
PUBLIC
SAP HANA Platform 2.0 SPS 05
Document Version: 1.1 – 2021-07-09

SAP HANA SQLScript Reference for SAP HANA
Platform

©
 2

02
2

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 SAP HANA SQLScript Reference. .7

2 About SAP HANA SQLScript. .8

3 What is SQLScript? . 9
3.1 SQLScript Security Considerations. 10
3.2 SQLScript Processing Overview. 11

4 Backus Naur Form Notation. 12

5 Data Type Extension. 14
5.1 Scalar Data Types. 14
5.2 Table Types. .14

CREATE TYPE. 15
DROP TYPE. 16

5.3 Row-Type Variable. 17

6 Logic Container. 19
6.1 Procedures. .19

CREATE PROCEDURE. 19
DROP PROCEDURE. 28
ALTER PROCEDURE. 29
Procedure Calls. 29
Procedure Parameters. 33
Procedure Metadata. .37

6.2 User-Defined Functions. 43
CREATE FUNCTION. 44
ALTER FUNCTION. 49
DROP FUNCTION. 50
Function Parameters. 51
Consistent Scalar Function Result. 51
Function Metadata. 51
Default Values for Parameters. 55
SQL Embedded Function. 56
Deterministic Scalar Functions. 58
Procedure Result Cache. 59

6.3 User-Defined Libraries. 62
Library Members. 64

2 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Content

System Views. 66
UDL Member Procedure Call Without SQLScript Artifacts. 68
Library Member Functions and Variables. 71

6.4 CREATE OR REPLACE. 73
6.5 Procedure and Function Headers. 76
6.6 Anonymous Block. .78
6.7 SQLScript Encryption. 80

Import and Export of Encrypted SQLScript Objects. .84

7 Declarative SQLScript Logic. 85
7.1 Table Parameter. 87

Any Table Type Parameter. 88
7.2 Table Variable Type Definition. 90
7.3 Binding Table Variables. 93
7.4 Referencing Variables. 93
7.5 Column View Parameter Binding. 93
7.6 Map Reduce Operator. 95
7.7 Map Merge Operator. 101
7.8 Hints. 103

NO_INLINE and INLINE Hints. 103
ROUTE_TO Hint. 104

7.9 SQLScript Variable Cache. 105

8 Imperative SQLScript Logic. 109
8.1 Scalar Variables. 109

SELECT INTO with DEFAULT Values. 111
SQL in Scalar Expressions. 112

8.2 Table Variables. 113
Table Variable Operators. 114
SQL DML Statements on Table Variables. 127
Sorted Table Variables. 129

8.3 Auto Type Derivation. 134
8.4 Global Session Variables. 136
8.5 Variable Scope Nesting. 137
8.6 Control Structures. 140

Conditionals. 141
Loop. 143
While Loop. .144
For Loop. 145
Break and Continue. 147
Operators. 148

8.7 Cursors. 150

SAP HANA SQLScript Reference for SAP HANA Platform
Content PUBLIC 3

Define Cursor. 150
Open Cursor. 152
Close Cursor. 152
Fetch Query Results of a Cursor. 153
Attributes of a Cursor. 154
Looping Over Result Sets. 155
Updatable Cursor. .156
Cursor Holdability. 158

8.8 Autonomous Transaction. 160
8.9 Transactional Statements. 161

COMMIT and ROLLBACK. .161
SAVEPOINT. 163

8.10 Dynamic SQL. 164
EXEC. 165
EXECUTE IMMEDIATE. 165
USING and INTO Clauses in DSQL. 166
APPLY_FILTER. 169

8.11 Exception Handling. 171
DECLARE EXIT HANDLER. 171
DECLARE CONTINUE HANDLER. 173
DECLARE CONDITION. 176
SIGNAL and RESIGNAL. 177
Exception Handling Examples. 179
Supported Error Codes. 182

8.12 Array Variables. 201
Declare a Variable of Type ARRAY. 201
Set an Element of an Array. 202
Return an Element of an Array. 203
ARRAY_AGG Function. 204
TRIM_ARRAY Function. 205
CARDINALITY Function. 205
Concatenate Two Arrays. .206
Array Parameters for Procedures and Functions. 206

8.13 SQL Injection Prevention Functions. 209
8.14 Explicit Parallel Execution. .212
8.15 Recursive SQLScript Logic. 214

9 Calculation Engine Plan Operators. 216
9.1 Data Source Access Operators. 218

CE_COLUMN_TABLE. 219
CE_JOIN_VIEW. 219
CE_OLAP_VIEW. 220

4 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Content

CE_CALC_VIEW. 221
9.2 Relational Operators. 221

CE_JOIN. 222
CE_LEFT_OUTER_JOIN. 222
CE_RIGHT_OUTER_JOIN. 222
CE_PROJECTION. 223
CE_CALC. 224
CE_AGGREGATION. 229
CE_UNION_ALL. .230

9.3 Special Operators. 231
CE_VERTICAL_UNION. 231
CE_CONVERSION. 232
TRACE. 234

10 HANA Spatial Support. 235

11 System Variables. 237
11.1 ::CURRENT_OBJECT_NAME and ::CURRENT_OBJECT_SCHEMA. 237
11.2 ::ROWCOUNT. 238
11.3 ::CURRENT_LINE_NUMBER. .242

12 Built-In Libraries. .243
12.1 Built-in Library SQLSCRIPT_SYNC. 243
12.2 Built-in Library SQLSCRIPT_STRING. .245
12.3 Built-in Library SQLSCRIPT_PRINT. 251
12.4 Built-In Library SQLSCRIPT_LOGGING. 252

SQLSCRIPT_LOGGING Privilege. 257
SQLSCRIPT_LOGGING_TABLE_TYPE. 258

13 Query Parameterization: BIND_AS_PARAMETER and BIND_AS_VALUE 259

14 Supportability. 262
14.1 M_ACTIVE_PROCEDURES. 262
14.2 Query Export . 265

SQLScript Query Export. 265
14.3 Type and Length Check for Table Parameters . 268
14.4 SQLScript Debugger. 269

Conditional Breakpoints. 270
Watchpoints. 270
Break on Error. 271
Save Table. 271

14.5 EXPLAIN PLAN for Call. 271
14.6 EXPLAIN PLAN for Table User-Defined Functions. 273

SAP HANA SQLScript Reference for SAP HANA Platform
Content PUBLIC 5

14.7 SQLScript Code Coverage. 277
14.8 SQLScript Code Analyzer. .279

Limitations in the SQLScript Code Analyzer. 285
14.9 SQLScript Plan Profiler. 288

M_SQLSCRIPT_PLAN_PROFILER_RESULTS View. 291
14.10 SQLScript Pragmas. 295
14.11 End-User Test Framework in SQLScript. .299

Invoking End-User Tests. 302
Listing End-User Tests. 306
Matchers for End-User Tests. 307

15 Best Practices for Using SQLScript. 309
15.1 Reduce the Complexity of SQL Statements . 309
15.2 Identify Common Sub-Expressions. 310
15.3 Multi-Level Aggregation. 310
15.4 Reduce Dependencies. 311
15.5 Avoid Using Cursors. .311
15.6 Avoid Using Dynamic SQL. 312

16 Developing Applications with SQLScript. 314
16.1 Handling Temporary Data. .314
16.2 SQL Query for Ranking. .314
16.3 Calling SQLScript From Clients. 315

Calling SQLScript from ABAP. 315
Calling SQLScript from Java. 318
Calling SQLScript from C#. 319

17 Appendix. .321
17.1 Example code snippets. 321

ins_msg_proc. 321

6 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Content

1 SAP HANA SQLScript Reference

This reference describes how to use the SQL extension SAP HANA SQLScript to embed data-intensive
application logic into SAP HANA.

SQLScript is a collection of extensions to the Structured Query Language (SQL). The extensions include:

● Data extension, which allows the definition of table types without corresponding tables
● Functional extension, which allows the definition of (side-effect free) functions that can be used to express

and encapsulate complex data flows
● Procedural extension, which provides imperative constructs executed in the context of the database

process.

SAP HANA SQLScript Reference for SAP HANA Platform
SAP HANA SQLScript Reference PUBLIC 7

2 About SAP HANA SQLScript

SQLScript is a collection of extensions to the Structured Query Language (SQL).

The extensions include:

● Data extension, which allows the definition of table types without corresponding tables
● Functional extension, which allows the definition of (side-effect free) functions that can be used to express

and encapsulate complex data flows
● Procedural extension, which provides imperative constructs executed in the context of the database

process.

8 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

About SAP HANA SQLScript

3 What is SQLScript?

The motivation behind SQLScript is to embed data-intensive application logic into the database. Currently,
applications only offload very limited functionality into the database using SQL, most of the application logic is
normally executed on an application server. The effect of that is that data to be operated upon needs to be
copied from the database onto the application server and vice versa. When executing data-intensive logic, this
copying of data can be very expensive in terms of processor and data transfer time. Moreover, when using an
imperative language like ABAP or JAVA for processing data, developers tend to write algorithms which follow a
one-tuple-at-a-time semantics (for example, looping over rows in a table). However, these algorithms are hard
to optimize and parallelize compared to declarative set-oriented languages like SQL.

The SAP HANA database is optimized for modern technology trends and takes advantage of modern hardware,
for example, by having data residing in the main memory and allowing massive parallelization on multi-core
CPUs. The goal of the SAP HANA database is to support application requirements by making use of such
hardware. The SAP HANA database exposes a very sophisticated interface to the application, consisting of
many languages. The expressiveness of these languages far exceeds that attainable with OpenSQL. The set of
SQL extensions for the SAP HANA database, which allows developers to push data-intensive logic to the
database, is called SQLScript. Conceptually SQLScript is related to stored procedures as defined in the SQL
standard, but SQLScript is designed to provide superior optimization possibilities. SQLScript should be used in
cases where other modeling constructs of SAP HANA, for example analytic views or attribute views are not
sufficient. For more information on how to best exploit the different view types, see "Exploit Underlying Engine".

The set of SQL extensions are the key to avoiding massive data copies to the application server and to
leveraging sophisticated parallel execution strategies of the database. SQLScript addresses the following
problems:

● Decomposing an SQL query can only be performed by using views. However, when decomposing complex
queries by using views, all intermediate results are visible and must be explicitly typed. Moreover, SQL
views cannot be parameterized, which limits their reuse. In particular they can only be used like tables and
embedded into other SQL statements.

● SQL queries do not have features to express business logic (for example a complex currency conversion).
As a consequence, such business logic cannot be pushed down into the database (even if it is mainly based
on standard aggregations like SUM(Sales), and so on).

● An SQL query can only return one result at a time. As a consequence, the computation of related result
sets must be split into separate, usually unrelated, queries.

● As SQLScript encourages developers to implement algorithms using a set-oriented paradigm and not
using a one-tuple-at-a-time paradigm, imperative logic is required, for example by iterative approximation
algorithms. Thus, it is possible to mix imperative constructs known from stored procedures with
declarative ones.

SAP HANA SQLScript Reference for SAP HANA Platform
What is SQLScript? PUBLIC 9

3.1 SQLScript Security Considerations

You can develop secure procedures using SQLScript in SAP HANA by observing the following
recommendations.

Using SQLScript, you can read and modify information in the database. In some cases, depending on the
commands and parameters you choose, you can create a situation in which data leakage or data tampering
can occur. To prevent this, SAP recommends using the following practices in all procedures.

● Mark each parameter using the keywords IN or OUT. Avoid using the INOUT keyword.
● Use the INVOKER keyword when you want the user to have the assigned privileges to start a procedure.

The default keyword, DEFINER, allows only the owner of the procedure to start it.
● Mark read-only procedures using READS SQL DATA whenever it is possible. This ensures that the data and

the structure of the database are not altered.

 Tip
Another advantage to using READS SQL DATA is that it optimizes performance.

● Ensure that the types of parameters and variables are as specific as possible. Avoid using VARCHAR, for
example. By reducing the length of variables you can reduce the risk of injection attacks.

● Perform validation on input parameters within the procedure.

Dynamic SQL

In SQLScript you can create dynamic SQL using one of the following commands: EXEC and EXECUTE
IMMEDIATE. Although these commands allow the use of variables in SQLScript where they might not be
supported. In these situations you risk injection attacks unless you perform input validation within the
procedure. In some cases injection attacks can occur by way of data from another database table.

To avoid potential vulnerability from injection attacks, consider using the following methods instead of dynamic
SQL:

● Use static SQL statements. For example, use the static statement, SELECT instead of EXECUTE
IMMEDIATE and passing the values in the WHERE clause.

● Use server-side JavaScript to write this procedure instead of using SQLScript.
● Perform validation on input parameters within the procedure using either SQLScript or server-side

JavaScript.
● Use APPLY_FILTER if you need a dynamic WHERE condition
● Use the SQL Injection Prevention Function

Escape Code

You might need to use some SQL statements that are not supported in SQLScript, for example, the GRANT
statement. In other cases you might want to use the Data Definition Language (DDL) in which some <name>

10 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

What is SQLScript?

elements, but not <value> elements, come from user input or another data source. The CREATE TABLE
statement is an example of where this situation can occur. In these cases you can use dynamic SQL to create
an escape from the procedure in the code.

To avoid potential vulnerability from injection attacks, consider using the following methods instead of escape
code:

● Use server-side JavaScript to write this procedure instead of using SQLScript.
● Perform validation on input parameters within the procedure using either SQLScript or server-side

JavaScript.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

Related Information

SQL Injection Prevention Functions [page 209]

3.2 SQLScript Processing Overview

To better understand the features of SQLScript and their impact on execution, it can be helpful to understand
how SQLScript is processed in the SAP HANA database.

When a user executes a procedure, for example by using the CALL statement, the SAP HANA database query
compiler processes the statement in a way similar to the processing of an SQL statement.

A step-by-step analysis of the process flow follows below:

● Parsing the statement: detecting and reporting simple syntactic errors.
● Checking the semantic correctness of the statement: deriving types for variables and checking if their use

is consistent.
● Optimizing the code: the original definition from the user is optimized for a better execution plan. For

example, the optimizer simplifies the control flow, merges statements, and embeds nested procedure
CALLs. Also, the optimizer analyzes data dependency to exploit parallelism behind the logic.

● Generating the execution plan: based on the optimized code, the SQLScript execution plan is generated.
● Execution: the execution starts with binding the actual parameters to the SQLScript execution plan. The

plan is executed sequentially or in parallel.

SAP HANA SQLScript Reference for SAP HANA Platform
What is SQLScript? PUBLIC 11

4 Backus Naur Form Notation

This document uses BNF (Backus Naur Form) which is the notation technique used to define programming
languages. BNF describes the syntax of a grammar by using a set of production rules and by employing a set of
symbols.

Symbols Used in BNF

Symbol Description

< > Angle brackets are used to surround the name of a syntax element (BNF non-terminal) of the SQL
language.

::= The definition operator is used to provide definitions of the element appearing on the left side of
the operator in a production rule.

[] Square brackets are used to indicate optional elements in a formula. Optional elements may be
specified or omitted.

{ } Braces group elements in a formula. Repetitive elements (zero or more elements) can be specified
within brace symbols.

| The alternative operator indicates that the portion of the formula following the bar is an alternative
to the portion preceding the bar.

... The ellipsis indicates that the element may be repeated any number of times. If ellipsis appears
after grouped elements, the grouped elements enclosed with braces are repeated. If ellipsis ap­
pears after a single element, only that element is repeated.

!! Introduces normal English text. This is used when the definition of a syntactic element is not ex­
pressed in BNF.

BNF Lowest Terms Representations

Throughout the BNF used in this document each syntax term is defined to one of the lowest term
representations shown below.

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 <letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q |
r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q |
R | S | T | U | V | W | X | Y | Z
 <any_character> ::= !!any character. <comma> ::= , <dollar_sign> ::= $ <double_quotes> ::= " <greater_than_sign> ::= > <hash_symbol> ::= # <left_bracket> ::= [

12 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Backus Naur Form Notation

<left_curly_bracket> ::= { <lower_than_sign> ::= < <period> ::= . <pipe_sign> ::= | <right_bracket> ::=] <right_curly_bracket> ::= } <sign> ::= + | - <single_quote> ::= ' <underscore> ::= _ <apostrophe> ::= <single_quote> <approximate_numeric_literal> ::= <mantissa>E<exponent> <cesu8_restricted_characters> ::= <double_quote> | <dollar_sign> |
<single_quote> | <sign> | <period> | <greater_than_sign> | <lower_than_sign> |
<pipe_sign> | <left_bracket> | <right_bracket> | <left_curly_bracket> |
<right_curly_bracket> | (|) | ! | % | * | , | / | : | ; | = | ? | @ | \ | ^
| ` <exact_numeric_literal> ::= <unsigned_integer>[<period>[<unsigned_integer>]] | <period><unsigned_integer> <exponent> ::= <signed_integer> <hostname> ::= {<letter> | <digit>}[{ <letter> | <digit> | <period> | - }...] <identifier> ::= simple_identifier | special_identifier <mantissa> ::= <exact_numeric_literal> <numeric_literal> ::= <signed_numeric_literal> | <signed_integer> <password> ::= {<letter> | <underscore> | <hash_symbol> | <dollar_sign> |
<digit>}... | <double_quotes> <any_character>...<double_quotes> <port_number> ::= <unsigned_integer> <schema_name> ::= <unicode_name> <simple_identifier> ::= {<letter> | <underscore>} [{<letter> | <digit> |
<underscore> | <hash_symbol> | <dollar_sign>}...] <special_identifier> ::= <double_quotes><any_character>...<double_quotes> <signed_integer> ::= [<sign>] <unsigned_integer> <signed_numeric_literal> ::= [<sign>] <unsigned_numeric_literal> <string_literal> ::= <single_quote>[<any_character>...]<single_quote> <unicode_name> ::= !! CESU-8 string excluding any characters listed in
<cesu8_restricted_characters> <unsigned_integer> ::= <digit>... <unsigned_numeric_literal> ::= <exact_numeric_literal> |
<approximate_numeric_literal> <user_name> ::= <unicode_name>

SAP HANA SQLScript Reference for SAP HANA Platform
Backus Naur Form Notation PUBLIC 13

5 Data Type Extension

Besides the built-in scalar SQL data types, SQLScript allows you to use user-defined types for tabular values.

5.1 Scalar Data Types

The SQLScript type system is based on the SQL-92 type system. It supports the following primitive data types:

Numeric types TINYINT SMALLINT INT BIGINT DECIMAL SMALL­
DECIMAL REAL DOUBLE

Character String Types VARCHAR NVARCHAR ALPHANUM

Date-Time Types TIMESTAMP SECONDDATE DATE TIME

Binary Types VARBINARY

Large Object Types CLOB NCLOB BLOB

Spatial Types ST_GEOMETRY

Boolean Type BOOLEAN

 Note
SQLScript currently allows a length of 8388607 characters for the NVARCHAR and the VARCHAR data
types, unlike SQL where the length of that data type is limited to 5000.

For more information on scalar types, see SAP HANA SQL and System Views Reference, Data Types.

5.2 Table Types

The SQLScript data type extension allows the definition of table types. These types are used to define
parameters for procedures representing tabular results.

14 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Data Type Extension

5.2.1 CREATE TYPE

Syntax

CREATE TYPE <type_name> AS TABLE (<column_list_definition>)

Syntax Elements

<type_name> ::= [<schema_name>.]<identifier>

Identifies the table type to be created and, optionally, in which schema it should be created.

<column_list_definition> ::= <column_elem> [{, <column_elem>}...] <column_elem> ::= <column_name> <data_type><column_name> ::= <identifier>

Defines a table column

 <data_type> ::= DATE | TIME | SECONDDATE | TIMESTAMP | TINYINT | SMALLINT |
INTEGER | BIGINT | SMALLDECIMAL | DECIMAL | REAL | DOUBLE | VARCHAR | NVARCHAR | ALPHANUM | SHORTTEXT |
VARBINARY | BLOB | CLOB | NCLOB | TEXT | BOOLEAN

The available data types

For more information on data types, see Scalar Data Types [page 14].

Description

The CREATE TYPE statement creates a user-defined type.

The syntax for defining table types follows the SQL syntax for defining new tables. The table type is specified by
using a list of attribute names and primitive data types. The attributes of each table type must have unique
names.

Example

You create a table type called tt_publishers.

CREATE TYPE tt_publishers AS TABLE (publisher INTEGER,
 name VARCHAR(50),
 price DECIMAL,

SAP HANA SQLScript Reference for SAP HANA Platform
Data Type Extension PUBLIC 15

 cnt INTEGER);

You create a table type called tt_years.

CREATE TYPE tt_years AS TABLE (year VARCHAR(4),
 price DECIMAL, cnt INTEGER);

5.2.2 DROP TYPE

Syntax

 DROP TYPE <type_name> [<drop_option>]

Syntax Elements

 <type_name> ::= [<schema_name>.]<identifier>
The identifier of the table type to be dropped, with optional schema name

 <drop_option> ::= CASCADE | RESTRICT
When the <drop_option> is not specified, a non-cascaded drop is performed. This drops only the specified
type, dependent objects of the type are invalidated but not dropped.

The invalidated objects can be revalidated when an object with the same schema and object name is created.

Description

The DROP TYPE statement removes a user-defined table type.

Example

You create a table type called my_type.

 CREATE TYPE my_type AS TABLE (column_a DOUBLE);

16 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Data Type Extension

You drop the my_type table type.

 DROP TYPE my_type;

5.3 Row-Type Variable

You can declare a row-type variable, which is a collection of scalar data types, and use it to easily fetch a single
row from a table.

Syntax

DECLARE <sql_identifier> [{, <sql_identifier> }…] [CONSTANT] ROW
{ <row_element_list> | <row_like> } [{ DEFAULT | ‘=’ } <row_default_value>] ;

Syntax Elements

<row_element_list> ::= ‘(‘ <row_element> [{ , <row_element> }…] ‘)’ <row_element> ::= <identifier> <sql_type>
<row_like> ::= LIKE { <table_name> | <variable > }
<table_name> ::= [<schema_name> ‘.’] <identifier>
<variable> ::= ‘:’ <identifier>
<row_default_value> ::= <row_constructor> | <variable> <row_constructor> ::= ROW ‘(‘ <expression> [{ , <expression> }…] ‘)’

Assigning Values to a Row-Type Variable

To assign values to a row-type variable or to reference values of a row-type variable, proceed as follows:

DO BEGIN DECLARE x, y ROW (a INT, b VARCHAR(16), c TIMESTAMP);
 x = ROW(1, 'a', '2000-01-01');
 x.a = 2;
 y = :x;
 SELECT :y.a, :y.b, :y.c FROM DUMMY;
 -- Returns [2, 'a', '2000-01-01'] END;

SAP HANA SQLScript Reference for SAP HANA Platform
Data Type Extension PUBLIC 17

Selecting Values into a Row-Type Variable

You can fetch or select multiple values into a single row-type variable.

DO BEGIN DECLARE CURSOR cur FOR SELECT 1 as a, 'a' as b, to_timestamp('2000-01-01')
as c FROM DUMMY;
 DECLARE x ROW LIKE :cur;
 OPEN cur;
 FETCH cur INTO x;
 SELECT :x.a, :x.b, :x.c FROM DUMMY;
 -- Returns [1, 'a', '2000-01-01']
 SELECT 2, 'b', '2000-02-02' INTO x FROM DUMMY;
 SELECT :x.a, :x.b, :x.c FROM DUMMY;
 -- Returns [2, 'b', '2000-02-02'] END;

Limitations

● EXEC INTO is not supported.
● It is not possible to pass row-type variables as parameters of procedures or functions.

18 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Data Type Extension

6 Logic Container

The following types of logic containers are available in SQLScript: Procedure, Anonymous Block, User-Defined
Function, and User-Defined Library.

The User-Defined Function container is separated into Scalar User-Defined Function and Table User-Defined
Function.

The following sections provide an overview of the syntactical language description for the containers.

6.1 Procedures

Procedures allow you to describe a sequence of data transformations on data that is passed as input and
database tables.

Data transformations can be implemented as queries that follow the SAP HANA database SQL syntax by
calling other procedures. Read-only procedures can only call other read-only procedures.

The use of procedures has some advantages compared to using SQL:

● You can parameterize and reuse calculations and transformations that are described in one procedure in
other procedures.

● You can use and express knowledge about relationships in the data: related computations can share
common sub-expressions, and related results can be returned using multiple output parameters.

● You can define common sub-expressions. The query optimizer decides between a materialization strategy
(that avoids re-computation of expressions) and other optimizing strategies. That makes the task of
detecting common sub-expressions easier and improves the readability of the SQLScript code.

● You can use scalar variables or imperative language features, if required.

6.1.1 CREATE PROCEDURE

You use this SQL statement to create a procedure.

Syntax

 CREATE [OR REPLACE] PROCEDURE <proc_name> [(<parameter_clause>)] [LANGUAGE
<lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>] [READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC] [WITH ENCRYPTION]
[AUTOCOMMIT DDL { ON|OFF }]
 AS
 { BEGIN [SEQUENTIAL EXECUTION | PARALLEL EXECUTION]

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 19

 <procedure_body> END | HEADER ONLY }

Syntax Elements

The following syntax elements are available:

● Identifier of the procedure with an optional schema name

<proc_name> ::= [<schema_name>.]<identifier>

● Input and output parameters of the procedure

<parameter_clause> ::= <parameter> [{, <parameter>}...]

● Procedure parameter with associated data type

<param_inout> ::= IN | OUT | INOUT

 Note
The default is IN. Each parameter is marked using the keywords IN/OUT/INOUT. Input and output
parameters must be explicitly assigned a type (that means that tables without a type are note
supported)

● Variable name for a parameter

<param_name> ::= <identifier>

● The input and output parameters of a procedure can have any of the primitive SQL types or a table type.
INOUT parameters can only be of the scalar or the array type.
Array variables or constant arrays can be passed to procedures as input, output, and inout parameters
with the following limitations:
○ LOB type array parameter is not supported.
○ DEFAULT VALUE for an array parameter is not supported.
○ Using an array parameter in the USING clause of Dynamic SQL is not supported.

<param_type> ::= <sql_type> [ARRAY] | <table_type> | <table_type_definition> |
<any_table_type>

● Data type of the variable

 <sql_type> ::= DATE | TIME | TIMESTAMP | SECONDDATE | TINYINT | SMALLINT |
INTEGER | BIGINT | DECIMAL | SMALLDECIMAL | REAL | DOUBLE | | VARCHAR | NVARCHAR | ALPHANUM | VARBINARY | CLOB | NCLOB |
BLOB | ST_GEOMETRY

 Note
For more information on data types see Data Types in the SAP HANA SQL Reference Guide on the SAP
Help Portal.

● A table type previously defined with the CREATE TYPE command, see CREATE TYPE [page 15].

<table_type> ::= <identifier>

20 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

● A table type implicitly defined within the signature

<table_type_definition> ::= TABLE (<column_list_definition>) <column_list_definition> ::= <column_elem>[{, <column_elem>}...]
<column_elem> ::= <column_name> <data_type> <column_name> ::= <identifier>

● Definition of the programming language in the procedure. The default is SQLSCRIPT.

 LANGUAGE <lang> <lang> ::= SQLSCRIPT | R

 Tip
It is a good practice to define the language in all procedure definitions.

● Specification of the security mode of the procedure. The default is DEFINER.

SQL SECURITY <mode> <mode> ::= DEFINER | INVOKER

● Indication that that the execution of the procedure is performed with the privileges of the definer of the
procedure

DEFINER

● Indication that the execution of the procedure is performed with the privileges of the invoker of the
procedure

INVOKER

● Specifies the schema for unqualified objects in the procedure body; if nothing is specified, the
current_schema of the session, when the procedure is defined, is used.

DEFAULT SCHEMA <default_schema_name> <default_schema_name> ::= <unicode_name>

● Marks the procedure as being read-only and side-effect free - the procedure does not make modifications
to the database data or its structure. This means that the procedure does not contain DDL or DML
statements and that it only calls other read-only procedures. The advantage of using this parameter is that
certain optimizations are available for read-only procedures.

READS SQL DATA

● For more information on <variable_cache_clause>, see SQLScript Variable Cache [page 105].
● By default, every SQLScript procedure or function runs with AUTOCOMMIT mode OFF and AUTOCOMMIT

DDL mode OFF. In some cases, AUTOCOMMIT DDL mode ON may be required, like administrative
operations (for example, IMPORT) that cannot run with DDL AUTOCOMMIT mode OFF. Now you can
explicitly specify whether the procedure should be run with AUTOCOMMIT DDL mode ON or OFF. The
default value for the property remains 'OFF'.

AUTOCOMMIT DDL ON|OFF

You can find out the AUTOCOMMIT DDL mode for each procedure by using the column
'AUTO_COMMIT_DDL' in the system view 'PROCEDURES'.
The following restrictions apply:
○ It cannot be used in functions

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 21

○ It cannot be used in non-SQLScript procedures
○ It cannot be used in read-only procedures.

● Defines the main body of the procedure according to the programming language selected

<procedure_body> ::= [<proc_using_list>] [<proc_decl_list>]
 [<proc_handler_list>] <proc_stmt_list>

● This statement forces sequential execution of the procedure logic. No parallelism takes place.

SEQUENTIAL EXECUTION

● Procedure variable, cursor, and condition declaration

<proc_decl_list> ::= <proc_decl> [{, <proc_decl>}…] <proc_decl> ::= DECLARE {<proc_variable>|<proc_table_variable>|<proc_cursor>|
<proc_condition>} ;
<proc_table_variable> ::= <variable_name_list> {<table_type_definition>|
<table_type>}
<proc_variable>::= <variable_name_list> [CONSTANT] {<sql_type>|
<array_datatype>}[NOT NULL][<proc_default>]
<variable_name_list> ::= <variable_name>[{, <variable_name}...]
<column_list_elements> ::= (<column_definition>[{,<column_definition>}...])
<array_datatype> ::= <sql_type> ARRAY [= <array_constructor>]
<array_constructor> ::= ARRAY (<expression> [{ , <expression> }...])
<proc_default> ::= (DEFAULT | '=') <value>|<expression>
<value> ::= An element of the type specified by <type> or an expression
<proc_cursor> ::= CURSOR <cursor_name> [(proc_cursor_param_list)] FOR
<subquery> ;
<proc_cursor_param_list> ::= <proc_cursor_param> [{, <proc_cursor_param>}...]
<variable_name> ::= <identifier>
<cursor_name> ::= <identifier>
<proc_cursor_param> ::= <param_name> <datatype> <proc_condition> ::= <variable_name> CONDITION | <variable_name> CONDITION
FOR <sql_error_code>

● Declares exception handlers to catch SQL exceptions.

<proc_handler_list> ::= <proc_handler> [, <proc_handler> [,…]] <proc_handler> ::= DECLARE { EXIT | CONTINUE } HANDLER FOR
<proc_condition_value_list> <proc_stmt>;

● One or more condition values

 <proc_condition_value_list> ::= <proc_condition_value>
{,<proc_condition_value>}...]

● An error code number or a condition name declared for a condition variable

 <proc_condition_value> ::= SQLEXCEPTION | <sql_error_code> | <condition_name>
● Procedure body statements.

 <proc_stmt_list> ::= {<proc_stmt>}... <proc_stmt> ::= <proc_block>
 | <proc_assign>
 | <proc_single_assign>
 | <proc_multi_assign>
 | <proc_if>
 | <proc_loop>
 | <proc_while>
 | <proc_for>

22 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 | <proc_foreach>
 | <proc_exit>
 | <proc_continue>
 | <proc_signal>
 | <proc_resignal>
 | <proc_sql>
 | <proc_open>
 | <proc_fetch>
 | <proc_close>
 | <proc_call>
 | <proc_exec>
 | <proc_return>
 | <proc_insert>
 | <proc_update>
 | <proc_delete>

● Insert a new data record at a specific position into a table variable

<proc_insert> ::= :<table_variable>.INSERT((<value_1>,…, <value_n>), <index>)

For more information on inserting, updating and deleting data records, see Modifying the Content of Table
Variables [page 115].

● You can modify a data record at a specific position. There are two equivalent syntax options:

<proc_update> ::= :<table_variable>.UPDATE((<value_1>,…, <value_n>), <index>)

<proc_update> ::= <table_variable>[<index>] = (<value_1>,…, <value_n>)

● You can delete data records from a table variable. Wth the following syntax you can delete a single record.

<proc_delete> ::= :<table_variable>.DELETE(<index>)

● To delete blocks of records from table variables, you can use the following syntax:

<proc_delete> ::= :<table_variable>.DELETE(<from_index>..<to_index>)

● Sections of your procedures can be nested using BEGIN and END terminals

<proc_block> ::= BEGIN <proc_block_option> [<proc_decl_list>]
 [<proc_handler_list>]
 <proc_stmt_list>
 END ; <proc_block_option> ::= [SEQUENTIAL EXECUTION]| [AUTONOMOUS TRANSACTION] |
[PARALLEL EXECUTION]

● Assignment of values to variables - an <expression> can be either a simple expression, such as a character,
a date, or a number, or it can be a scalar function or a scalar user-defined function.

<proc_assign> ::= <variable_name> = { <expression> | <array_function> } ; | <variable_name> '[' <expression> ']' = <expression> ;

● The ARRAY_AGG function returns the array by aggregating the set of elements in the specified column of
the table variable. Elements can optionally be ordered.
The CARDINALITY function returns the number of the elements in the array, <array_variable_name>.
The TRIM_ARRAY function returns the new array by removing the given number of elements,
<numeric_value_expression>, from the end of the array, <array_value_expression>.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 23

The ARRAY function returns an array whose elements are specified in the list <array_variable_name>. For
more information see the chapter Array Variables [page 201].

<array_function> = ARRAY_AGG (:<table_variable>.<column_name> [ORDER BY
<sort_spec_list>]) | CARDINALITY (:<array_variable_name>)
 | TRIM_ARRAY (:<array_variable_name> ,
<array_variable_name>)
 | ARRAY (<array_variable_name_list>)
 <table_variable> ::= <identifier>
 <column_name> ::= <identifier>
 <array_variable_name> ::= <identifier>

● Assignment of values to a list of variables with only one function evaluation. For example,
<function_expression> must be a scalar user-defined function and the number of elements in
<var_name_list> must be equal to the number of output parameters of the scalar user-defined function.

<proc_multi_assign> ::= (<var_name_list>) = <function_expression>

 <proc_single_assign> ::= <variable_name> = <subquery> | <variable_name> = <proc_ce_call>
 | <variable_name> = <proc_apply_filter>
 | <variable_name> = <unnest_function> | <variable_name> = <map_merge_op>

● The MAP_MERGE operator is used to apply each row of the input table to the mapper function and unite all
intermediate result tables. For more information, see Map Merge Operator [page 101].

<map_merge_op> ::= MAP_MERGE(<table_or_table_variable>,
<mapper_identifier>(<table_or_table_variable>.<column_name> [{,
<table_or_table_variable>.<column_name>} …] [, <param_list>]) <table_or_table_variable> ::= <table_variable_name> | <identifier>
<table_variable_name> ::= <identifier>
<mapper_identifier> ::= <identifier>
<column_name> ::= <identifier>
<param_list> ::= <param> [{, <param>} …]
<paramter> = <table_or_table_variable> | <string_literal> | <numeric_literal>
| <identifier>

● For more information about the CE operators, see Calculation Engine Plan Operators [page 216].

 <proc_ce_call> ::= TRACE (<variable_name>) ; | CE_LEFT_OUTER_JOIN (<table_variable> ,
<table_variable> , '[' <expr_alias_comma_list> ']' [<expr_alias_vector>]) ;
 | CE_RIGHT_OUTER_JOIN (<table_variable> ,
<table_variable> , '[' <expr_alias_comma_list> ']' [<expr_alias_vector>]) ;
 | CE_FULL_OUTER_JOIN (<table_variable> ,
<table_variable> , '[' <expr_alias_comma_list> ']' [<expr_alias_vector>]);
 | CE_JOIN (<table_variable> , <table_variable> , '['
<expr_alias_comma_list> ']' [<expr_alias_vector>]) ;
 | CE_UNION_ALL (<table_variable> , <table_variable>) ;
 | CE_COLUMN_TABLE (<table_name> [<expr_alias_vector>]) ;
 | CE_JOIN_VIEW (<table_name> [<expr_alias_vector>]) ;
 | CE_CALC_VIEW (<table_name> [<expr_alias_vector>]) ;
 | CE_OLAP_VIEW (<table_name> [<expr_alias_vector>]) ;
 | CE_PROJECTION (<table_variable> , '['
<expr_alias_comma_list> ']' <opt_str_const>) ;
 | CE_PROJECTION (<table_variable> <opt_str_const>) ;
 | CE_AGGREGATION (<table_variable> , '['
<agg_alias_comma_list> ']' [<expr_alias_vector>]);
 | CE_CONVERSION (<table_variable> , '['
<proc_key_value_pair_comma_list> ']' [<expr_alias_vector>]) ;
 | CE_VERTICAL_UNION (<table_variable> , '['
<expr_alias_comma_list> ']' <vertical_union_param_pair_list>) ;

24 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 <table_name> ::= [<schema_name>.]<identifier>

● APPLY_FILTER defines a dynamic WHERE-condition <variable_name> that is applied during runtime. For
more information about that, see the chapter APPLY_FILTER [page 169].

 <proc_apply_filter> ::= APPLY_FILTER ({<table_name> | :<table_variable>},
<variable_name>) ;

● The UNNEST function returns a table including a row for each element of the specified array.

<unnest_function> ::= UNNEST (<variable_name_list>) [WITH ORDINALITY]
[<as_col_names>] ; <variable_name_list> ::= :<variable_name> [{, :<variable_name>}...]

● Appends an ordinal column to the return values.

WITH ORDINALTIY

● Specifies the column names of the return table.

<as_col_names> ::= AS [table_name] (<column_name_list>) <column_name_list> ::= <column_name>[{, <column_name>}...] <column_name> ::= <identifier>

● You use IF - THEN - ELSE IF to control execution flow with conditionals.

 <proc_if> ::= IF <condition> THEN [SEQUENTIAL EXECUTION][<proc_decl_list>]
[<proc_handler_list>] <proc_stmt_list> [<proc_elsif_list>]
 [<proc_else>]
 END IF ;
 <proc_elsif_list> ::= ELSEIF <condition> THEN [SEQUENTIAL EXECUTION]
[<proc_decl_list>] [<proc_handler_list>] <proc_stmt_list>
 <proc_else> ::= ELSE [SEQUENTIAL EXECUTION][<proc_decl_list>]
[<proc_handler_list>] <proc_stmt_list>

● You use loop to repeatedly execute a set of statements.

 <proc_loop> ::= LOOP [SEQUENTIAL EXECUTION][<proc_decl_list>]
[<proc_handler_list>] <proc_stmt_list> END LOOP ;

● You use WHILE to repeatedly call a set of trigger statements while a condition is true.

 <proc_while> ::= WHILE <condition> DO [SEQUENTIAL EXECUTION]
[<proc_decl_list>] [<proc_handler_list>] <proc_stmt_list> END WHILE ;

● You use FOR - IN loops to iterate over a set of data.

 <proc_for> ::= FOR <column_name> IN [REVERSE] <expression> .. <expression> DO [SEQUENTIAL EXECUTION][<proc_decl_list>]
[<proc_handler_list>] <proc_stmt_list> END FOR ;

● You use FOR - EACH loops to iterate over all elements in a set of data.

 <proc_foreach> ::= FOR <column_name> AS <column_name> [<open_param_list>] DO [SEQUENTIAL EXECUTION][<proc_decl_list>]
[<proc_handler_list>] <proc_stmt_list>
 END FOR ;
 <open_param_list> ::= (<expression> [{ , <expression> }...])

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 25

● Terminates a loop

 <proc_exit> ::= BREAK ;
● Skips a current loop iteration and continues with the next value.

 <proc_continue> ::= CONTINUE ;
● You use the SIGNAL statement to explicitly raise an exception from within your trigger procedures.

 <proc_signal> ::= SIGNAL <signal_value> [<set_signal_info>] ;
● You use the RESIGNAL statement to raise an exception on the action statement in an exception handler. If

an error code is not specified, RESIGNAL will throw the caught exception.

 <proc_resignal> ::= RESIGNAL [<signal_value>] [<set_signal_info>] ;
● You can SIGNAL or RESIGNAL a signal name or an SQL error code.

 <signal_value> ::= <signal_name> | <sql_error_code> <signal_name> ::= <identifier>
 <sql_error_code> ::= <unsigned_integer>

● You use SET MESSAGE_TEXT to deliver an error message to users when specified error is thrown during
procedure execution.

 <set_signal_info> ::= SET MESSAGE_TEXT = '<message_string>' <message_string> ::= <any_character>
● <proc_sql> ::= <subquery> | <select_into_stmt>

 | <insert_stmt>
 | <delete_stmt>
 | <update_stmt>
 | <replace_stmt>
 | <call_stmt>
 | <create_table>
 | <drop_table> | <truncate_statement>

For information on <insert_stmt>, see INSERT in the SAP HANA SQL and System Views Reference.
For information on <delete_stmt>, see DELETE in the SAP HANA SQL and System Views Reference.
For information on <update_stmt>, see UPDATE in the SAP HANA SQL and System Views Reference.
For information on <replace_stmt> and <upsert_stmt>, see REPLACE and UPSERT in the SAP HANA
SQL and System Views Reference.
For information on <truncate_stmt>, see TRUNCATE in the SAP HANA SQL and System Views Reference.

● <select_into_stmt> ::= SELECT <select_list> INTO <var_name_list> [DEFAULT
<scalar_expr_list>] <from_clause >
 [<where_clause>]
 [<group_by_clause>]
 [<having_clause>]
 [{<set_operator> <subquery>, ... }]
 [<order_by_clause>] [<limit>] ;

● <var_name> is a scalar variable. You can assign selected item value to this scalar variable.

 <var_name_list> ::= <var_name>[{, <var_name>}...] <var_name> ::= <identifier>

26 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

● Cursor operations

<proc_open> ::= OPEN <cursor_name> [<open_param_list>] ; <proc_fetch> ::= FETCH <cursor_name> INTO <column_name_list> ; <proc_close> ::= CLOSE <cursor_name> ;

● Procedure call. For more information, see CALL: Internal Procedure Call [page 32]

<proc_call> ::= CALL <proc_name> (<param_list>) ;

● Use EXEC to make dynamic SQL calls

<proc_exec> ::= {EXEC | EXECUTE IMMEDIATE} <proc_expr> ;

● Return a value from a procedure

<proc_return> ::= RETURN [<proc_expr>] ;

Description

The CREATE PROCEDURE statement creates a procedure by using the specified programming language
<lang>.

Example

Example: Creating a Procedure

You create an SQLScript procedure with the following definition:

 CREATE PROCEDURE orchestrationProc LANGUAGE SQLSCRIPT AS
 BEGIN
 DECLARE v_id BIGINT;
 DECLARE v_name VARCHAR(30);
 DECLARE v_pmnt BIGINT;
 DECLARE v_msg VARCHAR(200);
 DECLARE CURSOR c_cursor1 (p_payment BIGINT) FOR
 SELECT id, name, payment FROM control_tab
 WHERE payment > :p_payment ORDER BY id ASC;
 CALL init_proc();
 OPEN c_cursor1(250000);
 FETCH c_cursor1 INTO v_id, v_name, v_pmnt; v_msg = :v_name || ' (id '
|| :v_id || ') earns ' || :v_pmnt || ' $.';
 CALL ins_msg_proc(:v_msg);
 CLOSE c_cursor1;
 END;

The procedure features a number of imperative constructs including the use of a cursor (with associated state)
and local scalar variables with assignments.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 27

6.1.2 DROP PROCEDURE

Syntax

DROP PROCEDURE <proc_name> [<drop_option>]

Syntax Elements

<proc_name> ::= [<schema_name>.]<identifier>

The name of the procedure to be dropped, with optional schema name

<drop_option> ::= CASCADE | RESTRICT

If you do not specify the <drop_option>, the system performs a non-cascaded drop. This will only drop the
specified procedure; dependent objects of the procedure will be invalidated but not dropped. The invalidated
objects can be revalidated when an object that uses the same schema and object name is created.

CASCADE

Drops the procedure and dependent objects.

RESTRICT

This parameter drops the procedure only when dependent objects do not exist. If you use this drop option and
a dependent object exists, you will get an error.

Description

This statement drops a procedure created using CREATE PROCEDURE from the database catalog.

Examples

You drop a procedure called my_proc from the database using a non-cascaded drop.

DROP PROCEDURE my_proc;

28 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.1.3 ALTER PROCEDURE

You can use ALTER PROCEDURE if you want to change the content and properties of a procedure without
dropping the object.

ALTER PROCEDURE <proc_name> [(<parameter_clause>)] [LANGUAGE <lang>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC] [WITH ENCRYPTION]
[AUTOCOMMIT DDL { ON|OFF }] AS
BEGIN [SEQUENTIAL EXECUTION]
 <procedure_body>
END

For more information about the parameters, see CREATE PROCEDURE [page 19].

For instance, with ALTER PROCEDURE you can change the content of the body itself. Consider the following
GET_PROCEDURES procedure that returns all procedure names on the database.

CREATE PROCEDURE GET_PROCEDURES(OUT procedures TABLE(schema_name NVARCHAR(256),
name NVARCHAR(256))) AS
BEGIN
 procedures = SELECT schema_name AS schema_name, procedure_name AS name FROM
PROCEDURES; END;

The procedure GET_PROCEDURES should now be changed to return only valid procedures. In order to do so, use
ALTER PROCEDURE:

ALTER PROCEDURE GET_PROCEDURES(OUT procedures TABLE(schema_name NVARCHAR(256),
name NVARCHAR(256))) AS
BEGIN
 procedures = SELECT schema_name AS schema_name, procedure_name AS name FROM
PROCEDURES WHERE IS_VALID = 'TRUE'; END;

Besides changing the procedure body, you can also change the language <lang> of the procedure, the default
schema <default_schema_name> as well as change the procedure to read only mode (READS SQL DATA).

 Note
If the default schema and read-only mode are not explicitly specified, they will be removed. The default
language is SQLScript.

 Note
You must have the ALTER privilege for the object you want to change.

6.1.4 Procedure Calls

A procedure can be called either by a client on the outer-most level, using any of the supported client
interfaces, or within the body of a procedure.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 29

 Recommendation
SAP recommends that you use parameterized CALL statements for better performance. The advantages
are as follows:

● The parameterized query compiles only once, thereby reducing the compile time.
● A stored query string in the SQL plan cache is more generic and a precompiled query plan can be

reused for the same procedure call with different input parameters.
● By not using query parameters for the CALL statement, the system triggers a new query plan

generation.

6.1.4.1 CALL

Syntax

 CALL <proc_name> (<param_list>) [WITH OVERVIEW]

Syntax Elements

 <proc_name> ::= [<schema_name>.]<identifier>

The identifier of the procedure to be called, with optional schema name.

 <param_list> ::= <proc_param>[{, <proc_param>}...]

Specifies one or more procedure parameters.

 <proc_param> ::= <identifier> | <string_literal> | <unsigned_integer> |
<signed_integer>| <signed_numeric_literal> | <unsigned_numeric_literal> |
<expression>

Procedure parameters

For more information on these data types, see Backus Naur Form Notation [page 12] and Scalar Data Types
[page 14].

Parameters passed to a procedure are scalar constants and can be passed as IN, OUT or INOUT parameters.
Scalar parameters are assumed to be NOT NULL. Arguments for IN parameters of table type can be either
physical tables, or views. The actual value passed for tabular OUT parameters must be`?`.

 WITH OVERVIEW

Defines that the result of a procedure call will be stored directly into a physical table.

30 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Calling a procedure WITH OVERVIEW returns one result set that holds the information of which table contains
the result of a particular table's output variable. Scalar outputs will be represented as temporary tables with
only one cell. When you pass existing tables to the output parameters WITH OVERVIEW will insert the result-set
tuples of the procedure into the provided tables. When you pass '?' to the output parameters, temporary tables
holding the result sets will be generated. These tables will be dropped automatically once the database session
is closed.

Description

Calls a procedure defined with CREATE PROCEDURE [page 19].

CALL returns a list of result sets with one entry for every tabular result. An iterator can be used to iterate over
these results sets. For each result set, you can iterate over the result table in the same way you do that for
query results. SQL statements, which are not assigned to any table variable in the procedure body, are added
as result sets at the end of the list of result sets. The type of the result structures will be determined during
compilation time but will not be visible in the signature of the procedure.

When executed by the client, the CALL syntax behaves in a way consistent with the SQL standard semantics.
For example, Java clients can call a procedure using a JDBC CallableStatement. Scalar output variables are
a scalar value that can be retrieved from the callable statement directly.

 Note
Unquoted identifiers are implicitly treated as written in upper case. Quoting identifiers will take into
account capitalization and allow the usage of white spaces that are normally not allowed in SQL identifiers.

Examples

In these examples, consider the following procedure signature:

CREATE PROCEDURE proc(IN value integer,IN currency nvarchar(10),OUT outTable typeTable,
 OUT valid integer)
AS
BEGIN
 … END;

Calling the proc procedure:

CALL proc(1000, 'EUR', ?, ?);

Calling the proc procedure using the WITH OVERVIEW option:

CALL proc(1000, 'EUR', ?, ?) WITH OVERVIEW;

It is also possible to use scalar user-defined function as parameters for a procedure call:

CALL proc(udf(),’EUR’,?,?);

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 31

CALL proc(udf()* udf()-55,’EUR’, ?, ?);

In this example, udf() is a scalar user-defined function. For more information about scalar user-defined
functions, see CREATE FUNCTION [page 44]

6.1.4.2 CALL: Internal Procedure Call

Syntax:

CALL <proc_name > (<param_list>)

Syntax Elements:

<param_list> ::= <param>[{, <param>}...]

Specifies procedure parameters

<param>::= <in_table_param> | <in_scalar_param> |<out_scalar_param> |
<out_table_param>| <inout_scalar_param>

The type of the parameters can be either table or scalar.

<in_table_param> ::= <in_param> <in_scalar_param> ::= <in_param>|<scalar_value>|<expression>

<in_param> ::= :<identifier>

Specifies a procedure input parameter

 Note
Use a colon before the identifier name.

<out_param> ::= <identifier>

<out_scalar_param> ::= <out_param> <out_table_param> ::= <out_param>

<inout_scalar_param> ::= <out_param>

Specifies a procedure output parameter

Description:

For an internal procedure, in which one procedure calls another procedure, all existing variables of the caller or
literals are passed to the IN parameters of the callee and new variables of the caller are bound to the OUT
parameters of the callee. The result is implicitly bound to the variable given in the function call.

Example:

CALL addDiscount (:lt_expensive_books, lt_on_sale);

32 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

When the procedure addDiscount is called, the variable <:lt_expensive_books> is assigned to the
function and the variable <lt_on_sales> is bound by this function call.

Related Information

CALL [page 30]

6.1.4.3 CALL with Named Parameters

You can call a procedure passing named parameters by using the token =>.

For example:

CALL myproc (i => 2)

When you use named parameters, you can ignore the order of the parameters in the procedure signature. Run
the following commands and you can try some of the examples below.

create type mytab_t as table (i int); create table mytab (i int);
insert into mytab values (0);
insert into mytab values (1);
insert into mytab values (2);
insert into mytab values (3);
insert into mytab values (4);
insert into mytab values (5);
create procedure myproc (in intab mytab_t,in i int, out outtab mytab_t) as
begin
 outtab = select i from :intab where i > :i; end;

Now you can use the following CALL possibilities:

call myproc(intab=>mytab, i=>2, outtab =>?);
or

 call myproc(i=>2, intab=>mytab, outtab =>?)

Both call formats produce the same result.

6.1.5 Procedure Parameters

Parameter Modes

The following table lists the parameters you can use when defining your procedures.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 33

Parameter modes

Mode Description

IN An input parameter

OUT An output parameter

INOUT Specifies a parameter that passes in and returns data to and from the procedure

 Note
This is only supported for scalar values. The parameter needs to be parameterized if you
call the procedure. For example, CALL PROC (inout_var=>?). A non-parameter­
ized call of a procedure with an INOUT parameter is not supported.

Supported Parameter Types

Both scalar and table parameter types are supported. For more information on data types, see Data Type
Extension

Related Information

Data Type Extension [page 14]

6.1.5.1 Value Binding during Call

Scalar Parameters

Consider the following procedure:

CREATE PROCEDURE test_scalar (IN i INT, IN a VARCHAR) AS
BEGIN
SELECT i AS "I", a AS "A" FROM DUMMY;
END;

You can pass parameters using scalar value binding:

CALL test_scalar (1, 'ABC');

You can also use expression binding.

CALL test_scalar (1+1, upper('abc'))

Table Parameters

Consider the following procedure:

CREATE TYPE tab_type AS TABLE (I INT, A VARCHAR); CREATE TABLE tab1 (I INT, A VARCHAR);
CREATE PROCEDURE test_table (IN tab tab_type)

34 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

AS
BEGIN
SELECT * FROM :tab;
END;

You can pass tables and views to the parameter of this function.

CALL test_table (tab1)

 Note
Implicit binding of multiple values is currently not supported.

You should always use SQL special identifiers when binding a value to a table variable.

CALL test_table ("tab1")

 Note
Do not use the following syntax:

CALL test_table ('tab')

6.1.5.2 Default Values for Parameters

In the signature you can define default values for input parameters by using the DEFAULT keyword:

IN <param_name> (<sql_type>|<table_type>|<table_type_definition>) DEFAULT
(<value>|<table_name>)

The usage of the default value will be illustrated in the next example. Therefore the following tables are needed:

CREATE COLUMN TABLE NAMES(Firstname NVARCHAR(20), LastName NVARCHAR(20)); INSERT INTO NAMES VALUES('JOHN', 'DOE');
CREATE COLUMN TABLE MYNAMES(Firstname NVARCHAR(20), LastName NVARCHAR(20));
INSERT INTO MYNAMES VALUES('ALICE', 'DOE');

The procedure in the example generates a FULLNAME by the given input table and delimiter. Whereby default
values are used for both input parameters:

CREATE PROCEDURE FULLNAME(IN INTAB TABLE(FirstName NVARCHAR (20), LastName NVARCHAR (20)) DEFAULT NAMES,
IN delimiter VARCHAR(10) DEFAULT ', ',
OUT outtab TABLE(fullname NVarchar(50))
)
AS
BEGIN
 outtab = SELECT lastname||:delimiter|| firstname AS FULLNAME FROM :intab;

END;

For the tabular input parameter INTAB the default table NAMES is defined and for the scalar input parameter
DELIMITER the ‘,’ is defined as default. To use the default values in the signature, you need to pass in

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 35

parameters using Named Parameters. That means to call the procedure FULLNAME and using the default value
would be done as follows:

CALL FULLNAME (outtab=>?);

The result of that call is:

FULLNAME --------
DOE,JOHN

Now we want to pass a different table, i.e. MYNAMES but still want to use the default delimiter value, the call
looks then as follows:

CALL FULLNAME(INTAB=> MYNAMES, outtab => ?)

And the result shows that now the table MYNAMES was used:

FULLNAME --------
DOE,ALICE

 Note
Please note that default values are not supported for output parameters.

