities that are typical of SQL databases. Each table can
be interpreted as a list of similar structures. Therefore, each
table field (column) is composed of scalars.

You can create structure or table data types. When creating the structure data type, you need to select
the scalars to compose the structure. When creating table data types, you can also define the primary key
columns.

302 PUBLIC
Modeling Guide

Using Data Types



Data Type Scopes

Data Types can have the scopes described in the following table.

Scope Description

Global Data types that are global are accessible to any graph (pipe-
line).

Local Local data types are visible only in the graph in which the
data type is created.

Dynamic Dynamic data types are created during runtime and exist
only in memory.

 Note
Dynamic data types are created by the operator's inter-
nal API. They're only available for the Generation 2 Py-
thon operators. In the port specification, the dynamic
scope is indicated by an asterisk (*) as the Data Type
ID. Keep in mind the different data types are still valid.
Therefore, a table can only be connected to another
table port.

 Note
All pre-existing data types are global.

Related Information

Creating Global Data Types [page 303]
Creating Local Data Types [page 305]

20.1 Creating Global Data Types

Extend the data type system provided by SAP Data Intelligence Modeler by creating new data types.

Prerequisites

Before you create data types, ensure that you understand the concepts of data type category, scope, and
compatibility. For complete information about data types, see Using Data Types [page 302] and Data Types in
Operator Ports [page 32].

Modeling Guide
Using Data Types PUBLIC 303



Context

You can create global data types in addition to the data types provided by SAP Data Intelligence. The system
also creates dynamic data types during runtime that are applicable only for the Generation 2 Python operators.

The following steps are for creating global data types.

There are three data types: Scalar, structure, and table:

• The scalar data types are predefined.
• You can define structure and table data types.

To create structure or table data types, perform the following steps:

Procedure

1. Start the SAP Data Intelligence Modeler.
2. In the navigation pane, choose the Data Types tab.

If you don't see the Data Types tab, select the   (Additional Tabs) icon at the bottom of the tab list and
select Data Types.

3. In the navigation pane toolbar, choose   (Create Data Type) .

The Create Data Type dialog box opens.
4. Enter a name for the data type in the ID text box.

The name must be two or more identifiers separated by a period (.).
5. Choose either Structure or Table for the Type.
6. Select OK.

The data type editor opens in the workspace area.

7. Select   (Add property)in the Properties box.

Data types can have more than one property.

Property parameters appear to the right of the Properties box.
8. If you select Structure, complete the properties by performing the following substeps:

a. Enter a name for the new property in the Name text box.
b. Choose a global scalar data type from the Scalar Type ID list.

Scalars compose the structure.
9. If you select Table, complete the properties by performing the following substeps:

a. Enter a name for the new property in the Name text box.
b. Choose a global scalar data type from the Scalar Type ID list.
c. Switch the Key Property toggle to on to make this data type the primary key column.

10. Select   (Save).

You can save an instance of the data type after you save it by selecting Save As from the Save list.

The data types are stored in a tree structure in the Data Types tab.

304 PUBLIC
Modeling Guide

Using Data Types



11. Optional: To edit structure or table data type, double-click the data type in the tree view of the navigation
pane.

12. Optional: To delete a data type, right-click the data type in the tree view of the navigation pane and choose
Delete.

20.2 Creating Local Data Types

Local data types are bound to the graph in which you created them, and are visible only in the graph.

Prerequisites

Before you create data types, ensure that you understand the concepts of data type category, scope, and
compatibility. For complete information about data types, see Using Data Types [page 302] and Data Types in
Operator Ports [page 32].

Context

You can create local data types in addition to global and the data types provided by SAP Data Intelligence. The
system also creates dynamic data types during runtime that are applicable only for the Generation 2 Python
operators.

To create a local data type, perform the following steps in the Modeler:

Procedure

1. Open the applicable pipeline.

2. Select   (Show configuration).

Make sure that none of the operators in the graph are selected when you select Show configuration.
3. Expand the Data Types section in the Configuration panel.

4. Select   (Create).

The Create Data Type dialog box opens.
5. Enter a name for the data type in the ID text box.

The name must start with an alphabet and can consist of a string with alphabets, digits, or underscores.
6. Choose either Structure, Table, or Scalar for the Type.

You can choose Scalar only for local data types.

Modeling Guide
Using Data Types PUBLIC 305



7. If you chose Structure or Table, perform the following substeps:
a. Enter a description for the new data type.
b. Add one or more properties to the new data type.
c. Select Save.

8. If you chose Scalar, perform the following substeps:
a. Enter a description for the new data type.
b. Select a template from the Template list.
c. Select Save.

306 PUBLIC
Modeling Guide

Using Data Types



Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

• Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

• The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.

• SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

• Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering an SAP-hosted Web site. By using
such links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

Modeling Guide
Important Disclaimers and Legal Information PUBLIC 307



www.sap.com/contactsap

© 2023 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN  

https://www.sap.com/about/legal/trademark.html

	Modeling Guide
	Content
	1 Modeling Guide for SAP Data Intelligence
	2 Introduction to the SAP Data Intelligence Modeler
	2.1 Log on to SAP Data Intelligence Modeler
	2.2 Description of the Modeler Main Screen

	3 Using Operators
	3.1 Operator Details
	3.2 Generation 1 and Generation 2 Operators
	3.3 Customizing the List of Operators
	3.4 Ports and Port Types
	3.4.1 Compatible Port Types
	3.4.2 Table Messages
	3.4.3 Data Types in Operator Ports
	3.4.4 Adding Ports to Operators

	3.5 Using Managed Connections in Script Operators
	3.6 Creating Operators
	3.7 Configuring Operators
	3.8 Creating Categories
	3.9 Creating Operator Groups
	3.10 Viewing Operator Versions
	3.10.1 Replacing Deprecated Operators
	3.10.2 Editing Operator Versions
	3.10.3 Creating Operator Versions

	3.11 Editing Operators
	3.12 Error Handling in Generation 2 Operators
	3.13 Batch Header
	3.14 State Management
	3.14.1 Examples: Operator States

	3.15 Dockerfile Library for Runtime Environment

	4 Using Graphs (Pipelines)
	4.1 Creating Graphs
	4.2 Error Recovery with Generation 2 (Gen2) Pipelines
	4.3 Graph Snapshots and Operator States
	4.4 Delivery Guarantee for Generation 2 (Gen2) Graphs
	4.5 Validate Graphs
	4.5.1 Graph Validation Warnings and Errors

	4.6 Running Graphs
	4.6.1 Automatic Graph Recovery
	4.6.2 Parameterize the Graph Run Process
	4.6.3 Debug Graphs
	4.6.3.1 Add Breakpoints to a Graph

	4.6.4 Schedule Graph Executions
	4.6.4.1 Cron Expression Format


	4.7 Maintain Resource Requirements for Graphs
	4.7.1 Resource Requirements for a Graph in JSON
	4.7.2 Configure Resources for a Graph

	4.8 Create Data Types in Graph
	4.8.1 Use Data Types in Graph
	4.8.2 Exporting and Importing Graphs with Data Types

	4.9 Groups, Tags, and Dockerfiles
	4.10 Execution Model
	4.11 Monitoring Graphs
	4.11.1 Monitor the Graph Execution Status
	4.11.1.1 Graph Execution
	4.11.1.2 Graph Status
	4.11.1.3 Process Status
	4.11.1.4 Graph Execution Garbage Collection

	4.11.2 Activate Trace Messages
	4.11.2.1 Trace Severity Levels

	4.11.3 Downloading Diagnostic Information for Graphs
	4.11.3.1 Diagnostic Information Archive Structure and Contents
	4.11.3.1.1 version.json File
	4.11.3.1.2 graphs.json File
	4.11.3.1.3 <graph-source>-<handle> Folders
	4.11.3.1.4 graph.json File
	4.11.3.1.5 execution.json File
	4.11.3.1.6 events.json File
	4.11.3.1.7 <group-instance-id> Folders
	4.11.3.1.8 logs-<pod-name>.txt File
	4.11.3.1.9 pod-<pod-name>.json File
	4.11.3.1.10 goroutine.txt File
	4.11.3.1.11 <heap.txt> File
	4.11.3.1.12 api-pod Folder

	4.11.3.2 Saving Diagnostic Information for Graphs on External Storage


	4.12 Native Multiplexing for Gen2 Pipelines
	4.12.1 Multiplexing Scenarios


	5 Using Git Terminal
	5.1 Git Credential Handling Using Standard Git Credential Helper
	5.2 Create a Local Git Repository
	5.3 Clone a Remote Git Repository

	6 Using Scenario Templates
	6.1 ABAP with Data Lakes
	6.2 Data Processing with Scripting Languages
	6.3 ETL from Database
	6.4 Loading Data from Data Lake to Database (SAP HANA)

	7 Using Graph Snippets
	7.1 Importing Graph Snippets
	7.2 Creating Graph Snippets
	7.3 Editing Graph Snippets

	8 Working with the Data Workflow Operators
	8.1 Workflow Trigger and Workflow Terminator
	8.2 Run an SAP BW Process Chain Operator
	8.3 Run a HANA Flowgraph Operator
	8.4 Run an SAP Data Intelligence Pipeline
	8.5 Run an SAP Data Services Job
	8.6 Transfer Data
	8.6.1 Transfer Data from SAP BW to Cloud Storage
	8.6.1.1 Transfer Modes