Related Information

CALL with Named Parameters [page 33]

6.1.5.3 DEFAULT EMPTY for Tabular Parameters

For a tabular IN and OUT parameter the EMPTY keyword can be used to define an empty input table as a
default:

(IN|OUT) <param_name> (<table_type>|<table_type_definition>) DEFAULT EMPTY

Although the general default value handling is supported for input parameters only, the DEFAULT EMPTY is
supported for both tabular IN and OUT parameters.

In the following example use the DEFAULT EMPTY for the tabular output parameter to be able to declare a
procedure with an empty body.

CREATE PROCEDURE PROC_EMPTY (OUT OUTTAB TABLE(I INT) DEFAULT EMPTY) AS
BEGIN

END;

36 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Creating the procedure without DEFAULT EMPTY causes an error indicating that OUTTAB is not assigned. The
PROC_EMPTY procedure can be called as usual and it returns an empty result set:

call PROC_EMPTY (?);

The following example illustrates the use of a tabular input parameter.

CREATE PROCEDURE CHECKINPUT (IN intab TABLE(I INT) DEFAULT EMPTY, OUT result NVARCHAR(20)
)
AS
BEGIN
 IF IS_EMPTY(:intab) THEN
 result = 'Input is empty';
 ELSE
 result = 'Input is not empty';
 END IF;
END;

An example of calling the procedure without passing an input table follows.

call CHECKINPUT(result=>?)

This leads to the following result:

OUT(1) -----------------
'Input is empty'

For Functions only tabular input parameter supports the EMPTY keyword :

CREATE FUNCTION CHECK_INPUT_FUNC (IN intab TABLE (I INT) DEFAULT EMPTY) RETURNS TABLE(i INT)
AS
BEGIN
 IF IS_EMPTY(:intab) THEN
 ...
 ELSE
 ...
 END IF;
 ...
 RETURN :result; END;

An example of calling the funtion without passing an input table looks as follows:

SELECT * FROM CHECK_INPUT_FUNC();

6.1.6 Procedure Metadata

When a procedure is created, information about the procedure can be found in the database catalog. You can
use this information for debugging purposes.

The procedures observable in the system views vary according to the privileges that a user has been granted.
The following visibility rules apply:

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 37

● CATALOG READ or DATA ADMIN – All procedures in the system can be viewed.
● SCHEMA OWNER, or EXECUTE – Only specific procedures where the user is the owner, or they have

execute privileges, will be shown.

Procedures can be exported and imported as are tables. For more information see Data Import Export
Statements in the SAP HANA SQL and System Views Reference.

Related Information

SAP HANA SQL and System Views Reference

6.1.6.1 SYS.PROCEDURES

Available stored procedures

Structure

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the stored procedure

PROCEDURE_NAME NVARCHAR(256) Name of the stored procedure

PROCEDURE_OID BIGINT Object ID of the stored procedure

SQL_SECURITY VARCHAR(7) SQL security setting of the stored pro­
cedure: 'DEFINER' / 'INVOKER'

DEFAULT_SCHEMA_NAME NVARCHAR(256) Schema name of the unqualified ob­
jects in the procedure

INPUT_PARAMETER_COUNT INTEGER Input type parameter count

OUTPUT_PARAMETER_COUNT INTEGER Output type parameter count

INOUT_PARAMETER_COUNT INTEGER In-out type parameter count

RESULT_SET_COUNT INTEGER Result set count

IS_UNICODE VARCHAR(5) Specifies whether the stored procedure
contains Unicode or not: 'TRUE'/ 'FAL­
SE'

38 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

http://help.sap.com/saphelp_hanaplatform/helpdata/en/2e/1ef8b4f4554739959886e55d4c127b/frameset.htm

Column name Data type Description

DEFINITION NCLOB Query string of the stored procedure

PROCEDURE_TYPE VARCHAR(10) Type of the stored procedure

READ_ONLY VARCHAR(5) Specifies whether the procedure is
read-only or not: 'TRUE'/ 'FALSE'

IS_VALID VARCHAR(5) Specifies whether the procedure is valid
or not. This becomes 'FALSE' when its
base objects are changed or dropped:
'TRUE'/ 'FALSE'

IS_HEADER_ONLY VARCHAR(5) Specifies whether the procedure is
header-only procedure or not:
'TRUE'/'FALSE'

HAS_TRANSACTION_CON­
TROL_STATEMENTS

VARCHAR(5) Specifies whether the procedure has
transaction control statements or
not:'TRUE'/'FALSE'

OWNER_NAME NAVARCHAR(256) Name of the owner of the procedure

6.1.6.2 SYS. PROCEDURE_PARAMETERS

Parameters of stored procedures

Structure

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the stored procedure

PROCEDURE_NAME NVARCHAR(256) Name of the stored procedure

PROCEDURE_OID BIGINT Object ID of the stored procedure

PARAMETER_NAME NVARCHAR(256) Parameter name

DATA_TYPE_ID SMALLINT Data type ID

DATA_TYPE_NAME VARCHAR(16) Data type name

LENGTH INTEGER Parameter length

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 39

Column name Data type Description

SCALE INTEGER Scale of the parameter

POSITION INTEGER Ordinal position of the parameter

TABLE_TYPE_SCHEMA NVARCHAR(256) Schema name of table type if
DATA_TYPE_NAME is TABLE_TYPE

TABLE_TYPE_NAME NVARCHAR(256) Name of table type if
DATA_TYPE_NAME is TABLE_TYPE

IS_INPLACE_TYPE VARCHER(5) Specifies whether the tabular parame­
ter type is an inplace table type:
'TRUE'/'FALSE'

PARAMETER_TYPE VARCHAR(7) Parameter mode: 'IN', 'OUT', 'INOUT'

HAS_DEFAULT_VALUE VARCHAR(5) Specifies whether the parameter has a
default value or not: 'TRUE', 'FALSE'

IS_NULLABLE VARCHAR(5) Specifies whether the parameter ac­
cepts a null value: 'TRUE', 'FALSE'

6.1.6.3 SYS.OBJECT_DEPENDENCIES

Dependencies between objects, for example, views that refer to a specific table

Structure

Column name Data type Description

BASE_SCHEMA_NAME NVARCHAR(256) Schema name of the base object

BASE_OBJECT_NAME NVARCHAR(256) Object name of the base object

BASE_OBJECT_TYPE VARCHAR(32) Type of the base object

DEPENDENT_SCHEMA_NAME NVARCHAR(256) Schema name of the dependent object

DEPENDENT_OBJECT_NAME NVARCHAR(256) Object name of the dependent object

DEPENDENT_OBJECT_TYPE VARCHAR(32) Type of the base dependent

40 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Column name Data type Description

DEPENDENCY_TYPE INTEGER Type of dependency between base and
dependent object. Possible values are:

● 0: NORMAL (default)
● 1: EXTERNAL_DIRECT (direct de­

pendency between dependent ob­
ject and base object)

● 2: EXTERNAL_INDIRECT (indirect
dependency between dependent
object und base object)

● 5: REFERENTIAL_DIRECT (foreign
key dependency between tables)

6.1.6.3.1 Object Dependencies View Examples

This section explores the ways in which you can query the OBJECT_DEPENDENCIES system view.

You create the following database objects and procedures.

CREATE SCHEMA deps; CREATE TYPE mytab_t AS TABLE (id int, key_val int, val int);
CREATE TABLE mytab1 (id INT PRIMARY KEY, key_val int, val INT);
CREATE TABLE mytab2 (id INT PRIMARY key, key_val int, val INT);
CREATE PROCEDURE deps.get_tables(OUT outtab1 mytab_t, OUT outtab2 mytab_t)
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 outtab1 = SELECT * FROM mytab1;
 outtab2 = SELECT * FROM mytab2;
END;
CREATE PROCEDURE deps.my_proc (IN val INT, OUT outtab mytab_t) LANGUAGE
SQLSCRIPT READS SQL DATA
AS
BEGIN
 CALL deps.get_tables(tab1, tab2);
 IF :val > 1 THEN
 outtab = SELECT * FROM :tab1;
 ELSE
 outtab = SELECT * FROM :tab2;
 END IF;
END;

Object dependency examination

Find all the (direct and indirect) base objects of the DEPS.GET_TABLES procedure using the following
statement.

SELECT * FROM OBJECT_DEPENDENCIES WHERE dependent_object_name = 'GET_TABLES' and
dependent_schema_name = 'DEPS';

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 41

The result obtained is as follows:

BASE_SCHEM
A_NAME

BASE_OB­
JECT_NAME

BASE_OB­
JECT_TYPE

DEPEND­
ENT_SCHEMA
_NAME

DEPEND­
ENT_OB­
JECT_NAME

DEPEND­
ENT_OB­
JECT_TYPE

DEPEND­
ENCY_TYPE

SYSTEM MYTAB_T TABLE DEPS GET_TABLES PROCEDURE 1

SYSTEM MYTAB1 TABLE DEPS GET_TABLES PROCEDURE 2

SYSTEM MYTAB2 TABLE DEPS GET_TABLES PROCEDURE 2

DEPS GET_TABLES PROCEDURE DEPS GET_TABLES PROCEDURE 1

Look at the DEPENDENCY_TYPE column in more detail. You obtained the results in the table above using a
select on all the base objects of the procedure; the objects shown include both persistent and transient
objects. You can distinguish between these object dependency types using the DEPENDENCY_TYPE column,
as follows:

1. EXTERNAL_DIRECT: base object is directly used in the dependent procedure.
2. EXTERNAL_INDIRECT: base object is not directly used in the dependent procedure.

To obtain only the base objects that are used in DEPS.MY_PROC, use the following statement.

SELECT * FROM OBJECT_DEPENDENCIES WHERE dependent_object_name = 'MY_PROC' and
dependent_schema_name = 'DEPS' and dependency_type = 1;

The result obtained is as follows:

BASE_SCHEM
A_NAME

BASE_OB­
JECT_NAME

BASE_OB­
JECT_TYPE

DEPEND­
ENT_SCHEMA
_NAME

DEPEND­
ENT_OB­
JECT_NAME

DEPEND­
ENT_OB­
JECT_TYPE

DEPEND­
ENCY_TYPE

SYSTEM MYTAB_T TABLE DEPS MY_PROC PROCEDURE 1

DEPS GET_TABLES PROCEDURE DEPS MY_PROC PROCEDURE 1

Finally, to find all the dependent objects that are using DEPS.MY_PROC, use the following statement.

 SELECT * FROM OBJECT_DEPENDENCIES WHERE base_object_name = 'GET_TABLES' and
base_schema_name = 'DEPS' ;

The result obtained is as follows:

BASE_SCHEM
A_NAME

BASE_OB­
JECT_NAME

BASE_OB­
JECT_TYPE

DEPEND­
ENT_SCHEMA
_NAME

DEPEND­
ENT_OB­
JECT_NAME

DEPEND­
ENT_OB­
JECT_TYPE

DEPEND­
ENCY_TYPE

DEPS GET_TABLES PROCEDURE DEPS MY_PROC PROCEDURE 1

42 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.1.6.4 PROCEDURE_PARAMETER_COLUMNS

PROCEDURE_PARAMETER_COLUMNS provides information about the columns used in table types which
appear as procedure parameters. The information is provided for all table types in use, in-place types and
externally defined types.

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the procedure

PROCEDURE_NAME NVARCHAR(256) Name of the procedure

PROCEDURE_OID BIGINT Object ID of the procedure

PARAMETER_NAME NVARCHAR(256) Parameter name

PARAMETER_POSITION INTEGER Ordinal position of the parameter

COLUMN_NAME NVARCHAR(256) Name of the column of the parameter
type

POSITION INTEGER Ordinal position of the column in a re­
cord

DATA_TYPE_NAME VARCHAR(16) SQL data type name of the column

LENGTH INTEGER Number of chars for char types, num­
ber of max digits for numeric types;
number of chars for datetime types,
number of bytes for LOB types

SCALE INTEGER Numeric types: the maximum number
of digits to the right of the decimal
point; time, timestamp: the decimal dig­
its are defined as the number of digits
to the right of the decimal point in the
second's component of the data

IS_NULLABLE VARCHAR(5) Specifies whether the column is al­
lowed to accept null value: 'TRUE'/'FAL­
SE'

6.2 User-Defined Functions

There are two different kinds of user-defined functions (UDF): Table User-Defined Functions and Scalar User-
Defined Functions. They are referred to as Table UDF and Scalar UDF in the following table and differ in terms of

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 43

their input and output parameters, functions supported in the body, and in the way they are consumed in SQL
statements.

 Table UDF Scalar UDF

Functions Calling A table UDF can only be called in the
FROM-clause of an SQL statement in
the same parameter positions as table
names. For example, SELECT *
FROM myTableUDF(1)

A scalar UDF can be called in SQL state­
ments in the same parameter positions
as table column names. That takes
place in the SELECT and WHERE
clauses of SQL statements. For exam­
ple, SELECT myScalarUDF(1) AS
myColumn FROM DUMMY

Input Parameter ● Primitive SQL type
● Table types

● Primitive SQL type
● Table types (with limitations)

Output Must return a table whose type is de­
fined in <return_type>.

Must return scalar values specified in
<return_parameter_list>.

Supported functionality The function is tagged as read only by
default. DDL and DML are not allowed
and only other read-only functions can
be called.

The function is tagged as a read-only
function by default.

6.2.1 CREATE FUNCTION

This SQL statement creates read-only user-defined functions that are free of side effects. This means that
neither DDL, nor DML statements (INSERT, UPDATE, and DELETE) are allowed in the function body. All
functions or procedures selected or called from the body of the function must be read-only.

Syntax

CREATE [OR REPLACE] FUNCTION <func_name> [(<parameter_clause>)] RETURNS
<return_type> [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC]
[WITH ENCRYPTION]
AS
BEGIN
 <function_body>
END
[<cache_clause>]
<cache_clause> ::=
 WITH [STATIC] CACHE
 RETENTION <minute_value>
 [OF <projection_list>]
 [FILTER <filter_condition>]
 [<location_clause>] [FORCE]

44 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Syntax Elements

<func_name > ::= [<schema_name>.]<identifier>

The identifier of the function to be created, with optional schema name.

<parameter_clause> ::= <parameter> [{,<parameter>}...]

The input parameters of the function.

<parameter> ::= [IN] <param_name> <param_type>

A function parameter with associated data type.

<param_name> ::= <identifier>

The variable name for a parameter.

<param_type> ::= <sql_type> [ARRAY] | <table_type> | <table_type_definition> |
<any_table_type>

Scalar user-defined functions (SUDF) support the following primitive SQL types. Table types (table variables,
physical tables, or views) are also supported as input in SUDFs. Arrays are supported as input and return types.

<sql_type> ::= DATE | TIME | TIMESTAMP | SECONDDATE | TINYINT | SMALLINT |
INTEGER | BIGINT | DECIMAL | SMALLDECIMAL | REAL | DOUBLE | VARCHAR | NVARCHAR |
VARBINARY | CLOB | NCLOB | BLOB | ST_GEOMETRY <table_type> ::= <identifier>

SUDFs with table parameters can be used like any other SUDF with following exceptions:

● Aliases (in FROM or WITH clauses) are not allowed.
● Parameterized views, scripted calculation views or TUDFs as input are not supported.
● ANY TABLE TYPE parameters are not supported.
● SQLScript internal types, such as cursor variables or ROW types, are not supported.

 Note
Take into consideration the following note on performance. SUDFs operate on table data row by row. In
the following example, the operation would be at least O(record_count(t1) *
record_count(t2)).

select sudf_taking_table_parameter(t1) from t2;

Table user-defined functions (TUDF) allow the following range of primitive SQL types. They also support table
types and array types as input.

<sql_type> ::= DATE | TIME | TIMESTAMP | SECONDDATE | TINYINT | SMALLINT |
INTEGER | BIGINT | DECIMAL | SMALLDECIMAL | REAL | DOUBLE | VARCHAR | NVARCHAR |
ALPHANUM | VARBINARY | CLOB | NCLOB | BLOB | ST_GEOMETRY <table_type> ::= <identifier>

To look at a table type previously defined with the CREATE TYPE command, see CREATE TYPE [page 15].

<table_type_definition> ::= TABLE (<column_list_definition>)

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 45

 <column_list_definition > ::= <column_elem>[{, <column_elem>}...]
<column_elem> ::= <column_name> <data_type> <column_name> ::= <identifier>

A table type implicitly defined within the signature.

<return_type> ::= <return_parameter_list> | <return_table_type>

Table UDFs must return a table whose type is defined by <return_table_type>. And scalar UDF must return
scalar values specified in <return_parameter_list>.

 <return_parameter_list> ::= <return_parameter>[{, <return_parameter>}...] <return_parameter> ::= <parameter_name> <sql_type> [ARRAY]

The following expression defines the output parameters:

<return_table_type> ::= TABLE (<column_list_definition>)

The following expression defines the structure of the returned table data.

LANGUAGE <lang> <lang> ::= SQLSCRIPT

Default: SQLSCRIPT

Defines the programming language used in the function.

 Note
Only SQLScript UDFs can be defined.

 SQL SECURITY <mode> <mode> ::= DEFINER | INVOKER

Default: DEFINER (Table UDF) / INVOKER (Scalar UDF)

Specifies the security mode of the function.

DEFINER

Specifies that the execution of the function is performed with the privileges of the definer of the function.

INVOKER

Specifies that the execution of the function is performed with the privileges of the invoker of the function.

DEFAULT SCHEMA <default_schema_name> <default_schema_name> ::= <unicode_name>

Specifies the schema for unqualified objects in the function body. If nothing is specified, then the
current_schema of the session is used.

<function_body> ::= [<func_block_decl_list>] [<func_handler_list>] <func_stmt_list>

46 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Defines the main body of the table user-defined functions and scalar user-defined functions. Since the function
is flagged as read-only, neither DDL, nor DML statements (INSERT, UPDATE, and DELETE), are allowed in the
function body.

 Note
Scalar functions can be marked as DETERMINISTIC, if they always return the same result any time they are
called with a specific set of input parameters.

For the definition of <proc_assign>, see CREATE PROCEDURE [page 19].

 <func_block_decl_list> ::= DECLARE { <func_var>|<func_cursor>|<func_condition> } <func_var> ::= <variable_name_list> [CONSTANT] { <sql_type>|
<array_datatype> } [NOT NULL][<func_default>];
 <array_datatype> ::= <sql_type> ARRAY [= <array_constructor>]
 <array_constructor> ::= ARRAY (<expression> [{,<expression>}...])
 <func_default> ::= { DEFAULT | = } <func_expr> <func_expr> ::= !!An element of the type specified by <sql_type>

Defines one or more local variables with associated scalar type or array type.

An array type has <type> as its element type. An array has a range from 1 to 2,147,483,647, which is the
limitation of underlying structure.

You can assign default values by specifying <expression>s. For more information, see Expressions in the SAP
HANA Reference Guide on the SAP Help Portal.

 <func_handler_list> ::= <proc_handler_list>

See CREATE PROCEDURE [page 19].

 <func_stmt_list> ::= { <func_stmt> } <func_stmt> ::= <proc_block> | <proc_assign>
 | <proc_single_assign>
 | <proc_if>
 | <proc_while>
 | <proc_for>
 | <proc_foreach>
 | <proc_exit>
 | <proc_signal>
 | <proc_resignal>
 | <proc_open>
 | <proc_fetch>
 | <proc_close> | <func_return_statement>

For further information of the definitions in <func_stmt>, see CREATE PROCEDURE [page 19]..

 <func_return_statement> ::= RETURN <function_return_expr> <func_return_expr> ::= <table_variable> | <subquery>

A table function must contain a return statement.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 47

Example

How to create a table function is shown in the following example:

 CREATE FUNCTION scale (val INT) RETURNS TABLE (a INT, b INT) LANGUAGE SQLSCRIPT AS
 BEGIN
 RETURN SELECT a, :val * b AS b FROM mytab;
 END; <func_name > ::= [<schema_name>.]<identifier>

How to call the table function scale is shown in the following example:

<SELECT * FROM scale(10); SELECT * FROM scale(10) AS a, scale(10) AS b where a.a = b.a

How to create a scalar function of name func_add_mul that takes two values of type double and returns two
values of type double is shown in the following example:

 CREATE FUNCTION func_add_mul(x Double, y Double) RETURNS result_add Double, result_mul Double
 LANGUAGE SQLSCRIPT READS SQL DATA AS
 BEGIN
 result_add = :x + :y;
 result_mul = :x * :y;
 END;

In a query you can either use the scalar function in the projection list or in the where-clause. In the following
example the func_add_mul is used in the projection list:

 CREATE TABLE TAB (a Double, b Double); INSERT INTO TAB VALUES (1.0, 2.0);
 INSERT INTO TAB VALUES (3.0, 4.0);

 SELECT a, b, func_add_mul(a, b).result_add as ADD, func_add_mul(a,
b).result_mul as MUL FROM TAB ORDER BY a;
 A B ADD MUL

 1 2 3 2
 3 4 7 12

Besides using the scalar function in a query you can also use a scalar function in scalar assignment, e.g.:

 CREATE FUNCTION func_mul(input1 INT) RETURNS output1 INT LANGUAGE SQLSCRIPT
 AS
 BEGIN
 output1 = :input1 * :input1;
 END;

 CREATE FUNCTION func_mul_wrapper(input1 INT)
 RETURNS output1 INT LANGUAGE SQLSCRIPT AS
 BEGIN
 output1 = func_mul(:input1);
 END;
 SELECT func_mul_wrapper(2) as RESULT FROM dummy;
 RESULT

 4

48 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.2.2 ALTER FUNCTION

You can use ALTER FUNCTION if you want to change the content and properties of a function without dropping
the object.

ALTER FUNCTION <func_name> [(<parameter_clause>)] RETURNS <return_type> [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>]
[DETERMINISTIC][WITH ENCRYPTION]
AS
BEGIN
 <function_body> END

For more information about the parameters, see CREATE FUNCTION. For instance, with ALTER FUNCTION you
can change the content of the body itself. Consider the following procedure GET_FUNCTIONS that returns all
function names on the database.

CREATE FUNCTION GET_FUNCTIONS returns TABLE(schema_name NVARCHAR(256),
 name NVARCHAR(256))

AS
BEGIN
 return SELECT schema_name AS schema_name,
 function_name AS name
 FROM FUNCTIONS;
END;

The function GET_FUNCTIONS should now be changed to return only valid functions. In order to do so, we will
use ALTER FUNCTION:

ALTER FUNCTION GET_FUNCTIONS returns TABLE(schema_name NVARCHAR(256),
 name NVARCHAR(256))

AS
BEGIN
 return SELECT schema_name AS schema_name,
 function_name AS name
 FROM FUNCTIONS
 WHERE IS_VALID = 'TRUE';
END;

Besides changing the function body, you can also change the default schema <default_schema_name>.

 Note
If the default schema is not explicitly specified, it will be removed.

 Note
You need the ALTER privilege for the object you want to change.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 49

6.2.3 DROP FUNCTION

Syntax

 DROP FUNCTION <func_name> [<drop_option>]

Syntax Elements

 <func_name> ::= [<schema_name>.]<identifier>
The name of the function to be dropped, with optional schema name.

 <drop_option> ::= CASCADE | RESTRICT

When <drop_option> is not specified a non-cascaded drop will be performed. This will only drop the specified
function, dependent objects of the function will be invalidated but not dropped.

The invalidated objects can be revalidated when an object that has same schema and object name is created.

 CASCADE
Drops the function and dependent objects.

 RESTRICT
Drops the function only when dependent objects do not exist. If this drop option is used and a dependent
object exists an error will be thrown.

Description

Drops a function created using CREATE FUNCTION from the database catalog.

Examples

You drop a function called my_func from the database using a non-cascaded drop.

 DROP FUNCTION my_func;

50 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.2.4 Function Parameters

The following tables list the parameters you can use when defining your user-defined functions.

Function Parameter

Table user-defined functions ● Can have a list of input parameters and must return a
table whose type is defined in <return type>

● Input parameters must be explicitly typed and can have
any of the primitive SQL type or a table type.

Scalar user-defined functions ● Can have a list of input parameters and must returns
scalar values specified in <return parameter list>.

● Input parameters must be explicitly typed and can have
any primitive SQL type.

6.2.5 Consistent Scalar Function Result

The implicit SELECT statements used within a procedure (or an anonymous block) are executed after the
procedure is finished and scalar user-defined functions (SUDF) are evaluated at the fetch time of the SELECT
statement, due to the design of late materialization. To avoid unexpected results for statements, that are out of
the statement snapshot order within a procedure or a SUDF, implicit result sets will now be materialized in case
the SUDF references a persistent table.

CREATE TABLE t1(C1 VARCHAR(20)); CREATE FUNCTION my_count RETURNS v_result INTEGER AS
BEGIN
 SELECT COUNT(*) INTO v_result FROM t1;
END;
CREATE PROCEDURE proc_insert_delete AS
BEGIN
 INSERT INTO t1 VALUES ('test');
 SELECT 'TRACE 1: COUNT AFTER INSERT', COUNT(*) FROM t1;
 SELECT 'TRACE 2: COUNT DURING FUNCTION CALL', my_count() FROM DUMMY;
 DELETE FROM t1;
 SELECT 'TRACE 3: COUNT AFTER DELETE', COUNT(*) FROM t1;
 COMMIT;
END;
CALL proc_insert_delete;
-- ('TRACE 1: COUNT AFTER INSERT', 1),
-- ('TRACE 2: COUNT DURING FUNCTION CALL', 1), -- ('TRACE 3: COUNT AFTER DELETE', 0),

6.2.6 Function Metadata

When a function is created, information about the function can be found in the database catalog. You can use
this information for debugging purposes. The functions observable in the system views vary according to the
privileges that a user has been granted. The following visibility rules apply:

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 51

● CATALOG READ or DATA ADMIN – All functions in the system can be viewed.
● SCHEMA OWNER, or EXECUTE – Only specific functions where the user is the owner, or they have

execute privileges, will be shown.

6.2.6.1 SYS.FUNCTIONS

A list of available functions

Structure

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the function

FUNCTION_NAME NVARCHAR(256) Name of the function

FUNCTION_OID BIGINT Object ID of the function

SQL_SECURITY VARCHAR(7) SQL Security setting of the func­
tion:'DEFINER'/'INVOKER'

DEFAULT_SCHEMA_NAME NVARCHAR(256) Schema name of the unqualified ob­
jects in the function

INPUT_PARAMETER_COUNT INTEGER Input type parameter count

RETURN_VALUE_COUNT INTEGER Return value type parameter count

IS_UNICODE VARCHAR(5) Specifies whether the function contains
Unicode or not: 'TRUE', 'FALSE'

DEFINITION NCLOB Query string of the function

FUNCTION_TYPE VARCHAR(10) Type of the function

FUNCTION_USAGE_TYPE VARCHAR(9) Usage type of the function:'SCALAR',
'TABLE', 'AGGREGATE','WINDOW'

IS_VALID VARCHAR(5) Specifies whether the function is valid
or not. This becomes 'FALSE' when its
base objects are changed or dropped:
'TRUE', 'FALSE'

IS_HEADER_ONLY VARCHAR(5) Specifies whether the function is
header-only function or not:
'TRUE'/'FALSE'

52 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Column name Data type Description

OWNER_NAME NVARCHAR(256) Name of the owner of the function

6.2.6.2 SYS.FUNCTION_PARAMETERS

A list of parameters of functions

Structure

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the function

FUNCTION_NAME NVARCHAR(256) Name of the function

FUNCTION_OID BIGINT Object ID of the function

PARAMETER_NAME NVARCHAR(256) Parameter name

DATA_TYPE_ID INTEGER Data type ID

DATA_TYPE_NAME VARCHAR(16) Data type name

LENGTH INTEGER Parameter length

SCALE INTEGER Scale of the parameter

POSITION INTEGER Ordinal position of the parameter

TABLE_TYPE_SCHEMA NVARCHAR(256) Schema name of table type if
DATA_TYPE_NAME is TABLE_TYPE

TABLE_TYPE_NAME NVARCHAR(256) Name of table type if
DATA_TYPE_NAME is TABLE_TYPE

IS_INPLACE_TYPE VARCHAR(5) Specifies whether the tabular parame­
ter type is an inplace table type:
'TRUE'/'FALSE'

PARAMETER_TYPE VARCHAR(7) Parameter mode: IN, OUT, INOUT

HAS_DEFAULT_VALUE VARCHAR(5) Specifies whether the parameter has a
default value or not: 'TRUE', 'FALSE'

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 53

Column name Data type Description

IS_NULLABLE VARCHAR(5) Specifies whether the parameter ac­
cepts a null value: 'TRUE', 'FALSE'

6.2.6.3 FUNCTION_PARAMETER_COLUMNS

FUNCTION_PARAMETER_COLUMNS provides information about the columns used in table types which
appear as function parameters. The information is provided for all table types in use, in-place types and
externally defined types.

Column name Data type Description

SCHEMA_NAME NVARCHAR(256) Schema name of the function

FUNCTION_NAME NVARCHAR(256) Name of the function

FUNCTION_OID BIGINT Object ID of the function

PARAMETER_NAME NVARCHAR(256) Parameter name

PARAMETER_POSITION INTEGER Ordinal position of the parameter

COLUMN_NAME NVARCHAR(256) Name of the column in the table param­
eter

POSITION INTEGER Ordinal position of the column in the ta­
ble parameter

DATA_TYPE_NAME VARCHAR(16) SQL data type name of the column

LENGTH INTEGER Number of chars for char types, num­
ber of max digits for numeric types;
number of chars for datetime types,
number of bytes for LOB types

SCALE INTEGER Numeric types: the maximum number
of digits to the right of the decimal
point; time, timestamp: the decimal dig­
its are defined as the number of digits
to the right of the decimal point in the
second's component of the data

IS_NULLABLE VARCHAR(5) Specifies whether the column is al­
lowed to accept null values:
'TRUE'/'FALSE'

54 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.2.7 Default Values for Parameters

In the signature you can define default values for input parameters by using the DEFAULT keyword:

IN <param_name> (<sql_type>|<table_type>|<table_type_definition>) DEFAULT
(<value>|<table_name>)

The usage of the default value will be illustrated in the next example. Therefore the following tables are needed:

CREATE COLUMN TABLE NAMES(Firstname NVARCHAR(20), LastName NVARCHAR(20)); INSERT INTO NAMES VALUES('JOHN', 'DOE');
CREATE COLUMN TABLE MYNAMES(Firstname NVARCHAR(20), LastName NVARCHAR(20));
INSERT INTO MYNAMES VALUES('ALICE', 'DOE');

The function in the example generates a FULLNAME by the given input table and delimiter. Whereby default
values are used for both input parameters:

CREATE FUNCTION FULLNAME(IN INTAB TABLE(FirstName NVARCHAR (20), LastName NVARCHAR (20)) DEFAULT NAMES,
IN delimiter VARCHAR(10) DEFAULT ', ')
returns TABLE(fullname NVarchar(50))
AS
BEGIN
 return SELECT lastname||:delimiter|| firstname AS FULLNAME FROM :intab;

END;

For the tabular input parameter INTAB the default table NAMES is defined and for the scalar input parameter
DELIMITER the ‘,’ is defined as default.

That means to query the function FULLNAME and using the default value would be done as follows:

SELECT * FROM FULLNAME();

The result of that query is:

FULLNAME --------
DOE,JOHN

Now we want to pass a different table, i.e. MYNAMES but still want to use the default delimiter value. To do so you
need to use using Named Parameters to pass in parameters. The query looks then as follows:

SELECT * FROM FULLNAME(INTAB=> MYNAMES);

And the result shows that now the table MYNAMES was used:

FULLNAME --------
DOE,ALICE

In a scalar function, default values can also be used, as shown in the next example:

CREATE FUNCTION GET_FULLNAME(firstname NVARCHAR(20),
 lastName NVARCHAR(20),
 delimiter NVARCHAR(10) DEFAULT ','
)

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 55

RETURNS fullname NVARCHAR(50)
AS
BEGIN
 fullname = :lastname||:delimiter|| :firstname;
END;

Calling that function by using the default value of the variable delimiter would be the following:

SELECT GET__FULLNAME(firstname=>firstname, lastname=>lastname) AS FULLNAME FROM
NAMES;

 Note
Please note that default values are not supported for output parameters.

Related Information

CALL with Named Parameters [page 33]

6.2.8 SQL Embedded Function

SQLScript allows a table function to be embedded inside an SQL query without the creation of any additional
metadata. The HANA SQL query now accepts SQL FUNCTION block as a table that can embed imperative
SQLScript logic inside a single query.

Syntax

<from_clause> = FROM <table_from> <table_from> = <table> | <table_from> ‘,’ <table>
<table> = <basetable> | <subquery_with_parens> <opt_table_alias> |
<joined_table> | <tablesample>
<basetable> = <table_ref> <opt_table_alias> | ….. | <anonymous_function>
<opt_table_alias>
<anonymous_function> = SQL FUNCTION <anonymous_func_param_list> <func_return>
BEGIN <sqlscript_body> END
<anonymous_func_param_list> = (empty string) | ‘(‘ ‘)’ |
‘(‘ <anonymous_func_param> ‘)’
<anonymous_func_param> = <proc_param_mode> <proc_param_name> <proc_data_type>
ARG_ASSIGN_OP <proc_expr> <func_return> = RETURNS <table_ref> | RETURNS TABLE
‘(‘ <opt_cv_array_column_list> ‘)’ | RETURNS proc_param_name func_data_type

Description

It is possible to create a one-time SQLScript function that can embed imperative SQLScript logic inside an SQL
query. Earlier it was necessary to create an SQLScript function as a metadata object and consume it inside a

56 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

single query. Similarly to the anonymous procedure block DO BEGIN…END, the SQL FUNCTION RETURNS…
BEGIN… END block supports that kind of one-time table functions.

Example

User’s Original Intention Query with SQLScript TUDF
SQL Embedded SQLScript Table
Function

SELECT A, B, SUM(C)
FROM
 (SELECT 1 as A, 2 as
B, 3 as C FROM DUMMY
UNION ALL
 SELECT 1 as A, 2 as
B, 4 as C FROM DUMMY
UNION ALL
 SELECT 2 as A, 3 as
B, 2 as C FROM DUMMY
UNION ALL
 SELECT 2 as A, 3 as
B, 4 as C FROM DUMMY
UNION ALL
 SELECT 2 as A, 5 as
B, 7 as C FROM DUMMY)
GROUP BY A, B
ORDER BY A, B;

CREATE FUNCTION
TEMP_FUNC() RETURNS TABLE (A INT, B
INT, C INT)
AS BEGIN
 DECLARE buffer
TABLE (A INT, B INT, C
INT);
 :buffer.insert((
1, 2, 3));
 :buffer.insert((
1, 2, 4));
 :buffer.insert((
2, 3, 2));
 :buffer.insert((
2, 3, 4));
 :buffer.insert((
2, 5, 7));
 RETURN :buffer;
END;
SELECT
 A, B, SUM(C)
FROM
 TEMP_FUNC()
GROUP BY A, B
ORDER BY A, B;

SELECT A, B, SUM(C)
FROM
 SQL FUNCTION
 RETURNS TABLE
(A INT, B INT, C INT)
 BEGIN
 DECLARE
buffer TABLE (A INT, B
INT, C INT);
 :buffer.i
nsert((1, 2, 3));
 :buffer.i
nsert((1, 2, 4));
 :buffer.i
nsert((2, 3, 2));
 :buffer.i
nsert((2, 3, 4));
 :buffer.i
nsert((2, 5, 7));

RETURN :buffer;
 END
GROUP BY A, B
ORDER BY A, B;

 Sample Code

select sum(a) from sql function
returns table (a int, b int)
begin
 declare t table(a int, b int);
 :t.insert((1, 2));
 :t.insert((1, 3));
 :t.insert((2, 2));
 :t.insert((3, 3));
 return :t;
end

-- fails, because it is read-only
select a from
sql function
returns table (a int)
begin
 create column table temptable(a int);
 return select 1 as a from dummy; end

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 57

 Sample Code

-- input parameter select a from
 sql function (in a int => 1)
 returns table (a int)
 begin
 return select :a as a from dummy;
 end;

-- nested SQL FUNCTION clause
select a from
 sql function
 returns table (a int)
 begin
 return select * from
 sql function
 returns table (a int)
 begin
 return select 1 as a from dummy;
 end; end;

Limitations

If the SQL FUNCTION clause is nested inside another SQLScript object, most of the SQLScript system
variables are not available, if they are not defined as INPUT parameters.

● ROWCOUNT is not shared between the caller object and the SQL FUNCTION but it can still show the
selected ROWCOUNT from the SELECT statement itself.

● SQL_ERROR_CODE and SQL_ERROR_MESSAGE are not inherited, although it is possible to define them
explicitly within the SQL FUNCTION

6.2.9 Deterministic Scalar Functions

Deterministic scalar user-defined functions always return the same result any time they are called with a
specific set of input values.

When you use such functions, it is not necessary to recalculate the result every time - you can refer to the
cached result. If you want to make a scalar user-defined function explicitly deterministic, you need to use the
optional keyword DETERMINISTIC when you create your function, as demonstrated in the example below. The
lifetime of the cache entry is bound to the query execution (for example, SELECT/DML). After the execution of
the query, the cache is destroyed.

 Sample Code

create function sudf(in a int) returns ret int deterministic as
begin
 ret = :a; end;select sudf(a) from tab;

58 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 Note
In the system view SYS.FUNCTIONS, the column IS_DETERMINISTIC provides information about whether a
function is deterministic or not.

Non-Deterministic Functions

The following not-deterministic functions cannot be specified in deterministic scalar user-defined functions.
They return an error at function creation time.

● nextval/currval of sequence
● current_time/current_timestamp/current_date
● current_utctime/current_utctimestamp/current_utcdate
● rand/rand_secure
● window functions

6.2.10 Procedure Result Cache

Procedure Result Cache (PRC) is a server-wide in-memory cache that caches the output arguments of
procedure calls using the input arguments as keys.

Deterministic Procedure Cache is an automatic application of PRC for deterministic procedures.

 Note
Currently, PRC is enabled only for deterministic procedures.

Related Information

Deterministic Procedures [page 59]
Deterministic Procedure Cache [page 61]

6.2.10.1 Deterministic Procedures

Syntax

create procedure add (in a int, in b int, out c int) deterministic as begin

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 59

 c = :a + :b; end

Description

You can use the keyword DETERMINISTIC when creating a new procedure, if the following conditions are met:

● The procedure always returns the same output arguments when it is called with the same input arguments,
even if the session and database state is not the same.

● The procedure has no side effects.

You can also create a procedure with the keyword DETERMINISTIC, even if it does not satisfy the above
conditions, by changing the configuration parameters described in the configuration section. Procedures
created with the keyword DETERMINISTIC are described below as "deterministic procedures", regardless of
whether they are logically deterministic or not.

By default, you cannot create a deterministic procedure that contains the following:

● Non-deterministic functions (for example, rand(), rand_secure(), session_context(), session_user,
sysuuid)

● Statements with side effects (for example, implicit result sets, DML, DDL, commit/rollback/exec)
● Reading/writing persistence objects (for example, sequence)
● Invoking non-deterministic functions or procedures

You can skip the determinism check when creating deterministic procedures on your responsibility. It is useful
when you want to create logically deterministic procedures that may contain non-deterministic statements.
When disabling the check, please be aware that the cache can be shared among users, so if the procedure
results depend on the current user (for example, the procedure security is invoker and there are user-specific
functions or use of tables with analytic privileges), it may not behave as you expect. Disabling the check is not
recommended.

If a deterministic procedure is logically non-deterministic, you may expect the following:

● If a deterministic procedure has side effects, the side effects may or may not be visible when you call the
procedure.

● If a deterministic procedure has implicit result sets, they may or may not be returned when you call the
procedure.

● If a deterministic procedure returns different output arguments for the same input arguments, you may or
may not get the same output arguments when you call the procedure multiple times with the same input
arguments.

Configuration

The configuration parameter below refers to Procedure Result Cache (PRC) under the section "sqlscript".

60 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Name Values Default Description

procedure_re­
sult_cache_gc_interval

0-4294967295 60 Number of minutes between
PRC garbage collection.
When this value changes, the
next GC will run after the
specified minutes. Settings
this value to 0 (not recom­
mended) pauses the GC in­
definitely, until a non-zero
value is set.

Related Information

Procedure Result Cache [page 59]
Deterministic Procedure Cache [page 61]

6.2.10.2 Deterministic Procedure Cache

Description

By default Procedure Result Cache (PRC) is enabled for deterministic procedures.

The scope of the cache is the current server (for example, indexserver or cacheserver). If you call the same
deterministic procedure in the same server with the same arguments multiple times, the cached results will be
used except for the first call, unless the cached results are evicted. Since the cache is global in the current
server, the results are shared even among different query plans.

 Note
Currently, only scalar parameters are supported for PRC. You can create deterministic procedures having
table parameters, but automatic caching will be disabled for such procedures.

Deterministic Procedure Cache and Scalar UDF Result Cache

The same keyword, DETERMINISTIC, can be used for both procedures and functions, but currently the
meaning is not the same.

For scalar user-defined functions, a new cache is created for each statement execution and destroyed after
execution. The cache is local to the current statement which has a fixed snapshot of the persistence at a point
in time. Due to this behavior, more things can be considered "deterministic" in deterministic scalar UDFs, such
as reading a table.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 61

Related Information

Procedure Result Cache [page 59]
Deterministic Procedures [page 59]

6.3 User-Defined Libraries

Syntax

 Code Syntax

CREATE [OR REPLACE] LIBRARY <lib_name> [LANGUAGE SQLSCRIPT] [DEFAULT SCHEMA <default_schema_name>]
AS BEGIN
 [<lib_var_decl_list>]
 [<lib_proc_func_list>] END;

ALTER LIBRARY <lib_name> [LANGUAGE SQLSCRIPT] [DEFAULT SCHEMA <default_schema_name>]
AS BEGIN
 [<lib_var_decl_list>]
 [<lib_proc_func_list>]
END;

DROP LIBRARY <lib_name>;

<lib_name> ::= [<schema_name>.]<identifier>;

<lib_var_decl_list> ::= <lib_var_decl> [{<lib_var_decl>}...] <lib_var_decl> ::= <access_mode> <var_decl> ;
<var_decl> ::= VARIABLE <member_name> [CONSTANT] <sql_type> [NOT NULL]
[<proc_default>]

<access_mode> ::= PUBLIC | PRIVATE
<member_name> ::= <identifier> <proc_default> ::= { DEFAULT | '=' } <expression>

<lib_proc_func_list> ::= <lib_proc_func> [{<lib_proc_func>}...] <lib_proc_func> ::= <access_mode> <proc_func_def> ;
<proc_func_def> ::= <proc_def> | <func_def>

<proc_def> ::= PROCEDURE <member_name> [<parameter_clause>] [<proc_property>]
AS BEGIN [SEQUENTIAL EXECUTION] <procedure_body> END
<proc_property> ::= [LANGUAGE <lang>] [SQL SECURITY <mode>] [READS SQL DATA]

<func_def> ::= FUNCTION <member_name> [<parameter_clause>] RETURNS
<return_type> [<func_property>] AS BEGIN <function_body> END <func_property> ::= [LANGUAGE <lang>] [SQL SECURITY <mode>] [READS SQL DATA]

62 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Description

A library is a set of related variables, procedures and functions. There are two types of libraries: built-in libraries
and user-defined libraries. A built-in library is a system-provided library with special functions. A user-defined
library is a library written by a user in SQLScript. Users can make their own libraries and utilize them in other
procedures or functions. Libraries are designed to be used only in SQLScript procedures or functions and are
not available in other SQL statements.

A user-defined library has the following characteristics:

● A single metadata object is created for multiple procedures and functions. By combining all relevant
procedures and functions into a single metadata object, you reduce metadata management cost. On the
other hand, if one function or a procedure of the library becomes invalid, the whole library becomes invalid.

● The atomicity of the relevant objects is guaranteed because they are managed as a single object.
● It is easy to handle the visibility of a procedure or a function in a library. When an application gets bigger

and complex, developers might want to use some procedures or functions only in their application and not
to open them to application users. A library can solve this requirement easily by using the access modes
PUBLIC and PRIVATE for each library member.

● Constant and non-constant variables are available in a library. You can declare a constant variable for a
frequently used constant value and use the variable name instead of specifying the value each time. A non-
constant value is alive during a session and you can access the value at any time if the session is available.

 Note
Any user having the EXECUTE privilege on a library can use that library by means of the USING
statement and can also access its public members.

Limitations

The following limitations apply currently:

● The usage of library variables is currently limited. For example, it is not possible to use library variables in
the INTO clause of a SELECT INTO statement and in the INTO clause of dynamic SQL. This limitation can
be easily circumvented by using a normal scalar variable as intermediate value.

● It is not possible to call library procedures with hints.
● Since session variables are used for library variables, it is possible (provided you the necessary privileges)

to read and modify arbitrary library variables of (other) sessions.
● Variables cannot be declared by using LIKE for specifying the type.
● Non-constant variables cannot have a default value.
● The table type library variable is not supported.
● A library member function cannot be used in queries.

Related Information

Library Members [page 64]

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 63

System Views [page 66]

6.3.1 Library Members

Syntax

 Code Syntax
Using a Library Member

<procedure_body> ::= [<proc_using_list>] [<proc_handle_list>] <proc_stmt_list> <proc_using_list> ::= {<proc_using>}...
<proc_using> ::= USING <lib_name> AS <lib_alias> ;
<lib_name> ::= [<schema_name>.]<identifier>
<lib_alias> ::= <identifier>
<lib_member_ref> ::= [<schema_name> .] <identifier> ':' <member_name>

<proc_assign> ::= <variable_name> = { <expression> | <array_function> |
<lib_member_func_call>} ;
 | <variable_name> '[' <expression> ']' = { <expression> |
<lib_member_func_call> } ;
 | <lib_member_ref> = { <expression> |
<lib_member_func_call> } ;
<lib_member_func_call> ::= <lib_member_ref> ([<expression> [{,
<expression> }...]])

<proc_call> ::= CALL <proc_name> (<param_list>) ; | CALL <lib_member_ref> (<param_list>) ;

Description

Access Mode

Each library member can have a PUBLIC or a PRIVATE access mode. PRIVATE members are not accessible
outside the library, while PUBLIC members can be used freely in procedures and functions.

Library Member Variable

The scope of a library member variable is bound to its session. The value of a library variable persists
throughout a session. If the variable is accessed by different statements within the same session, these
statements access the same variable. However, a library member variable can display different values if
accessed from different sessions.

Library member variables support the following primitive data types:

64 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Boolean Type BOOLEAN

Numeric Types TINYINT SMALLINT INT BIGINT DECIMAL SMALLDECIMAL
REAL DOUBLE

Character String Types VARCHAR NVARCHAR ALPHANUM

Date-Time Types TIMESTAMP SECONDDATE DATE TIME

Library Member Functions and Procedures
Library functions and procedures can be declared as private or public. Private functions and procedures are for
internal use within the library. They cannot be called from outside the library. Public functions and procedures
can be used by anyone who has the EXECUTE privilige for the library. These functions and procedures can be
used and declared like non-library functions and procedures, but they have access to the library private
variables, private functions and private procedures. It is also possible to call procedures and functions from
outside the library, as well as other libraries. The use of library functions is limited to the right-hand side of
assignments and cannot be used in queries.

Resolving Unqualified Names
A library member is not a metadata object, so it may have the same name as another procedure or function.
When resolving an unqualified name in a library definition, the system first examines library members defined
before the current library member. If the name is not found within the library, then the name is searched for in
the library schema. To reduce ambiguity and to avoid duplicate names, it is recommended to use a fully
qualified name for user-defined functions.

Example

 Sample Code
Setup

create table data_table(col1 int);
do begin
 declare idx int = 0;
 for idx in 1..200 do
 insert into data_table values (:idx);
 end for; end;

 Sample Code
Library DDL

create library mylib as begin public variable maxval constant int = 100;

 public function bound_with_maxval(i int) returns x int as begin
 x = case when :i > :maxval then :maxval else :i end;
 end;

 public procedure get_data(in size int, out result table(col1 int)) as begin
 result = select top :size col1 from data_table;

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 65

 end;
end;

 Sample Code
Procedure Using Library

 create procedure myproc (in inval int) as begin
 using mylib as mylib;
 declare var1 int = mylib:bound_with_maxval(:inval);

 if :var1 > mylib:maxval then
 select 'unexpected' from dummy;
 else
 declare tv table (col1 int);
 call mylib:get_data(:var1, tv);
 select count(*) from :tv;
 end if; end;

 Sample Code
Result

call myproc(10); Result:
count(*) 10

call myproc(150); Result:
count(*) 100

Related Information

User-Defined Libraries [page 62]
System Views [page 66]

6.3.2 System Views

System views for user-defined libraries.

LIBRARIES

LIBRARIES shows available libraries.

66 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Column name Column description

SCHEMA_NAME Schema name of the library

LIBRARY_NAME Name of the library

LIBRARY_OID Object ID of the library

OWNER_NAME Owner name of the library

DEFAULT_SCHEMA_NAME Schema of the unqualified objects in the library

DEFINITION Definition of the library

LIBRARY_TYPE Language type of the library

IS_VALID Specifies whether the library is valid or not. This becomes
false when its base objects are changed or dropped.

CREATE_TIME Creation time

LIBRARY_MEMBERS

Library members of SQLScript libraries.

Column name Column description

SCHEMA_NAME Schema name of the library

LIBRARY_NAME Name of the library

LIBRARY_OID Object ID of the library

MEMBER_NAME Name of the library member

MEMBER_TYPE Type of the library member: 'VARIABLE', 'PROCEDURE',
'FUNCTION'

ACCESS_MODE Access mode of the library member: 'PUBLIC', 'PRIVATE'

DEFINITION Definition string of the library member

Related Information

User-Defined Libraries [page 62]
Library Members [page 64]

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 67

6.3.3 UDL Member Procedure Call Without SQLScript
Artifacts

Description

Until now it was possible to use library members of user-defined libraries (UDL) only within the scope of other
SQLScript objects like procedures, functions or anonymous blocks. For example, even if you only wanted to run
a single library member procedure, you had to create a procedure or execute the member procedure within an
anonymous block. Wrapping the member access into an anonymous block is simple when there are no
parameters, but it can get more complex, if there are input and output parameters. You can now directly call
library member procedures without the use of additional SQLScript objects.

Syntax

 Code Syntax

<call_stmt> ::= CALL <proc_name> (<param_list>) [WITH OVERVIEW] [IN DEBUG
MODE] | CALL <lib_member_ref> (<param_list>);

<proc_call> ::= CALL <proc_name> (<param_list>) ;
 | CALL <lib_member_ref> (<param_list>) ;

<lib_member_ref> ::= [<schema_name> '.'] <library_name_or_alias> ':'
<member_name>

<schema_name> ::= <identifier>
<library_name_or_alias> ::= <identifier> <member_name> ::= <identifier>

68 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

Behavior

Old Behavior New Behavior

create library mylib as begin public procedure memberproc(in i
int, out tv table(col1 nvarchar(10)))
as begin
 tv = select :i * 100 as col1 from
dummy;
 end;
end;

do (in iv int => 1, out otv
table(col1 nvarchar(10)) => ?) begin
 using mylib as mylib;
 call mylib:memberproc(:iv, otv); end;

create library mylib as begin public procedure memberproc(in i
int, out tv table(col1 nvarchar(10)))
as begin
 tv = select :i * 100 as col1 from
dummy;
 end;
end;
 call mylib:memberproc(1, ?);

Library members can be referenced by library name and library member name. If a library alias is set by a
USING statement, the alias can be used instead of the library name.

If an alias is specified, SQLScript first tries to resolve the unqualified library name as a library alias. If the name
is not found in the list of library aliases, then SQLScript will resolve the name with a default schema. However, if
a schema name is specified, the library is always searched for inside the schema and any existing alias is
ignored.

Examples

 Sample Code
Example Library

create schema myschema1; create schema myschema2;

create library myschema1.mylib as begin
 public procedure memberproc (out ov varchar(10)) as begin
 ov = 'myschema1';
 end;
end;

create library myschema2.mylib as begin
 public procedure memberproc (out ov varchar(10)) as begin
 ov = 'myschema2';
 end; end;

 Sample Code
Example 1

create or replace procedure myproc1 (out ov varchar(10)) default schema myschema2

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 69

as begin
 using myschema1.mylib as mylib;
 call mylib:memberproc(ov);
end;
 call myproc1(?); -- result: 'myschema1'

In this example, the library name in the CALL statement is not fully qualified and there is an alias with the same
name. In that case, mylib is resolved as library mylib and it refers to myschema1.mylib.

 Sample Code
Example 2

create or replace procedure myproc2 (out ov varchar(10)) default schema myschema2
as begin
 call mylib:memberproc(ov);
end;
 call myproc2(?); -- result: 'myschema2'

In this example, the library name in the CALL statement is not fully qualified and there is no alias with the same
name. In that case, mylib is found only in the default schema and refers to myschema2.mylib.

 Sample Code
Exaple 3

create or replace procedure myproc3 (out ov varchar(10)) as begin
 using myschema1.mylib as mylib;
 call myschema2.mylib:memberproc(ov); -- Resolved as myschema2 because the
schema is explicitly described.
end;
 call myproc3(?); -- result: 'myschema2'

In this example, the library name in the CALL statement is mylib and there is an alias with the same name.
However, the library name is fully qualified with the schema name myschema2 and is resolved as
myschema2.mylib.

Limitations

The following limitations apply:

● WITH option is not supported for library member CALL statement. For example CALL MYLIB:PROC() WITH
HINT (...)

● EXPLAIN PLAN is not supported.
● QUERY EXPORT is not supported.
● Built-in library member procedures with variable arguments are not supported.

70 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.3.4 Library Member Functions and Variables

Library member functions and variables can be used directly in SQL or expressions in SQLScript.

Syntax

The syntax for library table functions, scalar functions and variables accepts a library member reference.

 Code Syntax

<expression> ::= <case_expression> | <function_expression> | ... |
<variable_name> | ... <function_expression> ::= <function_name> (<expression> [{,
<expression} ...])
<function_name> ::= [[<database_name> '.'] <schema_name> '.']]
<identifier> | <lib_member_ref>
<variable_name> ::= <identifier> | <lib_member_ref>

<from_clause> ::= FROM <table_expression> [, <table_expression> ...]
<table_expression> ::= <table_ref> | ... | <function_reference> | ...
<function_reference> ::= <function_name> (<proc_arg_list> |
<opt_parameter_key_value_list>)

<lib_member_ref> ::= [<schema_name> '.'] <library_name_or_alias> ':'
<member_name>

<schema_name> ::= <identifier>
<library_name_or_alias> ::= <identifier> <member_name> ::= <identifier>

Behavior

 Sample Code

create table r_tab (r decimal); insert into r_tab values (50);
insert into r_tab values (100);

create library mylib as begin
 public variable phi constant decimal = 3.14;
 public function circumference(r decimal) returns a int as begin
 a = 2 * :phi * :r;
 end;
 public function circumference_table(r_table table(r decimal)) returns
table(c decimal) as begin
 return select 2 * :phi * r as c from :r_table;
 end; end;

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 71

Old Behavior New Behavior

select mylib:phi from dummy;

ERR-00467: cannot use parameter variable: MYLIB:PHI: line
1 col 8 (at pos 7)

select mylib:phi from dummy;

Succeed: [(3.14)]

select mylib:circumference(r) from
r_tab;

ERR-00007: feature not supported: using library member
function on the outer boundary of SQLScript: CIRCUMFER­
ENCE: line 1 col 8 (at pos 7)

select mylib:circumference(r) from
r_tab;

Succeed: [(314), (628)]

 select * from
mylib:circumference_table(r_tab);

ERR-00257: sql syntax error: incorrect syntax near "(": line 1
col 40 (at pos 40)

 select * from
mylib:circumference_table(r_tab);

Succeed: [(314), (628)]

Limitations

● EXPLAIN PLAN is not supported.
● QUERY EXPORT is not supported.
● Built-in library member functions with variable arguments are not supported.
● Library member functions and variables are not supported in generated columns and table check

conditions.
● PRIVATE functions are not supported in SQL.
● Library member variable is not supported in DDL.

Related Information

UDL Member Procedure Call Without SQLScript Artifacts [page 68]

72 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

6.4 CREATE OR REPLACE

When creating a SQLScript procedure or function, you can use the OR REPLACE option to change the defined
procedure or function, if it already exists.

Syntax

CREATE [OR REPLACE] FUNCTION <func_name> [(<parameter_clause>)] RETURNS
<return_type> [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC]
[WITH ENCRYPTION]
AS
BEGIN
 <function_body>
END
[<cache_clause>]
<cache_clause> ::=
 WITH [STATIC] CACHE
 RETENTION <minute_value>
 [OF <projection_list>]
 [FILTER <filter_condition>]
 [<location_clause>]
 [FORCE]
CREATE [OR REPLACE] PROCEDURE <proc_name> [(<parameter_clause>)] [LANGUAGE
<lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
 [READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC] [WITH ENCRYPTION]
[AUTOCOMMIT DDL { ON|OFF }]
 AS
 { BEGIN [SEQUENTIAL EXECUTION | PARALLEL EXECUTION]
 <procedure_body> END | HEADER ONLY }

Behavior

The behavior of this command depends on the existence of the defined procedure or function. If the procedure
or the function already exist, it will be modified according to the new definition. If you do not explicitly specify a
property (for example, read only), this property will be set to the default value. Please refer to the example
below. If the procedure or the function do not exist yet, the command works like CREATE PROCEDURE or
CREATE FUNCTION.

Compared to using DROP PROCEDURE followed by CREATE PROCEDURE, CREATE OR REPLACE has the
following benefits:

● DROP and CREATE incur object re-validation twice, while CREATE OR REPLACE incurs it only once
● If a user drops a procedure, its privileges are lost, while CREATE OR REPLACE preserves them.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 73

Example

 Sample Code

create or replace procedure proc(out o table(a int)) default schema system reads sql data deterministic with encryption as
begin
 o = select 1 as a from dummy;
end;
call proc(?);
-- Returns 1
create or replace procedure proc(out o table(a int))
language llang as
begin
 export Void main(Table<Int32 "A"> "o" & o)
 {
 Column<Int32> col = o.getColumn<Int32>("A");
 col.setElement(0z, 2);
 }
end;
call proc(?);
-- Returns 2
-- Note that this procedure is not set to read-only, deterministic,
encrypted, or default schema system any more.
create or replace procedure proc(out o int) as
begin
 o = 3;
end; -- Returns an error because the signature of the new procedure does not match
to that of the predefined procedure

 Sample Code

CREATE OR REPLACE PROCEDURE test1 as begin
 select * from dummy;
end;
call test1;

-- new parameter
CREATE OR REPLACE PROCEDURE test1 (IN i int) as
begin
 select :i from dummy;
 select * from dummy;
end;
call test1(?);

-- default value
CREATE OR REPLACE PROCEDURE test1 (IN i int default 1) as
begin
 select :i from dummy;
end;
call test1();

-- change the number of parameter and name of parameter
ALTER PROCEDURE test1 (j int, k int) as
begin
 select :j from dummy;
 select :k from dummy;
end;
call test1(?, ?);

-- change the type of the parameter and name of parameter
CREATE OR REPLACE PROCEDURE test1 (t1 TIMESTAMP, t2 TIMESTAMP) as

74 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

begin
 select :t1 from dummy;
 select :t2 from dummy;
end;
call test1(?, ?);

-- support also ddl command 'ALTER'
ALTER PROCEDURE test1 as
begin
 select * from dummy;
end;
call test1;

-- table type
create column table tab1 (a INT);
create column table tab2 (a INT);

CREATE OR REPLACE PROCEDURE test1(out ot1 table(a INT), out ot2 table(a INT))
as begin
 insert into tab1 values (1);
 select * from tab1;
 insert into tab2 values (2);
 select * from tab2;
 insert into tab1 values (1);
 insert into tab2 values (2);
 ot1 = select * from tab1;
 ot2 = select * from tab2;
end;
call test1(?, ?);

-- change the number of parameter
ALTER PROCEDURE test1(out ot1 table(a INT)) as begin
 insert into tab1 values (1);
 select * from tab1;
 insert into tab2 values (2);
 select * from tab2;
 insert into tab1 values (1);
 insert into tab2 values (2);
 ot1 = select * from tab1;
end;
call test1(?);

-- security
CREATE OR REPLACE PROCEDURE test1(out o table(a int))
sql security invoker as
begin
 o = select 5 as a from dummy;
end;
call test1(?);

-- change security
ALTER PROCEDURE test1(out o table(a int))
sql security definer as
begin
 o = select 8 as a from dummy;
end;
call test1(?);

-- result view
ALTER PROCEDURE test1(out o table(a int))
reads sql data with result view rv1 as
begin
 o = select 0 as A from dummy;
end;
call test1(?);

-- change result view
CREATE OR REPLACE PROCEDURE test1 (out o table(a int))

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 75

reads sql data with result view rv2 as
begin
 o = select 1 as A from dummy;
end;
call test1(?);

-- table function
CREATE TYPE TAB_T1 AS TABLE(a int);

CREATE OR REPLACE FUNCTION func1()
returns TAB_T1 LANGUAGE SQLSCRIPT
as begin
 return select * from TAB1;
end;
select * from func1();

CREATE OR REPLACE FUNCTION func1(a int)
returns table(a INT) LANGUAGE SQLSCRIPT
as begin
 if a > 4
 then
 return select * from TAB1;
 else
 return select * from TAB2;
 end if;
end;
select * from func1(1);

-- scalar function
CREATE OR REPLACE FUNCTION sfunc_param returns a int as
begin
 A = 0;
end;
select sfunc_param() from dummy;

CREATE OR REPLACE FUNCTION sfunc_param (x int) returns a int as
begin
 A = :x;
end; select sfunc_param(3) from dummy;

6.5 Procedure and Function Headers

When you have a procedure or a function that already exist and you want to create a new procedure consuming
them, to avoid dependency problems you can use headers in their place.

When you create a procedure, all nested procedures that belong to that procedure must exist beforehand. If the
procedure P1 calls P2 internally, then P2 must have been created earlier than P1. Otherwise, the creation of P1
fails with the error message,“P2 does not exist”. With large application logic and no export or delivery unit
available, it can be difficult to determine the order, in which the objects need to be created.

To avoid that kind of dependency problems, SAP introduces HEADERS. HEADERS allow you to create a minimum
set of metadata information that contains only the interface of a procedure or a function.

AS HEADER ONLY

76 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

You create a header for a procedure by using the HEADER ONLY keyword, as in the following example:

CREATE PROCEDURE <proc_name> [(<parameter_clause>)] AS HEADER ONLY;

With this statement you create a procedure <proc_name> with the given signature <parameter_clause>.
The procedure <proc_name> has no body definition and thus has no dependent base objects. Container
properties (for example, security mode, default_schema, and so on) cannot be defined with the header
definition. These are included in the body definition.

The following statement creates the procedure TEST_PROC with a scalar input INVAR and a tabular output
OUTTAB:

CREATE PROCEDURE TEST_PROC (IN INVAR NVARCHAR(10), OUT OUTTAB TABLE(no INT)) AS
HEADER ONLY

You can create a function header in a similar way.

CREATE FUNCTION <func_name> [(<parameter_clause>)] RETURNS <return_type> AS
HEADER ONLY

By checking the is_header_only field in the system view PROCEDURES, you can verify that a header-only
procedure is defined.

SELECT procedure_name, is_header_only from SYS.PROCEDURES

If you want to check for functions, then you need to look into the system view FUNCTIONS.

Once a header of a procedure or a function is defined, the other procedures or functions can refer to it in their
procedure body. Procedures containing these headers can be compiled as shown in the following example:

CREATE PROCEDURE OUTERPROC (OUT OUTTAB TABLE (NO INT)) LANGUAGE SQLSCRIPT AS
BEGIN
 DECLARE s INT;
 s = 1;
 CALL TEST_PROC (:s, outtab); END;

As long as the procedure or the function contain only a header definition, they cannot be executed.
Furthermore, all procedures and functions that use this procedure or function containing headers cannot be
executed because they are all invalid.

To change this and to make a valid procedure or a function from the header definition, you need to replace the
header by the full container definition. Use the ALTER statement to replace the header definition of a
procedure, as follows:

ALTER PROCEDURE <proc_name> [(<parameter_clause>)] [LANGUAGE <lang>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>] [DETERMINISTIC] [WITH ENCRYPTION]
[AUTOCOMMIT DDL { ON|OFF }] AS
BEGIN [SEQUENTIAL EXECUTION]
 <procedure_body> END

For a function header, the task is similar, as shown in the following example:

ALTER FUNCTION <func_name> [(<parameter_clause>)] RETURNS <return_type>

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 77

[LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
[READS SQL DATA] [<variable_cache_clause>]
[DETERMINISTIC][WITH ENCRYPTION]
AS
BEGIN
 <function_body> END

For example, if you want to replace the header definition of TEST_PROC that has already been defined, the
ALTER statement will look as follows:

ALTER PROCEDURE TEST_PROC (IN INVAR NVARCHAR(10), OUT OUTTAB TABLE(no INT)) LANGUAGE SQLSCRIPT SQL SECURITY INVOKER READS SQL DATA
AS
BEGIN
 DECLARE tvar TABLE (no INT, name nvarchar(10));
 tvar = SELECT * FROM TAB WHERE name = :invar;
 outtab = SELECT no FROM :tvar; END

6.6 Anonymous Block

An anonymous block is an executable DML statement which can contain imperative or declarative statements.

All SQLScript statements supported in procedures are also supported in anonymous blocks. Compared to
procedures, anonymous blocks have no corresponding object created in the metadata catalog - they are
cached in the SQL Plan Cache.

An anonymous block is defined and executed in a single step by using the following syntax:

DO [(<parameter_clause>)] BEGIN [SEQUENTIAL EXECUTION]
 <body>
END WITH HINT (...) <body> ::= !! supports the same feature set as the procedure

For more information, see the CREATE PROCEDURE statement in the SAP HANA SQL and System Views
Reference on the SAP Help Portal.

With the parameter clause you can define a signature, whereby the value of input and output parameters needs
to be bound by using named parameters.

<parameter_clause> ::= <named_parameter> [{,<named_parameter>}...] <named_parameter> ::= (IN|OUT) <param_name> <param_type> => <proc_param>

 Note
INOUT parameters and DEFAULT EMPTY are not supported.

For more information on <proc_param> see CALL [page 30].

The following example illustrates how to call an anonymous block with a parameter clause:

DO (IN in_var NVARCHAR(24)=> 'A',OUT outtab TABLE (J INT,K INT) => ?) BEGIN

78 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 T1 = SELECT I, 10 AS J FROM TAB where z = :in_var;
 T2 = SELECT I, 20 AS K FROM TAB where z = :in_var;
 T3 = SELECT J, K FROM :T1 as a, :T2 as b WHERE a.I = b.I;
 outtab = SELECT * FROM :T3; END

For output parameters only ? is a valid value and cannot be omitted, otherwise the query parameter cannot be
bound. Any scalar expression can be used for the scalar input parameter.

You can also parameterize the scalar parameters, if needed. For example, for the example above, it would look
as follows:

DO (IN in_var NVARCHAR(24)=> ?,OUT outtab TABLE (J INT,K INT) => ?) BEGIN
 T1 = SELECT I, 10 AS J FROM TAB where z = :in_var;
 T2 = SELECT I, 20 AS K FROM TAB where z = :in_var;
 T3 = SELECT J, K FROM :T1 as a, :T2 as b WHERE a.I = b.I;
 outtab = SELECT * FROM :T3; END

Contrary to a procedure, an anonymous block has no container-specific properties (for example, language,
security mode, and so on). However, the body of an anonymous block is similar to the procedure body.

 Note
An anonymous block cannot be used in a procedure or in a function.

It is now possible to use HINTs for anonymous blocks. However, not all hints that are supported for CALL, are
also supported for anonymous blocks (for example, routing hints).

 Sample Code
Anonymous Block Hint

DO BEGIN DECLARE i INT;
 FOR i in 1..5 DO
 SELECT * FROM dummy;
 END FOR; END WITH HINT(ignore_plan_cache)

Below you find further examples of anonymous blocks:

Example 1

DO BEGIN
 DECLARE I INTEGER;
 CREATE TABLE TAB1 (I INTEGER);
 FOR I IN 1..10 DO
 INSERT INTO TAB1 VALUES (:I);
 END FOR; END;

This example contains an anonymous block that creates a table and inserts values into that table.

Example 2

In this example an anonymous block calls another procedure.

DO

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 79

 BEGIN
 T1 = SELECT * FROM TAB;
 CALL PROC3(:T1, :T2);
 SELECT * FROM :T2; END

Example 3

In this example an anonymous block uses the exception handler.

DO (IN J INTEGER => ?) BEGIN
 DECLARE I, J INTEGER;
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 IF ::SQL_ERROR_CODE = 288 THEN
 DROP TABLE TAB;
 CREATE TABLE TAB (I INTEGER PRIMARY KEY);
 ELSE
 RESIGNAL;
 END IF;
 CREATE TABLE TAB (I INTEGER PRIMARY KEY);
 END;
 FOR I in 1..3 DO
 INSERT INTO TAB VALUES (:I);
 END FOR;
 IF :J <> 3 THEN
 SIGNAL SQL_ERROR_CODE 10001;
 END IF; END

6.7 SQLScript Encryption

Procedure and function definitions may contain delicate or critical information but a user with system
privileges can easily see all definitions from the public system views PROCEDURES, FUNCTIONS or from
traces, even if the procedure or function owner has controlled the authorization rights in order to secure their
objects. If application developers want to protect their intellectual property from any other users, even system
users, they can use SQLScript encryption.

 Note
Decryption of an encrypted procedure or function is not supported and cannot be performed even by SAP.
Users who want to use encrypted procedures or functions are responsible for saving the original source
code and providing supportability because there is no way to go back and no supportability tools for that
purpose are available in SAP HANA.

Syntax

 Code Syntax

[CREATE | ALTER] PROCEDURE <proc_name> [(<parameter_clause>)]

80 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA
 <default_schema_name>] [READS SQL DATA]
 [<sqlscript_route_option>]
 [WITH ENCRYPTION]
AS BEGIN
 ...
END;

 Code Syntax

[CREATE | ALTER] FUNCTION <func_name> [(<parameter_clause>)] RETURNS
<return_type> [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA
<default_schema_name>] [READS SQL DATA]
 [<sqlscript_route_option>] [DETERMINISTIC]
 [WITH ENCRYPTION]
AS BEGIN
 ...
END;

 Code Syntax

ALTER PROCEDURE <proc_name> ENCRYPTION ON; ALTER FUNCTION <func_name> ENCRYPTION ON;

Behavior

If a procedure or a function is created by using the WITH ENCRYPTION option, their definition is saved as an
encrypted string that is not human readable. That definition is decrypted only when the procedure or the
function is compiled. The body in the CREATE statement is masked in various traces or monitoring views.

Encrypting a procedure or a function with the ALTER PROCEDURE/FUNCTION statement can be achieved in
the following ways. An ALTER PROCEDURE/FUNCTION statement, accompanying a procedure body, can make
use of the WITH ENCRYPTION option, just like the CREATE PROCEDURE/FUNCTION statement.

If you do not want to repeat the procedure or function body in the ALTER PROCEDURE/FUNCTION statement
and want to encrypt the existing procedure or function, you can use ALTER PROCEDURE/FUNCTION
<proc_func_name> ENCRYPTION ON. However, the CREATE statement without the WITH ENCRYPTION
property is not secured.

 Note
A new encryption key is generated for each procedure or function and is managed internally.

SQLScript Debugger, PlanViz, traces, monitoring views, and others that can reveal procedure definition are
not available for encrypted procedures or functions.

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 81

Additional Considerations

Nested Procedure Call
Not encrypted procedures or functions can be used inside encrypted procedures or functions. However,
encryption in the outer call does not mean that nested calls are also secured. If a nested procedure or a
function is not encrypted, then its compilation and execution details are available in monitoring views or traces.

Object Dependency
The object dependency of encrypted procedures or functions is not secured. The purpose of encryption is to
secure the logic of procedures or functions and object dependency cannot reveal how a procedure or a
function works.

Criteria What to Hide
There is a large amount of information related to a procedure or a function and hiding all information is hard
and makes problem analysis difficult. Therefore, compilation or execution information, which cannot reveal the
logic of a procedure or a function, can be available to users.

Limitation in Optimization
Some optimizations, which need analysis of the procedure or function definition, are turned off for encrypted
procedures and functions.

Calculation Views
An encrypted procedure cannot be used as a basis for a calculation view. It is recommended to use table user-
defined functions instead.

System Views

An additional column IS_ENCRYPTED is added to the views PROCEDURES and FUNCTIONS.

PROCEDURES

SCHEMA_NAME PROCEDURE_NAME ... IS_ENCRYPTED DEFINITION

SYSTEM TEST_PROC ... TRUE CREATE PROCEDURE
TEST_PROC(IN x INT)
<encrypted_defini-
tion>

FUNCTIONS

SCHEMA_NAME FUNCTION_NAME ... IS_ENCRYPTED DEFINITION

SYSTEM TEST_FUNC ... TRUE CREATE FUNCTION
TEST_FUNC(IN x INT)
RETURNS i <en­
crypted definition>

For every public interface that shows procedure or function definitions, such as PROCEDURES or FUNCTIONS,
the definition column displays only the signature of the procedure, if it is encrypted.

82 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

 Sample Code

CREATE PROCEDURE TEST_PROC(IN x INT) WITH ENCRYPTION AS BEGIN SELECT 1 AS I FROM DUMMY;
END;
CREATE FUNCTION TEST_FUNC(IN x INT) RETURNS i INT WITH ENCRYPTION AS BEGIN
 i = 1; END;

System View PROCEDURES

 Sample Code

SELECT PROCEDURE_NAME, DEFINITION FROM PROCEDURES WHERE PROCEDURE_NAME =
'TEST_PROC';

Result:

PROCEDURE_NAME DEFINITON

TEST_PROC CREATE PROCEDURE TEST_PROC(IN x INT) <encrypted
definition>

System View FUNCTIONS

 Sample Code

SELECT FUNCTION_NAME, DEFINITION FROM FUNCTIONS WHERE FUNCTION_NAME =
'TEST_FUNC';

Result:

FUNCTION_NAME DEFINITON

TEST_FUNC CREATE FUNCTION TEST_FUNC(IN x INT) RETURNS i INT
<encrypted definition>

Supportability

For every monitoring view showing internal queries, the internal statements will also be hidden, if its parent is
an encrypted procedure call. Debugging tools or plan analysis tools are also blocked.

The following supportability tools are blocked:

● SQLScript Debugger
● EXPLAIN PLAN FOR Call
● PlanViz

The following views display less information:

● Statement-related views
● Plan Cache-related views
● M_ACTIVE_PROCEDURES

SAP HANA SQLScript Reference for SAP HANA Platform
Logic Container PUBLIC 83

In these monitoring views, the SQL statement string is replaced with the string <statement from
encrypted procedure <proc_schema>.<proc_name> (<sqlscript_context_id>)>.

6.7.1 Import and Export of Encrypted SQLScript Objects

Default Behavior

Encrypted procedures or functions cannot be exported, if the option ENCRYPTED OBJECT HEADER ONLY is
not applied. When the export target is an encrypted object or if objects, which are referenced by the export
object, include an encrypted object, the export will fail with the error FEATURE_NOT_SUPPORTED. However,
when exporting a schema and an encrypted procedure or function in the schema does not have any dependent
objects, the procedure or function will be skipped during the export.

With the Option ENCRYPTED OBJECT HEADER ONLY

To enable export of any other objects based on an encrypted procedure, the option ENCRYPTED OBJECT
HEADER ONLY is introduced for the EXPORT statement. This option does not export encrypted objects in
encrypted state, but exports the encrypted object as a header-only procedure or function. After an encrypted
procedure or a function has been exported with the HEADER ONLY option, objects based on encrypted objects
will be invalid even after a successful import. You should alter the exported header-only procedure or function
to its original body or dummy body to make dependent objects valid.

 Sample Code
Original Procedure

create procedure enc_proc with encryption as begin
 select 1 as i from dummy; end;

 Sample Code
Export Statement

export all as binary into <path> with encrypted object header only;

 Sample Code
Exported create.sql

create procedure enc_proc /* WITH ENCRYPTION */ AS HEADER ONLY;

84 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Logic Container

7 Declarative SQLScript Logic

Each table assignment in a procedure or table user defined function specifies a transformation of some data by
means of classical relational operators such as selection, projection. The result of the statement is then bound
to a variable which either is used as input by a subsequent statement data transformation or is one of the
output variables of the procedure. In order to describe the data flow of a procedure, statements bind new
variables that are referenced elsewhere in the body of the procedure.

This approach leads to data flows which are free of side effects. The declarative nature to define business logic
might require some deeper thought when specifying an algorithm, but it gives the SAP HANA database
freedom to optimize the data flow which may result in better performance.

The following example shows a simple procedure implemented in SQLScript. To better illustrate the high-level
concept, we have omitted some details.

CREATE PROCEDURE getOutput(IN cnt INTEGER, IN currency VARCHAR(3), OUT output_pubs tt_publishers, OUT output_year tt_years)
 LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 big_pub_ids = SELECT publisher AS pid FROM books -- Query Q1 GROUP BY
publisher HAVING COUNT(isbn) > :cnt;
 big_pub_books = SELECT title, name, publisher, -- Query Q2 year, price
 FROM :big_pub_ids, publishers, books
 WHERE pub_id = pid AND pub_id = publisher
 AND crcy = :currency;
 output_pubs = SELECT publisher, name, -- Query Q3
 SUM(price) AS price, COUNT(title) AS cnt FROM :big_pub_books GROUP BY
publisher, name;
 output_year = SELECT year, SUM(price) AS price, -- Query Q4 COUNT(title)
AS cnt
 FROM :big_pub_books GROUP BY year;
END;

This SQLScript example defines a read-only procedure that has 2 scalar input parameters and 2 output
parameters of type table. The first line contains an SQL query Q1, that identifies big publishers based on the
number of books they have published (using the input parameter cnt). Next, detailed information about these
publishers along with their corresponding books is determined in query Q2. Finally, this information is
aggregated in 2 different ways in queries Q3 (aggregated per publisher) and Q4 (aggregated per year)
respectively. The resulting tables constitute the output tables of the function.

A procedure in SQLScript that only uses declarative constructs can be completely translated into an acyclic
dataflow graph where each node represents a data transformation. The example above could be represented
as the dataflow graph shown in the following image. Similar to SQL queries, the graph is analyzed and
optimized before execution. It is also possible to call a procedure from within another procedure. In terms of
the dataflow graph, this type of nested procedure call can be seen as a sub-graph that consumes intermediate
results and returns its output to the subsequent nodes. For optimization, the sub-graph of the called procedure
is merged with the graph of the calling procedure, and the resulting graph is then optimized. The optimization
applies similar rules as an SQL optimizer uses for its logical optimization (for example filter pushdown). Then
the plan is translated into a physical plan which consists of physical database operations (for example hash
joins). The translation into a physical plan involves further optimizations using a cost model as well as
heuristics.

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 85

86 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

7.1 Table Parameter

Syntax

<table_param> ::= [IN|OUT] <param_name> {<table_type>|<table_type_definition>|
<any_table_type>} <table_type> ::= <identifier>
<table_type_definition> ::= TABLE(<column_list_elements>)
<any_table_type> ::= TABLE(...)

Description

Table parameters that are defined in the signature are either input or output parameters. The parameters can
be typed either by using a table type previously defined with the CREATE TYPE command, or by writing it
directly in the signature without any previously defined table type.

Example

(IN inputVar TABLE(I INT),OUT outputVar TABLE (I INT, J DOUBLE))

Defines the tabular structure directly in the signature.

(IN inputVar tableType, OUT outputVar outputTableType)

Using previously defined tableType and outputTableType table types.

The advantage of previously defined table type is that it can be reused by other procedure and functions. The
disadvantage is that you must take care of its lifecycle.

The advantage of a table variable structure that you directly define in the signature is that you do not need to
take care of its lifecycle. In this case, the disadvantage is that it cannot be reused.

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 87

7.1.1 Any Table Type Parameter

The any table type parameter is a table parameter whose type is defined during DDL time as a wildcard and is
determined later during query compilation.

Syntax

As a result of the new any table type support, the syntax of table parameters has changed as follows:

 Code Syntax

<table_param> ::= [IN|OUT] <param_name> {<table_type>|<table_type_definition>|
<any_table_type>} <any_table_type> ::= TABLE(...)

Examples

The following examples illustrate some use cases of the any_table_type parameter for DML and SELECT
statements.

 Sample Code

create procedure myproc1(out ott table(...)) as begin
 ott = select * from ctab1;
end;

-- use of nested call statements inside a procedure
drop procedure myproc1;
create procedure myproc1(in itt table(...), out ott table(c int)) as
begin
 ott = select * from :itt;
end;

drop procedure myproc2;
create procedure myproc2 as
begin
 it0 = select 1 c from ctab3;
 call myproc1(:it0, :ott);
end;

-- nested call with any table parameters
drop procedure subproc1;
create procedure subproc1 (in itt table(...)) as
begin
 ott = select * from ctab1;
end;

drop procedure subproc2;
create procedure subproc2(in itt table(...)) as
begin
 call subproc1(:itt);
end;

88 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

create procedure myproc2(in itt table(...)) as
begin
 lt0 = select * from :itt;
 lt1 = select * from :lt0;
 select * from :lt1, ctab1; end;

The any_table_type parameter can also be used in other scenarios with different statements.

 Sample Code

-- unnest statement create procedure unst_proc1(in itt table(a int), out ott table(...)) as
begin
 tmp = SELECT '1','2','3' as A from :itt;
 tmp2 = unnest(ARRAY_AGG(:tmp.a));
 ott = select * from :tmp2;
end;

call unst_proc1(ctab1,?);

-- ce functions
create procedure ce_proc1 (out outtab table(...)) as
begin
 t = ce_column_table(temptable);
 outtab = ce_projection(:t, [b]);
end
call ce_proc1(?);

-- apply filters
CREATE PROCEDURE apply_p1(IN inputtab table(...), IN dynamic_filter_1
VARCHAR(5000)) as
begin
 outtab = APPLY_FILTER (:inputtab, :dynamic_filter_1);
 select * from :outtab;
end;

call apply_p1(ctab3, ' a like ''%fil%'' '); call apply_p1(ctab3, ' a = ''

Scope and Limitations

The any_table_type parameter can be used in procedures and table UDFs in the SQLScript laguage and
procedures in the AFL language with some limitations:

● the any_table_type parameter cannot be used within anonymous blocks, other languages or outside the
scope of SQLScript

● any_table_type parameters are supported only as input parameter of table UDFs, but not as return
parameters

● scalar UDFs do not support any_table_type parameters.
● If an output any table type parameter cannot be resolved during procedure creation (for example,

out_any_table = select * from in_any_table), the procedure cannot be called inside SQLScript.

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 89

7.2 Table Variable Type Definition

The type of a table variable in the body of a procedure or a table function is either derived from the SQL query,
or declared explicitly. If the table variable has derived its type from the SQL query, the SQLScript compiler
determines its type from the first assignments of the variable thus providing a lot of flexibility. An explicitly
declared table variable is initialized with empty content if a default value is not assigned.

Signature

DECLARE <sql_identifier> [{,<sql_identifier> }...] [CONSTANT] {TABLE
(<column_list_definition>)|<table_type>} [<proc_table_default>] <proc_table_default> ::= { DEFAULT | '=' } { <select_statement> | <proc_ce_call>
| <proc_apply_filter> | <unnest_function> }

Local table variables are declared by using the DECLARE keyword. For the referenced type, you can either use a
previously declared table type, or the type definition TABLE (<column_list_definition>). The next
example illustrates both variants:

DECLARE temp TABLE (n int); DECLARE temp MY_TABLE_TYPE;

You can also directly assign a default value to a table variable by using the DEFAULT keyword or ‘=’. By default
all statements are allowed all statements that are also supported for the typical table variable assignment.

DECLARE temp MY_TABLE_TYPE = UNNEST (:arr) as (i); DECLARE temp MY_TABLE_TYPE DEFAULT SELECT * FROM TABLE;

The table variable can be also flagged as read-only by using the CONSTANT keyword. The consequence is that
you cannot override the variable any more. Note that if the CONSTANT keyword is used, the table variable
should have a default value, it cannot be NULL.

DECLARE temp CONSTANT TABLE(I INT) DEFAULT SELECT * FROM TABLE;

An alternative way to declare a table variable is to use the LIKE keyword. You can specify the variable type by
using the type of a persistent table, a view, or another table variable.

DECLARE <list_of_variable_names> [CONSTANT] LIKE { <table_name>
| :<table_variable_name> }.<column_name> [NOT NULL] [default_value] DECLARE <list_of_variable_names> [CONSTANT] TABLE LIKE { <table_name>
| :<table_variable_name> } [default_value]

 Note
When you declare a table variable using LIKE <table_name>, all the attributes of the columns (like
unique, default value, and so on) in the referenced table are ignored in the declared variable except the not
null attribute.

When you use LIKE <table_name> to declare a variable in a procedure, the procedure will be dependent
on the referenced table.

90 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

Description

Local table variables are declared by using the DECLARE keyword. A table variable temp can be referenced by
using :temp. For more information, see Referencing Variables [page 93]. The <sql_identifier> must be
unique among all other scalar variables and table variables in the same code block. However, you can use
names that are identical to the name of another variable in a different code block. Additionally, you can
reference those identifiers only in their local scope.

CREATE PROCEDURE exampleExplicit (OUT outTab TABLE(n int)) LANGUAGE SQLScript READS SQL DATA AS
BEGIN
 DECLARE temp TABLE (n int);
 temp = SELECT 1 as n FROM DUMMY ;
 BEGIN
 DECLARE temp TABLE (n int);
 temp = SELECT 2 as n FROM DUMMY ;
 outTab = Select * from :temp;
 END;
 outTab = Select * from :temp;
END; call exampleExplicit(?);

In each block there are table variables declared with identical names. However, since the last assignment to the
output parameter <outTab> can only have the reference of variable <temp> declared in the same block, the
result is the following:

 N ---- 1

CREATE PROCEDURE exampleDerived (OUT outTab TABLE(n int)) LANGUAGE SQLScript READS SQL DATA
AS
BEGIN
 temp = SELECT 1 as n FROM DUMMY ;
 BEGIN
 temp = SELECT 2 as n FROM DUMMY ;
 outTab = Select * from :temp;
 END;
 outTab = Select * from :temp;
END; call exampleDerived (?);

In this code example there is no explicit table variable declaration where done, that means the <temp> variable
is visible among all blocks. For this reason, the result is the following:

 N ---- 2

For every assignment of the explicitly declared table variable, the derived column names and types on the right-
hand side are checked against the explicitly declared type on the left-hand side.

Another difference, compared to derived types, is that a reference to a table variable without an assignment,
returns a warning during the compilation.

BEGIN DECLARE a TABLE (i DECIMAL(2,1), j INTEGER);
 IF :num = 4

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 91

 THEN
 a = SELECT i, j FROM tab;
 END IF; END;

The example above returns a warning because the table variable <a> is unassigned if <:num> is not 4. This
behavior can be controlled by the configuration parameter UNINITIALIZED_TABLE_VARIABLE_USAGE.
Besides issuing a warning, it also offers the following options:

● Error: an error message is issued, a procedure or a function cannot be created
● Silent: no message is issued

The following table shows the differences:

Derived Type Explicitly Declared

Create new variable First SQL query assignment

tmp = select * from table;
Table variable declaration in a block:

DECLARE tmp TABLE(i int);

Variable scope Global scope, regardless of the block
where it was first declared

Available in declared block only.

Variable hiding is applied.

Unassigned variable check No warning during the compilation Warning during compilation if it is pos­
sible to refer to the unassigned table
variable. The check is perforrmed only
if a table variable is used.

NOT NULL Constraint

You can specify the NOT NULL constraint on columns in table types used in SQLScript. Historically, this was
not allowed by the syntax and existing NOT NULL constraints on tables and table types were ignored when
used as types in SQLScript. Now, NOT NULL constraints are taken into consideration, if specified directly in the
column list of table types. NOT NULL constraints in persistent tables and table types are still ignored by default
for backward compatibility but you can make them valid by changing the configuration, as follows:

● Global: indexserver.ini (sqlscript, not_null_column_mode) = 'ignore' (default),
'ignore_with_warning', 'respect'

● Session variable: set '__SQLSCRIPT_NOT_NULL_COLUMN_MODE' = 'ignore' (default),
'ignore_with_warning', 'respect'

If both are set, the session variable takes precedence. Setting it to 'ignore_with_warning' has the same
effect as 'ignore', except that you additionally get a warning whenever the constraint is ignored. With
'respect', the NOT NULL constraints (including primary keys) in tables and table types will be taken into
consideration but that could invalidate existing procedures. Consider the following example:

 Sample Code

create table mytab (i int primary key); create table mytab2 (i int);
create procedure myproc (out ot mytab) as begin
 ot = select * from mytab2; -- error if not_null_column_mode is set to
'respect' end;

92 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

7.3 Binding Table Variables

Table variables are bound by using the equality operator. This operator binds the result of a valid SELECT
statement on the right-hand side to an intermediate variable or an output parameter on the left-hand side.
Statements on the right-hand side can refer to input parameters or intermediate result variables bound by
other statements. Cyclic dependencies that result from the intermediate result assignments or from calling
other functions are not allowed, which means that recursion is not possible.

7.4 Referencing Variables

Bound variables are referenced by their name (for example, <var>). In the variable reference the variable name
is prefixed by <:> such as <:var>. The procedure or table function describe a dataflow graph using their
statements and the variables that connect the statements. The order in which statements are written in a body
can be different from the order in which statements are evaluated. In case a table variable is bound multiple
times, the order of these bindings is consistent with the order they appear in the body. Additionally, statements
are only evaluated if the variables that are bound by the statement are consumed by another subsequent
statement. Consequently, statements whose results are not consumed are removed during optimization.

Example:

lt_expensive_books = SELECT title, price, crcy FROM :it_books WHERE price > :minPrice AND crcy = :currency;

In this assignment, the variable <lt_expensive_books> is bound. The <:it_books> variable in the FROM
clause refers to an IN parameter of a table type. It would also be possible to consume variables of type table in
the FROM clause which were bound by an earlier statement. <:minPrice> and <:currency> refer to IN
parameters of a scalar type.

7.5 Column View Parameter Binding

Syntax

SELECT * FROM <column_view> (<named_parameter_list>);

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 93

Syntax Elements

<column_view> ::= <identifier>

The name of the column view.

<named_parameter_list> ::= <named_parameter> [{,<named_parameter>}…}]

A list of parameters to be used with the column view.

<named_parameter> ::= <parameter_name> => <expression>

Defines the parameter used to refer to the given expression.

<parameter_name> ::= {PLACEHOLDER.<identifier> | HINT.<identifier> |
<identifier>}

The parameter name definition. PLACEHOLDER is used for place holder parameters and HINT for hint
parameters.

Description

Using column view parameter binding it is possible to pass parameters from a procedure/scripted calculation
view to a parameterized column view e.g. hierarchy view, graphical calculation view, scripted calculation view.

Examples:

Example 1 - Basic example

In the following example, assume you have the calculation view CALC_VIEW with placeholder parameters
"client" and "currency". You want to use this view in a procedure and bind the values of the parameters during
the execution of the procedure.

CREATE PROCEDURE my_proc_caller (IN in_client INT, IN in_currency INT, OUT
outtab mytab_t) LANGUAGE SQLSCRIPT READS SQL DATA AS BEGIN
 outtab = SELECT * FROM CALC_VIEW (PLACEHOLDER."$$client$$" => :in_client ,
PLACEHOLDER."$$currency$$" => :in_currency);
END;

Example 2 - Using a Hierarchical View

The following example assumes that you have a hierarchical column view "H_PROC" and you want to use this
view in a procedure. The procedure should return an extended expression that will be passed via a variable.

CREATE PROCEDURE "EXTEND_EXPRESSION"(IN in_expr nvarchar(20),
 OUT out_result "TTY_HIER_OUTPUT")
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN

94 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

 DECLARE expr VARCHAR(256) = 'leaves(nodes())';
 IF :in_expr <> '' THEN
 expr = 'leaves(' || :in_expr || ')';
 END IF;
 out_result = SELECT query_node, result_node FROM h_proc ("expression"
=> :expr) as h order by h.result_node; END;

You call this procedure as follows.

CALL "EXTEND_EXPRESSION"('',?); CALL "EXTEND_EXPRESSION"('subtree("B1")',?);

7.6 Map Reduce Operator

MAP_REDUCE is a programming model introduced by Google that allows easy development of scalable parallel
applications for processing big data on large clusters of commodity machines. The MAP_MERGE operator is a
specialization of the MAP_REDUCE operator.

Syntax

 Code Syntax

MAP_REDUCE(<input table/table variable name>, <mapper specification>,
<reducer specification>) <mapper spec> ::= <mapper TUDF>(<list of mapper parameters>) group by <list
of columns in the TUDF> as <ID>
<reducer spec> ::= <reduce TUDF>(<list of reducer TUDF parameters>)
 | <reduce procedure>(<list of reducer procedure parameters>)
<mapper parameter> ::= <table/table variable name>.<column name> | <other
scalar parameter>
<reducer TUDF parameter> ::= <ID> | <ID>.<key column name> | <other scalar
parameter>
<reducer procedure parameter> ::= <reducer TUDF parameter> | <output table
parameter>

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 95

Example

We take as an example a table containing sentences with their IDs. If you want to count the number of
sentences that contain a certain character and the number of occurrences of each character in the table, you
can use the MAP_REDUCE operator in the following way:

Mapper Function

 Sample Code
Mapper Function

create function mapper(in id int, in sentence varchar(5000)) returns table (id int, c varchar, freq int) as begin
 using sqlscript_string as lib;
 declare tv table(result varchar);
 tv = lib:split_to_table(:sentence, ' ');
 return select :id as id, result as c, count(result) as freq from :tv
group by result; end;

Reducer Function

 Sample Code
Reducer Function

create function reducer(in c varchar, in vals table(id int, freq int)) returns table (c varchar, stmt_freq int, total_freq int) as begin
 return select :c as c, count(distinct(id)) as stmt_freq, sum(freq) as
total_freq from :vals; end;

 Sample Code

do begin declare result table(c varchar, stmt_freq int, total_freq int);
 result = MAP_REDUCE(tab, mapper(tab.id, tab.sentence) group by c as X,
 reducer(X.c, X));
 select * from :result order by c; end;

The code above works in the following way:

1. The mapper TUDF processes each row of the input table and returns a table.

96 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

2. When all rows are processed by the mapper, the output tables of the mapper are aggregated into a single
big table (like MAP_MERGE).

3. The rows in the aggregated table are grouped by key columns.

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 97

4. For each group, the key values are separated from the table. The grouped table without key columns is
called 'value table'. The order of the rest of columns is preserved. It is possible to have multiple key
columns. If the layout of the output table is table(a int, b varchar, c timestamp, d int) and
the key column is b and c, the layout of the value table is table(a int, d int).

5. The reducer TUDF (or procedure) processes each group and returns a table (or multiple tables).

98 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

6. When all groups are processed, the output tables of the reducer are aggregated into a single big table (or
multiple tables, if the reducer is a procedure).

Retrieving Multiple Outputs from MAP_REDUCE

If you use a read-only procedure as a reducer, you can fetch multiple table outputs from a MAP_REDUCE
operator. To bind the output of MAP_REDUCE operators, you can simply apply the table variable as the
parameter of the reducer specification. For example, if you want to change the reducer in the example above to
a read-only procedure, apply the following code.

create procedure reducer_procedure(in c varchar, in values table(id int, freq
int), out otab table (c varchar, stmt_freq int, total_freq int)) reads sql data as begin
 otab = select :c as c, count(distinct(id)) as stmt_freq, sum(freq) as
total_freq from :values; end;

do begin declare result table(c varchar, stmt_freq int, total_freq int);
 MAP_REDUCE(tab, mapper(tab.id, tab.sentence) group by c as X,
 reducer_procedure(X.c, X, result));

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 99

 select * from :result order by c; end;

Passing Extra Arguments as a Parameter to a Mapper or a Reducer

It is possible to pass extra arguments as parameters of a mapper or a reducer.

 Sample Code

create function mapper(in id int, in sentence varchar(5000), in
some_extra_arg1 int, in some_extra_arg2 table(...), ...) returns table (id int, c varchar, freq int) as begin
 ... end;

create function reducer(in c varchar, in values table(id int, freq int), in
some_extra_arg1 int, in some_extra_arg2 table(...), ...) returns table (c varchar, stmt_freq int, total_freq int) as begin
 ... end;

do begin declare result table(c varchar, stmt_freq int, total_freq int);
 declare extra_arg1, extra_arg2 int;
 declare extra_arg3, extra_arg4 table(...);
 ... more extra args ...
 result = MAP_REDUCE(tab, mapper(tab.id,
tab.sentence, :extra_arg1, :extra_arg3, ...) group by c as X,
 reducer(X.c, X, :extra_arg2, :extra_arg4,
1+1, ...));
 select * from :result order by c; end;

 Note
There is no restriction about the order of input table parameters, input column parameters, extra
parameters and so on. It is also possible to use default parameter values in mapper/reducer TUDFs or
procedures.

Restrictions

The following restrictions apply:

● Only Mapper and Reducer are supported (no other Hadoop functionalities like group comparator, key
comparator and so on).

● The alias ID in the mapper output and the ID in the Reducer TUDF (or procedure) parameter must be the
same.

● The Mapper must be a TUDF, not a procedure.
● The Reducer procedure should be a read-only procedure and cannot have scalar output parameters.

100 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

● The order of the rows in the output tables is not deterministic.

Related Information

Map Merge Operator [page 101]

7.7 Map Merge Operator

Description

The MAP_MERGE operator is used to apply each row of the input table to the mapper function and unite all
intermediate result tables. The purpose of the operator is to replace sequential FOR-loops and union patterns,
like in the example below, with a parallel operator.

 Sample Code

DO (OUT ret_tab TABLE(col_a nvarchar(200))=>?) BEGIN
 DECLARE i int;
 DECLARE varb nvarchar(200);
 t = SELECT * FROM tab;
 FOR i IN 1 .. record_count(:t) DO
 varb = :t.col_a[:i];
 CALL mapper(:varb, out_tab);
 ret_tab = SELECT * FROM :out_tab
 UNION SELECT * FROM :ret_tab;
 END FOR; END;

 Note
The mapper procedure is a read-only procedure with only one output that is a tabular output.

Syntax

<table_variable> = MAP_MERGE(<table_or_table_variable>, <mapper_identifier> (<table_or_table_variable>.<column_name> [{,
 <table_or_table_variable>.<column_name>} …] [,
<param_list>])
<param_list> ::= <param> [{, <param>} …] <paramter> =
<table_or_table_variable> | <string_literal> | <numeric_literal> |
<identifier>

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 101

The first input of the MAP_MERGE operator is the mapper table <table_or_table_variable> . The mapper
table is a table or a table variable on which you want to iterate by rows. In the above example, it would be table
variable t.

The second input is the mapper function <mapper_identifier> itself. The mapper function is a function you
want to have evaluated on each row of the mapper table <table_or_table_variable>. Currently, the
MAP_MERGE operator supports only table functions as <mapper_identifier>. This means that in the above
example you need to convert the mapper procedure into a table function.

You also have to pass the mapping argument <table_or_table_variable>.<column_Name> as an input of
the mapper function. Going back to the example above, this would be the value of the variable varb.

Example

As an example, let us rewrite the above example to leverage the parallel execution of the MAP_MERGE operator.
We need to transform the procedure into a table function, because MAP_MERGE only supports table functions
as <mapper_identifier>.

 Sample Code

CREATE FUNCTION mapper (IN a nvarchar(200)) RETURNS TABLE (col_a nvarchar(200))
AS
BEGIN
 ot = SELECT :a AS COL_A from dummy;
 RETURN :ot; END;

After transforming the mapper procedure into a function, we can now replace the whole FOR loop by the
MAP_MERGE operator.

Sequential FOR-Loop Version Parallel MAP_Merge Operator

DO (OUT ret_tab TABLE(col_a
nvarchar(200))=>?) BEGIN
 DECLARE i int;
 DECLARE varb nvarchar(200);
 t = SELECT * FROM tab;
 FOR i IN 1 .. record_count(:t)
DO
 varb = :t.col_a[:i];
 CALL mapper(:varb,
out_tab);
 ret_tab = SELECT *
FROM :out_tab
 UNION SELECT *
FROM :ret_tab;
 END FOR; END;

DO (OUT ret_tab TABLE(col_a
nvarchar(200))=>?) BEGIN
 t = SELECT * FROM tab;
 ret_tab = MAP_MERGE(:t,
mapper(:t.col_a)); END;

102 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

7.8 Hints

The SQLScript compiler combines statements to optimize code. Hints enable you to block or enforce the
inlining of table variables.

7.8.1 NO_INLINE and INLINE Hints

The SQLScript compiler combines statements to optimize code. Hints enable you to block or enforce the
inlining of table variables.

 Note
Using a HINT needs to be considered carefully. In some cases, using a HINT could end up being more
expensive.

Block Statement-Inlining

The overall optimization guideline in SQLScript states that dependent statements are combined if possible. For
example, you have two table variable assignments as follows:

tab = select A, B, C from T where A = 1; tab2 = select C from :tab where C = 0;

The statements are combined to one statement and executed:

select C from (select A,B,C from T where A = 1) where C=0;

There can be situations, however, when the combined statements lead to a non-optimal plan and as a result, to
less-than-optimal performance of the executed statement. In these situations it can help to block the
combination of specific statements. Therefore SAP has introduced a HINT called NO_INLINE. By placing that
HINT at the end of select statement, it blocks the combination (or inlining) of that statement into other
statements. An example of using this follows:

tab = select A, B, C from T where A = 1 WITH HINT(NO_INLINE); tab2 = select C from :tab where C = 0;

By adding WITH HINT (NO_INLINE) to the table variable tab, you can block the combination of that
statement and ensure that the two statements are executed separately.

Enforce Statement-Inlining

Using the hint called INLINE helps in situations when you want to combine the statement of a nested
procedure into the outer procedure.

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 103

Currently statements that belong to nested procedure are not combined into the statements of the calling
procedures. In the following example, you have two procedures defined.

CREATE PROCEDURE procInner (OUT tab2 TABLE(I int)) LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 tab2 = SELECT I FROM T;
END;
CREATE PROCEDURE procCaller (OUT table2 TABLE(I int))
LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 call procInner (outTable);
 table2 = select I from :outTable where I > 10; END;

By executing the procedure, ProcCaller, the two table assignments are executed separately. If you want to
have both statements combined, you can do so by using WITH HINT (INLINE) at the statement of the
output table variable. Using this example, it would be written as follows:

CREATE PROCEDURE procInner (OUT tab2 TABLE(I int)) LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 tab2 = SELECT I FROM T WITH HINT (INLINE); END;

Now, if the procedure, ProcCaller, is executed, then the statement of table variable tab2 in ProcInner is
combined into the statement of the variable, tab, in the procedure, ProcCaller:

SELECT I FROM (SELECT I FROM T WITH HINT (INLINE)) where I > 10;

7.8.2 ROUTE_TO Hint

The ROUTE_TO hint routes the query to the specified volume ID or service type.

Syntax

 Code Syntax

<servicetype> ::= 'indexserver' | 'xsengine' | 'scriptserver' | 'dpserver' |
'computeserver' <hint_with_parameters> ::= ROUTE_TO(<volume_id> [{, <volume_id> }])
 | ROUTE_TO('<servicetype>' [{,
'<servicetype>' }])
 | NO_ROUTE_TO(<volume_id> [{, <volume_id> }])
 | NO_ROUTE_TO('<servicetype>' [{,
'<servicetype>' }])
 | ROUTE_BY(<table_name> [{, <table_name>}])
 | ROUTE_BY_CARDINALITY(<table_name> [{,
<table_name>}]) | DATA_TRANSFER_COST ({0 | 1})

104 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

Description

The ROUTE_TO hint can be used with either "volume ID", or "service type". If the "volume id" is provided, the
statement is intended to be routed to the specified volume. But if the "service type" (a string argument that can
have values like "indexserver", "computeserver" and so on) is provided within the hint, the statement can be
routed to all nodes related to this service.

Example

 Sample Code

create table mytab(a int); insert into mytab values(1);

select * from mytab with hint(ROUTE_TO('indexserver'));
select * from mytab with hint(ROUTE_TO('indexserver','computeserver'));

select * from mytab with hint(NO_ROUTE_TO('indexserver'));
select * from mytab with hint(NO_ROUTE_TO('indexserver','computeserver'));
 select preferred_routing_volumes, * from sys.m_sql_plan_cache_ where
statement_string like '%select * from mytab%';

7.9 SQLScript Variable Cache

Description

SQLScript data caching improves performance by exploiting cached intermediate result data corresponding to
a table variable assigned to a SELECT query.

It is used mainly for storing an intermediate result fetched from distributed query processing in a compute-
storage separation architecture.

Syntax

Syntax

CREATE PROCEDURE <procedure_name> [(<parameter_clause>)] [LANGUAGE <lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>] [READS SQLDATA]
[<route_target_element>]
 [<variable_cache_option>] AS

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 105

 BEGIN [SEQUENTIAL EXECUTION] <procedure_body> END
CREATE FUNCTION <function_name> [(<parameter_clause>)]
 RETURNS <return_type> [LANGUAGE <lang>]
 [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>]
[<route_target_element>]
 [<variable_cache_option>] AS BEGIN <function_body> END

Syntax Elements

<variable_cache_prefix> ::= VARIABLE CACHE ON <enable_mode> ::= ENABLE | DISABLE | AUTOMATIC
<variable_list> ::= <variable_name> [, <variable_name> …]
<variable_list_clustered> ::= (<variable_list>)
<variable_entry> ::= <variable_name> | <variable_list_clustered>
<variable_entry_with_mode> ::= <variable_entry> <enable_mode>
<variable_entry_without_mode> ::= <variable_entry>
<variable_entry_with_mode_list> ::= <variable_entry_with_mode>
[,<variable_entry_with_mode> …]
<variable_entry_without_mode_list> ::= <variable_entry_without_mode>
[,<variable_entry_without_mode> …]
<variable_cache_option> ::= <variable_cache_prefix>
<variable_entry_with_mode_list>|<variable_entry_without_mode_list>
<variable_cache_option_with_mode_mandatory> ::= <variable_cache_prefix>
<variable_entry_with_mode_list>
<variable_cache_option_plain> ::= <variable_cache_prefix> <variable_list>
<object_type> ::= PROCEDURE | FUNCTION
-- Add new variables
ALTER <object_type> <object_name> ADD <variable_cache_option>
-- Remove variables
ALTER <object_type> <object_name> DROP <variable_cache_option_plain>
-- Remove all variables
ALTER <object_type> <object_name> DROP VARIABLE CACHE ALL
-- Change enable mode of existing variables ALTER <object_type> <object_name> ALTER
<variable_cache_option_with_mode_mandatory>

Configuration

Variable Cache Mode
All table variables, without a specified mode of caching, can be assigned to variable caching with the following
configuration.

ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini', 'system') SET
('sqlscript','variable_cache_default_mode') = 'enable|disable|automatic' WITH
RECONFIGURE;

Automatic Specification in Variable Cache Mode
Table variables, whose mode of caching is automatic, are cached when the thresholds specified in the
configuration in the format below are satisfied.

LOAD_TIME: Statement execution + ITAB (intermediate result) materialization

ITAB_SIZE: Size of materialized ITAB (intermediate result)

ALTER SYSTEM ALTER CONFIGURATION ('indexserver.ini', 'system') SET
('sqlscript','variable_cache_automatic_config') = ' {"LOAD_TIME": <microsecond>,
"ITAB_SIZE": <byte> }' WITH RECONFIGURE;

106 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

Example

 Sample Code

create table mytab1(a int); insert into mytab1 values(1);
create table mytab2(b int);
insert into mytab2 values(2);
create table mytab3(c int);
insert into mytab3 values(3);

drop procedure myproc;
create procedure myproc
as begin
 a = select * from mytab1;
 b = select * from mytab2;
 c = select * from mytab3;
 select * from :a, :b, :c;
end;

call myproc; -- disabled cache
alter procedure myproc add variable cache on A enable,B enable;
call myproc; -- 1st run, cache miss and store results for a and b
call myproc; -- 2nd run, cache hit a and b
insert into mytab1 values (11); -- invalidate cache for mytab1
call myproc; -- 3rd run, cache miss for a, and hit for b
alter procedure myproc drop variable cache on C; call myproc; -- disabled cache

Supportability

System View / Monitoring View

SQLSCRIPT_VARIABLE_CACHE: View indicating which variables are to be cached

Column Name Data Type Description

SCHEMA _NAME NVARCHAR(256) Schema of the target object

OBJECT_ NAME NVARCHAR(256) Target object name

OBJECT_TYPE VARCHAR(16) Object type ("PROCEDURE" or "FUNC­
TION")

VARIABLE _NAME NVARCHAR(256) Variable name to be cached

VARIABLE_TYPE VARCHAR(16) Type of variable ("TABLE")

ENABLE_MODE VARCHAR(16) Activation mode ("ENABLED", "DISA­
BLED", or "AUTOMATIC")

M_SQLSCRIPT_ VARIABLE _CACHE : Monitoring view projecting statistics of currently cached variables

Column Name Data Type Description

SAP HANA SQLScript Reference for SAP HANA Platform
Declarative SQLScript Logic PUBLIC 107

HOST VARCHAR(64) Host of the node where the cached data
is located

PORT INTEGER Port of the node where cached data is
located

SCHEMA_NAME NVARCHAR(256) Schema of the target object

OBJECT_NAME NVARCHAR(256) Target object name

OBJECT_TYPE VARCHAR(16) Object type ("PROCEDURE" or "FUNC­
TION")

VARIABLE_NAME NVARCHAR(256) Variable name to be cached

VARIABLE_TYPE VARCHAR(16) Type of variable ("TABLE")

SQLSCRIPT_PLAN_ID INTEGER ID of the SQLScript execution plan

SQLSCRIPT_OPERATOR_ID INTEGER SQLScript Operator ID

MEMORY_SIZE INTEGER The memory size of the cached variable

CACHE_TIMESTAMP TIMESTAMP Date and time when the latest cached
data was generated

Scope

● Only caching table variable is supported. Scalar, array, and row type variables cannot be cached.
● Results from SELECT statements, referencing only persistent tables or views, can be cached.
● SELECT statements with following conditions cannot be cached:

○ the statement contains non-deterministic SQL functions: RAND, SYSUUID, CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_CONNECTION, CURRENT_USER,
SESSION_CONTEXT

○ the statement contains crypto functions: HASH_SHA256, HASH_MD5
○ the statement contains tables that can be updated in other statements in the current procedure,

referenced by DDL/DML statements or by another CALL statement for a procedure not specified with
READ SQL DATA

○ the statement contains other SQLScript variables

● The cache entry is invalidated when any related table is updated.