	8.6.2 Transfer Data from SAP HANA to Cloud Storage

	8.7 Control Flow of Execution
	8.8 Send E-Mail Notifications

	9 Working with Structured Data Operators
	9.1 Data Transform
	9.1.1 Configure the Projection Node
	9.1.2 Configure the Join Node
	9.1.2.1 Join Design Considerations

	9.1.3 Configure the Aggregation Node
	9.1.4 Configure the Union Node
	9.1.5 Configure the Case Node

	9.2 Structured Consumer Operators
	9.2.1 SAP Application Consumer
	9.2.2 Structured File Consumer
	9.2.2.1 Consuming Excel Files with Structured File Consumer Operator

	9.2.3 Structured SQL Consumer

	9.3 Structured Producer Operators
	9.3.1 SAP Application Producer
	9.3.2 Structured File Producer
	9.3.3 Structured Table Producer

	9.4 Custom Editor
	9.5 Resiliency with Structured Data Operators

	10 Operator Metrics
	11 Replicating Data
	11.1 Create a Replication Flow
	11.1.1 Create Tasks
	11.1.1.1 Add a Filter
	11.1.1.2 Define the Mapping for a Dataset
	11.1.1.3 Data Type Compatibility


	11.2 Validate the Replication Flow
	11.3 Deploy the Replication Flow
	11.4 Run the Replication Flow
	11.5 Cloud Storage Target Structure
	11.6 Kafka as Target
	11.7 ABAP Cluster Table Replications with Delta Load
	11.8 Edit an Existing Replication Flow
	11.9 Undeploy a Replication Flow
	11.10 Delete a Replication Flow
	11.11 Clean Up Source Artifacts

	12 Monitoring SAP Data Intelligence
	12.1 Log in to SAP Data Intelligence Monitoring
	12.2 Using the Monitoring Application

	13 Integrating SAP Cloud Applications with SAP Data Intelligence
	14 Service-Specific Information
	14.1 Alibaba Cloud Object Storage Service (OSS)
	14.2 Amazon Simple Storage Service (AWS S3)
	14.3 Google Cloud Storage (GCS)
	14.4 Hadoop Distributed File System (HDFS)
	14.5 Microsoft Azure Data Lake (ADL)
	14.6 Microsoft Azure Blob Storage (WASB)
	14.7 Local File System (/file)
	14.8 WebHDFS

	15 Changing Data Capture (CDC)
	16 Subengines
	16.1 Working with the C++ Subengine to Create Operators
	16.1.1 Getting Started with the C++ Subengine
	16.1.2 Creating an Operator
	16.1.3 Logging and Error Handling
	16.1.4 Port Data
	16.1.5 Setting Values for Configuration Properties
	16.1.6 Process Handlers
	16.1.7 API Reference
	16.1.7.1 log.h
	16.1.7.2 subengine.h


	16.2 Create Operators with the Python Subengine
	16.2.1 Normal Usage
	16.2.1.1 Using Python Libraries

	16.2.2 Advanced Usage
	16.2.2.1 Using Python Library
	16.2.2.2 Adding Documentation
	16.2.2.3 Creating Tests
	16.2.2.4 List of BaseOperator Methods
	16.2.2.5 List of BaseOperator Attributes
	16.2.2.6 List of Metric Methods
	16.2.2.7 Logging
	16.2.2.8 Uploading to SAP Data Intelligence System Management
	16.2.2.8.1 Uploading Solution in System Management
	16.2.2.8.2 Uploading Solution in System Management to Tenant or User Workspace



	16.3 Working with the Node.js Subengine to Create Operators
	16.3.1 Node.js Operators and Operating System Processes
	16.3.2 Use Cases for the Node.js Subengine
	16.3.3 The Node.js Subengine SDK
	16.3.3.1 Availability of the Node.js Subengine SDK
	16.3.3.2 Node.js SDK API Reference

	16.3.4 Node.js Data Types
	16.3.5 Node.js Safe and Unsafe Integer Data Types
	16.3.6 Create a Node.js Operator
	16.3.6.1 Requiring Node Modules

	16.3.7 Node.js Project Structure
	16.3.8 Node.js Project Files and Resources
	16.3.9 Node.js Subengine Logging

	16.4 Working with Flowagent Subengine to Connect to Databases

	17 Creating Dockerfiles
	17.1 Dockerfile Inheritance
	17.2 Referencing Parent Docker Images

	18 Creating Configuration Types
	19 Security and Data Protection
	20 Using Data Types
	20.1 Creating Global Data Types
	20.2 Creating Local Data Types

	Important Disclaimers and Legal Information
	Copyright / Legal Notice