108 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Declarative SQLScript Logic

8 Imperative SQLScript Logic

This section focuses on imperative language constructs such as loops and conditionals. The use of imperative
logic splits the logic between several data flows.

Related Information

Declarative SQLScript Logic [page 85]

8.1 Scalar Variables

Syntax

DECLARE <sql_identifier> [{,<sql_identifier> }...] [CONSTANT] <type> | AUTO [NOT
NULL] <proc_default>

Syntax Elements

<proc_default> ::= (DEFAULT | '=') <value>|<expression>

Default value expression assignment.

<value> !!= An element of the type specified by <type>

The value to be assigned to the variable.

Description

Local variables are declared by using the DECLARE keyword and they can optionally be initialized with their
declaration. By default scalar variables are initialized with NULL. A scalar variable var can be referenced as
described above by using :var.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 109

 Tip
If you want to access the value of the variable, use :var in your code. If you want to assign a value to the
variable, use var in your code.

Assignment is possible multiple times, overwriting the previous value stored in the scalar variable. Assignment
is performed using the = operator.

 Recommendation
Even though the := operator is still available, SAP recommends that you use only the = operator in defining
scalar variables.

Example

CREATE PROCEDURE proc (OUT z INT) LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 DECLARE a int;
 DECLARE b int = 0;
 DECLARE c int DEFAULT 0;

 t = select * from baseTable ;
 select count(*) into a from :t;
 b = :a + 1;
 z = :b + :c;
end;

This examples shows various ways for making declarations and assignments.

 Note
You can assign a scalar UDF to a scalar variable with 1 output or more than 1 output, as depicted in the
following code examples.

Consuming the result by using an SQL statement:

DECLARE i INTEGER DEFAULT 0; SELECT SUDF_ADD(:input1, :input2) into i from dummy;

Assign a scalar UDF to a scalar variable:

DECLARE i INTEGER DEFAULT 0; i = SUDF_ADD(:input1, :input2);

Assign a scalar UDF with more than 1 output to scalar variables:

DECLARE i INTEGER DEFAULT 0; DECLARE j NVARCHAR(5);
(i,j) = SUDF_EXPR(:input1);
DECLARE a INTEGER DEFAULT 0; a = SUDF_EXPR(:input1).x;

110 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.1.1 SELECT INTO with DEFAULT Values

The SELECT INTO statement is widely used for assigning a result set to a set of scalar variables. Since the
statement does not accept an empty result set, it is necessary to define exit handlers in case an empty result
set is returned. The introduction of DEFAULT values makes it possible to to handle empty result sets without
the need of writing exit handlers to assign default values to the target variables when the result set is empty.

Syntax

 Code Syntax

SELECT <select_list> INTO <var_name_list> [DEFAULT <scalar_expr_list>]
<from_clause> [<where_clause>]
[<group_by_clause>]
[<having_clause>]
 [{<set_operator> <subquery>, ... }]
[<order_by_clause>]
 [<limit>] ;
[EXEC | EXECUTE IMMEDIATE] <string_expression>
[INTO <var_name_list> [DEFAULT <scalar_expr_list>]] [USING <scalar_expr_list>]

Description

It is also possible to use a single array element as the result of SELECT INTO and EXEC INTO. The syntax of the
INTO clause was extended as follows:

 <var_name_list> ::= <var_name>[{, <var_name>}...] <var_name> ::= <identifier> | <identifier> '[' <index> ']'

 Sample Code

DROP TABLE T1; CREATE TABLE T1 (A INT NOT NULL, B VARCHAR(10));

DO BEGIN
 DECLARE A_COPY INT ARRAY;
 DECLARE B_COPY VARCHAR(10) ARRAY;
 SELECT A, B INTO A_COPY[1], B_COPY[1] DEFAULT -2+1, NULL FROM T1;
 SELECT :A_COPY[1], :B_COPY[1] from dummy;
 --(A_COPY[1],B_COPY[1]) = (-1,?), use default value
 EXEC 'SELECT A FROM T1' INTO A_COPY[1] DEFAULT 2;
 SELECT :A_COPY[1], :B_COPY[1] from dummy;
 --(A_COPY[1]) = (2), exec into statement with default value
 INSERT INTO T1 VALUES (0, 'sample0');
 SELECT A, B INTO A_COPY[1], B_COPY[1] DEFAULT 5, NULL FROM T1;
 SELECT :A_COPY[1], :B_COPY[1] from dummy;
 --(A_COPY[1],B_COPY[1]) = (0,'sample0'), executed as-is END;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 111

Example

DO BEGIN DECLARE A_COPY INT;
 DECLARE B_COPY VARCHAR(10);
 CREATE ROW TABLE T1 (A INT NOT NULL, B VARCHAR(10));
 SELECT A, B INTO A_COPY, B_COPY DEFAULT -2+1, NULL FROM T1;
 --(A_COPY,B_COPY) = (-1,?), use default value
 EXEC 'SELECT A FROM T1' INTO A_COPY DEFAULT 2;
 --(A_COPY) = (2), exec into statement with default value
 INSERT INTO T1 VALUES (0, 'sample0');
 SELECT A, B INTO A_COPY, B_COPY DEFAULT 5, NULL FROM T1;
 --(A_COPY,B_COPY) = (0,'sample0'), executed as-is END;

Related Information

EXEC [page 165]
EXECUTE IMMEDIATE [page 165]
CREATE PROCEDURE [page 19]

8.1.2 SQL in Scalar Expressions

Description

SQLScript now supports SELECT as an SQL query within scalar expressions.

If the SELECT statement returns a 1*1 result set (1 row and 1 column), that result set can be used directly as an
expression.

The following use cases are possible:

● SQL sub-query within a scalar value assignment
● SQL sub-query within a condition.

Examples

 Sample Code

x = (SELECT TOP 1 val from mytab) * 10; ... IF (SELECT MAX(val) FROM mytab) > 100 THEN ...

112 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

The result set of the sub-query is expected to have a 1*1 size but if the result set has 0 records, a null value will
be returned. In any other case, you will get an error message.

create table multiple_col_tab(i int, j int); insert into multiple_col_tab values(1, 2);
do begin
 declare n int = (select * from multiple_col_tab) + 1; -- ERR-00269: too many
values
end;

create table multiple_row_tab(i int);
insert into multiple_row_tab values(1);
insert into multiple_row_tab values(2);
do begin
 declare n int = (select * from multiple_row_tab) + 1; -- ERR-01300: fetch
returns more than requested number of rows
end;

create table empty_tab(i int);
do begin
 declare n int = (select * from empty_tab) + 1; -- n has null value end;

If the right-hand side of an assignment contains only a SELECT statement (even with parenthesizes, for
example: x = (SELECT * FROM tab)), it will be always be treated as a table variable assignment. The
workaround is to use SELECT INTO.

create table mytab(i int); insert into mytab values(1);

do begin
 declare n int;
 n = (select i from mytab); -- ERR-01310: scalar type is not allowed: N
end;

do begin
 declare n int;
 select i into n from mytab; -- workaround end;

Limitations

Auto type is not supported.

do begin declare n auto = (select 10 from dummy) + 1; -- ERR-00007: feature not
supported: subquery in auto type assignment end;

8.2 Table Variables

Table variables are, as the name suggests, variables with a reference to tabular data structure. The same
applies to tabular parameters, unless specified otherwise.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 113

Related Information

Table Variable Type Definition [page 90]

8.2.1 Table Variable Operators

8.2.1.1 Index-Based Cell Access to Table Variables

The index-based cell access allows you random access (read and write) to each cell of a table variable.

<table_variable>.<column_name>[<index>]

For example, writing to a certain cell of a table variable is illustrated in the following example. Here we simply
change the value in the second row of column A.

create procedure procTCA (IN intab TABLE(A INTEGER, B VARCHAR(20)),
 OUT outtab TABLE(A INTEGER, B VARCHAR(20))
)
AS
BEGIN
 intab.A[2] = 5;
 outtab = select * from :intab;
END;

Reading from a certain cell of a table variable is done in similar way. Note that for read access, the ‘:’ is needed
in front of the table variable.

create procedure procTCA (IN intab TABLE(A INTEGER, B VARCHAR(20)),
 OUT outvar VARCHAR(20)
)
AS
BEGIN
 outvar = :intab.B[100];
END;

The same rules apply for <index> as for the array index. That means that the <index> can have any value
from 1 to 2^31 -2 ([1-2147483646]) and that an SQL expression or a scalar user-defined functions (scalar UDF)
that return a number also can be used as an index. Instead of using constant scalar values, it is also possible to
use a scalar variable of type INTEGER as <index>.

Restrictions:

● Physical tables cannot be accessed
● Not applicable in SQL queries like SELECT :MY_TABLE_VAR.COL[55] AS A FROM DUMMY. You need to

assign the value to be used to a scalar variable first.

114 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.2.1.2 Modifying the Content of Table Variables

Apart from the index-based table cell assignment, SQLScript offers additional operations for directly modifying
the content of a table variable, without having to assign the result of a statement to a new table variable. This,
together with not involving the SQL layer, leads to performance improvement. On the other hand, such
operations require data materialization, contrary to the declarative logic.

 Note
For all position expressions the valid values are in the interval from 1 to 2^31 -2 ([1-2147483646]).

Inserting Data Records into Table Variables

You can insert a new data record at a specific position in a table variable with the following syntax:

:<table_variable>.INSERT((<value1,…, <valueN), [, <index>])

All existing data records at positions starting from the given index onwards, are moved to the next position. If
the index is greater than the original table size, the records between the inserted record and the original last
record are initialized with NULL values.

 Sample Code

CREATE TABLE TAB(K VARCHAR(20), V INT); INSERT INTO TAB VALUES('A', 7582);
INSERT INTO TAB VALUES('B', 4730);
INSERT INTO TAB VALUES('C', 1960);
INSERT INTO TAB VALUES('A', 8650);
INSERT INTO TAB VALUES('D', 1318);
INSERT INTO TAB VALUES('C', 3836);
INSERT INTO TAB VALUES('B', 8602);
INSERT INTO TAB VALUES('C', 3257);
CREATE PROCEDURE ADD_SUM(IN IT TAB, OUT OT TAB) AS
BEGIN
 DECLARE IDX INT = 0;
 DECLARE K VARCHAR(20) = '';
 DECLARE VSUM INT = 0;

 IF IS_EMPTY(:IT) THEN
 RETURN;
 END IF;

 OT = SELECT * FROM :IT ORDER BY K;
 WHILE :OT.K[IDX + 1] IS NOT NULL DO
 IDX = IDX + 1;
 IF :OT.K[IDX] <> K THEN
 IF K <> '' THEN
 :OT.INSERT(('Sum ' || K, VSUM), IDX);
 IDX = IDX + 1;
 END IF;
 :OT.INSERT(('Section ' || :OT.K[IDX], 0), IDX);
 IDX = IDX + 1;
 K = :OT.K[IDX];
 VSUM = 0;
 END IF;
 VSUM = VSUM + :OT.V[IDX];
 END WHILE;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 115

 :OT.INSERT(('Sum ' || K, VSUM), IDX + 1);
END
CALL ADD_SUM(TAB, ?)
K V

Section A 0
A 7.582
A 8.650
Sum A 16.232
Section B 0
B 4.730
B 8.602
Sum B 13.332
Section C 0
C 1.960
C 3.836
C 3.257
Sum C 9.053
Section D 0
D 1.318
Sum D 1.318

If you do not specify an index (position), the data record will be appended at the end.

 Sample Code

CREATE TABLE SOURCE(K VARCHAR(20), PCT DECIMAL(5, 2), V DECIMAL(10, 2)); CREATE TABLE TARGET(K VARCHAR(20), V DECIMAL(10, 2));
INSERT INTO SOURCE VALUES ('A', 5.99, 734.42);
INSERT INTO SOURCE VALUES ('A', 50.83, 422.26);
INSERT INTO SOURCE VALUES ('B', 75.07, 362.53);
INSERT INTO SOURCE VALUES ('C', 87.21, 134.53);
INSERT INTO SOURCE VALUES ('C', 80.72, 2722.49);
CREATE PROCEDURE SPLIT(IN IT SOURCE, OUT OT1 TARGET, OUT OT2 TARGET) AS
BEGIN
 DECLARE IDX INT;
 DECLARE MAXIDX INT = RECORD_COUNT(:IT);
 FOR IDX IN 1..MAXIDX DO
 DECLARE V1 DECIMAL(10, 2) = :IT.V[IDX] * :IT.PCT[IDX] / 100;
 DECLARE V2 DECIMAL(10, 2) = :IT.V[IDX] - V1;
 :OT1.INSERT((:IT.K[IDX], V1));
 :OT2.INSERT((:IT.K[IDX], V2));
 END FOR;
END;
CALL SPLIT(SOURCE, ?, ?);
OT1 OT2
K V K V

A 43,99 A 690,43
A 214,63 A 207,64
B 272,15 B 90,38
C 117,32 C 17,21
C 2.197,59 C 524,9

You can also provide values for a limited set of columns:

:<table_variable>.(<column1>,…, <column>).INSERT((<value1>,…, <valueN>),
[<index>])

 Note
The values for the omitted columns are initialized with NULL values.

116 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Inserting Table Variables into Other Table Variables

You can insert the content of one table variable into another table variable with one single operation without
using SQL.

 Code Syntax

:<target_table_var>[.(<column_list>)].INSERT(:<source_table_var>[,
<position>])

If no position is specified, the values will be appended to the end. The positions starts from 1 - NULL and all
values smaller than 1 are invalid. If no column list is specified, all columns of the table are insertion targets.

 Sample Code
Usage Example

:tab_a.insert(:tab_b); :tab_a.(col1, COL2).insert(:tab_b);
:tab_a.INSERT(:tab_b, 5); :tab_a.("a","b").insert(:tab_b, :index_to_insert);

The mapping which column of the source table is inserted into which column of the target table is done
according to the column position. The source table has to have the same number of columns as the target
table or as the number of columns in the column list.

If SOURCE_TAB has columns (X, A, B, C) and TARGET_TAB has columns (A, B, C, D),
then :target_tab.insert(:source_tab) will insert X into A, A into B, B into C and C into D.

If another order is desired, the column sequence has to specified in the column list for the TARGET_TAB. for
example :TARGET_TAB.(D, A, B, C).insert(:SOURCE_TAB) will insert X into D, A into A, B into B and C
into C.

The types of the columns have to match, otherwise it is not possible to insert data into the column. For
example, a column of type DECIMAL cannot be inserted in an INTEGER column and vice versa.

 Sample Code
Iterative Result Build

CREATE COLUMN TABLE DATA(K VARCHAR, V INT); INSERT INTO DATA VALUES('A', 123);
INSERT INTO DATA VALUES('B', 45);
INSERT INTO DATA VALUES('B', 67);
INSERT INTO DATA VALUES('C', 890);

CREATE PROCEDURE P(OUT OT DATA) AS
BEGIN
 DECLARE I INT;
 LT0 = SELECT DISTINCT K FROM DATA;
 FOR I IN 1..RECORD_COUNT(:LT0) DO
 DECLARE K VARCHAR = :LT0.K[I];
 LT1 = SELECT K, V + 1000 * :I AS V FROM DATA WHERE K = :K;
 :OT.INSERT(:LT1, 1);
 END FOR;
END;

CALL P(?)

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 117

K V

C 3.890
B 2.045
B 2.067 A 1.123

Updating Data Records in Table Variables

You can modify a data record at a specific position. There are two equivalent syntax options.

:<table_variable>.UPDATE((<value1>,…, <valueN), <index>) <table_variable>[<index>] = (<value1>,…, <valueN>)

 Note
The index must be specified.

You can also provide values for a limited set of columns.

:<table_variable>.(<column1>,…, <column>).UPDATE((<value1>,…, <valueN>), <index>) <table_variable>.(<column1>,…, <column>)[<index>] = (<value1>,…, <valueN>)

 Note
The values for the omitted columns remain unchanged.

 Sample Code

CREATE TABLE TAB (V1 INT, V2 INT); INSERT INTO TAB VALUES(599, 7442);
INSERT INTO TAB VALUES(5083, 4226);
INSERT INTO TAB VALUES(7507, 3253);
INSERT INTO TAB VALUES(8721, 1453);
INSERT INTO TAB VALUES(8072, 2749);
CREATE PROCEDURE MIRROR (IN IT TAB, OUT OT TAB) AS
BEGIN
 DECLARE IDX INT;
 DECLARE MAXIDX INT = RECORD_COUNT(:IT);
 FOR IDX IN 1..MAXIDX DO
 OT[MAXIDX-IDX+1] = (:IT.V2[:IDX], :IT.V1[:IDX]);
 END FOR;
END;
CALL MIRROR(TAB, ?);
V1 V2

2.749 8.072
1.453 8.721
3.253 7.507
4.226 5.083
7.442 599

 Note
You can also set values at a position outside the original table size. Just like with INSERT, the records
between the original last record and the newly inserted records are initialized with NULL values.

118 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Deleting Data Records from Table Variables

You can delete data records from a table variable.

Deleting a Single Record
You can use the following syntax:

:<table_variable>.DELETE([<index>])

If no index (position) is specified, all records are deleted.

If the index is outside the table size, no operation is performed.

 Sample Code

CREATE TABLE HIER(PARENT VARCHAR(30), CHILD VARCHAR(30)); INSERT INTO HIER VALUES ('root', 'A');
INSERT INTO HIER VALUES ('root', 'B');
INSERT INTO HIER VALUES ('A', 'C');
INSERT INTO HIER VALUES ('C', 'D');
INSERT INTO HIER VALUES ('A', 'E');
INSERT INTO HIER VALUES ('E', 'F');
INSERT INTO HIER VALUES ('E', 'G');
CREATE PROCEDURE CALC_LEVEL (IN IT HIER, IN ROOT VARCHAR(30), OUT OT_LEVEL
TABLE(NODE VARCHAR(30), L INT)) AS
BEGIN
 DECLARE STACK TABLE(NODE VARCHAR(30), L INT);

 STACK[1] = (ROOT, 1);
 WHILE NOT IS_EMPTY(:STACK) DO
 DECLARE I INT;
 DECLARE NUM_CHILDREN INT;
 DECLARE CURR_NODE VARCHAR(30) = :STACK.NODE[1];
 DECLARE CURR_LEVEL INT = :STACK.L[1];
 CHILDREN = SELECT CHILD FROM :IT WHERE PARENT = CURR_NODE;
 :OT_LEVEL.INSERT((CURR_NODE, CURR_LEVEL));
 NUM_CHILDREN = RECORD_COUNT(:CHILDREN);
 :STACK.DELETE(1);
 FOR I IN 1..NUM_CHILDREN DO
 :STACK.INSERT((:CHILDREN.CHILD[I], CURR_LEVEL + 1));
 END FOR;
 END WHILE;
END;
CALL CALC_LEVEL(HIER, 'root', ?)
NODE L

root 1
A 2
B 2
C 3
E 3
D 4
F 4
G 4

Deleting Blocks of Records from Table Variables
To delete blocks of records from table variables, you can use the following syntax:

:<table_variable>.DELETE(<start index>..<end index>)

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 119

If the starting index is greater than the table size, no operation is performed. If the end index is smaller than the
starting index, an error occurs. If the end index is greater than the table size, all records from the starting index
to the end of the table are deleted.

 Sample Code

CREATE TABLE PROD_PER_DATE (PROD_NAME VARCHAR(20), PROD_DATE DATE, NUM_DELTA
INT); INSERT INTO PROD_PER_DATE VALUES ('PC', '20170105', 100);
INSERT INTO PROD_PER_DATE VALUES ('PC', '20170106', 50);
INSERT INTO PROD_PER_DATE VALUES ('PC', '20170117', 200);
INSERT INTO PROD_PER_DATE VALUES ('Notebook', '20170320', 30);
INSERT INTO PROD_PER_DATE VALUES ('Notebook', '20170322', 310);
INSERT INTO PROD_PER_DATE VALUES ('Phone', '20170121', 20);
INSERT INTO PROD_PER_DATE VALUES ('Phone', '20170205', 50);
CREATE PROCEDURE TOTAL_NUM_EXCEEDS_CAPACITY (
 IN IT PROD_PER_DATE,
 IN CAPACITY INT,
 OUT OT_RESULT TABLE(PROD_NAME VARCHAR(20), PROD_DATE DATE, NUM_TOTAL INT)
) AS
BEGIN
 DECLARE IDX INT = 0;
 DECLARE NUM_TOTAL INT = 0;
 DECLARE INTERVALS TABLE(FROM_IDX INT, TO_IDX INT);
 DECLARE FROM_IDX INT = 1;
 DECLARE TO_IDX INT = 0;
 OT_RESULT = SELECT PROD_NAME, PROD_DATE, NUM_DELTA AS NUM_TOTAL
 FROM :IT ORDER BY PROD_NAME, PROD_DATE;
 WHILE :OT_RESULT.PROD_NAME[IDX + 1] IS NOT NULL DO
 IDX = IDX+1;
 IF IDX > 1 THEN
 IF :OT_RESULT.PROD_NAME[IDX] <> :OT_RESULT.PROD_NAME[IDX - 1] THEN
 IF TO_IDX = 0 THEN
 TO_IDX = IDX - 1;
 END IF;
 IF FROM_IDX <= TO_IDX THEN
 :INTERVALS.INSERT((FROM_IDX, TO_IDX));
 END IF;
 NUM_TOTAL = 0;
 FROM_IDX = IDX;
 TO_IDX = 0;
 END IF;
 END IF;
 NUM_TOTAL = NUM_TOTAL + :OT_RESULT.NUM_TOTAL[IDX];
 OT_RESULT.NUM_TOTAL[IDX] = NUM_TOTAL;
 IF NUM_TOTAL > CAPACITY AND TO_IDX = 0 THEN
 TO_IDX = IDX - 1;
 END IF;
 END WHILE;
 IF TO_IDX = 0 THEN
 TO_IDX = IDX;
 END IF;
 :INTERVALS.INSERT((FROM_IDX, TO_IDX));
 IDX = RECORD_COUNT(:INTERVALS);
 WHILE IDX > 0 DO
 :OT_RESULT.DELETE(:INTERVALS.FROM_IDX[IDX] .. :INTERVALS.TO_IDX[IDX]);
 IDX = IDX - 1;
 END WHILE;
END;
CALL TOTAL_NUM_EXCEEDS_CAPACITY(PROD_PER_DATE, 100, ?)
PROD_NAME PROD_DATE NUM_TOTAL

Notebook 22.03.2017 340
PC 06.01.2017 150
PC 17.01.2017 350

120 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 Note
The algorithm works with positive delta values only.

Deleting Selected Records from a Table Variable

:<table_variable>.DELETE(<array_of_integers>)

The provided array expression contains indexes pointing to records which shall be deleted from the table
variable. If the array contains an invalid index (for example, zero), an error occurs.

 Sample Code

CREATE TABLE PROD_PER_DATE (PROD_NAME VARCHAR(20), PROD_DATE DATE, NUM_DELTA
INT); INSERT INTO DATE_VALUES VALUES ('PC', '20170105', 100);
INSERT INTO DATE_VALUES VALUES ('PC', '20170106', -50);
INSERT INTO DATE_VALUES VALUES ('PC', '20170117', 200);
INSERT INTO DATE_VALUES VALUES ('Notebook', '20170320', 300);
INSERT INTO DATE_VALUES VALUES ('Notebook', '20170322', -10);
INSERT INTO DATE_VALUES VALUES ('Phone', '20170121', 20);
INSERT INTO DATE_VALUES VALUES ('Phone', '20170205', 50);

CREATE PROCEDURE TOTAL_NUM_EXCEEDS_CAPACITY (
 IN IT PROD_PER_DATE,
 IN CAPACITY INT,
 OUT OT_RESULT TABLE(PROD_NAME VARCHAR(20), PROD_DATE DATE, NUM_TOTAL INT)
) AS
BEGIN
 DECLARE IDX INT = 0;
 DECLARE NUM_TOTAL INT = 0;
 DECLARE DEL_IDX INT ARRAY;
 DECLARE ARR_IDX INT = 0;
 OT_RESULT = SELECT PROD_NAME, PROD_DATE, NUM_DELTA AS NUM_TOTAL
 FROM :IT ORDER BY PROD_NAME, PROD_DATE;
 WHILE :OT_RESULT.PROD_NAME[IDX+1] IS NOT NULL DO
 IDX = IDX+1;
 IF IDX > 1 THEN
 IF :OT_RESULT.PROD_NAME[IDX] <> :OT_RESULT.PROD_NAME[IDX - 1] THEN
 NUM_TOTAL = 0;
 END IF;
 END IF;
 NUM_TOTAL = NUM_TOTAL + :OT_RESULT.NUM_TOTAL[IDX];
 OT_RESULT.NUM_TOTAL[IDX] = NUM_TOTAL;
 IF NUM_TOTAL <= CAPACITY THEN
 ARR_IDX = ARR_IDX + 1;
 DEL_IDX[ARR_IDX] = IDX;
 END IF;
 END WHILE;
 :OT_RESULT.DELETE(:DEL_IDX);
END;
CALL TOTAL_NUM_EXCEEDS_CAPACITY(PROD_PER_DATE, 60, ?)
PROD_NAME PROD_DATE NUM_TOTAL

Notebook 20.03.2017 300
Notebook 22.03.2017 290
PC 05.01.2017 100
PC 17.01.2017 250
Phone 05.02.2017 70

 Note
This algorithm works also with negative delta values.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 121

8.2.1.3 UNNEST Function

The UNNEST function combines one or many arrays and/or table variables. The result table includes a row for
each element of the specified array. The result of the UNNEST function needs to be assigned to a table
variable. The syntax is:

<variable_name> = UNNEST(<unnest_param> [{, <unnest_param>} ...])[WITH ORDINALITY] [AS (<column_specifier> [{, <column_specifier>}...])]

<unnest_param> ::= :table_variable
 | :array_variable
 | :array_function

<column_specifier> ::= '*'
 | '(' <projection_aliasing_list> ')'
 | <column_name>
 <projection_aliasing_list> ::= <column_name> [AS <column_name>] [,
<projection_aliasing_list>]

For example, the following statements convert the array arr_id of type INTEGER and the array arr_name of
type VARCHAR(10) into a table and assign it to the tabular output parameter rst:

CREATE PROCEDURE ARRAY_UNNEST_SIMPLE(OUT rst TABLE(":ARR_ID" INT, ":ARR_NAME"
NVARCHAR(10))) READS SQL DATA
AS BEGIN
 DECLARE arr_id INTEGER ARRAY = ARRAY(1, 2);
 DECLARE arr_name NVARCHAR(10) ARRAY = ARRAY('name1', 'name2', 'name3');
 rst = UNNEST(:arr_id, :arr_name);
END;

For multiple arrays, the number of rows will be equal to the largest cardinality among the cardinalities of the
arrays. In the returned table, the cells that are not corresponding to any elements of the arrays are filled with
NULL values. The example above would result in the following tabular output of rst:

:ARR_ID :ARR_NAME -------------------
1 name1
2 name2 ? name3

The returned columns of the table can also be explicitly named be using the AS clause. In the following
example, the column names for :ARR_ID and :ARR_NAME are changed to ID and NAME.

rst = UNNEST(:arr_id, :arr_name) AS (ID, NAME);

The result is:

ID NAME -------------------
1 name1
2 name2
? name3

As an additional option, an ordinal column can be specified by using the WITH ORDINALITY clause.

122 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

The ordinal column will then be appended to the returned table. An alias for the ordinal column needs to be
explicitly specified. The next example illustrates the usage. SEQ is used as an alias for the ordinal column:

CREATE PROCEDURE ARRAY_UNNEST(OUT rst TABLE(AMOUNT INTEGER, SEQ INTEGER)) LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 DECLARE amount INTEGER ARRAY = ARRAY(10, 20);
 rst = UNNEST(:amount) WITH ORDINALITY AS ("AMOUNT", "SEQ"); END;

The result of calling this procedure is, as follows:

AMOUNT SEQ ----------------
10 1 20 2

It is also possible to use table variables in the UNNEST function. While for arrays the associated column-
specifier list entry needs to contain a single column name, the associated entry for a table variable must be
either '*' or a projection aliasing list. '*' means that all columns of the input table should be included in the
result. With the projection aliasing list, it is possible to specify a subset of the columns of the input table and to
rename them in order to avoid name conflicts (a result must not contain multiple columns with the same
name).

 Sample Code

create column table tab0(a int); insert into tab0 values(1);
insert into tab0 values(2);
insert into tab0 values(3);

do begin
 t0 = select * from tab0 order by a asc;
 t1 = select * from tab0 order by a desc;
 lt = unnest(:t0, :t1) as (*, (a as b));
 select * from :lt;
end;

-- expected result {1, 3}, {2, 2}, {3, 1}

do begin
 t0 = select * from tab0 order by a asc;
 t1 = select * from tab0 order by a desc;
 lt = unnest(:t0, :t1) as (*, (a as b, a as c));
 select * from :lt;
end;
 -- expected result {1, 3, 3}, {2, 2, 2}, {3, 1, 1}

If the result table variable is declared explicitly, it may contain columns with NOT NULL types. Due to the fact
that the columns are adjusted to the longest column, this scenario may lead to a run-time error. The following
table shows the NOT NULL behavior:

Result LHS Type RHS Type

Potential run-time error NOT NULL NOT NULL

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 123

Result LHS Type RHS Type

Compile-time error NOT NULL Nullable

No error Nullable NOT NULL

No error Nullable Nullable

 Note
Array types are always nullable.

 Note
Default Column Names

If there is no column specifier list, the column names for arrays and the ordinality column in the result table
will be generated. A generated name always begins with "COL" and is followed by a number, which refers to
the column index in the result table. For example, if the third column in the result table has a generated
name, it is "COL3". However, if this name is already occupied because the input table variable contains a
column with this name, the index number will be increased to generate an unoccupied column name (if
"COL3" is used, "COL4" is the next candidate). This behavior is similar for the ordinality column. This
column is named "ORDINALITY" (without index), if this name is available and "ORDINALITY" + INDEX
(starting from 1), if "ORDINALITY" is already occupied.

8.2.1.4 Emptiness Check for Tables and Table Variables

To determine whether a table or table variable is empty, you can use the predicate IS_EMPTY:

IS_EMPTY(<table_name> | <table_variable>)

IS_EMPTY takes as an argument a <table_name> or a <table_variable>. It returns true if the table or
table variable is empty and false otherwise.

You can use IS_EMPTY in conditions like in IF-statements or WHILE-loops. For instance, in the next example
IS_EMPTY is used in an IF-statement:

CREATE PROCEDURE PROC_IS_EMPTY (IN tabvar TABLE(ID INTEGER), OUT outtab TABLE(ID INTEGER)
)
AS
BEGIN
 IF IS_EMPTY(:tabvar) THEN
 RETURN;
 END IF;
 CALL INTERNAL_LOGIC (:tabvar, outtab); END;

Besides that you can also use it in scalar variable assignments.

124 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 Note
Note that the IS_EMPTY cannot be used in SQL queries or expressions.

8.2.1.5 Get Number of Records for Tables and Table
Variables

To get the number of records of a table or a table variable, you can use the operator RECORD_COUNT:

RECORD_COUNT(<table_name> | <table_variable>)

RECORD_COUNT takes as the argument <table_name> or <table_variable> and returns the number of records
of type BIGINT.

You can use RECORD_COUNT in all places where expressions are supported such as IF-statements, loops or
scalar assignments. In the following example it is used in a loop:

CREATE table tab (COL_A int); INSERT INTO tab VALUES (1);
INSERT INTO tab VALUES (2);
DO (IN inTab TABLE(col_a int) => TAB, OUT v INT => ?)
 BEGIN
 DECLARE i int;
 v = 0;
 FOR i IN 1 .. RECORD_COUNT(:inTab)
 DO
 v = :v + :inTab.col_a[:i];

 END FOR;
END

 Note
RECORD_COUNT cannot be used in queries.

8.2.1.6 Search in Table Variables

This feature offers an efficient way to search by key value pairs in table variables.

Syntax

position = <tabvar>.SEARCH((<column_list>), (<value_list>) [, <start_position>])

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 125

Description

The size of the column list and the value list must be the same, columns and values are matched by their
position in the list. The <start_position> is optional, the default is 1 (first position), which is equal to
scanning all data.

The search function itself can be used in further expressions, but not directly in SQL statements.

The position of the first matching record is returned (or NULL, if no record matches). This result can be used in
conjunction with other table variable operators (DELETE, UPDATE).

Example

 Sample Code

DECLARE LT1 TABLE ("Key1"…, "Key2"…, "Val1"…); LT1 = … – see Table LT1 Initial State
pos = :LT1.SEARCH (("Key1", "Key2"), ('I', 3)); – pos = NULL (not found)
:LT1.INSERT(('I', 3, 'X')); –- see Table LT1 after a Single Insert
pos = :LT1.SEARCH(("Key1", "Key2"), ('M', 3)); – pos = 5
:LT1.DELETE(pos); val = :LT1."Val1"[:LT1.SEARCH(("Key1", "Key2"), ('E', 5))]; – val = 'V12'

LT1 Initial State

Key 1 Key 2 Val 1

A 1 V11

E 5 V12

B 6 V13

E 7 V14

M 3 V15

LT1 after a Single Insert

Key1 Key2 Val1

A 1 V11

E 5 V12

B 6 V13

E 7 V14

M 3 V15

126 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Key1 Key2 Val1

I 3 X

LT1 after a Single Delete

Key1 Key2 Val1

A 1 V11

E 5 V12

B 6 V13

E 7 V14

I 3 X

8.2.2 SQL DML Statements on Table Variables

You can modify data in SQLScript table variables with SQL DML statements. The following statements are
supported:

● INSERT
● UPDATE
● DELETE

The syntax of the statements is identical with that for manipulating persistent tables. The only difference is that
you need to mark the variables by using a colon.

DECLARE lt TABLE (a INT, b VARCHAR(20)); INSERT INTO :lt VALUES (1, 'abc');
UPDATE :lt SET b = 'def' WHERE a = 1; DELETE FROM :lt WHERE a = 1;

Constraints

The DML statements for table variables support the following constraint checks:

● Primary key
● NOT NULL

The constraints can be defined in both the user-defined table type and in the declaration, similarly to the
persistent table definition.

CREATE TYPE tt AS TABLE (a INT PRIMARY KEY, b INT NOT NULL); DECLARE lt1 tt; -- the variable has constraints defined by the table type
DECLARE lt2 TABLE (a INT, b INT, c INT NOT NULL, PRIMARY KEY(a, b));

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 127

Compatibility with Other Statements

For implementation reasons, it is not possible to combine DML statements with other table-variable related
statements for the same table variable. If a table variable is manipulated by a DML statement, it can only be
used in SQL statements: that includes queries and sub-calls, if the variable is bound to an input parameter. The
variable cannot be the target of any assign statements and therefore cannot be bound to an output parameter
of a sub-call.

DECLARE lt1 TABLE(a int); DECLARE lt2 TABLE LIKE :lt1;
INSERT INTO :lt1 VALUES(1);
INSERT INTO :lt2 (SELECT * FROM :lt1); -- supported
SELECT * FROM :lt2; -- supported
CALL nested_proc(:lt2); -- supported only if the procedure parameter is IN
:lt1.INSERT(:lt2); -- not supported (INSERT operator) lt2 = SELECT * FROM :lt1; -- not supported (assignment target)

Conversion

If you need to combine DML statements with other types of statements for one data set, you need to use
multiple table variables. It is possible to convert data between a variable used in a DML statement and a
variable not used in a DML statement in both directions.

The following example demonstrates the conversion in both directions:

DECLARE tab_without_dml TABLE (a INT); DECLARE tab_with_dml TABLE LIKE :lt1;
--
tab_without_dml = SELECT * FROM mytab;
--
-- execute non-DML statements with tab_without_dml ...
--
INSERT INTO :tab_with_dml (SELECT * FROM :tab_without_dml); -- convert variable
without DML to variable with DML
--
-- execute DML statements with tab_with_dml ...
-- tab_without_dml = SELECT * FROM :tab_with_dml; -- convert variable with DML to
variable without DML

 Note
Both variables are declared the same way, that is at declaration time there is no difference between
variables used in a DML statement and variables not used in a DML statement. In both directions, the
conversion implies a data copy.

128 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Use Cases

You can use DML statements if your scenario relies mainly on SQL statements, especially if you need to utilize a
complex SQL logic for manipulation of your data, like:

● complex WHERE conditions for UPDATE or DELETE
● complex UPDATE statements
● constraint checks

In other cases, it is recommended to use the SQLScript table variable operators for manipulation of table
variable data because they offer a better performance, can be combined with other table variable relevant
statements and do not imply any restriction with regards to procedure or function parameter handling.

 Note
The primary key check can also be accomplished by using sorted table variables.

Limitations

DML statements on table variables cannot be used in autonomous transactions and parallel execution blocks.

Neither input, nor output procedure or function parameters can be manipulated with DML statements.

8.2.3 Sorted Table Variables

Introduction

Sorted table variables are a special kind of table variables designed to provide efficient access to their data
records by means of a defined key. They are suitable for usage in imperative algorithms operating on mass
data. The data records of sorted table variables are always sorted by a search key which is specified in the data
type of the variable. When accessing the data via the SQLScript search operator, the efficient binary search is
utilized, if possible.

Search Key

The search key can be any subset of the table variable columns. The order of the columns in the search key
definition is important: the data records are first sorted by the first search key column, then by the second
search key column and so on.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 129

 Note
The table LT is sorted by columns B, A, C:

Position A B C D

1 0 1 10 100

2 2 1 15 200

3 1 2 3 150

4 1 2 5 30

To see how the search key is utilized, check the explanation below about the table variable search operator.

Sequence of Data Records

The sorting order is based on the data type of the search key. As the sorting is relevant only for the SQLScript
table variable search operator, it is not guaranteed for all data types that the sorting will behave in exactly the
same way as the ORDER BY specification in SQL statements. You can also not influence the sorting - in
particular, you cannot specify an ascending or a descending order.

Primary Key

Sorted table variables also allow primary key specification. The primary key must consist exactly of the search
key columns. The uniqueness of the primary key is checked in every operation on the table variable (table
assignment, insert operator, and so on). If the uniqueness is violated, the corresponding error is thrown.

Data Type Definition

The search key can be specified as part of a user-defined table type:

CREATE TYPE <name> AS TABLE (<column list>) SQLSCRIPT SEARCH KEY(<key list>)

Variable Declaration

The search key can also be specified as part of a variable declaration:

DECLARE <name> TABLE(<column list>) SEARCH KEY(<key list>) DECLARE <name> <table type> SEARCH KEY(<key list>)

In the second case, the table type must not include any search key definition.

130 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Procedure or Function Parameters

The search key can also be specified as part of a parameter definition

CREATE PROCEDURE <proc> (IN <param> TABLE(<column list>) SEARCH KEY(<key list>)) CREATE PROCEDURE <proc> (IN <param> <table type> SEARCH KEY(<key list>))

In the second case, the table type must not include any search key definition.

The input sorted table variables are re-sorted on call, unless a sorted table variable with a compatible key was
provided (in this case, no re-sorting is necessary).

Input sorted table variables cannot be modified within the procedure or the function.

For outermost calls, the result sets corresponding to output sorted table variables are sorted according to the
search key, using the ORDER BY clause. Thus you can ensure that the output table parameters have a defined
sequence of the data records.

For sub-calls, the sorted outputs can be assigned to any kind of table variable - unsorted, or sorted with
another search key (this requires a copy and/or a resorting). The usual use case should be indeed an
assignment to a sorted table variable with the same search key (this requires neither a copy nor a resorting).

Table Variable Search Operator And Binary Search

If you search by an initial part of the key or by the whole key, the binary search can be utilized. If you search by
some additional fields, then first the binary search is applied to narrow down the search interval which is then
scanned sequentially.

Examples based on the table LT above:

Search statement Behavior

:LT.SEARCH(B, 1) You search by column B. Binary search can be applied and
the 1st data record is found.

:LT.SEARCH((B, A), (1, 2)) You search by columns B, A. Binary search can be applied
and the 2nd data record is found.

:LT.SEARCH((B, C), (1, 15)) You search by columns B, C. Binary search can be applied
only for column B (B = 1), because the column A, which
would be the next search key column, is not provided. The
binary search narrows down the search interval to 1..2 and
this interval is searched sequentially for C = 200 and the 2nd
data record is found.

:LT.SEARCH(A, 1) You search by column A. Binary search cannot be applied at
all because the first search key column B was not provided.
The 3rd data record is found by sequential search.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 131

Output of Table Search Operator

If there is a matching data record, the position of the 1st matching data record is returned. This is the same
behavior as with unsorted table variables.

However, if you search by the complete search key (all search key columns are specified) and there is no
matching record, a negative value is returned instead of NULL. The absolute value of the return value indicates
the position where a data record with the specified key values would be inserted in to keep the sorting.

Examples based on the table LT above:

Search statement Result

:LT.SEARCH(B, 3) The full search key was not specified and there is no match­
ing data record. The result is NULL.

:LT.SEARCH((B, A, C), (1, 2, 20)) The full search key was specified and there is no matching
data record. The result is -3, because a data record having B
= 1, A = 2, C = 20 would have to be inserted at position 3.

This allows you to insert a missing data record directly at the correct position. Otherwise the insert operator
would have to search for this position once more.

Example:

 Sample Code

DECLARE lt TABLE(key int, count int) SEARCH KEY(key); DECLARE search_result int;
...
search_result = :lt.SEARCH(key, someval);
IF search_result > 0 THEN
 lt.count[search_result] = :lt.count[search_result] + 1;
ELSE
 :lt.INSERT((someval, 0), -search_result); END IF;

Iterating over Records with the Same Key Value

The sorting allows you not only to access a single data record but also to iterate efficiently over data records
with the same key value. Just as with the table variable search operator, you have to use the initial part of the
search key or the whole search key.

 Sample Code
A table variable has 3 search key columns and you iterate over data records having a specific key value
combination for the first two search key columns.

DECLARE pos int; DECLARE mytab TABLE (key1 int, key2 int, key3 int, value int) SEARCH
KEY(key1, key2, key3);
DECLARE keyval1, keyval2 int;
...
pos = :mytab.SEARCH((key1, key2), (keyval1, keyval2));

132 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

IF pos > 0 THEN
 WHILE :mytab.key1[pos] = keyval1 AND :mytab.key2[pos] = keyval2 DO
 -- do something with the record at position "pos"
 ...
 pos = pos + 1;
 END WHILE; END IF;

SQLScript Table Variable Modification Operators

For sorted table variables, you can use all available table variable modification operators. However, on every
modification, the system has to ensure that the sorting is not violated. This has the following consequences:

● Insert operator
○ The insert operator without explicit position specification inserts the data record(s) at the correct

positions taking the sorting definition into account.
○ The insert operator with explicit position specification checks if the sorting would be violated. If so, an

error is raised and no data is inserted.
○ When inserting a table variable into a sorted table variable with explicit position specification, the input

table variable is not re-sorted, it must comply with the sorting definition.
○ The highest explicitly specified position for insertion is the current table variable size increased by one

(otherwise, empty data records would be created, which may violate the sorting).
● Update operator/Table cell assignment

○ It is not allowed to modify a search key column
○ It is not allowed to modify not existing data records (this would lead to creation of new data records

and possibly sorting violation).

As mentioned above, if a primary key is defined, then its uniqueness is checked as well.

Table Variable Assignments

You can use sorted table variables as assignment target just like unsorted table variables. The data records will
always be re-sorted according to the search key. If a primary key is defined, the system checks if it is unique.
Any ORDER BY clause in queries, the result of which is assigned to a sorted table variable, is irrelevant.

Limitations

● The following data types are not supported for the search key:
○ Spatial data types
○ LOB types

● Output of table functions cannot be defined as sorted table type.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 133

8.3 Auto Type Derivation

Description

It is possible to declare a variable without specifying its type explicitly and let SQLScript determine the type
automatically. This auto type derivation can be used for scalar variables, tables and arrays.

Syntax

 Code Syntax

DECLARE <var> AUTO = <value>

 Note
The default value is mandatory and cannot be omitted.

 Note
The existing syntax for definition of scalar and table variables is expanded as follows:

 Code Syntax
Local Auto Scalar Variables

DECLARE <sql_identifier> [{,<sql_identifier> }...] [CONSTANT] AUTO [NOT
NULL] <proc_default>

 Code Syntax
Local Auto Table Variables

DECLARE <sql_identifier> [{,<sql_identifier> }...] [CONSTANT] AUTO
<proc_table_default>

 Caution
Potential incompatibility

The new feature may introduce some problems with existing procedures or functions, since AUTO is now
interpreted as a keyword with higher precedence than a table or a table type named AUTO. The workaround
for this incompatibility is to use SCHEMA.AUTO or quoted "AUTO" to interpret it as table type.

134 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 Sample Code
Example of incompatibility

create table auto (a bigint); declare tab1 auto = select 1 a, 2 b from dummy;

 Sample Code
Workaround

-- assume that current schema is schema_x create table auto (a bigint);
do begin
 declare tab1 "AUTO";
 declare tab2 schema_x.auto; end;

Examples

 Sample Code

declare var1 auto = 1.0; declare arr1 auto = array(1, 2); declare tab1 auto = select 1 as x from dummy;

Data Type Derivation

The derived type is determined by the type of the default value but is not always exactly same as the evaluated
type of the default value in the assignment. If the type has a length, the maximum length will be used to
improve flexibility.

Actual Type of Default Value Derived Type for Auto Variable

VARCHAR(n) VARCHAR(MAX_LENGTH)

NVARCHAR(n) NVARCHAR(MAX_LENGTH)

ALHPANUM(n) ALPHANUM(MAX_LENGTH)

VARBINARY(n) VARBINARY(MAX_LENGTH)

DECIMAL(p, s) DECIMAL

SMALLDECIMAL DECIMAL

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 135

Scope and Limitations

Auto type can be used for SQLScript scalar and table variables with the following limitations:

● Auto type cannot be used inside a trigger
● Auto type cannot be used for row-type variables
● Auto type cannot be used, if the default value contains one of the following:

○ System variables
○ Scalar access of any table or auto-type table

8.4 Global Session Variables

Global session variables can be used in SQLScript to share a scalar value between procedures and functions
that are running in the same session. The value of a global session variable is not visible from another session.

To set the value of a global session variable you use the following syntax:

SET <key> = <value>; <key> ::= <string_literal> | <string_variable> <value> ::= <scalar_expression>

While <key> can only be a constant string or a scalar variable, <values> can be any expression, scalar
variable or function which returns a value that is convertible to string. Both have maximum length of 5000
characters. The session variable cannot be explicitly typed and is of type string. If <value> is not of type string
the value will be implicitly converted to string.

The next examples illustrate how you can set the value of a session variable in a procedure:

CREATE PROCEDURE CHANGE_SESSION_VAR (IN NEW_VALUE NVARCHAR(50)) AS
BEGIN
 SET 'MY_VAR' = :new_value; END

CREATE PROCEDURE CHANGE_SESSION_VAR (IN NEW_VALUE NVARCHAR(50), IN KEY_NAME
NVARCHAR(50)) AS
BEGIN
 SET :key_name = :new_value || ‘_suffix’; END

To retrieve the session variable, the function SESSION_CONTEXT (<key>) can be used.

For more information on SESSION_CONTEXT, see SESSION_CONTEXT in the SAP HANA SQL and System
Views Reference on the SAP Help Portal.

For example, the following function retrieves the value of session variable 'MY_VAR'

CREATE FUNCTION GET_VALUE () RETURNS var NVARCHAR(50)
AS
BEGIN
 var = SESSION_CONTEXT('MY_VAR');

136 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

END;

 Note
SET <key> = <value> cannot be used in functions and procedures flagged as READ ONLY (scalar and
table functions are implicitly READ ONLY).

 Note
The maximum number of session variables can be configured with the configuration parameter
max_session_variables under the section session (min=1, max=5000). The default is 1024.

 Note
Session variables are null by default and can be reset to null using UNSET <key>. For more information on
UNSET, see UNSET in the SAP HANA SQL and System Views Reference.

8.5 Variable Scope Nesting

SQLScript supports local variable declaration in a nested block. Local variables are only visible in the scope of
the block in which they are defined. It is also possible to define local variables inside LOOP / WHILE /FOR / IF-
ELSE control structures.

Consider the following code:

CREATE PROCEDURE nested_block(OUT val INT) LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 DECLARE a INT = 1;
 BEGIN
 DECLARE a INT = 2;
 BEGIN
 DECLARE a INT;
 a = 3;
 END;
 val = a;
 END; END;

When you call this procedure the result is:

call nested_block(?) --> OUT:[2]

From this result you can see that the inner most nested block value of 3 has not been passed to the val
variable. Now let's redefine the procedure without the inner most DECLARE statement:

DROP PROCEDURE nested_block; CREATE PROCEDURE nested_block(OUT val INT) LANGUAGE SQLSCRIPT
READS SQL DATA AS
BEGIN
 DECLARE a INT = 1;
 BEGIN

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 137

 DECLARE a INT = 2;
 BEGIN
 a = 3;
 END;
 val = a;
 END; END;

Now when you call this modified procedure the result is:

call nested_block(?) --> OUT:[3]

From this result you can see that the innermost nested block has used the variable declared in the second level
nested block.

Local Variables in Control Structures

Conditionals

 CREATE PROCEDURE nested_block_if(IN inval INT, OUT val INT) LANGUAGE SQLSCRIPT
READS SQL DATA AS BEGIN
 DECLARE a INT = 1;
 DECLARE v INT = 0;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 val = :a;
 END;
 v = 1 /(1-:inval);
 IF :a = 1 THEN
 DECLARE a INT = 2;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 val = :a;
 END;
 v = 1 /(2-:inval);
 IF :a = 2 THEN
 DECLARE a INT = 3;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 val = :a;
 END;
 v = 1 / (3-:inval);
 END IF;
 v = 1 / (4-:inval);
 END IF;
 v = 1 / (5-:inval);
END;
call nested_block_if(1, ?)
-->OUT:[1]
call nested_block_if(2, ?)
-->OUT:[2]
call nested_block_if(3, ?)
-->OUT:[3]
call nested_block_if(4, ?)
--> OUT:[2]
call nested_block_if(5, ?) --> OUT:[1]

While Loop

 CREATE PROCEDURE nested_block_while(OUT val INT) LANGUAGE SQLSCRIPT READS SQL
DATA AS BEGIN

138 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 DECLARE v int = 2;
 val = 0;
 WHILE v > 0
 DO
 DECLARE a INT = 0;
 a = :a + 1;
 val = :val + :a;
 v = :v - 1;
 END WHILE;
END;
call nested_block_while(?) --> OUT:[2]

For Loop

 CREATE TABLE mytab1(a int); CREATE TABLE mytab2(a int);
CREATE TABLE mytab3(a int);
INSERT INTO mytab1 VALUES(1);
INSERT INTO mytab2 VALUES(2);
INSERT INTO mytab3 VALUES(3);
CREATE PROCEDURE nested_block_for(IN inval INT, OUT val INT) LANGUAGE SQLSCRIPT
READS SQL DATA AS
BEGIN
 DECLARE a1 int default 0;
 DECLARE a2 int default 0;
 DECLARE a3 int default 0;
 DECLARE v1 int default 1;
 DECLARE v2 int default 1;
 DECLARE v3 int default 1;
 DECLARE CURSOR C FOR SELECT * FROM mytab1;
 FOR R as C DO
 DECLARE CURSOR C FOR SELECT * FROM mytab2;
 a1 = :a1 + R.a;
 FOR R as C DO
 DECLARE CURSOR C FOR SELECT * FROM mytab3;
 a2 = :a2 + R.a;
 FOR R as C DO
 a3 = :a3 + R.a;
 END FOR;
 END FOR;
 END FOR;
 IF inval = 1 THEN
 val = :a1;
 ELSEIF inval = 2 THEN
 val = :a2;
 ELSEIF inval = 3 THEN
 val = :a3;
 END IF;
END;
call nested_block_for(1, ?)
--> OUT:[1]
call nested_block_for(2, ?)
--> OUT:[2]
call nested_block_for(3, ?) --> OUT:[3]

Loop

 Note
The example below uses tables and values created in the For Loop example above.

 CREATE PROCEDURE nested_block_loop(IN inval INT, OUT val INT) LANGUAGE
SQLSCRIPT READS SQL DATA AS

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 139

BEGIN
 DECLARE a1 int;
 DECLARE a2 int;
 DECLARE a3 int;
 DECLARE v1 int default 1;
 DECLARE v2 int default 1;
 DECLARE v3 int default 1;
 DECLARE CURSOR C FOR SELECT * FROM mytab1;
 OPEN C;
 FETCH C into a1;
 CLOSE C;
 LOOP
 DECLARE CURSOR C FOR SELECT * FROM mytab2;
 OPEN C;
 FETCH C into a2;
 CLOSE C;
 LOOP
 DECLARE CURSOR C FOR SELECT * FROM mytab3;
 OPEN C;
 FETCH C INTO a3;
 CLOSE C;
 IF :v2 = 1 THEN
 BREAK;
 END IF;
 END LOOP;
 IF :v1 = 1 THEN
 BREAK;
 END IF;
 END LOOP;
 IF :inval = 1 THEN
 val = :a1;
 ELSEIF :inval = 2 THEN
 val = :a2;
 ELSEIF :inval = 3 THEN
 val = :a3;
 END IF;
END;
call nested_block_loop(1, ?)
--> OUT:[1]
call nested_block_loop(2, ?)
--> OUT:[2]
call nested_block_loop(3, ?) --> OUT:[3]

8.6 Control Structures

140 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.6.1 Conditionals

Syntax

IF <bool_expr1> THEN
 <then_stmts1>
[{ELSEIF <bool_expr2>
THEN
 <then_stmts2>}...]
[ELSE
 <else_stmts3>] END IF

Syntax Elements

<bool_expr1> ::= <condition> <bool_expr2> ::= <condition>
<condition> ::= <comparison> | <null_check>
<comparison> ::= <comp_val> <comparator> <comp_val> <null_check> ::= <comp_val> IS [NOT] NULL

Tests if <comp_val> is NULL or NOT NULL.

 Note
NULL is the default value for all local variables.

See Example 2 for an example how to use this comparison.

 <comparator> ::= < | > | = | <= | >= | !=
<comp_val> ::= <scalar_expression>|<scalar_udf>
<scalar_expression> ::=<scalar_value>[{operator}<scalar_value>…]
<scalar_value> ::= <numeric_literal> | <exact_numeric_literal>|
<unsigned_numeric_literal> <operator>::=+|-|/|*

Specifies the comparison value. This can be based on either scalar literals or scalar variables.

 <then_stmts1> ::= <proc>
<then_stmts2> ::= <proc_stmts>
<else_stmts3> ::= <proc_stmts> <proc_stmts> ::= !! SQLScript procedural statements

Defines procedural statements to be executed dependent on the preceding conditional expression.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 141

Description

The IF statement consists of a Boolean expression <bool_expr1>. If this expression evaluates to true, the
statements <then_stmts1> in the mandatory THEN block are executed. The IF statement ends with END IF.
The remaining parts are optional.

If the Boolean expression <bool_expr1> does not evaluate to true, the ELSE-branch is evaluated. The
statements <else_stmts3> are executed without further checks. No ELSE-branches or ELSEIF-branches are
allowed after an else branch.

Alternatively, when ELSEIF is used instead of ELSE a further Boolean expression <bool_expr2> is evaluated.
If it evaluates to true, the statements <then_stmts2> are executed. In this manner an arbitrary number of
ELSEIF clauses can be added.

This statement can be used to simulate the switch-case statement known from many programming languages.

The predicate x [NOT] BETWEEN lower AND upper can also be used within the expression <bool_expr1>. It
works just like [NOT] (x >= lower AND x <= upper). For more information, see Example 4.

Examples

Example 1
You use the IF statement to implement the functionality of the UPSERT statement in SAP HANA database.

CREATE PROCEDURE upsert_proc (IN v_isbn VARCHAR(20)) LANGUAGE SQLSCRIPT AS
BEGIN
 DECLARE found INT = 1;
 SELECT count(*) INTO found FROM books WHERE isbn = :v_isbn;
 IF :found = 0
 THEN
 INSERT INTO books
 VALUES (:v_isbn, 'In-Memory Data Management', 1, 1,
 '2011', 42.75, 'EUR');
 ELSE
 UPDATE books SET price = 42.75 WHERE isbn =:v_isbn;
 END IF;
END;

Example 2
You use the IF statement to check if variable :found is NULL.

SELECT count(*) INTO found FROM books WHERE isbn = :v_isbn; IF :found IS NULL THEN
 CALL ins_msg_proc('result of count(*) cannot be NULL');
ELSE
 CALL ins_msg_proc('result of count(*) not NULL - as expected');
END IF;

Example 3
It is also possible to use a scalar UDF in the condition, as shown in the following example.

CREATE PROCEDURE proc (in input1 INTEGER, out output1 TYPE1)

142 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 AS
BEGIN
 DECLARE i INTEGER DEFAULT :input1;
 IF SUDF(:i) = 1 THEN
 output1 = SELECT value FROM T1;
 ELSEIF SUDF(:i) = 2 THEN
 output1 = SELECT value FROM T2;
 ELSE
 output1 = SELECT value FROM T3;
 END IF;
END;

Example 4
Use of the BETWEEN operator

CREATE FUNCTION between_01(x INT) RETURNS result NVARCHAR(1) AS
BEGIN
 IF :x BETWEEN 0 AND 100 THEN
 result = 'X';
 ELSE
 result = 'O';
 END IF; END;

Related Information

ins_msg_proc [page 321]

8.6.2 Loop

Description

You use LOOP to repeatedly execute a set of statements. LOOP is identical with an infinite loop and it is
necessary to implement finite logic by using BREAK or RETURN.

Syntax

 Code Syntax

LOOP [SEQUENTIAL EXECUTION] [<proc_decl_list>]
 [<proc_handler_list>]
 <proc_stmt_list>

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 143

 END LOOP;

Related Information

CREATE PROCEDURE [page 19]

8.6.3 While Loop

Syntax

WHILE <condition> DO <proc_stmts> END WHILE

Syntax Elements

<null_check> ::= <comp_val> IS [NOT] NULL <comparator> ::= < | > | = | <= | >= | !=
<comp_val> ::= <scalar_expression>|<scalar_udf>
<scalar_expression> ::= <scalar_value>[{operator}<scalar_value>…]
<scalar_value> ::= <numeric_literal> | <exact_numeric_literal>|
<unsigned_numeric_literal> <operator> ::= +|-|/|*

Defines a Boolean expression which evaluates to true or false.

<proc_stmts> ::= !! SQLScript procedural statements

Description

The WHILE loop executes the statements <proc_stmts> in the body of the loop as long as the Boolean
expression at the beginning <condition> of the loop evaluates to true.

The predicate x [NOT] BETWEEN lower AND upper can also be used within the expression of the
<condition>. It works just like [NOT] (x >= lower AND x <= upper). For more information, see
Example 3.

Example 1

144 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

You use WHILE to increment the :v_index1 and :v_index2 variables using nested loops.

CREATE PROCEDURE procWHILE (OUT V_INDEX2 INTEGER) LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 DECLARE v_index1 INT = 0;
 WHILE :v_index1 < 5 DO
 v_index2 = 0;
 WHILE :v_index2 < 5 DO
 v_index2 = :v_index2 + 1;
 END WHILE;
 v_index1 = :v_index1 + 1;
 END WHILE; END;

Example 2

You can also use scalar UDF for the while condition as follows.

CREATE PROCEDURE proc (in input1 INTEGER, out output1 TYPE1) AS
BEGIN
 DECLARE i INTEGER DEFAULT :input1;
 DECLARE cnt INTEGER DEFAULT 0;
 WHILE SUDF(:i) > 0 DO
 cnt = :cnt + 1;
 i = :i - 1;
 END WHILE;
 output1 = SELECT value FROM T1 where id = :cnt ; END;

Example 3

CREATE FUNCTION between_03(x INT) RETURNS result NVARCHAR(1) AS
BEGIN
 DECLARE idx INT = :x;
 result = 'O';

 WHILE :idx BETWEEN 5 AND 15 DO
 idx = :idx + 1;
 result = 'X';
 END WHILE; END;

 Caution
No specific checks are performed to avoid infinite loops.

8.6.4 For Loop

Syntax:

FOR - IN Loop iterates over a set of data:

FOR <loop-var> IN [REVERSE] <start_value> .. <end_value> DO [SEQUENTIAL
EXECUTION][<proc_decl_list>] [<proc_handler_list>]

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 145

 <proc_stmts> END FOR

FOR - EACH Loop iterates over all rows from a cursor:

FOR <loop-var> AS <loop-var> [<open_param_list>] DO [SEQUENTIAL EXECUTION]
[<proc_decl_list>] [<proc_handler_list>] <proc_stmts>
END FOR <open_param_list> ::= (<expression> [{ , <expression> }...])

Syntax elements:

<loop-var> ::= <identifier>

Defines the variable that will contain the loop values.

REVERSE

When defined, causes the loop sequence to occur in a descending order.

<start_value> ::= <expression>

Defines the starting value of the loop.

<end_value> ::= <expression>

Defines the end value of the loop.

<proc_stmts> ::= !! SQLScript procedural statements

Defines the procedural statements that will be looped over.

Description:

The FOR loop iterates a range of numeric values and binds the current value to a variable <loop-var> in
ascending order. Iteration starts with the value of <start_value> and is incremented by one until the <loop-
var> equals <end_value> .

If <start_value> is larger than <end_value>, <proc_stmts> in the loop will not be evaluated.

Example

You can use scalar UDF in the loop boundary values, as shown in the following example.

CREATE PROCEDURE proc (out output1 TYPE1)LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 DECLARE pos INTEGER DEFAULT 0;
 DECLARE i INTEGER;
 FOR i IN 1..SUDF_ADD(1, 2) DO
 pos = :pos + 1;
 END FOR;
 output1 = SELECT value FROM T1 where position = :i ;
END;

146 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.6.5 Break and Continue

Syntax:

BREAK CONTINUE

Syntax elements:

BREAK

Specifies that a loop should stop being processed.

CONTINUE

Specifies that a loop should stop processing the current iteration, and should immediately start processing the
next.

Description:

These statements provide internal control functionality for loops.

Example:

You defined the following loop sequence. If the loop value :x is less than 3 the iterations will be skipped. If :x is
5 then the loop will terminate.

CREATE PROCEDURE proc () LANGUAGE SQLSCRIPT READS SQL DATA
AS
BEGIN
 DECLARE x integer;
 FOR x IN 0 .. 10 DO
 IF :x < 3 THEN
 CONTINUE;
 END IF;
 IF :x = 5 THEN
 BREAK;
 END IF;
 END FOR;
END;

Related Information

ins_msg_proc [page 321]

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 147

8.6.6 Operators

8.6.6.1 IN Operator

Description

SQLScript supports the use of IN clauses as conditions in IF or WHILE statements. Just like in standard SQL,
the condition can take one of the following forms:

● a list of expressions on the left-hand side and a list of lists of expressions on the right-hand side
● a list of expressions on the left-hand side and a subquery on the right-hand side

In both cases, the numbers and types of entries in each list of the respective row of the result set on the right-
hand side must match the numbers and types of entries on the left-hand side.

Examples

 Sample Code
Pseudo Code Examples

-- single expression on the left-hand side IF :i IN (1, 2, 3, 6, 8, 11, 12, 100) THEN
[...]
END IF;

-- multiple expressions on the left-hand side
IF (:key, :val) NOT IN ((1, 'H2O'), (2, 'H2O'), (3, 'abc'), (5, 'R2D2'), (6,
'H2O'), (7, 'H2O')) THEN
[...]
END IF;

-- subquery on the right-hand side
IF :i NOT IN (SELECT a FROM mytable) THEN
[...]
END IF;

-- subquery using table variable
IF (:a, :b, :c) IN (SELECT id, city, date from :lt where :id < :d) THEN
[...]
END IF;

-- subquery using table function
FOR i IN 1 .. CARDINALITY(:arr) DO
 IF :arr[:i] IN (SELECT b FROM tfunc()) THEN
 [...]

148 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 END IF; END FOR;

Limitations

Floating-point numbers, variables, and expressions can be used but due to the implementation of these data
types, the results of the calculations may be inaccurate. For more information, see the chapter Numeric Data
Types in the SAP HANA SQL and System Views Reference.

8.6.6.2 EXISTS Operator

SQLScript supports the use of EXISTS clauses as conditions in IF and WHILE statements. Just like in standard
SQL, it evaluates to true if the sub-query returns a non-empty result set, and to false in any other case.

IF EXISTS (SELECT * FROM mytab WHERE date = :d) THEN ...
END IF

--

IF NOT EXISTS (SELECT * FROM SYS.TABLES WHERE schema_name = :schema AND
table_name = :table) THEN
...
END IF

--
WHILE :i < 100 AND EXISTS (SELECT * FROM mytab WHERE a = :i) DO
 i = :i + 1;
 ...
END WHILE

--
WHILE NOT EXISTS (SELECT * FROM mytab WHERE a > sfunc(:z).r2) DO
... END WHILE

8.6.6.3 BETWEEN Operator

The predicate x [NOT] BETWEEN lower AND upper can be used within the expression of the <condition>
of a WHILE loop. It works just like [NOT] (x >= lower AND x <= upper).

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 149

Example

 Sample Code

CREATE FUNCTION between_03(x INT) RETURNS result NVARCHAR(1) AS
BEGIN
DECLARE idx INT = :x;
result = 'O';
WHILE :idx BETWEEN 5 AND 15 DO
idx = :idx + 1;
result = 'X';
END WHILE; END;

Related Information

While Loop [page 144]

8.7 Cursors

Cursors are used to fetch single rows from the result set returned by a query. When a cursor is declared, it is
bound to the query. It is possible to parameterize the cursor query.

8.7.1 Define Cursor

Syntax:

DECLARE CURSOR <cursor_name> [({<param_def>{,<param_def>} ...)] [<holdability>
HOLD] FOR <select_stmt>

Syntax elements:

<cursor_name> ::= <identifier>

Specifies the name of the cursor.

<param_def> = <param_name> <param_type>

Defines an optional SELECT parameter.

<param_name> ::= <identifier>

150 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Defines the variable name of the parameter.

<param_type> ::= DATE | TIME | SECONDDATE | TIMESTAMP | TINYINT | SMALLINT | INTEGER | BIGINT | SMALLDECIMAL | DECIMAL
 | REAL | DOUBLE | VARCHAR | NVARCHAR | ALPHANUM | VARBINARY | BLOB | CLOB | NCLOB

Defines the data type of the parameter.

<select_stmt> !!= SQL SELECT statement.

Defines an SQL select statement. See SELECT.

Defines cursor holdability

<holdability> := WITH | WITHOUT

Description:

Cursors can be defined either after the signature of the procedure and before the procedure’s body or at the
beginning of a block with the DECLARE token. The cursor is defined with a name, optionally a list of parameters,
and an SQL SELECT statement. The cursor provides the functionality to iterate through a query result row-by-
row. Updating cursors is not supported.

 Note
Avoid using cursors when it is possible to express the same logic with SQL. You should do this as cursors
cannot be optimized the same way SQL can.

Example:

You create a cursor c_cursor1 to iterate over results from a SELECT on the books table. The cursor passes
one parameter v_isbn to the SELECT statement.

DECLARE CURSOR c_cursor1 (v_isbn VARCHAR(20)) FOR SELECT isbn, title, price, crcy FROM books WHERE isbn = :v_isbn ORDER BY isbn;

 Sample Code
Example for Cursor Holdability

CREATE TABLE mytab (col INT); INSERT INTO mytab VALUES (10);
CREATE PROCEDURE testproc AS BEGIN
 DECLARE i INT;
 DECLARE CURSOR mycur WITH HOLD FOR SELECT * FROM mytab;
 OPEN mycur;
 ROLLBACK;
 FETCH mycur INTO i;
 CLOSE mycur;
 SELECT :i as i FROM DUMMY;
END;

 CALL testproc; -- Expected Result: {10}

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 151

Related Information

SELECT Statement (Data Manipulation)

8.7.2 Open Cursor

Syntax:

OPEN <cursor_name>[(<argument_list>)]

Syntax elements:

<cursor_name> ::= <identifier>

Specifies the name of the cursor to be opened.

<argument_list> ::= <arg>[,{<arg>}...]

Specifies one or more arguments to be passed to the select statement of the cursor.

<arg> ::= <scalar_value>

Specifies a scalar value to be passed to the cursor.

Description:

Evaluates the query bound to a cursor and opens the cursor, so that the result can be retrieved. If the cursor
definition contains parameters, the actual values for each of these parameters should be provided when the
cursor is opened.

This statement prepares the cursor, so that the results for the rows of a query can be fetched.

Example:

You open the cursor c_cursor1 and pass a string '978-3-86894-012-1' as a parameter.

OPEN c_cursor1('978-3-86894-012-1');

8.7.3 Close Cursor

Syntax:

CLOSE <cursor_name>

Syntax elements:

<cursor_name> ::= <identifier>

Specifies the name of the cursor to be closed.

152 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/20fcf24075191014a89e9dc7b8408b26.html

Description:

Closes a previously opened cursor and releases all associated state and resources. It is important to close all
cursors that were previously opened.

Example:

You close the cursor c_cursor1.

CLOSE c_cursor1;

8.7.4 Fetch Query Results of a Cursor

Syntax:

FETCH <cursor_name> INTO <variable_list>

Syntax elements:

<cursor_name> ::= <identifier>

Specifies the name of the cursor where the result will be obtained.

<variable_list> ::= <var>[,{<var>}...]

Specifies the variables where the row result from the cursor will be stored.

<var> ::= <identifier>

Specifies the identifier of a variable.

Description:

Fetches a single row in the result set of a query and moves the cursor to the next row. It is assumed that the
cursor was declared and opened before. You can use the cursor attributes to check if the cursor points to a
valid row.

Example:

You fetch a row from the cursor c_cursor1 and store the results in the variables shown.

FETCH c_cursor1 INTO v_isbn, v_title, v_price, v_crcy;

Related Information

Attributes of a Cursor [page 154]

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 153

8.7.5 Attributes of a Cursor

A cursor provides a number of methods to examine its current state. For a cursor bound to variable
c_cursor1, the attributes summarized in the table below are available.

Cursor Attributes

Attribute Description

c_cursor1::ISCLOSED Is true if cursor c_cursor1 is closed, otherwise false.

c_cursor1::NOTFOUND Is true if the previous fetch operation returned no valid row,
false otherwise. Before calling OPEN or after calling CLOSE
on a cursor this will always return true.

c_cursor1::ROWCOUNT Returns the number of rows that the cursor fetched so far.
This value is available after the first FETCH operation. Be­
fore the first fetch operation the number is 0.

Example:

The example below shows a complete procedure using the attributes of the cursor c_cursor1 to check if
fetching a set of results is possible.

CREATE PROCEDURE cursor_proc LANGUAGE SQLSCRIPT AS BEGIN
 DECLARE v_isbn VARCHAR(20);
 DECLARE v_title VARCHAR(20);
 DECLARE v_price DOUBLE;
 DECLARE v_crcy VARCHAR(20);
 DECLARE CURSOR c_cursor1 (v_isbn VARCHAR(20)) FOR
 SELECT isbn, title, price, crcy FROM books
 WHERE isbn = :v_isbn ORDER BY isbn;
 OPEN c_cursor1('978-3-86894-012-1');
 IF c_cursor1::ISCLOSED THEN
 CALL ins_msg_proc('WRONG: cursor not open');
 ELSE
 CALL ins_msg_proc('OK: cursor open');
 END IF;
 FETCH c_cursor1 INTO v_isbn, v_title, v_price, v_crcy;
 IF c_cursor1::NOTFOUND THEN
 CALL ins_msg_proc('WRONG: cursor contains no valid data');
 ELSE
 CALL ins_msg_proc('OK: cursor contains valid data');
 END IF;
 CLOSE c_cursor1;
END

Related Information

ins_msg_proc [page 321]

154 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.7.6 Looping Over Result Sets

Syntax

FOR <row_var> AS <cursor_name>[(<argument_list>)] DO <proc_stmts> | {<row_var>.<column>} END FOR

Syntax Elements

<row_var> ::= <identifier>

Defines an identifier to contain the row result.

<cursor_name> ::= <identifier>

Specifies the name of the cursor to be opened.

<argument_list> ::= <arg>[,{<arg>}...]

Specifies one or more arguments to be passed to the select statement of the cursor.

<arg> ::= <scalar_value>

Specifies a scalar value to be passed to the cursor.

<proc_stmts> ::= !! SQLScript procedural statements

Defines the procedural statements that will be looped over.

<row_var>.<column> ::= !! Provides attribute access

To access the row result attributes in the body of the loop, you use the displayed syntax.

Description

Opens a previously declared cursor and iterates over each row in the result set of the query, bound to the
cursor. The statements in the body of the procedure are executed for each row in the result set. After the last
row from the cursor has been processed, the loop is exited and the cursor is closed.

 Tip
As this loop method takes care of opening and closing cursors, resource leaks can be avoided.
Consequently, this loop is preferred to opening and closing a cursor explicitly and using other loop variants.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 155

Within the loop body, the attributes of the row that the cursor currently iterates over can be accessed like an
attribute of the cursor. Assuming that <row_var> is a_row and the iterated data contains a column test, then
the value of this column can be accessed using a_row.test.

Example

The example below demonstrates how to use a FOR-loop to loop over the results from c_cursor1.

CREATE PROCEDURE foreach_proc() LANGUAGE SQLSCRIPT AS BEGIN
 DECLARE v_isbn VARCHAR(20) = '';
 DECLARE CURSOR c_cursor1 (v_isbn VARCHAR(20)) FOR
 SELECT isbn, title, price, crcy FROM books
 ORDER BY isbn;
 FOR cur_row AS c_cursor1(v_isbn)
 DO
 CALL ins_msg_proc('book title is: ' || :cur_row.title);
 END FOR; END;

Related Information

ins_msg_proc [page 321]

8.7.7 Updatable Cursor

Syntax

UPDATE <target_table> [[AS] <correlation_name>] SET <set_clause_list>
 WHERE CURRENT OF <cursor_name>
DELETE FROM <target_table> [[AS] <correlation_name>] WHERE CURRENT OF <cursor_name>

Description

When you iterate over each row of a result set, you can use the updatable cursor to change a record directly on
the row, to which the cursor is currently pointing. The updatable cursor is a standard SQL feature (ISO/IEC
9075-2:2011).

156 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

For more information, see sections 14.8 & 14.13 in the SQL standard documentation (ISO/IEC 9075-2:2011).

Restrictions

The following restrictions apply:

● The cursor has to be declared with a SELECT statement having the FOR UPDATE clause in order to prevent
concurrent WRITE on tables (without FOR UPDATE, the cursor is not updatable)

● The updatable cursor may be used only for UPDATE and DELETE operations.
● Using an updatable cursor in a single query instead of SQLScript is prohibited.
● Only persistent tables (both ROW and COLUMN tables) can be updated with an updatable cursor.
● UPDATE or DELETE operations performed on a table by means of an updatable cursor are allowed only one

time per row.

 Note
Updating the same row multiple times is possible, if several cursors selecting the same table are declared
within a single transaction.

Examples

Example for updating a single table by using an updatable cursor:

 Sample Code

CREATE TABLE employees (employee_id INTEGER, employee_name VARCHAR(30)); INSERT INTO employees VALUES (1, 'John');
INSERT INTO employees VALUES (20010, 'Sam');
INSERT INTO employees VALUES (21, 'Julie');
INSERT INTO employees VALUES (10005, 'Kate');

DO BEGIN
 DECLARE CURSOR cur FOR SELECT * FROM employees FOR UPDATE;
 FOR r AS cur DO
 IF r.employee_id < 10000 THEN
 UPDATE employees SET employee_id = employee_id + 10000
 WHERE CURRENT OF cur;
 ELSE
 DELETE FROM employees WHERE CURRENT OF cur;
 END IF;
 END FOR; END;

Example for updating or deleting multiple tables (currently COLUMN tables only supported) by means of an
updatable cursor.

 Note
In this case, you have to specify columns of tables to be locked by using the FOR UPDATE OF clause within
the SELECT statement of the cursor. Keep in mind that DML execution by means of an updatable cursor is
allowed only one time per row.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 157

 Sample Code

CREATE COLUMN TABLE employees (employee_id INTEGER, employee_name
VARCHAR(30), department_id INTEGER); INSERT INTO employees VALUES (1, 'John', 1);
INSERT INTO employees VALUES (2, 'Sam', 2);
INSERT INTO employees VALUES (3, 'Julie', 3);
INSERT INTO employees VALUES (4, 'Kate', 4);

CREATE COLUMN TABLE departments (department_id INTEGER, department_name
VARCHAR(20));
INSERT INTO departments VALUES (1, 'Development');
INSERT INTO departments VALUES (2, 'Operation');
INSERT INTO departments VALUES (3, 'HR');
INSERT INTO departments VALUES (4, 'Security');

DO BEGIN
 DECLARE CURSOR cur FOR SELECT employees.employee_name,
departments.department_name
 FROM employees, departments WHERE employees.department_id =
departments.department_id
 FOR UPDATE OF employees.employee_id, departments.department_id;
 FOR r AS cur DO
 IF r.department_name = 'Development' THEN
 UPDATE employees SET employee_id = employee_id + 10000,
department_id = department_id + 100
 WHERE CURRENT OF cur;
 UPDATE departments SET department_id = department_id + 100
 WHERE CURRENT OF cur;
 ELSEIF r.department_name = 'HR' THEN
 DELETE FROM employees WHERE CURRENT OF cur;
 DELETE FROM departments WHERE CURRENT OF cur;
 END IF;
 END FOR; END;

8.7.8 Cursor Holdability

Syntax

DECLARE CURSOR cursor_name [(<parameter>)] [<holdability> HOLD] FOR ... <holdability> := WITH | WITHOUT HOLD

Description

It is now possible to use control features directly within SQLScript in order to control cursor holdability for
specific objects instead of using a system configuration, as it was necessary before.

158 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Expression Description

DECLARE CURSOR cursor_name WITH HOLD FOR … Declares a cursor with holdability for both commit and roll­
back

DECLARE CURSOR cursor_name WITHOUT HOLD FOR … Declares a cursor without holdability for both commit and
rollback

DECLARE CURSOR cursor_name FOR … Declares a cursor with holdability for commit and without
holdability for rollback

Controlling the cursor holdability by cursor declaration gets higher priority than system configuration:

Configuration Declaration Result

WITHOUT HOLD WITH HOLD WITH HOLD

WITH HOLD WITHOUT HOLD WITHOUT HOLD

WITHOUT HOLD WITHOUT HOLD WITHOUT HOLD

WITH HOLD WITH HOLD WITH HOLD

If a cursor is holdable for commit and not holdable for rollback, it will have holdability for rollback after commit.
A not holdable cursor will be invalidated by transactional operations (commit or rollback), but not closed. It will
return a null value for fetch operations rather than throwing an exception and an exception will be thrown by
using an updatable cursor.

Example

 Sample Code

CREATE TABLE mytab (col INT); INSERT INTO mytab VALUES (10);
CREATE PROCEDURE testproc AS BEGIN
 DECLARE i INT;
 DECLARE CURSOR mycur WITH HOLD FOR SELECT * FROM mytab;
 OPEN mycur;
 ROLLBACK;
 FETCH mycur INTO i;
 CLOSE mycur;
 SELECT :i as i FROM DUMMY;
END;

 CALL testproc; -- Expected Result: {10}

Restrictions

It is currently not possible to use an updatable cursor while the cursor is holdable on rollback, since DML
operations using an updatable cursor after rollback may cause unexpected results.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 159

8.8 Autonomous Transaction

Syntax:

<proc_bloc> :: = BEGIN AUTONOMOUS TRANSACTION [<proc_decl_list>]
 [<proc_handler_list>]
 [<proc_stmt_list>] END;

Description:

The autonomous transaction is independent from the main procedure. Changes made and committed by an
autonomous transaction can be stored in persistency regardless of commit/rollback of the main procedure
transaction. The end of the autonomous transaction block has an implicit commit.

BEGIN AUTONOMOUS TRANSACTION …(some updates) –(1)
 COMMIT;
 …(some updates) –(2)
 ROLLBACK;
 …(some updates) –(3)
END;

The examples show how commit and rollback work inside the autonomous transaction block. The first updates
(1) are committed, whereby the updates made in step (2) are completely rolled back. And the last updates (3)
are committed by the implicit commit at the end of the autonomous block.

CREATE PROCEDURE PROC1(IN p INT , OUT outtab TABLE (A INT)) LANGUAGE SQLSCRIPT
AS BEGIN
 DECLARE errCode INT;
 DECLARE errMsg VARCHAR(5000);
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN AUTONOMOUS TRANSACTION
 errCode= ::SQL_ERROR_CODE;
 errMsg= ::SQL_ERROR_MESSAGE ;
 INSERT INTO ERR_TABLE (PARAMETER,SQL_ERROR_CODE, SQL_ERROR_MESSAGE)
 VALUES (:p, :errCode, :errMsg);
 END;
 outtab = SELECT 1/:p as A FROM DUMMY; -- DIVIDE BY ZERO Error if p=0 END

In the example above, an autonomous transaction is used to keep the error code in the ERR_TABLE stored in
persistency.

If the exception handler block were not an autonomous transaction, then every insert would be rolled back
because they were all made in the main transaction. In this case the result of the ERR_TABLE is as shown in the
following example.

 P |SQL_ERROR_CODE| SQL_ERROR_MESSAGE --
0 | 304 | division by zero undefined: at function /()

It is also possible to have nested autonomous transactions.

CREATE PROCEDURE P2() AS BEGIN

160 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

 BEGIN AUTONOMOUS TRANSACTION
 INSERT INTO LOG_TABLE VALUES ('MESSAGE');
 BEGIN AUTONOMOUS TRANSACTION
 ROLLBACK;
 END;
 END;
END;

The LOG_TABLE table contains 'MESSAGE', even though the inner autonomous transaction rolled back.

Supported statements inside the block

● SELECT, INSERT, DELETE, UPDATE, UPSERT, REPLACE
● IF, WHILE, FOR, BEGIN/END
● COMMIT, ROLLBACK, RESIGNAL, SIGNAL
● Scalar variable assignment

Unsupported statements inside the block

● Calling other procedures
● DDL
● Cursor
● Table assignments

 Note
You have to be cautious if you access a table both before and inside an autonomous transaction started in a
nested procedure (e.g. TRUNCATE, update the same row), because this can lead to a deadlock situation.
One solution to avoid this is to commit the changes before entering the autonomous transaction in the
nested procedure.

8.9 Transactional Statements

8.9.1 COMMIT and ROLLBACK

The COMMIT and ROLLBACK commands are supported natively in SQLScript.

The COMMIT command commits the current transaction and all changes before the COMMIT command is
written to persistence.

The ROLLBACK command rolls back the current transaction and undoes all changes since the last COMMIT.

Example 1:

CREATE PROCEDURE PROC1() AS BEGIN
 UPDATE B_TAB SET V = 3 WHERE ID = 1;
 COMMIT;
 UPDATE B_TAB SET V = 4 WHERE ID = 1;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 161

 ROLLBACK; END;

In this example, the B_TAB table has one row before the PROC1 procedure is executed:

V ID

0 1

After you execute the PROC1 procedure, the B_TAB table is updated as follows:

V ID

3 1

This means only the first update in the procedure affected the B_TAB table. The second update does not affect
the B_TAB table because it was rolled back.

The following graphic provides more detail about the transactional behavior. With the first COMMIT command,
transaction tx1 is committed and the update on the B_TAB table is written to persistence. As a result of the
COMMIT, a new transaction starts, tx2.

By triggering ROLLBACK, all changes done in transaction tx2 are reverted. In Example 1, the second update is
reverted. Additionally after the rollback is performed, a new transaction starts, tx3.

The transaction boundary is not tied to the procedure block. This means that if a nested procedure contains a
COMMIT/ROLLBACK, then all statements of the top-level procedure are affected.

Example 2:

CREATE PROCEDURE PROC2() AS BEGIN
 UPDATE B_TAB SET V = 3 WHERE ID = 1;
 COMMIT;
END;
CREATE PROCEDURE PROC1() AS

162 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

BEGIN
 UPDATE A_TAB SET V = 2 WHERE ID = 1;
 CALL PROC2();
 UPDATE A_TAB SET V = 3 WHERE ID = 1;
 ROLLBACK; END;

In Example 2, the PROC1 procedure calls the PROC2procedure. The COMMIT in PROC2 commits all changes done
in the tx1 transaction (see the following graphic). This includes the first update statement in the PROC1
procedure as well as the update statement in the PROC2 procedure. With COMMIT a new transaction starts
implicitly, tx2.

Therefore the ROLLBACK command in PROC1 only affects the previous update statement; all other updates
were committed with the tx1 transaction.

 Note
● If you used DSQL in the past to execute these commands (for example, EXEC ‘COMMIT’,

EXEC ’ROLLBACK’), SAP recommends that you replace all occurrences with the native commands
COMMIT/ROLLBACK because they are more secure.

● The COMMIT/ROLLBACK commands are not supported in Scalar UDF or in Table UDF.

8.9.2 SAVEPOINT

SQLScript now supports transactional savepoints that allow the rollback of a transaction to a defined point.
This includes:

● the definition of a SAVEPOINT: SAVEPOINT <name>
● the rollback to a specific SAVEPOINT: ROLLBACK TO SAVEPOINT <name>
● and the releasing of a SAVEPOINT: RELEASE SAVEPOINT <name>

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 163

Limitation

SAVEPOINT is a transactional statement, such as COMMIT or ROLLBACK. Therefore, the limitations of
transactional statements apply to SAVEPOINT as well.

Example

drop table t1; create table t1(i1 int);
create or replace procedure test
as begin
 insert into t1 values(1);
 SAVEPOINT save1;
 insert into t1 values(2);
 ROLLBACK TO SAVEPOINT save1;
 select * from t1;
 RELEASE SAVEPOINT save1;
end;
call test; -- result: {1} select * from t1; -- result: {1}

8.10 Dynamic SQL

Dynamic SQL allows you to construct an SQL statement during the execution time of a procedure. While
dynamic SQL allows you to use variables where they may not be supported in SQLScript and provides more
flexibility when creating SQL statements, it does have some disadvantages at run time:

● Opportunities for optimizations are limited.
● The statement is potentially recompiled every time the statement is executed.
● You must be very careful to avoid SQL injection bugs that might harm the integrity or security of the

database.

 Note
You should avoid dynamic SQL wherever possible as it may have negative effects on security or
performance.

164 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.10.1 EXEC

Syntax

EXEC '<sql-statement>' [INTO <var_name_list> [DEFAULT <scalar_expr_list>]]
[USING <expression_list>] [READS SQL DATA]

Description

EXEC executes the SQL statement <sql-statement> passed in a string argument. EXEC does not return any
result set, if <sql_statement> is a SELECT statement. You have to use EXECUTE IMMEDIATE for that
purpose.

Related Information

USING and INTO Clauses in DSQL [page 166]
EXECUTE IMMEDIATE [page 165]

8.10.2 EXECUTE IMMEDIATE

Syntax

EXECUTE IMMEDIATE '<sql-statement>' [INTO <var_name_list> [DEFAULT
<scalar_expr_list>]] [USING <expression_list>] [READS SQL DATA]

Description

EXECUTE IMMEDIATE executes the SQL statement passed in a string argument. The results of queries
executed with EXECUTE IMMEDIATE are appended to the result iterator of the procedure.

You can also use the INTO and USING clauses to pass scalar and table values in or out. Result sets assigned to
variables via INTO clause are not appended to the procedure result iterator.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 165

When the suffix READS SQL DATA is attached, the statement is considered read-only. Since it is not possible to
check at compile time whether the statement that is about to be executed is read-only, the operation returns a
run-time error, if the executed statement is not read-only. The read-only declaration has the following
advantages:

● DSQL can be used in a read-only context, for example read-only procedures and table user-defined
functions

● read-only DSQL can be parallelized with other read-only operations thus improving the overall execution
time.

To avoid the repetition of the suffix READS SQL DATA for every DSQL statement in a read-only procedure or a
function, the DSQL will automatically be considered read-only, regardless of the suffix. However, it is still
possible to add the suffix.

CREATE PROCEDURE Proc1(IN A NVARCHAR(12)) READS SQL DATA as BEGIN
 EXEC 'SELECT * FROM ' || :A; END

Example

You use dynamic SQL to delete the contents of the table tab, insert a value and, finally, to retrieve all results in
the table.

CREATE TABLE tab (i int); CREATE PROCEDURE proc_dynamic_result2(i int) AS
BEGIN
 EXEC 'DELETE from tab';
 EXEC 'INSERT INTO tab VALUES (' || :i || ')';
 EXECUTE IMMEDIATE 'SELECT * FROM tab ORDER BY i'; END;

Related Information

EXEC [page 165]
USING and INTO Clauses in DSQL [page 166]

8.10.3 USING and INTO Clauses in DSQL

This feature introduces additional support for parameterized dynamic SQL. It is possible to use scalar
variables, as well as table variable in USING and INTO clauses and CALL-statement parameters with USING and
INTO clauses. You can use the INTO and USING clauses to pass in or out scalar or tabular values. Result sets,
assigned to variables by means of the INTO clause, are not appended to the procedure result iterator.

166 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Syntax

EXEC '<sql-statement>' [INTO <var_name_list>] [USING <expression_list>]; EXECUTE IMMEDIATE '<sql-statement>' [INTO <var_name_list>] [USING
<expression_list>];
<var_name_list> ::= <var_name> [{, <var_name>} ...]
<var_name> ::= <identifier> <expression_list> ::= <expression> [{, <expression>} ...]

Description

EXEC executes the SQL statement <sql-statement> passed as a string argument. EXEC does not return a
result set, if <sql_statement> is a SELECT-statement. You have to use EXECUTE IMMEDIATE for that
purpose.

If the query returns result sets or output parameters, you can assign the values to scalar or table variables with
the INTO clause.

When the SQL statement is a SELECT statement and there are table variables listed in the INTO clause, the
result sets are assigned to the table variables sequentially. If scalar variables are listed in the INTO clause for a
SELECT statement, it works like <select_into_stmt> and assigns the value of each column of the first row
to a scalar variable when a single row is returned from a single result set. When the SQL statement is a CALL
statement, output parameters represented as':<var_name>' in the SQL statement are assigned to the
variables in the INTO clause that have the same names.

Examples

 Sample Code
INTO Example 1

DO (IN tname NVARCHAR(10) => 'mytable') BEGIN
 DECLARE tv TABLE (i INT);
 EXEC 'select col1 * 10 as i from ' || :tname INTO tv;
 SELECT * FROM :tv; END;

 Sample Code
INTO Example 2

DO (IN TNAME NVARCHAR(10) =>'mytable', IN CNAME1 NVARCHAR(10) => 'I',
 IN CNAME2 NVARCHAR(10) => 'A',
 OUT K INT =>?, OUT J INT => ?)
BEGIN
 EXEC 'select max(' || :cname1 || ') as a, min(' ||:cname2 ||') as b from
'|| :TNAME INTO K, J ;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 167

END;

 Sample Code
INTO Example 3

CREATE PROCEDURE myproc (OUT i INT, OUT ot TABLE (i INT)) AS BEGIN
 ...
END;

DO (OUT a INT => ?, OUT tv TABLE (i INT) => ?)
BEGIN
 EXEC 'call myproc(:a, :tv)' INTO a, tv; END;

You can also bind scalar or table values with the USING clause. When <sql-statement> uses
':<var_name>' as a parameter, only variable references are allowed in the USING clause and variables with
the same name are bound to the parameter ':<var_name>'. However, when <sql-statement> uses '?' as
a parameter (unnamed parameter bound), any expression is allowed in the USING clause and values are
mapped to parameters sequentially. The unnamed parameter bound is supported when there are only input
parameters.

 Sample Code
USING Example 1

DO BEGIN DECLARE tv TABLE (col1 INT) = SELECT * FROM mytab;
 DECLARE a INT = 123;
 DECLARE tv2 TABLE (col1 INT);
 EXEC 'select col1 + :a as col1 from :tv' INTO tv2 USING :a, :tv;
 SELECT * FROM :tv2; END;

 Sample Code
USING Example 2

DO (IN TNAME NVARCHAR(10) =>'mytable', IN CNAME1 NVARCHAR(10) => 'I',
 IN CNAME2 NVARCHAR(10) => 'A',
 OUT K INT =>?, OUT J INT => ?)
BEGIN
 DECLARE a INT = 2;
 DECLARE b INT = 3;
 EXEC 'select max(' || :cname1 || ') + ? * ? as a, min(' || :cname2 || ') as
b from ' || :TNAME INTO K, J USING :a, :b; END;

 Sample Code
USING Example 3

CREATE PROCEDURE myproc (IN i INT, IN itv TABLE (col1 INT)) AS BEGIN
 ...

168 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

END;

DO BEGIN
 DECLARE tv TABLE (col1 INT) = SELECT * FROM mytab;
 DECLARE a INT = 123;
 EXEC 'call myproc(:a, :tv)' USING :a, :tv; END;

Limitations

A table variable cannot be used in both an INTO-clause and a USING-clause.

The parameter '?' only works with scalar input parameters.

The parameter '?' and the variable reference ':<var_name>' cannot be used at the same time in an SQL
statement.

8.10.4 APPLY_FILTER

Syntax

<variable_name> = APPLY_FILTER(<table_or_table_variable>,
<filter_variable_name>);

Syntax Elements

<variable_name> ::= <identifier>

The variable where the result of the APPLY_FILTER function will be stored.

<table_or_table_variable> ::= <table_name> | <table_variable>

You can use APPLY_FILTER with persistent tables and table variables.

<table_name> :: = <identifier>

The name of the table that is to be filtered.

<table_variable> ::= :<identifier>

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 169

The name of the table variable to be filtered.

<filter_variable_name> ::= <string_literal>

The filter command to be applied.

 Note
The following constructs are not supported in the filter string <filter_variable_name>:

● sub-queries, for example: CALL GET_PROCEDURE_NAME(' PROCEDURE_NAME in (SELECT
object_name FROM SYS.OBJECTS), ?);

● fully qualified column names, for example: CALL GET_PROCEDURE_NAME('
PROCEDURE.PROCEDURE_NAME = 'DSO', ?);

Description

The APPLY_FILTER function applies a dynamic filter to a table or a table variable. In terms of logic, it can be
considered a partially dynamic SQL statement. The advantage of the function is that you can assign it to a table
variable and that will not block SQL inlining.

 Caution
The disadvantage of APPLY_FILTER is the missing parametrization capability. Using constant values always
leads to preparing a new query plan and, therefore, to different query Plan Cache entries for the different
parameter values. This comes along with additional time spent for query preparation and potential cache
flooding effects in fast-changing parameter value scenarios. To avoid this, we recommend to use EXEC with
USING clause to make use of a parametrized WHERE-clause.

 Sample Code
Before:

v_filter = :column || ' = ''' || :value || ''''; lt = APPLY_FILTER(:lt0, :v_filter);

 Sample Code
After:

EXEC 'SELECT * FROM :lt0 WHERE (' || :column || ' = :value' INTO lt
USING :lt0, :value READS SQL DATA;

Examples

Example 1: Applying a filter to a persistent table

170 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

You create the following procedure

CREATE PROCEDURE GET_PROCEDURE_NAME (IN iv_filter NVARCHAR(100), OUT procedures outtype) AS
BEGIN
temp_procedures = APPLY_FILTER(SYS.PROCEDURES,:iv_filter);
procedures = SELECT SCHEMA_NAME, PROCEDURE_NAME FROM :temp_procedures; END;

You call the procedure with two different filter variables.

CALL GET_PROCEDURE_NAME(' PROCEDURE_NAME like ''MYPROC%''', ?); CALL GET_PROCEDURE_NAME(' SCHEMA_NAME = ''SYS''', ?);

Example 2: Using a table variable

CREATE TYPE outtype AS TABLE (SCHEMA_NAME NVARCHAR(256), PROCEDURE_NAME
NVARCHAR(256)); CREATE PROCEDURE GET_PROCEDURE_NAME (IN iv_filter NVARCHAR(100), OUT procedures
outtype)
AS
BEGIN
 temp_procedures = SELECT SCHEMA_NAME, PROCEDURE_NAME FROM SYS.PROCEDURES;
 procedures = APPLY_FILTER(:temp_procedures,:iv_filter); END;

8.11 Exception Handling

Exception handling is a method for handling exception and completion conditions in an SQLScript procedure.

8.11.1 DECLARE EXIT HANDLER

The DECLARE EXIT HANDLER parameter allows you to define an exit handler to process exception conditions
in your procedure or function.

DECLARE EXIT HANDLER FOR <proc_condition_value> {,<proc_condition_value>}...]
<proc_stmt>
<proc_condition_value> ::= SQLEXCEPTION
 | SQL_ERROR_CODE <error_code> | <condition_name>

For example, the following exit handler catches all SQLEXCEPTION and returns the information that an
exception was thrown:

DECLARE EXIT HANDLER FOR SQLEXCEPTION SELECT 'EXCEPTION was thrown' AS ERROR
FROM dummy;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 171

There are two system variables ::SQL_ERROR_CODE and ::SQL_ERROR_MESSAGE that can be used to get the
error code and the error message, as shown in the next example:

CREATE PROCEDURE MYPROC (IN in_var INTEGER, OUT outtab TABLE(I INTEGER)) AS BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 outtab = SELECT 1/:in_var as I FROM dummy; END;

By setting <in_var> = 0 the result of the procedure execution would be:

::SQL_ERROR_CODE ::SQL_ERROR_MESSAGE

304 Division by zero undefined: the right-hand value of the division cannot be zero
at function /() (please check lines: 6)

Besides defining an exit handler for an arbitrary SQLEXCEPTION, you can also define it for a specific error code
number by using the keyword SQL_ERROR_CODE followed by an SQL error code number.

For example, if only the “division-by-zero” error should be handled the exception handler, the code looks as
follows:

DECLARE EXIT HANDLER FOR SQL_ERROR_CODE 304 SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM
DUMMY;

The following error codes are supported in the exit handler. You can use the system view M_ERROR_CODES to
get more information about the error codes.

Type Description

SQL Error Code Code strings starting with ERR_SQL_*

SQLScript error code Code strings starting with ERR_SQLSCRIPT_*

Transactional error code ERR_TX_ROLLBACK_LOCK_TIMEOUT

ERR_TX_ROLLBACK_DEADLOCK

ERR_TX_SERIALIZATION

ERR_TX_LOCK_ACQUISITION_FAIL

User error code User error code

When catching transactional errors, the transaction still lives inside the EXIT HANDLER. That allows the explicit
use of COMMIT or ROLLBACK.

 Note
It is now possible to define an exit handler for the statement FOR UPDATE NOWAIT with the error code 146.
For more information, see Supported Error Codes [page 182].

172 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Instead of using an error code the exit handler can be also defined for a condition.

DECLARE EXIT HANDLER FOR MY_COND SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM
DUMMY;

For more information about declaring a condition, see DECLARE CONDITION [page 176].

If you want to do more in the exit handler, you have to use a block by using BEGIN…END. For instance preparing
some additional information and inserting the error into a table:

DECLARE EXIT HANDLER FOR SQL_ERROR_CODE 304 BEGIN

 DECLARE procedure_name NVARCHAR(500) =
 ::CURRENT_OBJECT_SCHEMA || '.' ||::CURRENT_OBJECT_NAME;

 DECLARE parameters NVARCHAR(255) =
 'IN_VAR = '||:in_var;

 INSERT INTO LOG_TABLE VALUES (::SQL_ERROR_CODE,
 ::SQL_ERROR_MESSAGE,
 :procedure_name,
 :parameters);

END; tab = SELECT 1/:in_var as I FROM dummy;

 Note
In the example above, in case of an unhandled exception the transaction will be rolled back. Thus the new
row in the table LOG_TABLE will be gone as well. To avoid this, you can use an autonomous transaction. For
more information, see Autonomous Transaction [page 160].

8.11.2 DECLARE CONTINUE HANDLER

Description

The EXIT handler in SQLScript already offers a way to process exception conditions in a procedure or a
function during execution. The CONTINUE handler not only allows you to handle the error but also to continue
with the execution after an exception has been thrown.

 Caution
Triggers are not supported inside CONTINUE HANDLER.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 173

Syntax

 Code Syntax

DECLARE CONTINUE HANDLER FOR <proc_condition_value>
{,<proc_condition_value>}...] <proc_stmt>
<proc_condition_value> ::= SQLEXCEPTION
 | SQL_ERROR_CODE <error_code> | <condition_name>

Behavior

The behavior of the CONTINUE handler for catching and handling exceptions is the same as that of the EXIT
handler with the following exceptions and extensions.

Continue After Handling

SQLScript execution continues with the statement following the exception-throwing statement right after
catching and handling the exception.

 Sample Code

DO BEGIN DECLARE A INT = 10;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN -- Catch the exception
 SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 END;
 A = 1 / 0; -- An exception will be thrown
 SELECT :A FROM DUMMY; -- Continue from this statement after handling the
exception END;

In multilayer blocks, SQLScript execution continues with the next statement in the inner-most block after the
exception-throwing statement.

 Sample Code

DO BEGIN DECLARE A INT = 10;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY; -- Catch the
exception
 SELECT :A FROM DUMMY;
 BEGIN
 A = 1 / 0; -- An exception throwing
 A = :A + 1; -- Continue from this statement after handling the
exception
 END;
 SELECT :A FROM DUMMY; -- Result: 11 END;

174 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Block Parallel Execution
It is difficult to determine which statement is the statement following an error-throwing statement in parallel
execution blocks. Some of the statements may have already been executed before the exception occurs.

For this reason, implicit or explicit parallel execution is not supported within the scope of a continue handler.

 Sample Code

CREATE PROCEDURE PROC READS SQL DATA AS BEGIN SELECT * FROM DUMMY;
END;

DO BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY; -- Catch the
exception
 BEGIN PARALLEL EXECUTION -- not supported
 CALL PROC;
 CALL PROC;
 CALL PROC;
 END; END;

Handling of Conditional Statements
If there is an error in a conditional statement for an IF, a WHILE, or a FOR block, the whole block will be skipped
after handling the error because the condition is no longer valid.

 Sample Code

DO BEGIN DECLARE A INT = 0;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 IF A = 1 / 0 THEN -- An error occurs
 A = 1;
 ELSE
 A = 2;
 END IF;
 SELECT :A FROM DUMMY; -- Continue from here, Result: 0 END;

Exit Handlers and Continue Handlers
EXIT handlers cannot be declared within the same scope or within a nested scope of a CONTINUE handler, but
CONTINUE handlers can be declared in the nested scope of an EXIT handler.

 Sample Code

DO BEGIN DECLARE EXIT HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY; -- OK
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY; -- Checker error
thrown
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 BEGIN

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 175

 DECLARE EXIT HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY; -- Checker error
thrown
 SELECT 1 / 0 FROM DUMMY;
 END;
 END; END;

Variable Values

The value of the variable remains as it was before the execution of the statement that returns an exception.

 Sample Code

CREATE TABLE TAB (I INT); DO BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;
 INSERT INTO TAB VALUES (1);
 INSERT INTO TAB VALUES (1 / 0); -- An error thrown
 SELECT ::ROWCOUNT FROM DUMMY; -- 1, not 0
END;

DO BEGIN
 DECLARE CONTINUE HANDLER FOR SQL_ERROR_CODE 12346 BEGIN END;
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQL_ERROR_CODE 12345 BEGIN
 SIGNAL SQL_ERROR_CODE 12346;
 SELECT ::SQL_ERROR_CODE FROM DUMMY; -- 12346, not 12345
 END;
 SIGNAL SQL_ERROR_CODE 12345;
 END;
END;

DO BEGIN
 DECLARE A INT = 10;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
 SELECT :A FROM DUMMY; -- Result: 10
 END;
 A = 1 / 0;
 SELECT :A FROM DUMMY; -- Result: 10 END;

8.11.3 DECLARE CONDITION

Declaring a CONDITION variable allows you to name SQL error codes or even to define a user-defined
condition.

DECLARE <condition name> CONDITION [FOR SQL_ERROR_CODE <error_code>];

These variables can be used in EXIT HANDLER declaration as well as in SIGNAL and RESIGNAL statements.
Whereby in SIGNAL and RESIGNAL only user-defined conditions are allowed.

176 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Using condition variables for SQL error codes makes the procedure/function code more readable. For example
instead of using the SQL error code 304, which signals a division by zero error, you can declare a meaningful
condition for it:

DECLARE division_by_zero CONDITION FOR SQL_ERROR_CODE 304;

The corresponding EXIT HANDLER would then look as follows:

DECLARE EXIT HANDLER FOR division_by_zero SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;

Besides declaring a condition for an already existing SQL error code, you can also declare a user-defined
condition. Either define it with or without a user-defined error code.

Considering you would need a user-defined condition for an invalid procedure input you have to declare it as in
the following example:

DECLARE invalid_input CONDITION;

Optional you can also associate a user-defined error code, e.g. 10000:

DECLARE invalid_input CONDITION FOR SQL_ERROR_CODE 10000;

 Note
Please note the user-defined error codes must be within the range of 10000 to 19999.

How to signal and/or resignal a user-defined condition will be handled in the section SIGNAL and RESIGNAL
[page 177].

8.11.4 SIGNAL and RESIGNAL

The SIGNAL statement is used to explicitly raise a user-defined exception from within your procedure or
function.

SIGNAL (<user_defined_condition> | SQL_ERROR_CODE <int_const>)[SET MESSAGE_TEXT
= '<message_string>']

The error value returned by the SIGNAL statement is either an SQL_ERROR_CODE, or a user_defined_condition
that was previously defined with DECLARE CONDITION [page 176]. The used error code must be within the
user-defined range of 10000 to 19999.

For example, to signal an SQL_ERROR_CODE 10000, proceed as follows:

SIGNAL SQL_ERROR_CODE 10000;

To raise a user-defined condition, for example invalid_input, as declared in the previous section (see DECLARE
CONDITION [page 176]), use the following command:

SIGNAL invalid_input;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 177

But none of these user-defined exceptions have an error message text. That means that the value of the
system variable ::SQL_ERROR_MESSAGE is empty. Whereas the value of ::SQL_ERROR_CODE is 10000.

In both cases you get the following information in case the user-defined exception is thrown:

[10000]: user-defined error: "MY_SCHEMA"."MY_PROC": line 3 col 2 (at pos 37): [10000] (range 3) user-defined error exception

To set a corresponding error message, you have to use SET MESSAGE_TEXT:

SIGNAL invalid_input SET MESSAGE_TEXT = 'Invalid input arguments';

The result of the user-defined exception looks then as follows:

[10000]: user-defined error: "SYSTEM"."MY": line 4 col 2 (at pos 96): [10000]
(range 3) user-defined error exception: Invalid input arguments

In the following example, the procedure signals an error in case the input argument of start_date is greater
than the input argument of end_date:

CREATE PROCEDURE GET_CUSTOMERS(IN start_date DATE, IN end_date DATE,
 OUT aCust TABLE (first_name NVARCHAR(255),
 last_name NVARCHAR(255))
)
 AS
 BEGIN
 DECLARE invalid_input CONDITION FOR SQL_ERROR_CODE 10000;

 IF :start_date > :end_date THEN
 SIGNAL invalid_input SET MESSAGE_TEXT =
 'START_DATE = '||:start_date||' > END_DATE =
'
 ||:end_date;
 END IF;

 aCust = SELECT first_name, last_name
 FROM CUSTOMER C
 WHERE c.bdate >= :start_date
 AND c.bdate <= :end_date;
 END;

If the procedures are called with invalid input arguments, you receive the following error message:

user-defined error: [10000] "MYSCHEMA"."GET_CUSTOMERS": line 9 col 3 (at pos
373): [10000] (range 3) user-defined error exception: START_DATE = 2011-03-03 >
END_DATE = 2010-03-03

For more information on how to handle the exception and continue with procedure execution, see Nested Block
Exceptions in Exception Handling Examples [page 179].

The RESIGNAL statement is used to pass on the exception that is handled in the exit handler.

RESIGNAL [<user_defined_condition > | SQL_ERROR_CODE <int_const>] [SET
MESSAGE_TEXT = '<message_string>']

Besides pass on the original exception by simple using RESIGNAL you can also change some information
before pass it on. Please note that the RESIGNAL statement can only be used in the exit handler.

178 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Using RESIGNAL statement without changing the related information of an exception is done as follows:

CREATE PROCEDURE MYPROC (IN in_var INTEGER, OUT outtab TABLE(I INTEGER)) AS BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 RESIGNAL;

 outtab = SELECT 1/:in_var as I FROM dummy;
 END;

In case of <in_var> = 0 the raised error would be the original SQL error code and message text.

You can change the error message of an SQL error by using SET MESSAGE _TEXT:

CREATE PROCEDURE MY (IN in_var INTEGER, OUT outtab TABLE(I INTEGER)) AS
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 RESIGNAL SET MESSAGE_TEXT = 'for the input parameter in_var = '||
 :in_var || ' exception was raised ';

 outtab = SELECT 1/:in_var as I FROM dummy; END;

The original SQL error message will be now replaced by the new one:

[304]: division by zero undefined: [304] "SYSTEM"."MY": line 4 col 10 (at pos
131): [304] (range 3) division by zero undefined exception: for the input
parameter in_var = 0 exception was raised

You can get the original message via the system variable ::SQL_ERROR_MESSAGE. This is useful, if you still
want to keep the original message, but would like to add additional information:

CREATE PROCEDURE MY (IN in_var INTEGER, OUT outtab TABLE(I INTEGER)) AS
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 RESIGNAL SET MESSAGE_TEXT = 'for the input parameter in_var = '||
 :in_var || ' exception was raised '
 || ::SQL_ERROR_MESSAGE;

 outtab = SELECT 1/:in_var as I FROM dummy; END;

8.11.5 Exception Handling Examples

General Exception Handling

A general exception can be handled with an exception handler declared at the beginning of a statement that
makes an explicit or an implicit signal exception.

 CREATE TABLE MYTAB (I INTEGER PRIMARYKEY);

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 179

CREATE PROCEDURE MYPROC AS BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 INSERT INTO MYTAB VALUES (1);
 INSERT INTO MYTAB VALUES (1); -- expected unique violation error: 301
 -- will not be reached
END; CALL MYPROC;

Error Code Exception Handling

You can declare an exception handler that catches exceptions with specific error code numbers.

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE EXIT HANDLER FOR SQL_ERROR_CODE 301
SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 INSERT INTO MYTAB VALUES (1);
 INSERT INTO MYTAB VALUES (1); -- expected unique violation error: 301
 -- will not be reached
END; CALL MYPROC;

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE myVar INT;
 DECLARE EXIT HANDLER FOR SQL_ERROR_CODE 1299
 BEGIN
 SELECT 0 INTO myVar FROM DUMMY;
 SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE FROM DUMMY;
 SELECT :myVar FROM DUMMY;
 END;
 SELECT I INTO myVar FROM MYTAB; --NO_DATA_FOUND exception
 SELECT 'NeverReached_noContinueOnErrorSemantics' FROM DUMMY;
END;
CALL MYPROC;

Conditional Exception Handling

Exceptions can be declared by using a CONDITION variable. The CONDITION can optionally be specified with an
error code number.

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE MYCOND CONDITION FOR SQL_ERROR_CODE 301;
 DECLARE EXIT HANDLER FOR MYCOND SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE
FROM DUMMY;
 INSERT INTO MYTAB VALUES (1);
 INSERT INTO MYTAB VALUES (1); -- expected unique violation error: 301
 -- will not be reached
END; CALL MYPROC;

180 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Signal an Exception

The SIGNAL statement can be used to explicitly raise an exception from within your procedures.

 Note
The error code used must be within the user-defined range of 10000 to 19999.

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE MYCOND CONDITION FOR SQL_ERROR_CODE 10001;
 DECLARE EXIT HANDLER FOR MYCOND SELECT ::SQL_ERROR_CODE, ::SQL_ERROR_MESSAGE
FROM DUMMY;
 INSERT INTO MYTAB VALUES (1);
 SIGNAL MYCOND SET MESSAGE_TEXT = 'my error';
 -- will not be reached
END; CALL MYPROC;

Resignal an Exception

The RESIGNAL statement raises an exception on the action statement in exception handler. If error code is not
specified, RESIGNAL will throw the caught exception.

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE MYCOND CONDITION FOR SQL_ERROR_CODE 10001;
 DECLARE EXIT HANDLER FOR MYCOND RESIGNAL;
 INSERT INTO MYTAB VALUES (1);
 SIGNAL MYCOND SET MESSAGE_TEXT = 'my error';
 -- will not be reached
END; CALL MYPROC;

Nested Block Exceptions

You can declare exception handlers for nested blocks.

CREATE TABLE MYTAB (I INTEGER PRIMARY KEY); CREATE PROCEDURE MYPROC AS
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION RESIGNAL SET MESSAGE_TEXT = 'level 1';
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION RESIGNAL SET MESSAGE_TEXT = 'level
2';
 INSERT INTO MYTAB VALUES (1);
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION RESIGNAL SET MESSAGE_TEXT =
'level 3';
 INSERT INTO MYTAB VALUES (1); -- expected unique violation error:
301

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 181

 -- will not be reached
 END;
 END;
END; CALL MYPROC;

8.11.6 Supported Error Codes

The following is a list of the error codes supported by the exit handler.

Code Type Description

131 ERR_TX_ROLLBACK_LOCK_TIMEOUT transaction rolled back by lock wait
timeout

133 ERR_TX_ROLLBACK_DEADLOCK transaction rolled back by detected
deadlock

138 ERR_TX_SERIALIZATION transaction serialization failure

256 ERR_SQL sql processing error

257 ERR_SQL_PARSE sql syntax error

258 ERR_SQL_INSUFF_PRIV insufficient privilege

259 ERR_SQL_INV_TABLE invalid table name

260 ERR_SQL_INV_COLUMN invalid column name

261 ERR_SQL_INV_INDEX invalid index name

262 ERR_SQL_INV_QUERY invalid query name

263 ERR_SQL_INV_ALIAS invalid alias name

264 ERR_SQL_INV_DATATYPE invalid datatype

265 ERR_SQL_MISSING_EXP expression missing

266 ERR_SQL_INCNST_DATATYPE inconsistent datatype

267 ERR_SQL_LONG_LEN_TYPE specified length too long for its data­
type

268 ERR_SQL_AMBG_COLUMN column ambiguously defined

269 ERR_SQL_MANY_VALUES too many values

270 ERR_SQL_FEW_VALUES not enough values

271 ERR_SQL_DPLC_ALIAS duplicate alias

272 ERR_SQL_DPLC_COLUMN duplicate column name

273 ERR_SQL_LONG_CHAR not a single character string

274 ERR_SQL_INS_LARGE_VALUE inserted value too large for column

275 ERR_SQL_NOT_FUNCTION aggregate function not allowed

276 ERR_SQL_NOT_SINGLE_GROUP missing aggregation or grouping

182 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

277 ERR_SQL_NOT_GROUP_EXP not a GROUP BY expression

278 ERR_SQL_NESTED_WO_GROUP nested group function without GROUP
BY

279 ERR_SQL_TOO_DEEP_NESTED group function is nested

280 ERR_SQL_ORDER_EXCEED_NUM ORDER BY item must be the number of
a SELECT-list

281 ERR_SQL_OUTER_IN_OR outer join not allowed in operand of OR
or IN

282 ERR_SQL_OUTER_CROSS_JOIN two tables cannot be outer-joined to
each other

283 ERR_SQL_OUTER_MORE_TWO a table may be outer joined to at most
one other table

284 ERR_SQL_JOIN_NOT_MATCH join field does not match

285 ERR_SQL_INV_JOIN_PRED invalid join condition

286 ERR_SQL_LONG_IDENTIFIER identifier is too long

287 ERR_SQL_NOT_NULL cannot insert NULL or update to NULL

288 ERR_SQL_EXST_TABLE cannot use duplicate table name

289 ERR_SQL_EXST_INDEX cannot use duplicate index name

290 ERR_SQL_EXST_QUERY cannot use duplicate query name

291 ERR_SQL_NOT_POS_ARGUMENT argument identifier must be positive

292 ERR_SQL_FEW_ARGUMENT wrong number of arguments

293 ERR_SQL_INV_ARGUMENT argument type mismatch

294 ERR_SQL_MANY_PRIMARY_KEY cannot have more than one primary key

295 ERR_SQL_LONG_MULTIKEY too long multi key length

296 ERR_SQL_REP_TABLE_KEY replicated table must have a primary
key

297 ERR_SQL_REP_UPDATE_KEY cannot update primary key field in repli­
cated table

298 ERR_SQL_NOT_DDL_STORE cannot store DDL

299 ERR_SQL_NOT_DROP_SYSIDX cannot drop index used for enforce­
ment of unique/primary key

300 ERR_SQL_ARG_OUT_OF_RANGE argument index is out of range

301 ERR_SQL_UNIQUE_VIOLATED unique constraint violated

302 ERR_SQL_INV_CHAR_VAL invalid CHAR or VARCHAR value

303 ERR_SQL_INV_DATETIME_VAL invalid DATE, TIME or TIMESTAMP
value

304 ERR_SQL_DIV_BY_ZERO division by zero undefined

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 183

Code Type Description

305 ERR_SQL_SINGLE_ROW single-row query returns more than one
row

306 ERR_SQL_INV_CURSOR invalid cursor

307 ERR_SQL_NUM_OUT_OF_RANGE numeric value out of range

308 ERR_SQL_EXST_COLUMN column name already exists

309 ERR_SQL_SUBQ_TOP_ORDERBY correlated subquery cannot have TOP
or ORDER BY

310 ERR_SQL_IN_PROC sql error in procedure

311 ERR_SQL_DROP_ALL_COLUMNS cannot drop all columns in a table

312 ERR_SQL_SEQ_EXHAUST sequence is exhausted

313 ERR_SQL_INV_SEQ invalid sequence

314 ERR_SQL_OVERFLOW_NUMERIC numeric overflow

315 ERR_SQL_INV_SYNONYM invalid synonym

316 ERR_SQL_INV_NUM_ARG_FUNC wrong number of arguments in function
invocation

317 ERR_SQL_NOT_MATCH_PLAN_TABLE \"P_QUERYPLANS\" not exists nor
valid format

318 ERR_SQL_DECIMAL_PRECISION decimal precision specifier is out of
range

319 ERR_SQL_DECIMAL_SCALE decimal scale specifier is out of range

320 ERR_SQL_LOB_INDEX cannot create index on expression with
datatype LOB

321 ERR_SQL_INV_VIEW invalid view name

322 ERR_SQL_EXST_VIEW cannot use duplicate view name

323 ERR_SQL_REP_DPLC_ID duplicate replication id

324 ERR_SQL_EXST_SEQ cannot use duplicate sequence name

325 ERR_SQL_ESC_SEQ invalid escape sequence

326 ERR_SQL_SEQ_CURRVAL CURRVAL of given sequence is not yet
defined in this session

327 ERR_SQL_CANNOT_EXPLAIN cannot explain plan of given statement

328 ERR_SQL_INV_FUNC_PROC invalid name of function or procedure

329 ERR_SQL_EXST_FUNC_PROC cannot use duplicate name of function
or procedure

330 ERR_SQL_EXST_SYNONYM cannot use duplicate synonym name

331 ERR_SQL_EXST_USER user name already exists

332 ERR_SQL_INV_USER invalid user name

333 ERR_SQL_COLUMN_NOT_AL­
LOWED_HERE

column not allowed

184 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

334 ERR_SQL_INV_PRIV invalid user privilege

335 ERR_SQL_EXST_ALIAS field alias name already exists

336 ERR_SQL_INV_DEFAULT invalid default value

337 ERR_SQL_INTO_NOT_ALLOWED INTO clause not allowed for this SE­
LECT statement

338 ERR_SQL_ZERO_LEN_NOT_ALLOWED zero-length columns are not allowed

339 ERR_SQL_INV_NUMBER invalid number

340 ERR_SQL_VAR_NOT_BOUND not all variables bound

341 ERR_SQL_UNDERFLOW_NUMERIC numeric underflow

342 ERR_SQL_COLLATE_CONFLICT collation conflict

343 ERR_SQL_INV_COLLATE_NAME invalid collate name

344 ERR_SQL_LOADER_PARSE parse error in data loader

345 ERR_SQL_NOT_REP_TABLE not a replication table

346 ERR_SQL_INV_REP_ID invalid replication id

347 ERR_SQL_INV_OPTION invalid option in monitor

348 ERR_SQL_INV_DATETIME_FORMAT invalid datetime format

349 ERR_SQL_CREATE_UNIQUE_INDEX cannot CREATE UNIQUE INDEX; dupli­
cate key found

350 ERR_SQL_DROP_COL_PRIMARY_KEY cannot drop columns in the primary-
key column list

351 ERR_SQL_DROP_MULTI_COL_UNIQUE column is referenced in a multi-column
constraint

352 ERR_SQL_CREATE_UNIQUE_IN­
DEX_ON_CDX_TAB

cannot create unique index on cdx table

353 ERR_SQL_EXST_UPDATE_LOG_GROUP update log group name already exists

354 ERR_SQL_INV_UP­
DATE_LOG_GROUP_NAME

invalid update log group name

355 ERR_SQL_UPDATE_LOG_TABLE_KEY the base table of the update log table
must have a primary key

356 ERR_SQL_MAX_UPDATE_LOG_GROUP exceed maximum number of update log
group

357 ERR_SQL_BASE_TABLE_AL­
READY_HAS_ULT

the base table already has a update log
table

358 ERR_SQL_ULT_CAN_NOT_HAVE_ULT update log table can not have a update
log table

359 ERR_SQL_STR_LENGTH_TOO_LARGE string is too long

360 ERR_SQL_VIEW_CHECK_VIOLATION view WITH CHECK OPTION where-
clause violation

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 185

Code Type Description

361 ERR_SQL_VIEW_UPDATE_VIOLATION data manipulation operation not legal
on this view

362 ERR_SQL_INV_SCHEMA invalid schema name

363 ERR_SQL_MAX_NUM_INDEX_COL­
UMN

number of index columns exceeds its
maximum

364 ERR_SQL_INV_PARTIAL_KEY_SIZE invalid partial key size

365 ERR_SQL_NO_MATCH­
ING_UNIQUE_OR_PRIMARY_KEY

no matching primary key for this col­
umn list

366 ERR_SQL_NO_PRIMARY_KEY referenced table does not have a pri­
mary key

367 ERR_SQL_MISMATCH_OF_COL­
UMN_NUMBERS

number of referencing columns must
match referenced columns

368 ERR_SQL_TEMP_TA­
BLE_WITH_UNIQUE

unique constraint not allowed on tem­
porary table

369 ERR_SQL_MAX_VIEW_DEPTH exceed maximum view depth limit

370 ERR_SQL_DIRECT_IN­
SERT_WITH_UNIQUE_INDEX

cannot perform DIRECT INSERT opera­
tion on table with unique indexes

371 ERR_SQL_XML_PARSE invalid XML document

372 ERR_SQL_XPATH_PARSE invalid XPATH

373 ERR_SQL_INV_XML_DURATION invalid XML duration value

374 ERR_SQL_INV_XML_FUNCTION invalid XML function usage

375 ERR_SQL_INV_XML_INDEX_OPERA­
TION

invalid XML index operation

376 ERR_SQL_PYTHON Python buildin procedure error

377 ERR_SQL_JIT JIT operation error

378 ERR_SQL_INV_COLUMN_VIEW invalid column view

379 ERR_SQL_TABLE_SCHEMA_MIS­
MATCH

table schema mismatch

380 ERR_SQL_RUN_LEVEL_CHANGE fail to change run level

381 ERR_SQL_RESTART fail to restart

382 ERR_SQL_COLLECT_ALL_VERSIONS fail to collect all version garbage

383 ERR_SQL_INV_IDENTIFIER invalid identifier

384 ERR_SQL_TOO_LONG_CONSTANT string is too long

385 ERR_SQL_RESTORE_SESSION could not restore session

386 ERR_SQL_EXST_SCHEMA cannot use duplicate schema name

387 ERR_SQL_AMBG_TABLE table ambiguously defined

388 ERR_SQL_EXST_ROLE role already exists

389 ERR_SQL_INV_ROLE invalid role name

186 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

390 ERR_SQL_INV_USERTYPE invalid user type

391 ERR_SQL_INV_USABLE_VIEW invalidated view

392 ERR_SQL_CYCLIC_ROLES can't assign cyclic role

393 ERR_SQL_NO_GRANT_OP­
TION_FOR_ROLE

roles must not receive a privilege with
grant option

394 ERR_SQL_CANT_REVOKE_ROLE error revoking role

395 ERR_SQL_INV_USER_DEFINED_TYPE invalid user-defined type name

396 ERR_SQL_EXST_USER_DE­
FINED_TYPE

cannot use duplicate user-defined type
name

397 ERR_SQL_INV_OBJ_NAME invalid object name

398 ERR_SQL_MANY_ORDER_BY cannot have more than one order by

399 ERR_SQL_TOO_DEEP_ROLE_TREE role tree too deep

400 ERR_SQL_INSERT_ONLY_TA­
BLE_WITH_PRIMARY_KEY

primary key not allowed on insert-only
table

401 ERR_SQL_INSERT_ONLY_TA­
BLE_WITH_UNIQUE

unique constraint not allowed on insert-
only table

402 ERR_SQL_DROPPED_USER the user was already dropped before
query execution

403 ERR_SQL_INTERNAL_ERROR internal error

404 ERR_SQL_INV_STRUCTURED_PRIVI­
LEGE_NAME

invalid (non-existent) structured privi­
lege name

405 ERR_SQL_DUP_STRUCTURED_PRIVI­
LEGE_NAME

cannot use duplicate structured privi­
lege name

406 ERR_SQL_CANT_UPDATE_GEN_COL INSERT, UPDATE and UPSERT are dis­
allowed on the generated field

407 ERR_SQL_INV_DATE_FORMAT invalid date format

408 ERR_SQL_PASS_OR_PARAME­
TER_NEEDED

password or parameter required for
user

409 ERR_SQL_TOO_MANY_PARAME­
TER_VALUES

multiple values for a parameter not
supported

410 ERR_SQL_INV_PRIVILEGE_NAME­
SPACE

invalid privilege namespace

411 ERR_SQL_INV_TABLE_TYPE invalid table type

412 ERR_SQL_INV_PASSWORD_LAYOUT invalid password layout

413 ERR_SQL_PASSWORD_REUSED last n passwords can not be reused

414 ERR_SQL_ALTER_PASS­
WORD_NEEDED

user is forced to change password

415 ERR_SQL_USER_DEACTIVATED user is deactivated

416 ERR_SQL_USER_LOCKED user is locked; try again later

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 187

Code Type Description

417 ERR_SQL_CANT_DROP_WITH­
OUT_CASCADE

can't drop without CASCADE specifica-
tion

418 ERR_SQL_INV_VIEW_QUERY invalid view query for creation

419 ERR_SQL_CANT_DROP_WITH_RE­
STRICT

can't drop with RESTRICT specification

420 ERR_SQL_ALTER_PASS­
WORD_NOT_ALLOWED

password change currently not allowed

421 ERR_SQL_FULLTEXT_INDEX cannot create fulltext index

422 ERR_SQL_MIXED_PRIVILEGE_NAME­
SPACES

privileges must be either all SQL or all
from one namespace

423 ERR_SQL_LVC AFL error

424 ERR_SQL_INV_PACKAGE invalid name of package

425 ERR_SQL_EXST_PACKAGE duplicate package name

426 ERR_SQL_NUM_COLUMN_MISMATCH number of columns mismatch

427 ERR_SQL_CANT_RESERVE_INDEX_ID can not reserve index id any more

429 ERR_SQL_INTEGRITY_CHECK_FAILED integrity check failed

430 ERR_SQL_INV_USABLE_PROC invalidated procedure

433 ERR_SQL_NOT_NULL_CONSTRAINT null value found

434 ERR_SQL_INV_OBJECT invalid object ID

435 ERR_SQL_INV_EXP invalid expression

436 ERR_SQL_SET_SYSTEM_LICENSE could not set system license

437 ERR_SQL_ONLY_LICENSE_HANDLING only commands for license handling are
allowed in current state

438 ERR_SQL_INVALID_USER_PARAME­
TER_VALUE

invalid user parameter value

439 ERR_SQL_COMPOSITE_ERROR composite error

440 ERR_SQL_TABLE_TYPE_CONVER­
SION_ERROR

table type conversion error

442 ERR_SQL_MAX_NUM_COLUMN number of columns exceeds its maxi­
mum

443 ERR_SQL_INV_CALC_SCENARIO invalid calculation scenario name

444 ERR_SQL_PACKMAN package manager error

445 ERR_SQL_INV_TRIGGER invalid trigger name

446 ERR_SQL_EXST_TRIGGER cannot use duplicate trigger name

447 ERR_SQL_BACKUP_FAILED backup could not be completed

448 ERR_SQL_RECOVERY_FAILED recovery could not be completed

449 ERR_SQL_RECOVERY_STRATEGY recovery strategy could not be deter­
mined

188 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

450 ERR_SQL_UNSET_SYSTEM_LICENSE failed to unset system license

451 ERR_SQL_NOT_AL­
LOWED_SUBJ_TAB_ACCESS_TRIGGER

modification of subject table in trigger
not allowed

452 ERR_SQL_INV_BACKUPID invalid backup id

453 ERR_SQL_USER_WITHOUT_PASS­
WORD

user does not have a password

455 ERR_SQL_READ_ONLY_SES­
SION_VARIABLE

the predefined session variable cannot
be set via SET command

456 ERR_SQL_NOT_ALLOWED_FOR_SPE­
CIAL_ROLE

not allowed for this role

457 ERR_SQL_DPLC_CONSTRAINT duplicate constraint name

458 ERR_SQL_UNSUPPORTED_FUNCTION unsupported function included

459 ERR_SQL_INV_USABLE_FUNC invalidated function

460 ERR_SQL_INV_PRIVILEGE_FOR_OB­
JECT

invalid privilege for object

461 ERR_SQL_FK_NOT_FOUND foreign key constraint violation

462 ERR_SQL_FK_ON_UPDATE_DE­
LETE_FAILED

failed on update or delete by foreign key
constraint violation

463 ERR_SQL_MAX_NUM_TABLE number of tables exceeds its maximum

464 ERR_SQL_MAX_PARSE_TREE_DEPTH SQL internal parse tree depth exceeds
its maximum

465 ERR_SQL_INV_USABLE_TRIGGER Cannot execute trigger, was invalidated
by object change

466 ERR_SQL_CREDENTIAL_NOT_FOUND no credential found

467 ERR_SQL_PARAM_VARIABLE cannot use parameter variable

468 ERR_SQL_HINT hint error

469 ERR_SQL_INV_SRC_DATATYPE unsupported datatype on source, con­
sider using a view

470 ERR_SQL_INV_DATA_SOURCE_CONF invalid data source configuration

471 ERR_SQL_INV_DATA_SOURCE invalid data source name

472 ERR_SQL_EXST_DATA_SOURCE cannot use duplicate data source name

473 ERR_SQL_ADAPTER_CONFIGURATION invalid adapter configuration

474 ERR_SQL_INV_ADAPTER invalid adapter name

475 ERR_SQL_EXST_ADAPTER cannot use duplicate adapter name

476 ERR_SQL_INV_REMOTE_OBJECT invalid remote object name

477 ERR_SQL_CREDENTIAL_EXISTS credential exists

478 ERR_SQL_UDF_RUNTIME user defined function runtime error

479 ERR_SQL_INV_SPATIAL_ATTRIBUTE invalid spatial attribute

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 189

Code Type Description

480 ERR_SQL_INV_SPATIAL_UNIT invalid spatial unit of measure name

481 ERR_SQL_EXST_SPATIAL_UNIT cannot use duplicate spatial unit of
measure name

482 ERR_SQL_INV_SPATIAL_REF_SYS invalid spatial reference system name

483 ERR_SQL_EXST_SPATIAL_REF_SYS cannot use duplicate spatial reference
system name

484 ERR_SQL_SESSION_GROUP_COM­
MAND_FAILURE

invalid session group command

485 ERR_SQL_INV_STRUCTURED_PRIVI­
LEGE_DEFINITION

invalid definition of structured privilege

487 ERR_SQL_IMPORT_PARTIALLY_FAILED some of rows have failed to be imported

488 ERR_SQL_INV_DATABASE invalid database name

489 ERR_SQL_INV_EPMMODEL invalid EPM Model name

490 ERR_SQL_EXST_EPMMODEL cannot use duplicate EPM Model name

491 ERR_SQL_INV_EPMMODEL_DEF invalid EPM Model definition

492 ERR_SQL_INV_EPMQUERYSOURCE invalid EPM Query Source name

493 ERR_SQL_EXST_EPMQUERYSOURCE cannot use duplicate EPM Query
Source name

494 ERR_SQL_INV_EPMQUERY­
SOURCE_DEF

invalid EPM Query Source definition

498 ERR_SQL_IMPORT_FAIL_ON_MAX_RE­
CORD_SIZE_CHECK

Memory for a record exceeds the limit

499 ERR_SQL_INV_C2C invalid stacked column search

500 ERR_SQL_REQUIRE_PREDICATE predicates are required in a where
clause

501 ERR_SQL_SERIES_INVALID_SPEC Invalid series data specification:

502 ERR_SQL_INV_TASK invalid name of task

503 ERR_SQL_EXST_TASK cannot use duplicate name of task

504 ERR_SQL_INV_ADAPTER_LOCATION invalid adapter location

505 ERR_SQL_LAST_ADAPTER_LOCATION cannot remove last location of adapter,
use DROP ADAPTER statement

506 ERR_SQL_SYSTEM_ADAPTER invalid create, alter or drop system
adapter

507 ERR_SQL_INV_AGENT invalid agent name

508 ERR_SQL_EXST_AGENT cannot use duplicate agent name

509 ERR_SQL_INV_AGENT_PROPS invalid agent properties

510 ERR_SQL_TEMP_TABLE_IN_USE cannot alter global temporary table in
use or create/alter/drop index on the
table

190 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

640 ERR_SQL_2 sql processing error

641 ERR_SQL_INV_REMOTE_SUBSCRIP­
TION

invalid remote subscription name

642 ERR_SQL_EXST_REMOTE_SUBSCRIP­
TION

cannot use duplicate remote subscrip­
tion name

643 ERR_SQL_INV_REMOTE_SUBSCRIP­
TION_DEF

invalid remote subscription definition

644 ERR_SQL_EXST_RE­
MOTE_SOURCE_ADAPTER_LOCATION

remote source refers to the adapter lo­
cation

645 ERR_SQL_EXST_RE­
MOTE_SOURCE_ACTIVE_SUBSCRIP­
TIONS

remote source has active remote sub­
scriptions:

646 ERR_SQL_INV_USABLE_TASK invalidated task

647 ERR_SQL_NOT_ALLOWED_SYN­
TAX_FOR_TRIGGER

not supported syntax in trigger

648 ERR_SQL_TRIG­
GER_AND_PROC_NEST­
ING_DEPTH_EXCEEDED

nesting depth of trigger and procedure
is exceeded

649 ERR_SQL_QUERY_PINNED_PLAN Pinned plan error

650 ERR_SQL_QUERY_REMOVE_PIN­
NED_PLAN

Remove pinned plan error

651 ERR_SQL_EXST_OBJECT cannot use duplicate object name

652 ERR_SQL_AMBG_SCHEMA schema ambiguously defined

653 ERR_SQL_SET_ROW_ORDER row order already set on table

654 ERR_SQL_NO_ROW_ORDER no row order on table set

655 ERR_SQL_LICENSING_RUNTIME licensing error

656 ERR_SQL_LONG_PROPERTY property value too long

657 ERR_SQL_CANCEL_TASK_TIME­
OUT_REACHED

request to cancel task was sent but
task did not cancel before timeout was
reached

658 ERR_SQL_CANNOT_MUTATE_TA­
BLE_DURING_FK_EXECUTION

cannot mutate the table during trigger
or foreign key execution

659 ERR_SQL_EXST_WORKLOAD_CLASS cannot use duplicate workload class
name

660 ERR_SQL_INV_WORKLOAD_CLASS invalid workload class name

661 ERR_SQL_EXST_WORKLOAD_MAP­
PING

cannot use duplicate workload mapping
name

662 ERR_SQL_INV_WORKLOAD_MAPPING invalid workload mapping name

663 ERR_SQL_CONNECT_NOT_ALLOWED user not allowed to connect from client

664 ERR_SQL_INV_AGENT_GROUP invalid agent group name

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 191

Code Type Description

665 ERR_SQL_EXST_AGENT_GROUP cannot use duplicate agent group name

666 ERR_SQL_AGENT_GROUP_NOT_EMPT
Y

agents are still set to this agent group.

667 ERR_SQL_TEXT_MINING_FAILURE text mining error

668 ERR_SQL_2D_POINTS_SUP­
PORTED_ONLY

ST_Point columns support 2-dimen­
sional points only

669 ERR_SQL_SPATIAL_ERROR spatial error

670 ERR_SQL_PART_NOT_EXIST part does not exist

671 ERR_SQL_EXST_LIBRARY cannot use duplicate library name

672 ERR_SQL_DPLC_ASSOCIATION duplicate association name

673 ERR_SQL_INV_GRAPH_WORKSPACE invalid graph workspace name

675 ERR_SQL_EXST_GRAPH_WORKSPACE cannot use duplicate graph workspace
name

676 ERR_SQL_DUP_WORKLOAD_MAPPING cannot use duplicate workload mapping
to same combination of (user name,
application user name, application
name, client, application component
name, application component type)

677 ERR_SQL_CHECK_CONSTRAINT_VIO­
LATION

check constraint violation

678 ERR_SQL_PLANSTABILIZER plan stabilizer error

679 ERR_SQL_PLANSTABIL­
IZER_NO_MANAGER

plan stabilizer error - manager not
found: please check if Plan Stabilizer is
enabled

680 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT

plan stabilizer stored hint error - state­
ment hint table error

681 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT_COMMAND

plan stabilizer stored hint error - error
while processing statement hint com­
mand

682 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT_TABLE_EMPTY

plan stabilizer stored hint error - state­
ment hint table is empty

683 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT_MAP_LOAD_ER­
ROR

plan stabilizer stored hint error - state­
ment hint table is corrupt.

684 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT_RECORD_AL­
READY_EXISTS

plan stabilizer stored hint error - state­
ment hint record already exists

685 ERR_SQL_PLANSTABIL­
IZER_STORED_HINT_RE­
CORD_DOES_NOT_EXIST

plan stabilizer stored hint error - state­
ment hint record does not exist

686 ERR_SQL_START_TASK_ERROR start task error

687 ERR_SQL_EXCEED_LAG_TIME exceed lag time of RESULT_LAG

192 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

689 ERR_SQL_DUPLI­
CATE_ROWID_MATCHED

Duplicate rowid matched during merge
into

690 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN

plan stabilizer stored plan error

691 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_COMMAND

plan stabilizer stored plan error - error
while processing command

692 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_TABLE_EMPTY

plan stabilizer stored plan error - stored
plan table is empty

693 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_MAP_LOAD_ER­
ROR

plan stabilizer stored plan error - stored
plan table is corrupt.

694 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_RECORD_AL­
READY_EXISTS

plan stabilizer stored plan error - stored
plan record already exists

695 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_RE­
CORD_DOES_NOT_EXIST

plan stabilizer stored plan error - stored
plan record does not exist

696 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_CANNOT_CON­
VERT_ABSTRACT_PLAN

plan stabilizer stored plan error - can­
not convert to abstract plan

697 ERR_SQL_PREACTIVE_KEY_EXISTS Preactive key already exists

698 ERR_SQL_NO_PREACTIVE_KEY No preactive key exists

699 ERR_SQL_EXST_DEPENDENCY_RULE cannot use duplicate dependency rule
name

700 ERR_SQL_SINGLE_COL­
UMN_SEARCH_THROW_ERROR

no_stacked_column_search(throw_er­
ror) error

701 ERR_SQL_EXST_USERGROUP usergroup name already exists

702 ERR_SQL_INV_USERGROUP invalid usergroup name

704 ERR_SQL_USERGROUP_DELE­
TION_FAILED

usergroup cannot be dropped

705 ERR_SQL_CONCURRENT_GRANT Two concurrent statements performed
the same grant operation

706 ERR_SQL_INV_SYMMETRIC_CIPHER currently only AES-256-CBC is sup­
ported: invalid cipher

707 ERR_SQL_EXST_COLUMN_KEY cannot use duplicate column key name

708 ERR_SQL_EXST_COLUMN_KEYCOPY column keycopy already exists

709 ERR_SQL_EXST_KEYPAIR keypair already exists

710 ERR_SQL_INV_ASYMMETRIC_CIPHER currently only RSA-OAEP-2048 is sup­
ported: invalid cipher

711 ERR_SQL_EXST_COLUMN_KEY_ID cannot use duplicate column key id

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 193

Code Type Description

712 ERR_SQL_PLANSTABIL­
IZER_STORED_PLAN_MIGRATION

plan stabilizer stored plan error - migra­
tion error

713 ERR_SQL_NOT_OWN_KEYPAIR keypair not owned by the creator of the
column key

714 ERR_SQL_DROP_COLUMN_KEYCOPY cannot drop the last key admin keycopy

715 ERR_SQL_EMPTY_WORKLOAD_MAP­
PING

cannot use a workload mapping with no
properties

716 ERR_SQL_STALE_STATEMENT statement is stale, metadata or column
encryption key of some columns have
changed

717 ERR_SQL_INV_KEY_ID invalid key id

1,280 ERR_SQLSCRIPT_2 sqlscript error

1,281 ERR_SQLSCRIPT_WRONG_PARAMS wrong number or types of parameters
in call

1,282 ERR_SQLSCRIPT_OUT_PARAM_VAR output parameter not a variable

1,283 ERR_SQLSCRIPT_OUT_PARAM_DE­
FAULT

OUT and IN OUT parameters may not
have default expressions

1,284 ERR_SQLSCRIPT_DUP_PARAMETERS duplicate parameters are not permitted

1,285 ERR_SQLSCRIPT_DUP_DECL at most one declaration is permitted in
the declaration section

1,286 ERR_SQLSCRIPT_CURSOR_SE­
LECT_STMT

cursor must be declared by SELECT
statement

1,287 ERR_SQLSCRIPT_ID_NOT_DECLARED identifier must be declared

1,288 ERR_SQLSCRIPT_NOT_ASSIGN_TAR­
GET

expression cannot be used as an as­
signment target

1,289 ERR_SQLSCRIPT_NOT_INTO_TARGET expression cannot be used as an INTO-
target of SELECT/FETCH statement

1,290 ERR_SQLSCRIPT_LHS_CANNOT_AS­
SIGNED

expression is inappropriate as the left
hand side of an assignment statement

1,291 ERR_SQLSCRIPT_EXPR_WRONG_TYP
E

expression is of wrong type

1,292 ERR_SQLSCRIPT_ILLE­
GAL_EXIT_STMT

illegal EXIT statement, it must be ap­
pear inside a loop

1,293 ERR_SQLSCRIPT_ID_EXCEP­
TION_TYPE

identifier name must be an exception
name

1,294 ERR_SQLSCRIPT_INTO_CLAUSE an INTO clause is expected in SELECT
statement

1,295 ERR_SQLSCRIPT_NOT_AL­
LOWED_SQL_STMT

EXPLAIN PLAN and CALL statement
are not allowed

1,296 ERR_SQLSCRIPT_NOT_CURSOR identifier is not a cursor

194 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

1,297 ERR_SQLSCRIPT_NUM_FETCH_VAL­
UES

wrong number of values in the INTO list
of a FETCH statement

1,298 ERR_SQLSCRIPT_UNHANDLED_EX­
CEPTION

unhandled user-defined exception

1,299 ERR_SQLSCRIPT_NO_DATA_FOUND no data found

1,300 ERR_SQLSCRIPT_FETCH_MANY_ROW
S

fetch returns more than requested
number of rows

1,301 ERR_SQLSCRIPT_VALUE_ERROR numeric or value error

1,302 ERR_SQLSCRIPT_OUT_PARAM_IN_FU
NCTION

parallelizable function cannot have OUT
or IN OUT parameter

1,303 ERR_SQLSCRIPT_USER_DEFINED_EX­
CEPTION

user-defined exception

1,304 ERR_SQLSCRIPT_CURSOR_AL­
READY_OPEN

cursor is already opened

1,305 ERR_SQLSCRIPT_INVALID_RE­
TURN_TYPE

return type is invalid

1,306 ERR_SQLSCRIPT_RETURN_TYPE_MIS­
MATCH

return type mismatch

1,307 ERR_SQLSCRIPT_UNSUPPORTED_DA­
TATYPE

unsupported datatype is used

1,308 ERR_SQLSCRIPT_INVALID_SIN­
GLE_ASSIGNMENT

illegal single assignment

1,309 ERR_SQLSCRIPT_INVA­
LID_USE_OF_TABLE_VARIABLE

invalid use of table variable

1,310 ERR_SQLSCRIPT_NOT_AL­
LOWED_SCALAR_TYPE

scalar type is not allowed

1,311 ERR_SQLSCRIPT_NO_OUT_PARAM Out parameter is not specified

1,312 ERR_SQLSCRIPT_AT_MOST_ONE_OUT
_PARAM

At most one output parameter is al­
lowed

1,313 ERR_SQLSCRIPT_OUT_PARAM_TABLE output parameter should be a table or a
table variable

1,314 ERR_SQLSCRIPT_INVALID_VARIA­
BLE_NAME

inappropriate variable name: do not al­
low \"\" or '_SYS_' prefix for the name
of variable or parameter

1,315 ERR_SQLSCRIPT_RETURN_RE­
SULT_SET_WITH_RESULTVIEW

Return result set from SELECT state­
ment exist when result view is defined

1,316 ERR_SQLSCRIPT_NOT_AS­
SIGNED_OUT_TABVAR

some out table variable is not assigned

1,317 ERR_SQLSCRIPT_FUNC­
TION_NAME_MAX_LEN

Function name exceedes max. limit

1,318 ERR_SQLSCRIPT_BUILTIN_NOT_DE­
FINED

Built-in function not defined

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 195

Code Type Description

1,319 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_TABLE_NAME

Parameter must be a table name

1,320 ERR_SQLSCRIPT_BUILTIN_PARAM_AT­
TRIBUTE_WITH_SCHEMA

Parameter must be an attribute name
without a table name upfront

1,321 ERR_SQLSCRIPT_BUILTIN_PARAM_AT­
TRIBUTE_WITH_ALIAS

Parameter must be an attribute name
without an alias

1,322 ERR_SQLSCRIPT_CALC_ATTR_NOT_A
LLOWED

CE_CALC not allowed

1,323 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_COL_OR_AGGR_VE
CTOR

Parameter must be a vector of columns
or aggregations

1,324 ERR_SQLSCRIPT_BUILTIN_MISS­
ING_JOIN_ATTR_IN_PROJECTION

Join attribute must be available in pro­
jection list

1,325 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_SQLIDENT_VECTOR

Parameter must be a vector of sql iden­
tifiers

1,326 ERR_SQLSCRIPT_DUPLICATE_ATTRIB­
UTE_NAME

Duplicate attribute name

1,327 ERR_SQLSCRIPT_PARAM_UNSUP­
PORTED_TYPE

Parameter has a non supported type

1,328 ERR_SQLSCRIPT_BUILTIN_MISS­
ING_ATTRIBUTE_IN_PROJECTION

Attribute not found in column table

1,329 ERR_SQLSCRIPT_BUILTIN_DUPLI­
CATE_COLUMN_NAME

Duplicate column name

1,330 ERR_SQLSCRIPT_BUILTIN_CAL­
CATTR_EXPRESSION_SYNTAX

Syntax Error for calculated Attribute

1,331 ERR_SQLSCRIPT_BUILTIN_FILTER_EX­
PRESSION_SYNTAX

Syntax Error in filter expression

1,332 ERR_SQLSCRIPT_BUIL­
TIN_FIRST_PARAM_NOT_COL­
UMN_TABLE

Parameter must be a valid column table
or projection view on column tables

1,333 ERR_SQLSCRIPT_BUILTIN_JOIN­
ATTR_NOT_FOUND_IN_VAR

Join attributes not found in variable

1,334 ERR_SQLSCRIPT_BUIL­
TIN_IN_PARAM_NOT_SAME_TA­
BLE_TYPE

Input parameters do not have the same
table type

1,335 ERR_SQLSCRIPT_RUNTIME_CY­
CLIC_DEPENDENCY

Cyclic dependency found in a runtime
procedure

1,336 ERR_SQLSCRIPT_RUNTIME_UNEX­
PECTED_EXCEPTION

Unexpected internal exception caught
in a runtime procedure

1,337 ERR_SQLSCRIPT_VAR_DE­
PENDS_ON_UNASSIGNED_VAR

Variable depends on an unassigned var­
iable

1,338 ERR_SQLSCRIPT_CE_CONVER­
SION_CUSTOM_TAB_MISSING

CE_CONVERSION: customizing table
missing

196 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

1,339 ERR_SQLSCRIPT_TOO_MANY_PAR­
AMS

Too many parameters

1,340 ERR_SQLSCRIPT_NESTED_CALL_TOO
_DEEP

The depth of the nested call is too deep

1,341 ERR_SQLSCRIPT_VERSION_VALIDA­
TION_FAILED

Procedure version validation failed

1,342 ERR_SQLSCRIPT_CE_CALC_ATTRIB­
UTE_AND_ALIAS_ARE_SAME

Attribute has the same name as the
alias

1,343 ERR_SQLSCRIPT_RETRY_EXCEPTION Retry Exception is occurred in a run­
time procedure

1,344 ERR_SQLSCRIPT_NOT_ALLOWED_DY­
NAMIC_SQL

Dynamic SQL or DDL is not allowed

1,345 ERR_SQLSCRIPT_NOT_AL­
LOWED_CONCURRENT_WRITES

Concurrently two or more write opera­
tions to the same object are not allowed

1,346 ERR_SQLSCRIPT_NOT_AL­
LOWED_CONCUR­
RENT_READ_AND_WRITE

Concurrently read and write operations
to the same object are not allowed

1,348 ERR_SQLSCRIPT_LLANG_GET_LI­
BRARY_IMPORT_LIST_FAILED

Failed to retrieve the list of imported li­
braries from LLANG procedure

1,349 ERR_SQLSCRIPT_INITIAL_ASSIGN­
MENT_REQUIRED_FOR_CON­
STANT_TABLE

Assigning initial value is required for de­
claring constant table variable

1,350 ERR_SQLSCRIPT_NOT_AL­
LOWED_NON_DETERMINISTIC_FEA­
TURE

Non-deterministic feature is not al­
lowed

1,351 ERR_SQLSCRIPT_INVA­
LID_PARSE_TREE

Invalid parse tree

1,352 ERR_SQLSCRIPT_ENCRYP­
TION_NOT_ALLOWED

Not allowed for encrypted procedure or
function

1,353 ERR_SQLSCRIPT_NOT_NULL_COL­
UMN_IGNORED

NOT NULL constraints in explicit table
types are ignored

1,354 ERR_SQLSCRIPT_CUR­
SOR_NOT_OPENED

Cursor to be fetched has not been
opened yet

1,355 ERR_SQLSCRIPT_INVALID_EX­
TERN_LANG

Invalid external language

2,816 ERR_SQLSCRIPT SqlScript Error

2,817 ERR_SQLSCRIPT_BUIL­
TIN_TOO_MANY_RETURN_PARAM

SqlScript Builtin Function

2,818 ERR_SQLSCRIPT_FUNC­
TION_NOT_FOUND

SqlScript

2,819 ERR_SQLSCRIPT_TEMPLATE_PARAM­
ETER_NUMBER_WRONG

SqlScript

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 197

Code Type Description

2,820 ERR_SQLSCRIPT_VARIABLE_NOT_DE­
CLARED

SqlScript

2,821 ERR_SQLSCRIPT_DUPLICATE_VARIA­
BLE_NAME

SqlScript

2,822 ERR_SQLSCRIPT_SQL_EXECU­
TION_FAILED

SqlScript

2,823 ERR_SQLSCRIPT_DROP_FUNC­
TION_FAILED

SqlScript

2,824 ERR_SQLSCRIPT_LOAD_FUNC­
TION_FAILED

SqlScript

2,825 ERR_SQLSCRIPT_SIGNATURE_MIS­
MATCH_WITH_CATALOG

SqlScript

2,826 ERR_SQLSCRIPT_REGISTER_FUNC­
TION_IN_CATALOG_FAILED

SqlScript

2,827 ERR_SQLSCRIPT_SCALAR_IN­
PUT_PARAMS_NOT_SUPPORTED

SqlScript

2,828 ERR_SQLSCRIPT_LAN­
GUAGE_NOT_SUPPORTED

SqlScript

2,829 ERR_SQLSCRIPT_DROP_FUNC­
TION_FAILED_EXISTING_CALLER

SqlScript

2,830 ERR_SQLSCRIPT_LLANG_EX­
ACTLY_ONE_OUTPUT_PARAM

SqlScript

2,831 ERR_SQLSCRIPT_BUIL­
TIN_FIRST_PARAM_NOT_COL­
UMN_TABLE

SqlScript

2,832 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_COUNT_NOT_IN_RANGE

SqlScript

2,833 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_COUNT_MISMATCH

SqlScript

2,834 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_INPUT

SqlScript

2,835 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_TABLE_NAME

SqlScript

2,836 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_VARIABLE

SqlScript

2,837 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_VARIABLE_VECTOR

SqlScript

2,838 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_SCALAR_VALUE

SqlScript

2,839 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_SQLIDENT_VECTOR

SqlScript

2,840 ERR_SQLSCRIPT_BUILTIN_PARAM_AT­
TRIBUTE_WITH_SCHEMA

SqlScript

198 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

2,841 ERR_SQLSCRIPT_BUILTIN_MISS­
ING_ATTRIBUTE_IN_PROJECTION

SqlScript

2,842 ERR_SQLSCRIPT_BUILTIN_MISS­
ING_JOIN_ATTR_IN_PROJECTION

SqlScript

2,843 ERR_SQLSCRIPT_TEMPL_FUNC­
TION_CAN_NOT_BE_CALLED

SqlScript

2,844 ERR_SQLSCRIPT_PARAM_COUNT_MIS
MATCH

SqlScript

2,845 ERR_SQLSCRIPT_PARAM_WRONG_TY
PE

SqlScript

2,846 ERR_SQLSCRIPT_PARAM_WRONG_TY
PE_COMPARED_TO_SIGNATURE

SqlScript

2,847 ERR_SQLSCRIPT_PARAM_WRONG_TA
BLE_TYPE

SqlScript

2,848 ERR_SQLSCRIPT_PARAM_MODE_MIS­
MATCH

SqlScript

2,849 ERR_SQLSCRIPT_PARAM_UNSUP­
PORTED_TYPE

SqlScript

2,850 ERR_SQLSCRIPT_NO_OUT­
PUT_PARAM

SqlScript

2,851 ERR_SQLSCRIPT_OUT­
PUT_PARAM_NOT_TABLE_TYPE

SqlScript

2,852 ERR_SQLSCRIPT_BUILTIN_NOT_DE­
FINED

SqlScript

2,853 ERR_SQLSCRIPT_VAR_DE­
PENDS_ON_UNASSIGNED_VAR

SqlScript

2,854 ERR_SQLSCRIPT_VAR_CYCLIC_DE­
PENDENCY

SqlScript

2,855 ERR_SQLSCRIPT_PARAM_NOT_INI­
TIALIZED

SqlScript

2,856 ERR_SQLSCRIPT_PARAM_MIS­
MATCH_TABLE_TYPE

SqlScript

2,857 ERR_SQLSCRIPT_CALL_OPEN_MISS­
ING_CALL_CLOSE

SqlScript

2,858 ERR_SQLSCRIPT_BUIL­
TIN_IN_PARAM_NOT_SAME_TA­
BLE_TYPE

SqlScript

2,859 ERR_SQLSCRIPT_BUILTIN_JOIN­
ATTR_NOT_FOUND_IN_VAR

SqlScript

2,860 ERR_SQLSCRIPT_FUNC­
TION_NOT_NESTABLE

SqlScript

2,861 ERR_SQLSCRIPT_CALL_CLOSE_MISS­
ING_CALL_OPEN

SqlScript

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 199

Code Type Description

2,862 ERR_SQLSCRIPT_TA­
BLE_TYPE_NOT_DERIVABLE

SqlScript

2,863 ERR_SQLSCRIPT_MISS­
ING_FTC_TYPE_MAPPING

SqlScript

2,864 ERR_SQLSCRIPT_INVALID_TA­
BLE_TYPE_NAME

SqlScript

2,865 ERR_SQLSCRIPT_DUPLICATE_ATTRIB­
UTE_NAME

SqlScript

2,866 ERR_SQLSCRIPT_FUNCTION_EXIST­
ING

SqlScript

2,867 ERR_SQLSCRIPT_FUNC­
TION_TYPE_NOT_SUPPORTED

SqlScript

2,868 ERR_SQLSCRIPT_FUNC­
TION_NAME_MAX_LEN

SqlScript

2,869 ERR_SQLSCRIPT_BUILTIN_PARAM_AT­
TRIBUTE_WITH_ALIAS

SqlScript

2,870 ERR_SQLSCRIPT_INTERNAL_ERR SqlScript

2,871 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_AGGREGFUN_VEC­
TOR

SqlScript

2,872 ERR_SQLSCRIPT_FUNC­
TION_NAME_INVALID

SqlScript

2,873 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_PROJECTION_VEC­
TOR

SqlScript

2,874 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_FILTER_EXPRES­
SION

SqlScript

2,875 ERR_SQLSCRIPT_RLANG_EX­
ACTLY_ONE_OUTPUT_PARAM

SqlScript

2,876 ERR_SQLSCRIPT_JSLANG_EX­
ACTLY_ONE_OUTPUT_PARAM

SqlScript

2,877 ERR_SQLSCRIPT_SQLLANG_EX­
ACTLY_ONE_OUTPUT_PARAM

SqlScript

2,878 ERR_SQLSCRIPT_GENERICLANG_EX­
ACTLY_ONE_OUTPUT_PARAM

SqlScript

2,879 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_TABLE_TYPE

SqlScript

2,880 ERR_SQLSCRIPT_VARIABLE_NOT_TA­
BLE_TYPE

SqlScript

2,881 ERR_SQLSCRIPT_BUILTIN_CAL­
CATTR_EXPRESSION_SYNTAX

SqlScript

200 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Code Type Description

2,882 ERR_SQLSCRIPT_BUILTIN_UN­
EVEN_NR_OF_PARAMS

SqlScript

2,883 ERR_SQLSCRIPT_CALC_ATTR_NOT_A
LLOWED

SqlScript

2,884 ERR_SQLSCRIPT_BUILTIN_DUPLI­
CATE_COLUMN_NAME

SqlScript

2,885 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_KEY_VALUE_VEC­
TOR

SqlScript

2,886 ERR_SQLSCRIPT_BUILTIN_CAL­
CATTR_REFERENCED_FIELD_MISSING

SqlScript

2,887 ERR_SQLSCRIPT_BUILTIN_FIL­
TER_REFERENCED_FIELD_MISSING

SqlScript

2,888 ERR_SQLSCRIPT_BUILTIN_FILTER_EX­
PRESSION_SYNTAX

SqlScript

2,889 ERR_SQLSCRIPT_BUIL­
TIN_PARAM_NOT_COL_OR_AGGR_VE
CTOR

SqlScript

2,890 ERR_SQLSCRIPT_TABLE_INPUT_PAR­
AMS_NOT_SUPPORTED

SqlScript

2,891 ERR_SQLSCRIPT_TABLE_INOUT_PAR­
AMS_NOT_SUPPORTED

SqlScript

601 ERR_API_TOO_MANY_SESSION_VARI­
ABLES

too many session variables are set

612 ERR_API_SESSION_VARIA­
BLE_KEY_LENGTH_EXCEEDED

maximum length of key for session vari­
able exceeded

146 ERR_TX_LOCK_ACQUISITION_FAIL Resource busy and NOWAIT specified

8.12 Array Variables

An array is an indexed collection of elements of a single data type. In the following section we explore the
varying ways to define and use arrays in SQLScript.

8.12.1 Declare a Variable of Type ARRAY

You declare a variable of type ARRAY by using the keyword ARRAY.

DECLARE <variable_name> <sql_type> ARRAY;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 201

You can declare an array <variable_name> with the element type <sql_type>. The following SQL types are
supported:

<sql_type> ::= DATE | TIME| TIMESTAMP | SECONDDATE | TINYINT | SMALLINT | INTEGER | BIGINT |
DECIMAL | SMALLDECIMAL | REAL | DOUBLE | VARCHAR | NVARCHAR | VARBINARY | CLOB |
NCLOB |BLOB

You can declare the arr array of type INTEGER as follows:

DECLARE arr INTEGER ARRAY;

Only unbounded arrays with a maximum cardinality of 2147483646, that is in the range between 1 and 2^31 -2
([1-2147483646]), are supported. You cannot define a static size for an array.

You can use the array constructor to directly assign a set of values to the array.

DECLARE <variable_name> [{, <variable_name>}...] <sql_type> ARRAY = ARRAY
(<value_expression> [{, <value_expression>}...]); <value_expression> !!= An array element of the type specified by <type>

The array constructor returns an array containing elements specified in the list of value expressions. The
following example illustrates an array constructor that contains the numbers 1, 2 and 3:

DECLARE array_int INTEGER ARRAY = ARRAY(1, 2, 3);

Besides using scalar constants you can also use scalar variables or parameters instead, as shown in the next
example.

CREATE PROCEDURE ARRAYPROC (IN a NVARCHAR(20), IN b NVARCHAR(20)) AS
 BEGIN
 DECLARE arrayNvarchar NVARCHAR(20) ARRAY;
 arrayNvarchar = ARRAY(:a,:b); END;

 Note
Note you cannot use TEXT or SHORTTEXT as the array type.

8.12.2 Set an Element of an Array

The syntax for setting a value to an element of an array is:

<array_variable>’[’ <array_index> ’]’ = <value_expression>

The <array_index> indicates the index of the element in the array to be modified, where <array_index>
can have any value from 1 to 2^31 -2 ([1-2147483646]). For example, the following statement stores the value
10 in the second element of the array id:

id[2] = 10;

202 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Please note that all elements of the array that are not set, have the value NULL. In the given example id[1] is
NULL.

Instead of using a constant scalar value, it is also possible to use a scalar variable of type INTEGER as
<array_index>. In the next example, the variable I of type INTEGER is used as an index.

DECLARE i INT ; DECLARE arr NVARCHAR(15) ARRAY ;
for i in 1 ..10 do
 arr [:i] = 'ARRAY_INDEX '|| :i;
end for;

SQL expressions and scalar user-defined functions (scalar UDF) that return a number can also be used as an
index. For example, a scalar UDF that adds two values and returns the result

CREATE FUNCTION func_add(x INTEGER, y INTEGER) RETURNS result_add INTEGER
LANGUAGE SQLSCRIPT READS SQL DATA AS
BEGIN
 result_add = :x + :y;
END;

is used to determine the index:

CREATE procedure PROC (…) AS BEGIN
 DECLARE VARCHAR_ARRAY VARCHAR ARRAY;
 DECLARE value VARCHAR;
 VARCHAR_ARRAY[func_add(1,0)] = 'i';
END;

 Note
The array starts with the index 1.

8.12.3 Return an Element of an Array

The value of an array element can be accessed with the index <array_index>, where <array_index> can be
any value from 1 to 2^31 -2 ([1-2147483646]). The syntax is:

:<array_variable_name> ‘[‘ <array_index>’]’;

For example, the following copies the value of the second element of array arr to variable var. Since the array
elements are of type NVARCHAR(15) the variable var has to have the same type:

DECLARE var NVARCHAR(15); var = :arr[2];

Please note that you have to use ‘:’ before the array variable if you read from the variable.

Instead of assigning the array element to a scalar variable it is possible to directly use the array element in the
SQL expression as well. For example, using the value of an array element as an index for another array.

DO

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 203

 BEGIN
 DECLARE arr TINYINT ARRAY = ARRAY(1,2,3);
 DECLARE index_array INTEGER ARRAY = ARRAY(1,2);
 DECLARE value TINYINT;
 arr[:index_array[1]] = :arr[:index_array[2]];
 value = :arr[:index_array[1]];
 select :value from dummy; END;

8.12.4 ARRAY_AGG Function

The ARRAY_AGG function converts a column of a table variable into an array.

<array_variable_name> = ARRAY_AGG (:<table_variable_name>.<column_name> [ORDER
BY { <expression> [{, <expression>}…] [ASC | DESC] [NULLS FIRST | NULLS
LAST] , ... }])

In the following example the column A of table variable tab is aggregated into array id:

DECLARE id NVARCHAR(10) ARRAY; DECLARE tab TABLE (A NVARCHAR(10), B INTEGER);
tab = SELECT A , B FROM tab1; id = ARRAY_AGG(:tab.A);

The type of the array needs to have the same type as the column.

Optionally the ORDER BY clause can be used to determine the order of the elements in the array. If it is not
specified, the array elements are ordered non-deterministic. In the following example all elements of array id
are sorted descending by column B.

id = ARRAY_AGG(:tab.A ORDER BY B DESC);

Additionally it is also possible to define where NULL values should appear in the result set. By default NULL
values are returned first for ascending ordering, and last for descending ordering. You can override this
behavior using NULLS FIRST or NULLS LAST to explicitly specify NULL value ordering. The next example
shows how the default behavior for the descending ordering can be overwritten by using NULLS FIRST:

CREATE COLUMN TABLE CTAB (A NVARCHAR(10)); INSERT INTO CTAB VALUES ('A1');
INSERT INTO CTAB VALUES (NULL);
INSERT INTO CTAB VALUES ('A2');
INSERT INTO CTAB VALUES (NULL);
DO
BEGIN
 DECLARE id NVARCHAR(10) ARRAY;
 tab = SELECT A FROM ctab;
 id = ARRAY_AGG(:tab.A ORDER BY A DESC NULLS FIRST);

 tab2 = UNNEST(:id) AS (A);

 SELECT * FROM :tab2; END;

 Note
ARRAY_AGG function does not support using value expressions instead of table variables.

204 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

8.12.5 TRIM_ARRAY Function

The TRIM_ARRAY function removes elements from the end of an array. TRIM_ARRAY returns a new array with a
<trim_quantity> number of elements removed from the end of the array <array_variable>.

TRIM_ARRAY”(“:<array_variable>, <trim_quantity>”)” <array_variable> ::= <identifier> <trim_quantity> ::= <unsigned_integer>

For example, removing the last 2 elements of array array_id:

CREATE PROCEDURE ARRAY_TRIM(OUT rst TABLE (ID INTEGER)) LANGUAGE SQLSCRIPT SQL SECURITY INVOKER AS
BEGIN
 DECLARE array_id Integer ARRAY := ARRAY(1, 2, 3, 4);
 array_id = TRIM_ARRAY(:array_id, 2);
 rst = UNNEST(:array_id) as ("ID"); END;

The result of calling this procedure is the following:

ID ---
1 2

8.12.6 CARDINALITY Function

The CARDINALITY function returns the highest index of a set element in the array <array_variable>. It
returns N (>= 0), if the index of the N-th element is the largest among the indices.

CARDINALITY(:<array_variable>)

For example, get the size for array <array_id>.

CREATE PROCEDURE CARDINALITY_2(OUT n INTEGER) AS BEGIN
 DECLARE array_id Integer ARRAY;
 n = CARDINALITY(:array_id); END;

The result is n=0 because there is no element in the array. In the next example, the cardinality is 20, as the 20th
element is set. This implicitly sets the elements 1-19 to NULL:

CREATE PROCEDURE CARDINALITY_3(OUT n INTEGER) AS BEGIN
 DECLARE array_id Integer ARRAY;
 array_id[20] = NULL;
 n = CARDINALITY(:array_id);
 END;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 205

The CARDINALITY function can also directly be used everywhere where expressions are supported, for
example in a condition:

CREATE PROCEDURE CARDINALITY_1(OUT n INTEGER) AS BEGIN
 DECLARE array_id Integer ARRAY := ARRAY(1, 2, 3);
 If CARDINALITY(:array_id) > 0 THEN
 n = 1 ;
 ELSE
 n = 0;
END IF; END;

8.12.7 Concatenate Two Arrays

The CONCAT function concatenates two arrays. It returns the new array that contains a concatenation of
<array_variable_left> and <array_variable_right>. Both || and the CONCAT function can be used
for concatenation:

:<array_variable_left> “||” :<array_variable_right> |
CONCAT'(':<array_variable_left> , :<array_variable_right> ')'

The next example illustrates the usage of the CONCAT function:

CREATE PROCEDURE ARRAY_COMPLEX_CONCAT3(OUT OUTTAB TABLE (SEQ INT, ID INT)) LANGUAGE SQLSCRIPT AS
BEGIN
 DECLARE id1,id2,id3, id4, id5, card INTEGER ARRAY;
id1[1] = 0;
 id2[1] = 1;
 id3 = CONCAT(:id1, :id2);
 id4 = :id1 || :id2;
 rst = UNNEST(:id3) WITH ORDINALITY AS ("ID", "SEQ");
 id5 = :id4 || ARRAY_AGG(:rst."ID" ORDER BY "SEQ");
 rst1 = UNNEST(:id5 || CONCAT(:id1, :id2) || CONCAT(CONCAT(:id1, :id2),
CONCAT(:id1, :id2))) WITH ORDINALITY AS ("ID", "SEQ");
outtab = SELECT SEQ, ID FROM :rst1 ORDER BY SEQ;
END;

8.12.8 Array Parameters for Procedures and Functions

You can create procedures and functions with array parameters so that array variables or constant arrays can
be passed to them.

The flowing scenarios are supported:

● Array input/output/inout parameter for procedures
● Array input parameter for SUDF/TUDF
● Array return type for SUDF
● Array parameter for library procedures/functions

206 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

● Array input parameter for anonymous block/embedded SQL function
● Array variables in DML/queries.

 Restriction
This feature supports array parameters only for server-side query parameters. It is not possible to use
client-side array interfaces. Array parameters cannot be used in the outermost queries or calls. It is
allowed to use array parameters only in nested queries or nested calls.

Syntax

 Code Syntax

CREATE [OR REPLACE] PROCEDURE <proc_name> [(<parameter_clause>)] [LANGUAGE
<lang>] [SQL SECURITY <mode>] [DEFAULT SCHEMA <default_schema_name>] [READS SQL DATA] [WITH ENCRYPTION] AS
BEGIN [SEQUENTIAL EXECUTION]
 <procedure_body>
END
<parameter_clause> ::= <parameter> [{,<parameter>}...]
<parameter> ::= [IN | OUT | INOUT] <param_name> <param_type> <param_type> ::= <sql_type> [ARRAY] | <table_type> | <table_type_definition>

 Code Syntax

CREATE FUNCTION <func_name> [(<parameter_clause>)] RETURNS <return_type>
[LANGUAGE <lang>] [SQL SECURITY <mode>][DEFAULT SCHEMA <default_schema_name>
[DETERMINISTIC]] [WITH ENCRYPTION] AS BEGIN
<function_body>
END
<parameter_clause> ::= <parameter> [{,<parameter>}...]
<parameter> ::= [IN] <param_name> <param_type>
<param_type> ::= <sql_type> [ARRAY] | <table_type> | <table_type_definition>
<return_type> ::= <return_parameter_list>
<return_parameter_list> ::= <return_parameter>[{, <return_parameter>}...] <return_parameter> ::= <parameter_name> <sql_type> [ARRAY]

Examples

 Sample Code

create procedure my_l_proc_out(out c int array, in b int array) as begin
 c = array(123456, 7890);
 c[3] = :b[1];
 c[4] = :b[2];
end;

do begin
 declare a int array;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 207

 declare b int array = array(3, 4);
 call my_l_proc_out(:a, :b);
 select :a from dummy; END;

 Sample Code

create function my_sudf_arr (in a int array) returns b int array as begin
 b = subarray(:a, 1, 2);
end;

do begin
 declare arr_var int array = array(1, 2, 3, 4);
 select my_sudf_arr(:arr_var) x from dummy; end;

 Sample Code
 create function my_tudf_arr (in A int array) returns table(I int) as
begin
 B = unnest(:A);
 return select ":A" as I from :B;
end;

do begin
 declare arr_var int array = array(1, 2, 3, 4);
 select * from my_tudf_arr(:arr_var); end;

 Note
For improving SQLScript usability, not only constant arrays but also array variables can be used in DML and
queries. In addition, it is also possible to use array variables in the SELECT INTO clause.

 Sample Code

create table tab1 (i int, a int array);
do begin
 declare a int array = array(1, 2, 3);
 declare b int array;
 insert into tab1 values (1, :a);
 select tab1.A into b from tab1;
 select array(1,2,3) into b from dummy;
 insert into tab1 values (1, array(1, 2, 3));
 select :a from dummy; end;

 Note
The system view ELEMENT_TYPES now shows the element data type of the parameter, if it is an array type.
The ELEMENT_TYPES view has the columns SCHEMA_NAME, OBJECT_NAME, ELEMENT_NAME, and
DATA_TYPE_NAME.

208 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

Limitations

The following limitations apply:

● LOB type array parameter is not supported.
● DEFAULT VALUE for an array parameter is not supported.
● Using an array parameter in the USING clause of Dynamic SQL is not supported.

8.13 SQL Injection Prevention Functions

If your SQLScript procedure needs execution of dynamic SQL statements where the parts of it are derived from
untrusted input (e.g. user interface), there is a danger of an SQL injection attack. The following functions can
be utilized in order to prevent it:

● ESCAPE_SINGLE_QUOTES(string_var) to be used for variables containing a SQL string literal
● ESCAPE_DOUBLE_QUOTES(string_var) to be used for variables containing a delimited SQL identifier
● IS_SQL_INJECTION_SAFE(string_var[, num_tokens]) to be used to check that a variable contains safe

simple SQL identifiers (up to num_tokens, default is 1)

Example:

create table mytab(myval varchar(20)); insert into mytab values('Val1');
create procedure change_value(
 in tabname varchar(20),
 in field varchar(20),
 in old_val varchar(20),
 in new_val varchar(20)
) as
begin
 declare sqlstr nclob;
 sqlstr := 'UPDATE "' ||:tabname || '" SET ' || field || ' = ''' ||
new_val || ''' WHERE ' || field || ' = ''' || old_val || '''';
 exec(:sqlstr); end

The following values of input parameters can manipulate the dynamic SQL statement in an unintended way:

● tabname: mytab" set myval = ' ' --
● field: myval = ' ' --
● new_val: ' --
● old_val: ' or 1 = 1 --

This cannot happen if you validate and/or process the input values:

create procedure change_value(in tabname varchar(20),
 in field varchar(20),
 in old_val varchar(20),
 in new_val varchar(20)
) as
begin
 declare sqlstr nclob;
 declare mycond condition for sql_error_code 10001;

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 209

 if is_sql_injection_safe(field) <> 1 then
 signal mycond set message_text = 'Invalid field ' || field;
 end if;
 sqlstr := 'UPDATE "' || escape_double_quotes(:tabname) || '" SET ' ||
field || ' = ''' || escape_single_quotes(:new_val) || ''' WHERE ' || field
|| ' = ''' || escape_single_quotes(:old_val) || '''';
exec(:sqlstr); end

Syntax IS_SQL_INJECTION_SAFE

IS_SQL_INJECTION_SAFE(<value>[, <max_tokens>])

Syntax Elements

<value> ::= <string>

String to be checked.

<max_tokens> ::= <integer>

Maximum number of tokens that is allowed to be in <value>. The default value is 1.

Description

Checks for possible SQL injection in a parameter which is to be used as a SQL identifier. Returns 1 if no possible
SQL injection is found, otherwise 0.

Example

The following code example shows that the function returns 0 if the number of tokens in the argument is
different from the expected number of a single token (default value).

SELECT IS_SQL_INJECTION_SAFE('tab,le') "safe" FROM DUMMY;
safe
------- 0

The following code example shows that the function returns 1 if the number of tokens in the argument matches
the expected number of 3 tokens.

SELECT IS_SQL_INJECTION_SAFE('CREATE STRUCTURED PRIVILEGE', 3) "safe" FROM DUMMY;

210 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

safe
------- 1

Syntax ESCAPE_SINGLE_QUOTES

ESCAPE_SINGLE_QUOTES(<value>)

Description

Escapes single quotes (apostrophes) in the given string <value>, ensuring a valid SQL string literal is used in
dynamic SQL statements to prevent SQL injections. Returns the input string with escaped single quotes.

Example

The following code example shows how the function escapes a single quote. The one single quote is escaped
with another single quote when passed to the function. The function then escapes the parameter content
Str'ing to Str''ing, which is returned from the SELECT.

SELECT ESCAPE_SINGLE_QUOTES('Str''ing') "string_literal" FROM DUMMY;
string_literal
--------------- Str''ing

Syntax ESCAPE_DOUBLE_QUOTES

ESCAPE_DOUBLE_QUOTES(<value>)

Description

Escapes double quotes in the given string <value>, ensuring a valid SQL identifier is used in dynamic SQL
statements to prevent SQL injections. Returns the input string with escaped double quotes.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 211

Example

The following code example shows that the function escapes the double quotes.

SELECT ESCAPE_DOUBLE_QUOTES('TAB"LE') "table_name" FROM DUMMY;
table_name
-------------- TAB""LE

8.14 Explicit Parallel Execution

So far, implicit parallelization has been applied to table variable assignments as well as read-only procedure
calls that are independent from each other. DML statements and read-write procedure calls had to be executed
sequentially. From now on, it is possible to parallelize the execution of independent DML statements and read-
write procedure calls by using parallel execution blocks:

BEGIN PARALLEL EXECUTION <stmt> END;

For example, in the following procedure several UPDATE statements on different tables are parallelized:

CREATE COLUMN TABLE CTAB1(A INT); CREATE COLUMN TABLE CTAB2(A INT);
CREATE COLUMN TABLE CTAB3(A INT);
CREATE COLUMN TABLE CTAB4(A INT);
CREATE COLUMN TABLE CTAB5(A INT);
CREATE PROCEDURE ParallelUpdate AS
BEGIN
 BEGIN PARALLEL EXECUTION
 UPDATE CTAB1 SET A = A + 1;
 UPDATE CTAB2 SET A = A + 1;
 UPDATE CTAB3 SET A = A + 1;
 UPDATE CTAB4 SET A = A + 1;
 UPDATE CTAB5 SET A = A + 1;
 END; END;

 Note
Only DML statements on column store tables are supported within the parallel execution block.

In the next example several records from a table variable are inserted into different tables in parallel.

 Sample Code

CREATE PROCEDURE ParallelInsert (IN intab TABLE (A INT, I INT)) AS BEGIN
DECLARE tab TABLE(A INT);
tab = SELECT t.A AS A from TAB0 t
LEFT OUTER JOIN :intab s
ON s.A = t.A;
BEGIN PARALLEL EXECUTION

212 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

SELECT * FROM :tab s where s.A = 1 INTO CTAB1;
SELECT * FROM :tab s where s.A = 2 INTO CTAB2;
SELECT * FROM :tab s where s.A = 3 INTO CTAB3;
SELECT * FROM :tab s where s.A = 4 INTO CTAB4;
SELECT * FROM :tab s where s.A = 5 INTO CTAB5;
END;
END;

You can also parallelize several calls to read-write procedures. In the following example, several procedures
performing independent INSERT operations are executed in parallel.

 Sample Code

create column table ctab1 (i int); create column table ctab2 (i int);
create column table ctab3 (i int);

create procedure cproc1 as begin
 insert into ctab1 values (1);
end;

create procedure cproc2 as begin
 insert into ctab2 values (2);
end;

create procedure cproc3 as begin
 insert into ctab3 values (3);
end;

create procedure cproc as begin
 begin parallel execution
 call cproc1 ();
 call cproc2 ();
 call cproc3 ();
 end;
end;

call cproc;

 Note
Only the following statements are allowed in read-write procedures, which can be called within a parallel
block:

● DML
● Imperative logic
● Autonomous transaction
● Implicit SELECT and SELECT INTO scalar variable

Restrictions and Limitations

The following restrictions apply:

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 213

● Updating the same table in different statements is not allowed
● Only concurrent reads on one table are allowed. Implicit SELECT and SELCT INTO scalar variable

statements are supported.
● Calling procedures containing dynamic SQL (for example, EXEC, EXECUTE IMMEDIATE) is not supported

in parallel blocks
● Mixing read-only procedure calls and read-write procedure calls in a parallel block is not allowed.

8.15 Recursive SQLScript Logic

Description

Before the introduction of SQLScript recursive logic, it was necessary to rewrite any recursive operation into an
operation using iterative logic, if it was supposed to be used within an SQLScript procedure or a function.
SQLScript now supports recursive logic that allows you to write a procedure or a function that calls itself within
its body until the abort condition is met.

Example

 Sample Code

create procedure factorial_proc(in i int, out j int) as begin if :i <= 1 then
 j = 1;
 else
 call factorial_proc(:i-1, j);
 j = :i * :j;
 end if;
end;

call factorial_proc(0, ?);
call factorial_proc(1, ?);
call factorial_proc(4, ?);
call factorial_proc(10, ?);

create function factorial_func(i int) returns j int as begin
 if :i <= 1 then
 j = 1;
 else
 j = :i * factorial_func(:i-1);
 end if;
end;

select factorial_func(0) from dummy;
select factorial_func(1) from dummy;
select factorial_func(4) from dummy;
select factorial_func(10) from dummy;

214 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Imperative SQLScript Logic

create function factorial_func2(i int) returns table(a int) as begin
 if :i <= 1 then
 return select 1 as a from dummy;
 else
 return select :i * a as a from factorial_func2(:i - 1);
 end if;
end;

select * from factorial_func2(0);
select * from factorial_func2(1);
select * from factorial_func2(4); select * from factorial_func2(10);

Limitations

The following limitations apply:

● By default, the maximum depth of a procedure call is 32.
● User-defined functions do not have an explicit call-depth check, but the system will return a run-time error

when no further evaluation is available.
● SQLScript Library member procedures and functions do not support recursion.

SAP HANA SQLScript Reference for SAP HANA Platform
Imperative SQLScript Logic PUBLIC 215

9 Calculation Engine Plan Operators

 Recommendation
SAP recommends that you use SQL rather than Calculation Engine Plan Operators with SQLScript.

The execution of Calculation Engine Plan Operators currently is bound to processing within the calculation
engine and does not allow a possibility to use alternative execution engines, such as L native execution. As
most Calculation Engine Plan Operators are converted internally and treated as SQL operations, the
conversion requires multiple layers of optimizations. This can be avoided by direct SQL use. Depending on
your system configuration and the version you use, mixing Calculation Engine Plan Operators and SQL can
lead to significant performance penalties when compared to to plain SQL implementation.

Overview: Mapping between CE_* Operators and SQL

CE Operator CE Syntax SQL Equivalent

CE_COLUMN_TABLE CE_COLUMN_TABLE(<table_nam
e>[,<attributes>])

SELECT [<attributes>] FROM
<table_name>

CE_JOIN_VIEW CE_JOIN_VIEW(<column_view_
name>[,<attributes>])

out =
CE_JOIN_VIEW("PRODUCT_SALE
S", ["PRODUCT_KEY",
"PRODUCT_TEXT", "SALES"]);

SELECT [<attributes>] FROM
<column_view_name>

out = SELECT product_key,
product_text, sales FROM
product_sales;

CE_OLAP_VIEW CE_OLAP_VIEW
(<olap_view_name>[,<attrib
utes>])

out =
CE_OLAP_VIEW("OLAP_view",
["DIM1", SUM("KF")]);

SELECT [<attributes>] FROM
<olap_view_name>

out = select dim1, SUM(kf)
FROM OLAP_view GROUP BY
dim1;

CE_CALC_VIEW CE_CALC_VIEW(<calc_view_na
me>,[<attributes>])

out =
CE_CALC_VIEW("TESTCECTABLE
", ["CID", "CNAME"]);

SELECT [<attributes>] FROM
<calc_view_name>

out = SELECT cid, cname
FROM "TESTCECTABLE";

216 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

CE Operator CE Syntax SQL Equivalent

CE_JOIN CE_JOIN(<left_table>,<righ
t_table>,<join_attributes
>[<projection_list>])

ot_pubs_books1 = CE_JOIN
(:lt_pubs, :it_books,
["PUBLISHER"]);

SELECT [<projection_list>]
FROM
<left_table>,<right_table>
WHERE <join_attributes>

ot_pubs_books1 = SELECT
P.publisher AS publisher,
name, street,post_code,
city, country, isbn,
title, edition, year,
price, crcy FROM :lt_pubs
AS P, :it_books AS B WHERE
P.publisher = B.publisher;

CE_LEFT_OUTER_JOIN CE_LEFT_OUTER_JOIN(<left_t
able>,<right_table>,<join_
attributes>[<projection_li
st>])

SELECT [<projection_list>]
FROM <left_table> LEFT
OUTER JOIN <right_table>
ON <join_attributes>

CE_RIGHT_OUTER_JOIN CE_RIGHT_OUTER_JOIN(<left_
table>,<right_table>,<join
_attributes>[<projection_l
ist>])

SELECT [<projection_list>]
FROM <left_table> RIGHT
OUTER JOIN <right_table>
ON <join_attributes>

CE_PROJECTION CE_PROJECTION(<table_varia
ble>,<projection_list>[,<f
ilter>])

ot_books1 = CE_PROJECTION
(:it_books,
["TITLE","PRICE", "CRCY"
AS "CURRENCY"], '"PRICE" >
50');

SELECT <projection_list>
FROM <table_variable>
where [<filter>]

ot_book2= SELECT title,
price, crcy AS currency
FROM :it_b ooks WHERE
price > 50;

CE_UNION_ALL CE_UNION_ALL(<table_variab
le1>,<table_variable2>)

ot_all_books1 =
CE_UNION_ALL
(:lt_books, :it_audiobooks
);

SELECT * FROM
<table_variable1> UNION
ALL SELECT * FROM
<table_variable2>

ot_all_books2 = SELECT *
FROM :lt_books UNION ALL
SELECT *
FROM :it_audiobooks;

CE_CONVERSION CE_CONVERSION(<table_varia
ble>,<conversion_params>,
[<rename_clause>])

SQL-Function
CONVERT_CURRENCY

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 217

CE Operator CE Syntax SQL Equivalent

CE_AGGREGATION CE_AGGREGATION(<table_vari
able>,<aggregate_list>
[,<group_columns>])

ot_books1 = CE_AGGREGATION
(:it_books, [COUNT
("PUBLISHER") AS "CNT"],
["YEAR"]);

SELECT <aggregate_list>
FROM <table_variable>
[GROUP BY <group_columns>]

ot_books2 = SELECT COUNT
(publisher) AS cnt, year
FROM :it_books GROUP BY
year;

CE_CALC CE_CALC(‘<expr>’,
<result_type>)

TEMP =
CE_PROJECTION(:table_var,
["ID" AS "KEY",
CE_CALC('rownum()',
INTEGER) AS "T_ID"]);

SQL Function

TEMP = SELECT "ID" AS
"KEY", ROW_NUMBER() OVER
() AS "T_ID"
FROM :table_var

CE_VERTICAL_UNION CE_VERTICAL_UNION(<table_v
ariable>,
<projection_list>[{ ,<tab
le_variable >,
<projection_list >}...])

unnest (<table_variable>
[{, <table_variable> }
…])

as ((<projection_list>)
[{,
(<projection_list>) }
…])

Calculation engine plan operators encapsulate data-transformation functions and can be used in the definition
of a procedure or a table user-defined function. They constitute a no longer recommended alternative to using
SQL statements. Their logic is directly implemented in the calculation engine, which is the execution
environments of SQLScript.

There are different categories of operators.

● Data Source Access operators that bind a column table or a column view to a table variable.
● Relational operators that allow a user to bypass the SQL processor during evaluation and to directly

interact with the calculation engine.
● Special extensions that implement functions.

9.1 Data Source Access Operators

The data source access operators bind the column table or column view of a data source to a table variable for
reference by other built-in operators or statements in a SQLScript procedure.

218 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

9.1.1 CE_COLUMN_TABLE

Syntax:

CE_COLUMN_TABLE(<table_name> [<attributes>])

Syntax Elements:

<table_name> ::= [<schema_name>.]<identifier>

Identifies the table name of the column table, with optional schema name.

<attributes> ::= ‘[’ <attrib_name>[{, <attrib_name> }…] ‘]’ <attrib_name> ::= <string_literal>

Restricts the output to the specified attribute names.

Description:

The CE_COLUMN_TABLE operator provides access to an existing column table. It takes the name of the table
and returns its content bound to a variable. Optionally a list of attribute names can be provided to restrict the
output to the given attributes.

Note that many of the calculation engine operators provide a projection list for restricting the attributes
returned in the output. In the case of relational operators, the attributes may be renamed in the projection list.
The functions that provide data source access provide no renaming of attributes but just a simple projection.

 Note
Calculation engine plan operators that reference identifiers must be enclosed with double-quotes and
capitalized, ensuring that the identifier's name is consistent with its internal representation.

If the identifiers have been declared without double-quotes in the CREATE TABLE statement (which is the
normal method), they are internally converted to upper-case letters. Identifiers in calculation engine plan
operators must match the internal representation, that is they must be upper case as well.

In contrast, if identifiers have been declared with double-quotes in the CREATE TABLE statement, they are
stored in a case-sensitive manner. Again, the identifiers in operators must match the internal
representation.

9.1.2 CE_JOIN_VIEW

Syntax:

CE_JOIN_VIEW(<column_view_name>[{,<attributes>,}...])

Syntax elements:

<column_view_name> ::= [<schema_name>.]<identifier>

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 219

Identifies the column view, with optional schema name.

<attributes> ::= ‘[’ <attrib_name>[{, <attrib_name> }…] ‘]’ <attrib_name> ::= <string_literal> [AS <column_alias>]

Specifies the name of the required columns from the column view.

column_alias ::= <string literal>

A string representing the desired column alias.

Description:

The CE_JOIN_VIEW operator returns results for an existing join view (also known as Attribute View). It takes
the name of the join view and an optional list of attributes as parameters of such views/models.

9.1.3 CE_OLAP_VIEW

Syntax:

CE_OLAP_VIEW(<olap_view_name>, '['<attributes>']')

Syntax elements:

<olap_view_name> ::= [<schema_name>.]<identifier>

Identifies the olap view, with optional schema name.

<attributes> ::= <aggregate_exp> [{, <dimension>}…] [{, <aggregate_exp>}…]

Specifies the attributes of the OLAP view.

 Note
Note you must have at least one <aggregation_exp> in the attributes.

<aggregate_exp> ::= <aggregate_func>(<aggregate_column> [AS <column_alias>])

Specifies the required aggregation expression for the key figure.

<aggregate_func> ::= COUNT | SUM | MIN | MAX

Specifies the aggregation function to use. Supported aggregation functions are:

● count("column")
● sum("column")
● min("column")
● max("column")
● use sum("column") / count("column") to compute the average

<aggregate_column> ::= <string_literal>

220 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

The identifier for the aggregation column.

<column_alias> ::= <string_literal>

Specifies an alias for the aggregate column.

<dimension> ::= <string_literal>

The dimension on which the OLAP view should be grouped.

Description:

The CE_OLAP_VIEW operator returns results for an existing OLAP view (also known as an Analytical View). It
takes the name of the OLAP view and an optional list of key figures and dimensions as parameters. The OLAP
cube that is described by the OLAP view is grouped by the given dimensions and the key figures are aggregated
using the default aggregation of the OLAP view.

9.1.4 CE_CALC_VIEW

Syntax:

CE_CALC_VIEW(<calc_view_name>, [<attributes>])

Syntax elements:

<calc_view_name> ::= [<schema_name>.]<identifier>

Identifies the calculation view, with optional schema name.

<attributes> ::= ‘[’ <attrib_name>[{, <attrib_name> }…] ‘]’ <attrib_name> ::= <string_literal>

Specifies the name of the required attributes from the calculation view.

Description:

The CE_CALC_VIEW operator returns results for an existing calculation view. It takes the name of the
calculation view and optionally a projection list of attribute names to restrict the output to the given attributes.

9.2 Relational Operators

The calculation engine plan operators presented in this section provide the functionality of relational operators
that are directly executed in the calculation engine. This allows exploitation of the specific semantics of the
calculation engine and to tune the code of a procedure if required.

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 221

9.2.1 CE_JOIN

Syntax:

CE_JOIN (<left_table>, <right_table>, <join_attributes> [<projection_list>])

Syntax elements:

<left_table> ::= :<identifier>

Identifies the left table of the join.

<right_table> ::= :<identifier>

Identifies the right table of the join.

<join_attributes> ::= '[' <join_attrib>[{, <join_attrib> }…] ']' <join_attrib> ::= <string_literal>

Specifies a list of join attributes. Since CE_JOIN requires equal attribute names, one attribute name per pair of
join attributes is sufficient. The list must at least have one element.

<projection_list> ::= '[' {, <attrib_name> }… ']' <attrib_name> ::= <string_literal>

Specifies a projection list for the attributes that should be in the resulting table.

 Note
If the optional projection list is present, it must at least contain the join attributes.

Description:

The CE_JOIN operator calculates a natural (inner) join of the given pair of tables on a list of join attributes. For
each pair of join attributes, only one attribute will be in the result. Optionally, a projection list of attribute names
can be given to restrict the output to the given attributes. Finally, the plan operator requires each pair of join
attributes to have identical attribute names. In case of join attributes having different names, one of them must
be renamed prior to the join.

9.2.2 CE_LEFT_OUTER_JOIN

Calculate the left outer join. Besides the function name, the syntax is the same as for CE_JOIN.

9.2.3 CE_RIGHT_OUTER_JOIN

Calculate the right outer join. Besides the function name, the syntax is the same as for CE_JOIN.

222 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

 Note
CE_FULL_OUTER_JOIN is not supported.

9.2.4 CE_PROJECTION

Syntax:

CE_PROJECTION(<var_table>, <projection_list>[, <filter>])

Syntax elements:

<var_table> ::= :<identifier>

Specifies the table variable which is subject to the projection.

<projection_list> ::= ‘[’ <attrib_name>[{, <attrib_name> }…] ‘]’ <attrib_name> ::= <string_literal> [AS <column_alias>]
<column_alias> ::= <string_literal>

Specifies a list of attributes that should be in the resulting table. The list must at least have one element. The
attributes can be renamed using the SQL keyword AS, and expressions can be evaluated using the CE_CALC
function.

<filter> ::= <filter_expression>

Specifies an optional filter where Boolean expressions are allowed. See CE_CALC [page 224] for the filter
expression syntax.

Description:

Restricts the columns of the table variable <var_table> to those mentioned in the projection list. Optionally,
you can also rename columns, compute expressions, or apply a filter.

With this operator, the <projection_list> is applied first, including column renaming and computation of
expressions. As last step, the filter is applied.

 Caution
Be aware that <filter> in CE_PROJECTION can be vulnerable to SQL injection because it behaves like
dynamic SQL. Avoid use cases where the value of <filter> is passed as an argument from outside of the
procedure by the user himself or herself, for example:

create procedure proc (in filter nvarchar (20), out output ttype) begin
tablevar = CE_COLUMN_TABLE(TABLE);
output = CE_PROJECTION(:tablevar,
 ["A", "B"], '"B" = :filter);
end;

It enables the user to pass any expression and to query more than was intended, for example: '02 OR B =
01'.

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 223

SAP recommends that you use plain SQL instead.

9.2.5 CE_CALC

Syntax:

CE_CALC ('<expr>', <result_type>)

Syntax elements:

<expr> ::= <expression>

Specifies the expression to be evaluated. Expressions are analyzed using the following grammar:

● b --> b1 ('or' b1)*
● b1 --> b2 ('and' b2)*
● b2 --> 'not' b2 | e (('<' | '>' | '=' | '<=' | '>=' | '!=') e)*
● e --> '-'? e1 ('+' e1 | '-' e1)*
● e1 --> e2 ('*' e2 | '/' e2 | '%' e2)*
● e2 --> e3 ('**' e2)*
● e3 --> '-' e2 | id ('(' (b (',' b)*)? ')')? | const | '(' b ')'

Where terminals in the grammar are enclosed, for example 'token' (denoted with id in the grammar), they are
like SQL identifiers. An exception to this rule is that unquoted identifiers are converted to lower case. Numeric
constants are basically written in the same way as in the C programming language, and string constants are
enclosed in single quotes, for example, 'a string'. Inside a string, single quotes are escaped by another single
quote.

An example expression valid in this grammar is: "col1" < ("col2" + "col3"). For a full list of expression
functions, see the following table.

<result_type> ::= DATE | TIME | SECONDDATE | TIMESTAMP | TINYINT | SMALLINT | INTEGER | BIGINT | SMALLDECIMAL | DECIMAL
 | REAL | DOUBLE | VARCHAR | NVARCHAR | ALPHANUM | SHORTTEXT | VARBINARY | BLOB | CLOB | NCLOB | TEXT

Specifies the result type of the expression as an SQL type

Description:

CE_CALC is used inside other relational operators. It evaluates an expression and is usually then bound to a
new column. An important use case is evaluating expressions in the CE_PROJECTION operator. The CE_CALC
function takes two arguments:

The following expression functions are supported:

Expression Functions

Name Description Syntax

Conversion Functions Conversion between data types

224 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

Name Description Syntax

float Converts arg to a float data type. float float(arg)

double Converts arg to a double data type. double double(arg)

decfloat Converts arg to a decfloat data type. decfloat decfloat(arg)

fixed Converts arg to a fixed data type. fixed fixed(arg, int, int)

string Converts arg to a string data type. string string(arg)

date Converts arg to the daydate data
type.1

daydate(stringarg), daydate day­
date(fixedarg)

String Functions Functions on strings

charpos Returns the one-based position of the
nth character in a string. The string is
interpreted as using a UTF-8 character
encoding

charpos(string, int)

chars Returns the number of characters in a
UTF-8 string. In a CESU-8 encoded
string this function returns the number
of 16-bit words utilized by the string,
just the same as if the string was en­
coded using UTF-16.

chars(string)

strlen Returns the length of a string in bytes,
as an integer number.1

int strlen(string)

midstr Returns a part of the string starting at
arg2, arg3 bytes long. arg2 is
counted from 1 (not 0).2

string midstr(string, int, int)

leftstr Returns arg2 bytes from the left of the
arg1. If arg1 is shorter than the value of
arg2, the complete string will be re­
turned. 1

string leftstr(string, int)

rightstr Returns arg2 bytes from the right of
the arg1. If arg1 is shorter than the
value of arg2, the complete string will
be returned. 1

string rightstr(string, int)

instr Returns the position of the first occur­
rence of the second string within the
first string (>= 1) or 0, if the second
string is not contained in the first. 1

int instr(string, string)

hextoraw Converts a hexadecimal representation
of bytes to a string of bytes. The hexa­
decimal string may contain 0-9, upper
or lowercase a-f and no spaces be­
tween the two digits of a byte; spaces
between bytes are allowed.

string hextoraw(string)

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 225

Name Description Syntax

rawtohex Converts a string of bytes to its hexa­
decimal representation. The output will
contain only 0-9 and (upper case) A-F,
no spaces and is twice as many bytes
as the original string.

string rawtohex(string)

ltrim Removes a white space prefix from a
string. The white space characters may
be specified in an optional argument.
This functions operates on raw bytes of
the UTF8-string and has no knowledge
of multi-byte codes (you may not spec­
ify multi-byte white space characters).

● string ltrim(string)
● string ltrim(string, string)

rtrim Removes trailing white spaces from a
string. The white space characters may
be specified in an optional argument.
This functions operates on raw bytes of
the UTF8-string and has no knowledge
of multi-byte codes (you may not spec­
ify multi-byte white space characters).

● string rtrim(string)
● string rtrim(string, string)

trim Removes white space characters from
the beginning and the end of a string.
The following statements are allowed:

● trim(s) = ltrim(rtrim(s))
● trim(s1, s2) = ltrim(rtrim(s1, s2),

s2)

● string trim(string)
● string trim(string, string)

lpad Adds a white space character to the left
of a string. A second string argument
specifies the white space which will be
added repeatedly until the string has
reached the intended length. If no sec­
ond string argument is specified,
chr(32) (' ') will be added.

● string lpad(string, int)
● string lpad(string, int, string)

rpad Adds a white space at the end of a
string. A second string argument speci­
fies the white space which will be
added repeatedly until the string has
reached the intended length. If no sec­
ond string argument is specified,
chr(32) (' ') will be added.

● string rpad(string, int)
● string rpad(string, int, string)

Mathematical Functions The mathematical functions described here generally operate on floating-point
values; their inputs automatically convert to double, the output will also be a dou­
ble.

226 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

Name Description Syntax

These functions have the same func­
tionality as in the C programming lan­
guage.

● double log(double)
● double exp(double)
● double log10(double)
● double sin(double)
● double cos(double)
● double tan(double)
● double asin(double)
● double acos(double)
● double atan(double)
● double sinh(double)
● double cosh(double)
● double floor(double)
● double ceil(double)

sign Returns -1, 0 or 1 depending on the sign
of its argument. Sign is implemented
for all numeric types, date, and time.

● int sign(double), etc.
● int sign(date)
● int sign(time)

abs Returns arg, if arg is positive or zero,
-arg in any other case. Abs is imple­
mented for all numeric types and time.

● int abs(int).
● double abs(double)
● decfloat abs(decfloat)
● time abs(time)

Date Functions Functions operating on date or on time data

utctolocal Interprets datearg (a date, without
timezone) as utc and converts it to the
time zone named by timezonearg
(a string).

iutctolocal(datearg, timezonearg)

localtoutc Converts the local datetime datearg
to the time zone specified by the string
timezonearg, returns as a date.

localtoutc(datearg, timezonearg)

weekday Returns the week day as an integer in
the range 0..6. 0 is Monday.

weekday(date)

now Returns the current date and time (lo­
cal time of the server timezone) as a
date.

now()

daysbetween Returns the number of days (integer)
between date1 and date2. This is an al­
ternative to date2 - date1.

daysbetween(date1, date2)

Further Functions

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 227

Name Description Syntax

if Returns arg2, if intarg is consid­
ered true (not equal to zero), else re­
turns arg3. Currently, no shortcut
evaluation is implemented, which
means that both arg2 and arg3 are
evaluated in any case. This means that
you cannot use if to avoid a division-
by-zero error, which has the side effect
of terminating expression evaluation
when it occurs.

if(intarg, arg2, arg3)

case Returns value1, if arg1 == cmp1, value2
if arg1 == cmp2 and so on. Returns the
default, if there is no match.

● case(arg1, default)
● case(arg1, cmp1, value1, cmp2,

value2, ..., default)

isnull Returns 1 (= true), if arg1 is set to null
and null checking is on during the eval­
uator run.

isnull(arg1)

rownum Returns the number of the row in the
currently scanned table structure. The
first row has the number 0.

rownum()

1 Due to calendar variations with dates earlier than 1582, the use of the date data type is deprecated and you
should use the daydate data type instead.

 Note
date is based on the proleptic Gregorian calendar. daydate is based on the Gregorian calendar, which is
also the calendar used by SAP HANA SQL.

2 These Calculation Engine string functions operate using single byte characters. To use these functions with
multi-byte character strings, see the section Using String Functions With Multi-Byte Character Encoding. Note
that this limitation does not exist for SQL functions of the SAP HANA database, which natively support unicode
strings.

9.2.5.1 Using String Functions with Multi-Byte Character
Encoding

To allow the use of the string functions of the Calculation Engine with multi-byte character encoding, you can
use the charpos and chars functions. An example of this usage for the single-byte character function midstr
follows below:

midstr(<input_string>, charpos(<input_string>, 32), 1)

228 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

Related Information

CE_CALC [page 224]

9.2.6 CE_AGGREGATION

Syntax:

CE_AGGREGATION (<var_table>, <aggregate_list> [, <group_columns>]);

Syntax elements:

<var_table> ::= :<identifier>

A variable of type table containing the data that should be aggregated.

 Note
CE_AGGREGATION cannot handle tables directly as input.

<aggregate_list> ::= '['<aggregate_exp>[{, <aggregate_exp>}] ']'

Specifies a list of aggregates. For example, [SUM ("A"), MAX("B")] specifies that in the result, column "A"
has to be aggregated using the SQL aggregate SUM and for column B, the maximum value should be given.

<aggregate_exp> ::= <aggregate_func>(<aggregate_column>[AS <column_alias>])

Specifies the required aggregation expression.

<aggregate_func> ::= COUNT | SUM | MIN | MAX

Specifies the aggregation function to use. Supported aggregation functions are:

● count("column")
● sum("column")
● min("column")
● max("column")
● use sum("column") / count("column") to compute the average

<aggregate_column> ::= <string_literal>

The identifier for the aggregation column.

<column_alias> ::= <string_literal>

Specifies an alias for the aggregate column.

<group_columns> ::= '['<group_column_name> [{,<group_column_name>}...]']'

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 229

Specifies an optional list of group-by attributes. For instance, ["C"] specifies that the output should be
grouped by column C. Note that the resulting schema has a column named C in which every attribute value
from the input table appears exactly once. If this list is absent the entire input table will be treated as a single
group, and the aggregate function is applied to all tuples of the table.

<group_column_name> ::= <identifier>

Specifies the name of the column attribute for the results to be grouped by.

 Note
CE_AGGREGATION implicitly defines a projection: All columns that are not in the list of aggregates, or in the
group-by list, are not part of the result.

Description:

Groups the input and computes aggregates for each group.

The result schema is derived from the list of aggregates, followed by the group-by attributes. The order of the
returned columns is defined by the order of columns defined in these lists. The attribute names are:

● For the aggregates, the default is the name of the attribute that is aggregated.
● For instance, in the example above ([SUM("A"),MAX("B")]), the first column is called A and the second

is B.
● The attributes can be renamed if the default is not appropriate.
● For the group-by attributes, the attribute names are unchanged. They cannot be renamed using

CE_AGGREGATION.

 Note
Note that count(*) can be achieved by doing an aggregation on any integer column; if no group-by
attributes are provided, this counts all non-null values.

9.2.7 CE_UNION_ALL

Syntax:

CE_UNION_ALL (<var_table1>, :var_table2)

Syntax elements:

<var_table1> ::= :<identifier> <var_table2> ::= :<identifier>

Specifies the table variables to be used to form the union.

Description:

The CE_UNION_ALL function is semantically equivalent to SQL UNION ALL statement. It computes the union
of two tables which need to have identical schemas. The CE_UNION_ALL function preserves duplicates, so the
result is a table which contains all the rows from both input tables.

230 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

9.3 Special Operators

In this section we discuss operators that have no immediate counterpart in SQL.

9.3.1 CE_VERTICAL_UNION

Syntax

CE_VERTICAL_UNION(<var_table>, <projection_list> [{,<var_table>,
<projection_list>}...])

Syntax Elements

<var_table> ::= :<identifier>

Specifies a table variable containing a column for the union.

<projection_list> ::= ‘[’ <attrib_name>[{, <attrib_name> }…] ‘]’ <attrib_name> ::= <string_literal> [AS <column_alias>]
<column_alias> ::= <string_literal>

Specifies a list of attributes that should be in the resulting table. The list must at least have one element. The
attributes can be renamed using the SQL keyword AS.

Description

For each input table variable the specified columns are concatenated. Optionally columns can be renamed. All
input tables must have the same cardinality.

 Caution
The vertical union is sensitive to the order of its input. SQL statements and many calculation engine plan
operators may reorder their input or return their result in different orders across starts. This can lead to
unexpected results.

.

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 231

9.3.2 CE_CONVERSION

Syntax:

CE_CONVERSION(<var_table>, <conversion_params>, [<rename_clause>])

Syntax elements:

<var_table> ::= :<identifier>

Specifies a table variable to be used for the conversion.

<conversion_params> ::= '['<key_val_pair>[{,<key_val_pair>}...]']'

Specifies the parameters for the conversion. The CE_CONVERSIONoperator is highly configurable via a list of
key-value pairs. For the exact conversion parameters permissible, see the Conversion parameters table.

<key_val_pair> ::= <key> = <value>

Specify the key and value pair for the parameter setting.

<key> ::= <identifier>

Specifies the parameter key name.

<value> ::= <string_literal>

Specifies the parameter value.

<rename_clause> ::= <rename_att>[{,<rename_att>}]

Specifies new names for the result columns.

<rename_att> ::= <convert_att> AS <new_param_name> <convert_att> ::= <identifier> <new_param_name> ::= <identifier>

Specifies the new name for a result column.

Description:

Applies a unit conversion to input table <var_table> and returns the converted values. Result columns can
optionally be renamed. The following syntax depicts valid combinations. Supported keys with their allowed
domain of values are:

Conversion parameters

Key Values Type Mandatory Default Documentation

'family' 'currency' key Y none The family of the
conversion to be
used.

'method' 'ERP' key Y none The conversion
method.

232 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

Key Values Type Mandatory Default Documentation

‘error_handling’ 'fail on error', 'set
to null', 'keep un­
converted'

key N 'fail on error' The reaction if a
rate could not be
determined for a
row.

'output' combinations of
'input', 'unconver­
ted', 'converted',
'passed_through',
'output_unit',
'source_unit', 'tar­
get_unit', 'refer­
ence_date'

key N 'converted,
passed_through,
output_unit'

Specifies which at­
tributes should be
included in the
output.

'source_unit' Any Constant N None The default source
unit for any kind of
conversion.

'target_unit' Any Constant N None The default target
unit for any kind of
conversion.

'reference_date' Any Constant N None The default refer­
ence date for any
kind of conversion.

'source_unit_col­
umn'

Column in input
table

Column name N None The name of the
column containing
the source unit in
the input table.

'target_unit_col­
umn'

Column in input
table

Column name N None The name of the
column containing
the target unit in
the input table.

'refer­
ence_date_col­
umn'

Column in input
table

Column name N None The default refer­
ence date for any
kind of conversion.

'output_unit_col­
umn'

Any Column name N "OUTPUT_UNIT" The name of the
column containing
the target unit in
the output table.

For ERP conversion:

Key Values Type Mandatory Default

'client' Any Constant None The client as
stored in the ta­
bles.

'conversion_type' Any Constant 'M' The conversion
type as stored in
the tables.

SAP HANA SQLScript Reference for SAP HANA Platform
Calculation Engine Plan Operators PUBLIC 233

Key Values Type Mandatory Default

'schema' Any Schema name Current schema The default
schema in which
the conversion ta­
bles should be
looked up.

9.3.3 TRACE

Syntax:

TRACE(<var_input>)

Syntax elements:

<var_input> ::= :<identifier>

Identifies the SQLScript variable to be traced.

Description:

The TRACE operator is used to debug SQLScript procedures. It traces the tabular data passed as its argument
into a local temporary table and returns its input unmodified. The names of the temporary tables can be
retrieved from the SYS.SQLSCRIPT_TRACE monitoring view.

Example:

You trace the content of variable input to a local temporary table.

out = TRACE(:input);

 Caution
This operator should not be used in production code as it will cause significant run-time overhead.
Additionally, the naming conventions used to store the tracing information may change. This operator
should only be used during development for debugging purposes.

234 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Calculation Engine Plan Operators

10 HANA Spatial Support

SQLScript supports the spatial data type ST_GEOMETRY and SQL spatial functions to access and manipulate
spatial data. In addition, SQLScript also supports the objective style function calls needed for some SQL spatial
functions.

The following example illustrates a small scenario for using spatial data type and function in SQLScript.

The function get_distance calculates the distance between the two given parameters <first> and
<second> of type ST_GEOMETRY by using the spatial function ST_DISTANCE.

The ‘:’ in front of the variable <first> is needed because you are reading from the variable.

The function get_distance itself is called by the procedure nested_call. The procedure returns the
distance and the text representation of the ST_GEOMETRY variable <first>.

CREATE FUNCTION get_distance(IN first ST_GEOMETRY, IN second ST_GEOMETRY) RETURNS distance
double
AS
BEGIN
 distance = :first.st_distance(:second);
END;
CREATE PROCEDURE nested_call(IN first ST_GEOMETRY,
 IN second ST_GEOMETRY,
 OUT distance double,
 OUT res3 CLOB
)
AS
BEGIN

 Distance = get_distance (:first, :second);
 res3 = :first.st_astext(); END;

The procedure call

CALL nested_call(first => st_geomfromtext('Point(7 48)'), second => st_geomfromtext('Point(2 55)'),
 distance => ?, res3 => ?);

returns the following result:

Out(1) Out(2) -- 8,602325267042627 POINT(7 48)

Note that the optional SRID (Spatial Reference Identifier) parameter in SQL spatial functions is mandatory if
the function is used within SQLScript. If you do not specify the SRID, you receive an error as demonstrated with
the function ST_GEOMFROMTEXT in the following example. Here SRID 0 is used to specify the default spatial
reference system.

DO BEGIN

SAP HANA SQLScript Reference for SAP HANA Platform
HANA Spatial Support PUBLIC 235

 DECLARE arr ST_GEOMETRY ARRAY;
 DECLARE line1 ST_GEOMETRY = ST_GEOMFROMTEXT('LINESTRING(1 1, 2 2, 5 5)', 0);
 DECLARE line2 ST_GEOMETRY = ST_GEOMFROMTEXT('LINESTRING(1 1, 3 3, 5 5)', 0);
 arr[1] = :line1;
 arr[2] = :line2;
 tmp2 = UNNEST(:arr) AS (A);
 select A from :tmp2; END;

If you do not use the same SRID for the ST_GEOMETRY variables <line1> and <line2> latest the UNNEST will
return an error because it is not allowed for the values in one column to have different SRID.

In addition, there is a consistency check for output table variables to ensure that all elements of a spatial
column have the same SRID.

 Note
The following functions are currently not supported in SQLScript:

● ST_CLUSTERID
● ST_CLUSTERCENTEROID
● ST_CLUSTERENVELOPE
● ST_CLUSTERCONVEXHULL
● ST_AsSVG

The construction of objects with the NEW keyword is also not supported in SQLScript. Instead you can use
ST_GEOMFROMTEXT(‘POINT(1 1)’, srid).

For more information on SQL spatial functions and their usage, see SAP HANA Spatial Reference available on
the SAP HANA Platform.

236 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

HANA Spatial Support

http://help.sap.com/hana_platform

11 System Variables

System variables are built-in variables in SQLScript that provide you with information about the current
context.

11.1 ::CURRENT_OBJECT_NAME
and ::CURRENT_OBJECT_SCHEMA

To identify the name of the current running procedure or function you can use the following two system
variables:

::CURRENT_OBJECT_NAME Returns the name of the current procedure or function

::CURRENT_OBJECT_SCHEMA Returns the name of the schema of current procedure or
function

Both return a string of type NVARCHAR(256).

The following example illustrates the usage of the system variables.

CREATE FUNCTION RETURN_NAME () RETURNS name nvarchar(256),
 schema_name nvarchar(256)
AS
BEGIN
 name = ::CURRENT_OBJECT_NAME;
 schema_name = ::CURRENT_OBJECT_SCHEMA;
END;

By calling that function, e.g.

SELECT RETURN_NAME().schema_name, RETURN_NAME().name from dummy

the result of that function is then the name and the schema_name of the function:

SCHEMA_NAME NAME --
MY_SCHEMA RETURN_NAME

The next example shows that you can also pass the two system variables as arguments to procedure or
function call.

CREATE FUNCTION GET_FULL_QUALIFIED_NAME (schema_name nvarchar(256),name
nvarchar(256)) RETURNS fullname nvarchar(256)
AS
BEGIN
 fullname = schema_name || '.' || name ;

SAP HANA SQLScript Reference for SAP HANA Platform
System Variables PUBLIC 237

END;
CREATE PROCEDURE MAIN_PROC (IN INPUT_VALUE INTEGER)
AS
BEGIN
 DECLARE full_qualified_name NVARCHAR(256);
 DECLARE error_text NVARCHAR(256);
 full_qualified_name = get_full_qualified_name (::CURRENT_OBJECT_SCHEMA,
 ::CURRENT_OBJECT_NAME);

 IF :input_value > 1 OR :input_value < 0 THEN
 SIGNAL SQL_ERROR_CODE 10000 SET MESSAGE_TEXT = 'ERROR IN '
 || :full_qualified_name || ': invalid input value ';
 END IF;
END;

 Note
Note that in anonymous blocks the value of both system variables is NULL.

The two system variable will always return the schema name and the name of the procedure or function.
Creating a synonym on top of the procedure or function and calling it with the synonym will still return the
original name as shown in the next example.

We create a synonym on the RETURN_NAME function from above and will query it with the synonym:

CREATE SYNONYM SYN_FOR_FUNCTION FOR RETURN_NAME; SELECT SYNONYM_FOR_FUNCTION().schema_name, SYNONYM_FOR_FUNCTION().name FROM
dummy;

The result is the following:

SCHEMA_NAME NAME --
MY_SCHEMA RETURN_NAME

11.2 ::ROWCOUNT

The system variable ::ROWCOUNT stores either the number of updated rows of the previously executed DML,
CALL and CREATE TABLE statement, or the number of rows returned from a SELECT statement. There is no
accumulation of ::ROWCOUNT values from all previously executed statements. When the previous statement
does not return a value, the previous value of ::ROWCOUNT is retained. When ::ROWCOUNT is used right after
a PARALLEL EXECUTION block, the system variable stores only the value of the last statement in the
procedure definition.

 Caution
Until SAP HANA 2.0 SPS03, the system variable ::ROWCOUNT was updated only after DML statements.
Starting with SAP HANA 2.0 SPS04, the behavior of ::ROWCOUNT changes, it is now also updated for
SELECT, CALL and CREATE TABLE statements.

The following limitations apply:

● ::ROWCOUNT for a nested CALL statement is an aggregation of the number of updated rows and does not
include the number of rows returned from SELECT statements.

238 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

System Variables

● ::ROWCOUNT for a SELECT statement is supported for normal SELECT statements, SELECT INTO
statements and table variable assignments that contain a SELECT statement. It does not include SELECT
sub-queries as a part of DML or DDL.

● ::ROWCOUNT for SELECT statements with multiple result sets is not supported.

 Note
When ::ROWCOUNT is used after a SELECT statement, it requires to fetch entire rows from the result set to
get the total number of selected rows. When the result from the SELECT statement is assigned to a table
variable or scalar variable it has barely any effect on the performance. However, a SELECT statement that is
returning a result set cannot avoid fetching all rows implicitly regardless of how many rows will be explicitly
fetched from the result set.

The following examples demonstrate how you can use ::ROWCOUNT in a procedure. Consider we have the
following table T:

CREATE TABLE T (NUM INT, VAL INT); INSERT INTO T VALUES (1, 1);
INSERT INTO T VALUES (2, 2);
INSERT INTO T VALUES (1, 2);

Now we want to update table T and want to return the number of updated rows:

CREATE PROCEDURE PROC_UPDATE (OUT updated_rows INT) AS BEGIN
 UPDATE T SET VAL = VAL + 1 WHERE VAL = 2;
 updated_rows = ::ROWCOUNT;
END;

By calling the procedure with

CALL PROC_UPDATE (updated_rows => ?);

We get the following result back:

UPDATED_ROWS -------------------------
2

In the next example we change the procedure by having two update statements and in the end we again get the
row count:

ALTER PROCEDURE PROC_UPDATE (OUT updated_rows INT) AS BEGIN
 UPDATE T SET VAL = VAL + 1 WHERE VAL = 3;
 UPDATE T SET VAL = VAL + 1 WHERE VAL = 1;
 updated_rows = ::ROWCOUNT;
END;

By calling the procedure you will see that the number of updated rows is now 1. That is because the las update
statements only updated one row.

UPDATED_ROWS -------------------------
1

SAP HANA SQLScript Reference for SAP HANA Platform
System Variables PUBLIC 239

If you now want to have the number of all updated rows you have to retrieve the row count information after
each update statement and accumulate them:

ALTER PROCEDURE PROC_UPDATE (OUT updated_rows INT) AS BEGIN
 UPDATE T SET VAL = VAL + 1 WHERE VAL = 4;
 updated_rows = ::ROWCOUNT;
 UPDATE T SET VAL = VAL + 1 WHERE VAL = 2;
 updated_rows = :updated_rows + ::ROWCOUNT;
END;

By now calling this procedure again the number of updated row is now 3:

UPDATED_ROWS -------------------------
3

Incompatible Behavior Change

 Caution
The update of ::ROWCOUNT in SAP HANA 2.0 SPS04 introduces an incompatible behavior change. Please
refer to the following description for the details, workaround and supporting tools.

Since ::ROWCOUNT is now updated after SELECT, CALL and CREATE TABLE statements, the behavior of
existing procedures may change, if the system variable ::ROWCOUNT is not used directly after a DML
statement. Using ::ROWCOUNT directly after the target statement is recommended and can guarantee the
same behavior between different versions.

To detect such cases, new rules were introduced in SQLScript Code Analyzer:

● RULE_NAMESPACE: 'SAP', RULE_NAME: 'ROW_COUNT_AFTER_SELECT', CATEGORY: 'BEHAVIOR'
● RULE_NAMESPACE: 'SAP', RULE_NAME: 'ROW_COUNT_AFTER_DYNAMIC_SQL', CATEGORY: 'BEHAVIOR'

Based on the result from the SQLScript Code Analyzer rule, you can update your procedures according to the
new standard behavior.

The following scenario shows a simple example of the impact of the behavior changes.

 Sample Code
Behavior Change Example

create table mytab (i int); insert into mytab values (1);

create table mytab2 (i int);
insert into mytab2 values (2);

do begin
 insert into mytab select * from mytab2; -- ::ROWCOUNT = 1
 x = select * from mytab; -- ::ROWCOUNT = 1 (retained,
SPS03), ::RWCOUNT = 2 (SPS04)
 select ::rowcount from dummy; -- 1 in SPS03, 2 in SPS04 end;

240 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

System Variables

Statement ::ROWCOUNT (SPS03) ::ROWCOUNT (SPS04)

DML The number of updated rows The number of updated rows

SELECT statement

select * from mytab;

N/A (retain previous value) The number of rows returned from the
SELECT statement

Table variable statement with SELECT
statement

tv = select * from
mytab;

N/A (retain previous value) The number of rows returned from the
SELECT statement

SELECT INTO statement

select i into a from
mytab;

N/A (retain previous value) 1 if the statement is executed success­
fully, retains the previous value other­
wise.

SELECT INTO statement with default
value

select i into a default
2 from mytab;

N/A (retain previous value) 0 if the default values are assigned, 1 if
the values are assigned from the SE­
LECT statement, retains the previous
value otherwise.

SELECT statement in dynamic SQL

exec 'select * from
mytab'; execute immediate
'select * from mytab';

0 The number of rows from the SELECT
statement

EXEC INTO with SELECT statement

exec 'select i, j from
mytab' into s1, s2; exec 'select * from
mytab' into tv;

0 EXEC INTO with scalar variables works
similar to SELECT INTO case.

EXEC INTO with a table variable works
similar to a table variable assign state­
ment case.

Nested CALL statement

call proc_nested;

N/A (retain previous value) The number of updated rows.

CREATE TABLE statement

create table tab_a as
(select * from mytab);

N/A (retains previous value) The number of updated rows

SAP HANA SQLScript Reference for SAP HANA Platform
System Variables PUBLIC 241

11.3 ::CURRENT_LINE_NUMBER

SQLScript procedures, functions and triggers can return the line number of the current statement
via ::CURRENT_LINE_NUMBER.

Syntax

::CURRENT_LINE_NUMBER

Example

 Sample Code

1 create procedure proc_inner(out o int) as 2 begin
3 o = ::CURRENT_LINE_NUMBER; 4 end;

 Sample Code

1 create procedure proc_outer as 2 begin
3 declare a int;
4 call proc_inner(a);
5 select :a, ::CURRENT_LINE_NUMBER from dummy;
6 end;
7 call proc_outer; 8 -- Returns [3, 5]

 Sample Code

1 do begin 2 declare a int = ::CURRENT_LINE_NUMBER;
3 select :a, ::CURRENT_LINE_NUMBER + 1 from dummy;
4 end; 5 -- Returns [2, 3 + 1]

242 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

System Variables

12 Built-In Libraries

This section provides information about built-in libraries in SQLScript.

12.1 Built-in Library SQLSCRIPT_SYNC

In some scenarios you may need to let certain processes wait for a while (for example, when executing
repetitive tasks). Implementing such waiting manually may lead to "busy waiting" and to the CPU performing
unnecessary work during the waiting time. To avoid this, SQLScript offers a built-in library
SYS.SQLSCRIPT_SYNC containing the procedures SLEEP_SECONDS and WAKEUP_CONNECTION.

Procedure SLEEP_SECONDS

This procedure puts the current process on hold. It has one input parameter of type DOUBLE which specifies
the waiting time in seconds. The maximum precision is one millisecond (0.001), but the real waiting time may
be slightly longer (about 1-2 ms) than the given time.

 Note
● If you pass 0 or NULL to SLEEP_SECONDS, SQLScript executor will do nothing (also no log will be

written).
● If you pass a negative number, you get an error.

Procedure WAKEUP_CONNECTION

This procedure resumes a waiting process. It has one input parameter of type INTEGER which specifies the ID
of a waiting connection. If this connection is waiting because the procedure SLEEP_SECONDS has been called,
the sleep is terminated and the process continues. If the given connection does not exist or is not waiting
because of SLEEP_SECONDS, an error is raised.

If the user calling WAKEUP_CONNECTION is not a session admin and is different from the user of the waiting
connection, an error is raised as well.

 Note
● The waiting process is also terminated, if the session is canceled (with ALTER SYSTEM CANCEL

SESSION or ALTER SYSTEM DISCONNECT SESSION).
● A session admin can wake up any sleeping connection.

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 243

● The sleeping process is listed in the monitoring view M_SERVICE_THREADS. Its LOCK_WAIT_NAME
starts with 'SQLScript/SQLScript_Sync/Sleep/'.

Limitations

The library cannot be used in functions (neither in scalar, nor in tabular ones) and in calculation views.

Examples

 Sample Code
Monitor

CREATE PROCEDURE MONITOR AS BEGIN
 USING SQLSCRIPT_SYNC AS SYNCLIB;
 WHILE 1 = 1 DO
 IF RECORD_COUNT(OBSERVED_TABLE) > 100000 THEN
 INSERT INTO LOG_TABLE VALUES (CURRENT_TIMESTAMP, 'Table size exceeds
100000 records');
 END IF;
 CALL SYNCLIB:SLEEP_SECONDS(300);
 END WHILE; END

 Sample Code
Resume all sleeping processes

CREATE PROCEDURE RESUME_ALL AS BEGIN
 USING SQLSCRIPT_SYNC AS SYNCLIB;
 DECLARE CURSOR WAITING_CONNECTIONS FOR SELECT CONNECTION_ID FROM
M_SERVICE_THREADS
 WHERE LOCK_WAIT_NAME LIKE 'SQLScript/SQLScript_Sync/Sleep/%';
 FOR C AS WAITING_CONNECTIONS DO
 CALL SYNCLIB:WAKEUP_CONNECTION(C.CONNECTION_ID);
 END FOR; END

244 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

12.2 Built-in Library SQLSCRIPT_STRING

The SQLSCRIPT_STRING library offers a handy and simple way for manipulating strings. You can split libraries
with given delimiters or regular expressions, format or rearrange strings, and convert table variables into the
already available strings.

Syntax

 Code Syntax

CREATE LIBRARY SYS.SQLSCRIPT_STRING LANGUAGE SQLSCRIPT AS BUILTIN BEGIN
 FUNCTION SPLIT(IN VALUE NVARCHAR(5000), IN SEPARATOR NVARCHAR(5000), IN
MAXSPLIT INT DEFAULT -1) RETURNS ...;
 FUNCTION SPLIT_TO_TABLE(IN VALUE NVARCHAR(5000), IN SEPARATOR
NVARCHAR(5000), IN MAXSPLIT INT DEFAULT -1) RETURNS TABLE(RESULT
NVARCHAR(5000));
 FUNCTION SPLIT_TO_ARRAY(IN VALUE NVARCHAR(5000), IN SEPARATOR
NVARCHAR(5000), IN MAXSPLIT INT DEFAULT -1) RETURNS RESULTS NVARCHAR(5000)
ARRAY;

 FUNCTION SPLIT_REGEXPR(IN VALUE NVARCHAR(5000), IN REGEXPR
NVARCHAR(5000), IN MAXSPLIT INT DEFAULT -1) RETURNS ...;
 FUNCTION SPLIT_REGEXPR_TO_TABLE(IN VALUE NVARCHAR(5000), IN REGEXPR
NVARCHAR(5000), IN MAXSPLIT INT DEFAULT -1) RETURNS TABLE(RESULT
NVARCHAR(5000));
 FUNCTION SPLIT_REGEXPR_TO_ARRAY(IN VALUE NVARCHAR(5000), IN REGEXPR
NVARCHAR(5000), IN MAXSPLIT INT DEFAULT -1) RETURNS RESULTS NVARCHAR(5000)
ARRAY;

 FUNCTION FORMAT(IN FORMAT NVARCHAR(5000), IN ...) RETURNS RESULT
NVARCHAR(8388607);
 FUNCTION FORMAT_TO_TABLE(IN FORMAT NVARCHAR(5000), IN TABLE(...)) RETURNS
TABLE(RESULT NVARCHAR(8388607));
 FUNCTION FORMAT_TO_ARRAY(IN FORMAT NVARCHAR(5000), IN TABLE(...)) RETURNS
RESULTS NVARCHAR(8388607) ARRAY;

 FUNCTION TABLE_SUMMARY(IN TABLE TABLE(...), IN ROWS INT DEFAULT 100)
RETURNS RESULT NVARCHAR(8388607); END;

SPLIT Family Functions

SPLIT / SPLIT_REGEXPR
The SPLIT(_REGEXPR) function returns multiple variables depending on the given parameters.

● If MAXSPLIT is -1, there is no limit on the number of splits.
● If MAXSPLIT is specified, at most MAXSPLIT splits are made.
● Empty string as input returns an empty string as result.
● String without separators as input returns the whole given string.

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 245

● String with N-1 separators as input returns N separated strings.

SPLIT_TO_ARRAY / SPLIT_ REGEXPR TO_ARRAY

The SPLIT_TO_ARRAY(REGEXPR) returns a NVARCHAR(5000) array with N separated strings

● Empty string as input returns an array of null values.
● String without separators as input returns an array with the whole given string in the first element.
● String with N-1 separator as input returns an array of N separated strings.

SPLIT_TO_TABLE / SPLIT_REGEXPR_TO_TABLE

The SPLIT_TO_TABLE(_REGEXPR) returns a single column table with table type (WORD NVARCHAR(5000))

● Empty string as input returns a single column table with 0 rows.
● String without separators as input returns a single column table with a whole given string in the first row
● String with N-1 separator as input returns a single column table with N separated strings in N rows.
● This function can be interpreted as UNNEST(SPLIT_TO_ARRAY(val, sep)) AS ("WORD").

 Sample Code

DO BEGIN SQLSCRIPT_STRING AS LIB;
 DECLARE a1, a2, a3 INT;
 (a1, a2, a3) = LIB:SPLIT('10, 20, 30', ', '); --(10, 20, 30)
END;

DO BEGIN
 USING SQLSCRIPT_STRING AS LIB;
 DECLARE first_name, last_name STRING;
 DECLARE area_code, first_num, last_num INT;
 first_name = LIB:SPLIT('John Sutherland', ','); --('John Sutherland')
 (first_name, last_name) = LIB:SPLIT('John Sutherland', ' '); --
('John','Sutherland')
 first_name = LIB:SPLIT('Brian', ' '); --('Brian')
 (first_name, last_name) = LIB:SPLIT('Brian', ' '); -- throw SQL_FEW_VALUES
 (first_name, last_name) = LIB:SPLIT('Michael Forsyth Jr', ' ');--throw
SQL_MANY_VALUES
 (first_name, last_name) = LIB:SPLIT('Michael Forsyth Jr', ' ', 1); --
('Michael', 'Forsyth Jr')
 (area_code, first_num, last_num) = LIB:SPLIT_REGEXPR('02)2143-5300', '\(|
\)|-'); --(02, 2143, 5300)
END;

DO BEGIN
 USING SQLSCRIPT_STRING AS LIB;
 DECLARE arr INT ARRAY;
 DECLARE arr2 STRING ARRAY;
 DECLARE tv, tv2 TABLE(RESULT NVARCHAR(5000));

 arr = LIB:SPLIT_TO_ARRAY('10,20,30,40,50',','); --array(10,20,30,40,50)
 arr2 = LIB:SPLIT_REGEXPR_TO_ARRAY('Blake Kelly; Fred Randall; Bell Walsh;
Leonard Quinn; Chris McDonald', '\s*;\s*'); --array('Blake Kelly', 'Fred
Randall', 'Bell Walsh', 'Leonard Quinn', 'Chris McDonald')
 tv = LIB:SPLIT_TO_TABLE('10,20,30,40,50',','); --table[(10),(20),(30),
(40),(50)]
 tv2 = LIB:SPLIT_REGEXPR_TO_TABLE('10+20/30*40-50', '\+|\/|*|-'); --
table[(10),(20),(30),(40),(50)]
END;

246 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

 Note
The SPLIT_TO_TABLE function currently does not support implicit table variable declaration.

CREATE PROCEDURE SPLIT_TO_TABLE_TEST AS BEGIN USING SQLSCRIPT_STRING AS lib;
 DECLARE tv TABLE(RESULT NVARCHAR(5000)); --Needs explicit table variable
declaration
 tv = LIB:SPLIT_TO_TABLE('a,b',',');
 SELECT * FROM :tv;
END;
 CALL SPLIT_TO_TABLE_TEST(); -- [(a), (b)]

FORMAT Family Functions

FORMAT String
FORMAT functions support a new Python-style formatting.

 Code Syntax

replacement_field := "{" [field_name] [":"format_spec] "}" field_name := [column_name | integer]
format_spec := [sign][0][width][.precision][type]
sign := "+" | "-" | " "
width := integer
precision := integer type := "s" | "b" | "c" | "d" | "o" | "x" | "X" | "e" | "E" | "f" | "F" | "g"
| "G"

String Representation Types

Type Meaning

's' String format

None The same as 's'

Integer Representation Types

Type Meaning

'b' Binary format

'c' Character

'd' Decimal Integer

'o' Octal format

'x' HEX format. Using lower-case letters in the result

'X' HEX format. Using upper-case letters in the result

None The same as 'd'

Floating Point and Decimal Value Representation Types

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 247

Type Meaning

'e' Exponent notation. The default precision is 6.

'E' Exponent notation. Using upper case 'E' in the result.

'f' Fixed point. The default precision is 6.

'F' Fixed point. Use NAN for nan and INF for inf in the result.

'g' General format. The default precision is 6.

Type 'e' with precision p-1, the number has exponent exp

If -4 <= exp < p, the same as 'f' and the precision is p-1-exp

Else, the same as 'e' and precision is p - 1

'G' General format. Using upper case 'E' in the result.

None Similar to 'g'. The default precision is as high as needed to
represent the number.

Example

Type Example

Basic FORMAT('{} {}', 'one', 'two') => 'one two'

FORMAT('{1} {0}', 1, 2) => '2 1'

Truncating long strings FORMAT('{:.5}', 'xylophone') =>'xylop'

FORMAT('{:10.5}', 'xylophone') => 'xylop '

Numbers FORMAT('{:d}', 42) => '42'

FORMAT('{:f}', 3.141592653589793) => '3.141593'

FORMAT('{:g}', 123456) => '123456'

FORMAT('{:g}', 1234567) => '1.23456e+06'

FORMAT('{:g}', 0.000123456) => '0.000123456'

FORMAT('{:g}', 0.0000123456) => '1.23456e-05'

Padding Numbers FORMAT('{:4d}', 42) => ' 42'

FORMAT('{:06.2f}', 3.141592653589793) => '003.14'

FORMAT('{:04d}', 42) => '0042'

Signed Numbers FORMAT('{:+d}', 42) => '+42'

FORMAT('{: d}', -23) => '-23'

FORMAT('{: d}', 42) => ' 42'

248 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

Type Example

Column Names tv = select 1 as first, 2 as last
from dummy; FORMAT_TO _TABLE('{first}
{last}', :tv) => [('1 2')] FORMAT_TO _TABLE('{first:04d} {last:
02d}', :tv) => [('0001 02')]

FORMAT
Returns a single formatted string using a given format string and additional arguments. Two type of additional
arguments are supported: scalar variables and a single array. The first argument type accepts only scalar
variables and should have a proper number and type of arguments. With the second argument type is allowed
only one array that should have a proper size and type.

FORMAT_TO_TABLE/FORMAT_TO_ARRAY
Returns a table or an array with N formatted strings using a given table variable. FORMAT STRING is applied
row by row.

 Sample Code

DO BEGIN USING SQLSCRIPT_STRING AS LIB;
 DECLARE your_name STRING = LIB:FORMAT('{} {}', 'John', 'Sutherland');
--'John Sutherland'
 DECLARE name_age STRING = LIB:FORMAT('{1} {0}', 30, 'Sutherland');
--'Sutherland 30'
 DECLARE pi_str STRING = LIB:FORMAT('PI: {:06.2f}', 3.141592653589793);
--'PI: 003.14'
DECLARE ts STRING = LIB:FORMAT('Today is {}', TO_VARCHAR (current_timestamp,
'YYYY/MM/DD')); --'Today is 2017/10/18'
 DECLARE scores double ARRAY = ARRAY(1.4, 2.1, 40.3);
 DECLARE score_str STRING = LIB:FORMAT('{}-{}-{}', :scores);
--'1.4-2.1-40.3'
END;

DO BEGIN
 USING SQLSCRIPT_STRING AS LIB;
 DECLARE arr NVARCHAR(5000) ARRAY;
 declare tv table(result NVARCHAR(5000));
 --tt: [('John', 'Sutherland', 1988), ('Edward','Stark',1960)]
 DECLARE tt TABLE (first_name NVARCHAR(100), last_name NVARCHAR(100),
birth_year INT);
 tt.first_name[1] = 'John';
 tt.last_name[1] = 'Sutherland';
 tt.birth_year[1] = 1988;

 tt.first_name[2] = 'Edward';
 tt.last_name[2] = 'Stark';
 tt.birth_year[2] = 1960;

 arr = LIB:FORMAT_TO_ARRAY('{first_name} {last_name} was born in
{birth_year}', :tt);
 --['John Sutherland was born in 1988', 'Edward Stark was born in 1960']

 tv = LIB:FORMAT_TO_TABLE('{first_name} {last_name} was born in
{birth_year}', :tt);
 --tv: [('John Sutherland was born in 1988'), ('Edward Stark was born in
1960')]
END;

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 249

TABLE_SUMMARY

TABLE_SUMMARY converts a table variable into a single formatted string. It serializes the table into a human-
friendly format, similar to the current result sets in the client. Since the table is serialized as a single string, the
result is fetched during the PROCEDURE execution, not at the client-side fetch time. The parameter
MAX_RECORDS limits the number of rows to be serialized. If the size of the formatted string is larger than
NVARCHAR(8388607), only the limited size of the string is returned.

By means of SQLScript FORMAT functions, the values in the table are be formatted as follows:

● Integer types: formatted with SQLScript FORMAT string “d”.
● String types: formatted with SQLScript FORMAT string “s”.
● LOB types: formatted with SQLScript FORMAT string ".32s" (maximum 32 characters)
● Float types: formatted with SQLScript FORMAT string “.2f” (2 digit floating point value)
● Fixed types: formatted with SQLScript FORMAT string "" (default: preserve original precision + scale)

 Sample Code

CREATE TABLE SAMPLE1(NAME nvarchar(32), AGE INT); INSERT INTO SAMPLE1 VALUES ('John Bailey', 28);
INSERT INTO SAMPLE1 VALUES ('Kevin Lawrence', 56);
INSERT INTO SAMPLE1 VALUES ('Leonard Poole', 31);
INSERT INTO SAMPLE1 VALUES ('Vanessa Avery', 16);

DO
BEGIN
 USING SQLSCRIPT_STRING AS STRING;
 USING SQLSCRIPT_PRINT AS PRINT;
 T1 = SELECT * FROM SAMPLE1;
 LIB:PRINT_LINE(STRING:TABLE_SUMMARY(:T1, 3));
END;

NAME,AGE
John Bailey,28
Kevin Lawrence,56
Leonard Poole,31

250 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

12.3 Built-in Library SQLSCRIPT_PRINT

Syntax

 Code Syntax

CREATE LIBRARY SYS.SQLSCRIPT_PRINT LANGUAGE SQLSCRIPT AS BUILTIN BEGIN
 PROCEDURE PRINT_LINE(IN VALUE NVARCHAR(8388607));
 PROCEDURE PRINT_TABLE(IN TAB TABLE(...), IN MAX_RECORDS INT DEFAULT 100); END;

Description

The PRINT library makes it possible to print strings or even whole tables. It is especially useful when used
together with the STRING library. The PRINT library procedures produce a server-side result from the
parameters and stores it in an internal buffer. All stored strings will be printed in the client only after the end of
the PROCEDURE execution. In case of nested execution, the PRINT results are delivered to the client after the
end of the outermost CALL execution. The traditional result-set based results are not mixed up with PRINT
results.

The PRINT library procedures can be executed in parallel. The overall PRINT result is flushed at once, without
writing it on a certain stream for each request. SQLScript ensures the order of PRINT results, based on the
description order in the PROCEDURE body, not on the order of execution.

 Note
The built-in library SQLSCRIPT_PRINT is only supported in SAP HANA HDBSQL.

PRINT_LINE

This library procedure returns a string as a PRINT result. The procedure accepts NVARCHAR values as input,
but also most other values are possible, as long as implicit conversion is possible (for example, INTEGER to
NVARCHAR). Hence, most of the non-NVACHAR values can be used as parameters, since they are supported
with SQLScript implicit conversion. Users can freely introduce string manipulation by using either a
concatenation operator (||), a TO_NVARCHAR() value formatting, or the newly introduced
SQLSCRIPT_STRING built-in library.

PRINT_TABLE

This library procedure takes a table variable and returns a PRINT result. PRINT_TABLE() parses a table variable
into a single string and sends the string to the client. The parameter MAX_RECORDS limits the number of rows
to be printed. PRINT_TABLE() is primarily used together with TABLE_SUMMARY of the STRING library.

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 251

Example

 Sample Code

DO BEGIN
 USING SQLSCRIPT_PRINT as LIB;
 LIB:PRINT_LINE('HELLO WORLD');
 LIB:PRINT_LINE('LINE2');
 LIB:PRINT_LINE('LINE3');
END;

DO
BEGIN
USING SQLSCRIPT_PRINT as LIB1;
 USING SQLSCRIPT_STRING as LIB2;
 LIB1:PRINT_LINE('HELLO WORLD');
 LIB1:PRINT_LINE('Here is SAMPLE1');
 T1 = SELECT * FROM SAMPLE1;
 LIB1:PRINT_LINE(LIB2:TABLE_SUMMARY(:T1));
 LIB1:PRINT_LINE('Here is SAMPLE2');
 T2 = SELECT * FROM SAMPLE2;
 LIB1:PRINT_TABLE(:T2);
 LIB1:PRINT_LINE('End of PRINT'); END;

12.4 Built-In Library SQLSCRIPT_LOGGING

SQLSCRIPT_LOGGING supports user level tracing for various types of SQLScript objects including procedures,
table functions and SQLScript libraries.

Interface

 Code Syntax

CREATE LIBRARY SQLSCRIPT_LOGGING AS BUILTIN BEGIN PUBLIC VARIABLE LEVEL_FATAL CONSTANT VARCHAR(5) = 'fatal';
 PUBLIC VARIABLE LEVEL_ERROR CONSTANT VARCHAR(5) = 'error';
 PUBLIC VARIABLE LEVEL_WARNING CONSTANT VARCHAR(7) = 'warning';
 PUBLIC VARIABLE LEVEL_INFO CONSTANT VARCHAR(4) = 'info';
 PUBLIC VARIABLE LEVEL_DEBUG CONSTANT VARCHAR(5) = 'debug';

 PUBLIC PROCEDURE CREATE_CONFIGURATION(CONFIGURATION_NAME VARCHAR(32));
 PUBLIC PROCEDURE DROP_CONFIGURATION(CONFIGURATION_NAME VARCHAR(32));

 PUBLIC PROCEDURE SET_OUTPUT_TABLE(CONFIGURATION_NAME VARCHAR(32),
SCHEMA_NAME NVARCHAR(256), TABLE_NAME NVARCHAR(256));
 PUBLIC PROCEDURE SET_LEVEL(CONFIGURATION_NAME VARCHAR(32), LEVEL
VARCHAR(7));

 PUBLIC PROCEDURE START_LOGGING(CONFIGURATION_NAME VARCHAR(32));
 PUBLIC PROCEDURE STOP_LOGGING(CONFIGURATION_NAME VARCHAR(32));

252 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

 PUBLIC PROCEDURE ADD_SQLSCRIPT_OBJECT(CONFIGURATION_NAME VARCHAR(32),
SCHEMA_NAME NVARCHAR(256), OBJECT_NAME NVARCHAR(256));
 PUBLIC PROCEDURE REMOVE_SQLSCRIPT_OBJECT(CONFIGURATION_NAME VARCHAR(32),
SCHEMA_NAME NVARCHAR(256), OBJECT_NAME NVARCHAR(256));

 PUBLIC PROCEDURE SET_FILTER(CONFIGURATION_NAME VARCHAR(32), TYPE
VARCHAR(16), ...);
 PUBLIC PROCEDURE ADD_FILTER(CONFIGURATION_NAME VARCHAR(32), TYPE
VARCHAR(16), ...);
 PUBLIC PROCEDURE REMOVE_FILTER(CONFIGURATION_NAME VARCHAR(32), TYPE
VARCHAR(16), ...);
 PUBLIC PROCEDURE UNSET_FILTER(CONFIGURATION_NAME VARCHAR(32), TYPE
VARCHAR(16));

 PUBLIC PROCEDURE LOG(LEVEL VARCHAR(7), TOPIC VARCHAR(32), MESSAGE
NVARCHAR(5000), ...); END;

Description

Logging

An SQLScript object with LOG() is called a logging object. A log message can be categorized by its topic.

Procedure Description

LOG (LEVEL, TOPIC, MESSAGE, ...) A formatted log message is inserted in the output table if
there is a configuration that enables the log. The invoking
user should have the SQLSCRIPT LOGGING privilege for the
current object. Saving log messages requires a configura-
tion, otherwise the logging will be ignored.

 Restriction
Not available inside scalar user-defined functions and
autonomous transaction blocks.

Configuration

A configuration is an imaginary object designed for logging settings. It is not a persistence object and lasts only
until the end of the execution of the outermost statement. All settings for logging can be controlled by
configurations. At least 1 configuration is required to save the log messages and up to 10 configurations can
exist at a time.

Procedure Description

CREATE_CONFIGURATION (CONFIGURATION_NAME) A constructor to create a configuration with the given name.
The CONFIGURATION_NAME should be unique during the
whole execution.

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 253

Procedure Description

DROP_CONFIGURATION (CONFIGURATION_NAME) A destructor to remove the configuration with the given
name. All configurations are destructed automatically when
the outermost statement finishes its execution.

SET_LEVEL (CONFIGURATION_NAME, LEVEL) This is a mandatory configuration setting. The Logging Li­
brary writes logs with higher (less verbose level) or equal
level. The levels (from less verbose to more verbose) are: fa­
tal, error, warning, info, debug

SQLScript Objects

SQLSCRIPT_LOGGING supports procedures, table functions and SQLScript libraries. SQLScript objects need
to be registered to a configuration in order to collect logs from the objects. Only object-wise configurations are
supported, a member-wise setting for libraries is not available.

Procedure Description

ADD_SQLSCRIPT_OBJECT (CONFIGURATION_NAME,
SCHEMA_NAME, OBJECT_NAME)

Opt-in for collecting logs from the object. It requires
SQLSCRIPT LOGGING privilege for the object. Up to 10 ob­
jects can be added to a single configuration.

REMOVE_SQLSCRIPT_OBJECT (CONFIGURATION_NAME,
SCHEMA_NAME, OBJECT_NAME)

Opt-out for collecting logs from the object

Output Table

Log messages from logging objects are inserted into an output table.

Procedure Description

SET_OUTPUT_TABLE (CONFIGURATION_NAME,
SCHEMA_NAME, TABLE_NAME)

Sets which table should be used as an output table. Only a
single output table is supported. The table type must match
SQLSCRIPT_LOGGING_TABLE_TYPE. This is a mandatory
configuration setting

Filters

You can focus on specific messages by using filters. The OR operator is applied in case of multiple filter values:

call SET_FILTER('conf1', 'topic', 'sqlscript', 'compiler')

will be evaluated as

topic==‘sqlscript’ || topic == ‘compiler’

 Note
Currently only the type 'topic' is supported.

254 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

Procedure Description

SET_FILTER (CONFIGURATION_NAME, TYPE, ...) Sets a filter for logging. Supports open-ended parameter for
multiple filter values.

ADD_FILTER (CONFIGURATION_NAME, TYPE, ...) Adds filter values to the filter type

REMOVE_FILTER (CONFIGURATION_NAME, TYPE, ...) Remove filter values from the filter type

UNSET_FILTER (CONFIGURATION_NAME, TYPE) Reset filter value to default (no filters)

Starting and Stopping the Logging
SQLSCRIPT_LOGGING requires to explicitly start the logging before calling an object. The logging is stopped
implicitly when the outermost statement execution is finished but can also be stopped explicitly.

Procedure Description

START_LOGGING (CONFIGURATION_NAME) Start to collect logs for the given configuration. Throws an
error if the output table or level are not set.

STOP_LOGGING (CONFIGURATION_NAME) Stop collecting logs for the given configuration.

Configuration Steps

1. Create a log table for records by using SYS.SQLSCRIPT_LOGGING_TABLE_TYPE.
2. Create a procedure or call an anonymous block with following content:

1. Define one or more configuration settings.
2. Set up the logging level and the output table created in step 1.
3. Add one ore more SQLScript objects (a procedure, a function, a library) to the configuration.
4. (Optional) Set a filter by using a filter type and value.
5. Start logging.
6. Call the SQLScript object added to the configuration in step C.
7. (Optional) Stop logging.

3. Call the procedure created in step 2.

Example

 Sample Code

create function tudf1() returns table(a int) as begin using SQLSCRIPT_LOGGING as LIB;
 call LIB:LOG('debug', 'all', 'start tudf1');
 s = select 1 as a from dummy;
 call LIB:LOG('debug', 'all', 'this is tudf1');
 call LIB:LOG('debug', 'all', 'end tudf1');
 return :s;
end;

create function tudf2() returns table(a int) as begin

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 255

 using SQLSCRIPT_LOGGING as LIB;
 begin sequential execution
 call LIB:LOG('debug', 'all', 'start tudf2');
 call LIB:LOG('debug', 'all', 'tudf2 calls tudf1');
 s = select * from tudf1();
 call LIB:LOG('debug', 'all', 'end tudf2');
 end;
 return :s;
end;

create table t1 like sys.sqlscript_logging_table_type;
create table t2 like sys.sqlscript_logging_table_type;
create table t_all like sys.sqlscript_logging_table_type;

DO BEGIN
 using SQLSCRIPT_LOGGING as LIB;
 -- conf1
 call LIB:CREATE_CONFIGURATION('conf1');
 call LIB:ADD_SQLSCRIPT_OBJECT('conf1', current_schema, 'TUDF1');
 call LIB:SET_OUTPUT_TABLE('conf1', current_schema, 'T1');
 call LIB:SET_LEVEL('conf1', 'debug');
 call LIB:START_LOGGING('conf1');

 -- conf2
 call LIB:CREATE_CONFIGURATION('conf2');
 call LIB:ADD_SQLSCRIPT_OBJECT('conf2', current_schema, 'TUDF2');
 call LIB:SET_OUTPUT_TABLE('conf2', current_schema, 'T2');
 call LIB:SET_LEVEL('conf2', 'debug');
 call LIB:START_LOGGING('conf2');

 -- all
 call LIB:CREATE_CONFIGURATION('conf_all');
 call LIB:ADD_SQLSCRIPT_OBJECT('conf_all', current_schema, 'TUDF1');
 call LIB:ADD_SQLSCRIPT_OBJECT('conf_all', current_schema, 'TUDF2');
 call LIB:SET_OUTPUT_TABLE('conf_all', current_schema, 'T_ALL');
 call LIB:SET_LEVEL('conf_all', 'debug');
 call LIB:START_LOGGING('conf_all');

 select * from tudf2();
END;

create user sqlscript_logging_user_a password Dummy1234 NO
FORCE_FIRST_PASSWORD_CHANGE;

connect sqlscript_logging_user_a password Dummy1234;
create procedure p1 sql security invoker as begin
 using SQLSCRIPT_LOGGING as LIB;
 call LIB:LOG('error', 'sqlscript', 'hello world');
end;

grant execute, sqlscript logging on p1 to SYSTEM;

connect SYSTEM password manager;

DO BEGIN
 using SQLSCRIPT_LOGGING as LIB;
 call LIB:CREATE_CONFIGURATION('conf1');
 call LIB:SET_OUTPUT_TABLE('conf1', current_schema, 'T1');
 call LIB:SET_LEVEL('conf1', 'debug');
 call LIB:ADD_SQLSCRIPT_OBJECT('conf1', 'SQLSCRIPT_LOGGING_USER_A', 'P1');
 call LIB:START_LOGGING('conf1');
 call SQLSCRIPT_LOGGING_USER_A.p1;
 call LIB:STOP_LOGGING('conf1'); END;

256 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

Related Information

SQLSCRIPT_LOGGING Privilege [page 257]
SQLSCRIPT_LOGGING_TABLE_TYPE [page 258]

12.4.1 SQLSCRIPT_LOGGING Privilege

SQLSCRIPT LOGGING privilege is required to collect logs for a SQLScript object. A logging user can be different
from the procedure owner and the owner can expose log messages to other users selectively by using this
privilege.

Syntax

 Code Syntax

<schema_privilege> ::= ALL PRIVILEGES |...| SQLSCRIPT LOGGING <object_privilege> ::= ALL PRIVILEGES |...| SQLSCRIPT LOGGING

Example

 Sample Code

connect sqlscript_logging_user_a password Dummy1234; create procedure p1 sql security invoker as begin
 using SQLSCRIPT_LOGGING as LIB;
 call LIB:LOG('error', 'sqlscript', 'hello world');
end;
 grant execute, sqlscript logging on p1 to SYSTEM;

Related Information

Built-In Library SQLSCRIPT_LOGGING [page 252]

SAP HANA SQLScript Reference for SAP HANA Platform
Built-In Libraries PUBLIC 257

12.4.2 SQLSCRIPT_LOGGING_TABLE_TYPE

SQLSCRIPT_LOGGING:LOG can only write logs to a table with a predefined table type. You can create an output
table using the type SYS.SQLSCRIPT_LOGGING_TABLE_TYPE or the public synonym
SQLSCRIPT_LOGGING_TABLE_TYPE.

Definition

CREATE TYPE SYS.SQLSCRIPT_LOGGING_TABLE_TYPE AS TABLE (HOST VARCHAR(64) NOT
NULL, PORT INTEGER NOT NULL, THREAD_ID BIGINT NOT NULL, CONNECTION_ID INTEGER NOT NULL, TRANSACTION_ID INTEGER NOT NULL, TIMESTAMP
TIMESTAMP NOT NULL, LEVEL VARCHAR(7) NOT NULL, USER_NAME NVARCHAR(256) NOT NULL,
TOPIC VARCHAR(32) NOT NULL,
 DATABASE_NAME NVARCHAR(256), SCHEMA_NAME NVARCHAR(256), OBJECT_NAME
NVARCHAR(256), MEMBER_NAME NVARCHAR(256),
 SOURCE_LINE INTEGER NOT NULL, MESSAGE NVARCHAR(5000));
 CREATE PUBLIC SYNONYM SQLSCRIPT_LOGGING_TABLE_TYPE FOR
SYS.SQLSCRIPT_LOGGING_TABLE_TYPE;

Example

 Sample Code
 create table mytab like sys.sqlscript_logging_table_type;

Related Information

Built-In Library SQLSCRIPT_LOGGING [page 252]

258 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Built-In Libraries

13 Query Parameterization:
BIND_AS_PARAMETER and
BIND_AS_VALUE

All scalar variables used in queries of procedures, functions or anonymous blocks, are represented either as
query parameters, or as constant values during query compilation. Which option shall be chosen is a decision
of the optimizer.

Example

The following procedure uses two scalar variables (var1 and var2) in the WHERE-clause of a nested query.

 Sample Code

CREATE PROCEDURE PROC (IN var1 INT, IN var2 INT, OUT tab mytab) AS
BEGIN
 tab = SELECT * FROM MYTAB WHERE MYCOL >:var1
 OR MYCOL =:var2;
END;

Calling the procedure by using query parameters in the callable statement

 Sample Code

CALL PROC (var1=>?, var2=>?, mytab=>?)

will prepare the nested query of the table variable tab by using query parameters for the scalar parameters:

 Sample Code

SELECT * FROM MYTAB WHERE MYCOL >? OR MYCOL =?

Before the query is executed, the parameter values will be bound to the query parameters.

Calling the procedure without query parameters and using constant values directly

 Sample Code

CALL PROC (var1=>1, var2=>2, mytab=>?)

will lead to the following query string that uses the parameter values directly:

 Sample Code

SELECT * FROM MYTAB WHERE MYCOL >1 OR MYCOL =2;

SAP HANA SQLScript Reference for SAP HANA Platform
Query Parameterization: BIND_AS_PARAMETER and BIND_AS_VALUE PUBLIC 259

The advantage of using query parameters is that the generated query plan cache entry can be used even if the
values of the variables var1 and var2 change.

A potential disadvantage is that there is a chance of not getting the most optimal query plan because
optimizations using parameter values cannot be performed directly during compilation time. Using constant
values will always lead to preparing a new query plan and therefore to different query plan cache entries for the
different parameter values. This comes along with additional time spend for query preparation and potential
cache flooding effects in fast-changing parameter value scenarios.

In order to control the parameterization behavior of scalar parameters explicitly, you can use the function
BIND_AS_PARAMETER and BIND_AS_VALUE. The decision of the optimizer and the general configuration are
overridden when you use these functions.

Syntax

<bind_as_function> ::= BIND_AS_PARAMETER (<scalar_variable>)| BIND_AS_VALUE(<scalar_variable>)

Using BIND_AS_PARAMETER will always use a query parameter to represent a <scalar_variable> during query
preparation.

Using BIND_AS_VALUE will always use a value to represent a <scalar_variable> during query preparation.

The following example represents the same procedure from above but now using the functions
BIND_AS_PARAMETER and BIND_AS_VALUE instead of referring to the scalar parameters directly:

 Sample Code

CREATE PROCEDURE PROC (IN var1 INT, IN var2 INT, OUT tab mytab) AS
 BEGIN
 tab = SELECT * FROM MYTAB WHERE MYCOL > BIND_AS_PARAMETER(:var1)
 OR MYCOL = BIND_AS_VALUE(:var2);
 END;

If you call the procedure again with

 Sample Code

CALL PROC (var1=>?, var2=>?, mytab=>?)

and bind the values (1 for var1 and 2 for var2), the following query string will be prepared

 Sample Code

SELECT * FROM MYTAB WHERE MYCOL >? OR MYCOL = 2;

The same query string will be prepared even if you call this procedure with constant values because the
functions override the decisions of the optimizer.

260 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Query Parameterization: BIND_AS_PARAMETER and BIND_AS_VALUE

 Sample Code

CALL PROC (var1=>1, var2=>2, mytab=>?)

SAP HANA SQLScript Reference for SAP HANA Platform
Query Parameterization: BIND_AS_PARAMETER and BIND_AS_VALUE PUBLIC 261

14 Supportability

14.1 M_ACTIVE_PROCEDURES

The view M_ACTIVE_PROCEDURES monitors all internally executed statements starting from a procedure call.
That also includes remotely executed statements.

M_ACTIVE_PROCEDURES is similar to M_ACTIVE_STATEMENTS but keeps the records of completed internal
statements until the parent procedure finishes, and shows them in hierarchical order of nested level. The
structure of M_ACTIVE_PROCEDURES looks as follows:

Column name Data type Description

PROCEDURE_HOST VARCHAR(64) Procedure Host

PROCEDURE_PORT INTEGER Procedure Internal Port

PROCEDURE_SCHEMA_NAME NVARCHAR(256) Schema name of the stored procedure

PROCEDURE_NAME NVARCHAR(256) Name of the stored procedure

PROCEDURE_CONNECTION_ID INTEGER Procedure connection ID

PROCEDURE_TRANSACTION_ID INTEGER Procedure transaction ID

STATEMENT_ID VARCHAR(20) Logical ID of the statement

STATEMENT_STRING NCLOB SQL statement

STATEMENT_PARAMETERS NCLOB Statement parameters

STATEMENT_STATUS VARCHAR(16) Status of the statement:

EXECUTING: statement is still running

COMPLETED: statement is completed

COMPILING: statement will be com­
piled

ABORTED: statement was aborted

STATEMENT_EXECUTION_COUNT INTEGER Count of statement execution

262 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Column name Data type Description

STATEMENT_DEPTH INTEGER Statement depth

STATEMENT_COMPILE_TIME BIGINT Elapsed time for compiling statement
(microseconds)

STATEMENT_EXECUTION_TIME BIGINT Elapsed time for executing statement
(microseconds)

STATEMENT_START_TIME TIMESTAMP Statement start time

STATEMENT_END_TIME TIMESTAMP Statement end time

STATEMENT_CONNECTION_ID INTEGER Connection ID of the statement

STATEMENT_TRANSACTION_ID INTEGER Transaction ID of the statement

STATEMENT_MATERIALIZATION_TIME BIGINT Specifies the ITAB materialization time.

STATEMENT_MATERIALIZA­
TION_MEMORY_SIZE

BIGINT Specifies the memory size of the ITAB
materialization.

STATEMENT_EXECUTION_MEM­
ORY_SIZE

BIGINT Shows the peak memory (in bytes)
used for executing a statement. In case
of distributed execution, it is a sum of
the local peak memories of multiple
servers.

 Note
By default this column shows '-1'.
You need to perform the following
configurations to enable the statis­
tics.

global.ini:
('resource_tracking',
'enable_tracking') =
'true’

global.ini:
('resource_tracking',
'memory_tracking') =
'true'

The value is filled only after the exe­
cution is complete. During the exe­
cution, it shows -1.

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 263

M_ACTIVE_PROCEDURES is also helpful for analyzing long-running procedures and for determining their
current status. You can run the following query from another session to find out more about the status of a
procedure, like MY_SCHEMA.MY_PROC in the example:

select * from M_ACTIVE_PROCEDURES where procedure_name = ‘my_proc’ and
procedure_schema_name = ‘my_schema’;

There is also an INI-configuration monitoring_level to control the granularity of monitoring level:

Level Description

0 Disables profiling information, such as STATE­
MENT_START_TIME and STATEMENT_END_TIME.

1 Default mode. Enables profiling information, but still disables
the collection of STATEMENT_PARAMTER values.

2 Full information for the monitoring view

To prevent flooding of the memory with irrelevant data, the number of records is limited. If the record count
exceeds the given threshold, the first record is deleted irrespective of its status. The limit can be adjusted the
INI-parameter execution_monitoring_limit, for example execution_monitoring_limit = 100 000.

Limitations:

● No triggers and functions are supported.
● Information other than EAPI layer is not monitored (but might be included in the total compilation time or

execution time).

The default behavior of M_ACTIVE_PROCEDURES is to keep the records of completed internal statements until
the parent procedure is complete. This behavior can be changed with the following two configuration
parameters: NUMBER_OF_CALLS_TO_RETAIN_AFTER_EXECUTION and
RETENTION_PERIOD_FOR_SQLSCRIPT_CONTEXT.

With NUMBER_OF_CALLS_TO_RETAIN_AFTER_EXECUTION, you can specify how many calls are retained after
execution and RETENTION_PERIOD_FOR_SQLSCRIPT_CONTEXT defines how long the result should be kept in
M_ACTIVE_PROCEDURES. The following options are possible:

● Both parameters are set: M_ACTIVE_PROCEDURES keeps the specified numbers of records for the
specified amount of time

● Only NUMBER_OF_CALLS_TO_RETAIN_AFTER_EXECUTION is set: M_ACTIVE_PROCEDURES keeps the
specified number for the default amount of time (= 3600 seconds)

● Only RETENTION_PERIOD_FOR_SQLSCRIPT_CONTEXT is set: M_ACTIVE_PROCEDURES keeps the default
number of records (= 100) for the specified amount of time

● Nothing is set: no records are kept.

 Note
All configuration parameters need to be defined in the section sqlscript.

264 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

14.2 Query Export

The Query Export is an enhancement of the EXPORT statement. It allows exporting queries, that is database
objects used in a query together with the query string and parameters. This query can be either standalone, or
executed as a part of a SQLScript procedure.

14.2.1 SQLScript Query Export

Prerequisites

In order to execute the query export as a developer you need an EXPORT system privilege.

Procedure

To export one or multiple queries of a procedure, use the following syntax:

EXPORT ALL AS <export_format> INTO <path> [WITH <export_option_list>]ON
<sqlscript_location_list> FOR <procedure_call_statement>

With <export_format> you define whether the export should use a BINARY format or a CSV format.

<export_format> ::= BINARY | CSV

 Note
Currently the only format supported for SQLScript query export is CSV . If you choose BINARY, you get a
warning message and the export is performed in CSV.

The server path where the export files are be stored is specified as <path>.

<path> ::= <string_literal>

For more information about <export_option_list>, see EXPORT in the SAP HANA SQL and System Views
Reference on the SAP Help Portal.

Apart from SELECT statements, you can export the following statement types as well:

● Nested calls DMLs (INSERT, DELETE, ...)
● DDLs (CREATE TABLE, ...)
● Dynamic SQL (anything except EXPORT)

The information about the queries to be exported is defined by <sqlscript_location_list>.

<sqlscript_location_list> ::= <sqlscript_location> [{,
<sqlscript_location_list>}] <sqlscript_location> ::= ([<procedure_name>] LINE <line_number> [COLUMN
<column_number>] [PASS (<pass_number> | ALL)])

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 265

<procedure_name> ::= [<schema_name>.]<identifier>
<line_number> ::= <unsigned_integer>
<column_number> ::= <unsigned_integer> <pass_number> ::= <unsigned_integer>

With the <sqlscript_location_list> you can define in a comma-separated list several queries that you want to
export. For each query you have to specify the name of the procedure with <procedure_name> to indicate
where the query is located. <procedure_name> can be omitted if it is the same procedure as the procedure in
<procedure_call_statement>.

You also need to specify the line information, <line_number>, and the column information, <column_number>.
The line number must correspond to the first line of the statement. If the column number is omitted, all
statements (usually there is just one) on this line are exported. Otherwise the column must match the first
character of the statement.

The line and column information is usually contained in the comments of the queries generated by SQLScript
and can be taken over from there. For example, the monitoring view M_ACTIVE_PROCEDURES or the
statement statistic in PlanViz shows the executed queries together with the comment.

Consider the following two procedures:

1 CREATE PROCEDURE proc_one (...) 2 AS
3 BEGIN
 ...
15 tab = SELECT * FROM :t;
 ...
30 CALL proc_two (...);
 ...
98 END;
1 CREATE PROCEDURE proc_two (...)
2 AS
3 BEGIN
 ...
27 temp = SELECT * FROM :v; temp2 = SELECT * FROM :v2;
 ... 40 END;

If you want to export both queries of table variables tabtemp, then the <sqlscript_location> looks as follows:
and

(proc_one LINE 15), (proc_two LINE 27 COLUMN 4)

For the query of table variable temp we also specified the column number because there are two table variable
assignments on one line and we only wanted to have the first query.

To export these queries, the export needs to execute the procedure call that triggers the execution of the
procedure containing the queries. Therefore the procedure call has to be specified as well by using
<procedure_call_statement>:

<procedure_call_statement> ::= CALL <procedure_name> (<param_list>)

For information on <procedure_call_statement> see CALL [page 30].

The export statement of the above given example is the following:

EXPORT ALL AS CSV INTO '/tmp' ON (proc_one LINE 15), (proc_two LINE 27 COLUMN
4) FOR CALL PROC_ONE (...);

266 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

If you want to export a query that is executed multiple times, you can use <pass_number> to specify which
execution should be exported. If <pass_number> is omitted, only the first execution of the query is exported. If
you need to export multiple passes, but not all of them, you need to specify the same location multiple times
with the corresponding pass numbers.

1 CREATE PROCEDURE MYSCHEMA.PROC_LOOP (...) 2 AS
3 BEGIN
 ...
 FOR i IN 1 .. 1000 DO
 ...
34 temp = SELECT * FROM :v;
 ...
37 END FOR;
 ...
40 END;

Given the above example, we want to export the query on line 34 but only the snapshot of the 2nd and 30th
loop iteration. The export statement is then the following, considering that PROC_LOOP is a procedure call:

EXPORT ALL AS CSV INTO '/tmp' ON (myschema.proc_loop LINE 34 PASS 2),
(myschema.proc_loop LINE 34 PASS 30) FOR CALL PROC_LOOP(...);

If you want to export the snapshots of all iterations you need to use PASS ALL:

EXPORT ALL AS CSV INTO '/tmp' ON (myschema.proc_loop LINE 34 PASS ALL) FOR CALL
PROC_LOOP(...);

Overall the SQLScript Query Export creates one subdirectory for each exported query under the given path
<path> with the following name pattern <schema_name>-<procedure_name>-<line_number>-
<column_number>-<pass_number >. For example the directories of the first above mentioned export
statement would be the following:

 |_ /tmp
 |_ MYSCHEMA-PROC_LOOP-34-10-2
 |_Query.sql
 |_index
 |_export
 |_ MYSCHEMA-PROC_LOOP-34-10-30
 |_Query.sql
 |_index
 |_export

The exported SQLScript query is stored in a file named Query.sql and all related base objects of that query are
stored in the directories index and export, as it is done for a typical catalog export.

You can import the exported objects, including temporary tables and their data, with the IMPORT statement.

For more information about IMPORT, see IMPORT in the SAP HANA SQL and System Views Reference on the
SAP Help Portal.

 Note
Queries within a function are not supported and cannot be exported.

 Note
Query export is not supported on distributed systems. Only single-node systems are supported.

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 267

14.3 Type and Length Check for Table Parameters

The derived table type of a tabular variable should always match the declared type of the corresponding
variable, both for the type code and for the length or precision/scale information. This is particularly important
for signature variables because they can be considered the contract a caller will follow. The derived type code
will be implicitly converted, if this conversion is possible without loss in information (see The SAP HANA SQL
and System Views Reference for additional details on which data types conversion are supported).

If the derived type is larger (for example, BIGINT) than the expected type (for example, INTEGER) this can lead
to errors, as illustrated in the following example.

The procedure PROC_TYPE_MISMATCH has a defined tabular output variable RESULT with a single column of
type VARCHAR with a length of 2. The derived type from the table variable assignment has a single column of
type VARCHAR with a length of 10.

CREATE COLUMN TABLE tab_vc10 (A VARCHAR(10)); INSERT INTO tab_vc10 VALUES ('ab');
INSERT INTO tab_vc10 VALUES ('ab');
CREATE PROCEDURE PROC_WITH_TYPE_MISMATCH (OUT result TABLE(A VARCHAR(2))) AS
BEGIN
 result = select A from tab_vc10; END;

Calling this procedure will work fine as long as the difference in length does not matter, for example calling this
procedure from any SQL client will not cause an issues. However, using the result for further processing can
lead to an error as illustrated in the following example:

CREATE PROCEDURE PROC_WITH_TYPE_MISMATCH_CALLER() AS BEGIN
 CALL PROC_WITH_TYPE_MISMATCH (result);
 INSERT INTO tab_vc2(select * from :result); END

The procedure PROC_WITH_TYPE_MISMATCH_CALLER tries to insert the result of the procedure
PROC_WITH_TYPE_MISMTACH into the table tab_vc2 which has a single column of type VARCHAR with a length
of 2. In case the length of the values in the received result are longer than 2 characters this operation will throw
an error: inserted value to large. Please note that the INSERT operation will run fine in case the length of the
values in the received result will not exceed 2 characters.

To avoid such errors, the configuration parameters Typecheck_Procedure_Output_Var and
Typecheck_Procedure_Input_Var were introduced. These parameters are intended to expose differences
between expected and derived type information. The default behavior of the parameters is to return a warning
in case of type mismatch. For example, during the creation or call of procedure PROC_WITH_TYPE_MISMATCH,
the following warning will be thrown:

Declared type "VARCHAR(2)" of attribute "A" not same as assigned type "VARCHAR(10)"

The configuration parameters have three different levels to reveal differences between expected and derived
types if the derived type is larger than the expected type:

268 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Level Output Description

silent -- Ignore potential type error

warn general warning: Declared type "VAR­
CHAR(2)" of attribute "A" not same as
assigned type "VARCHAR(10)"

Print warning in case of type mis­
match(default behavior)

strict return type mismatch: Declared type
"VARCHAR(2)" of attribute "A" not
same as assigned type "VARCHAR(10)"

Error in case of potential type error

 Note
Both configuration parameters need to be defined in the sqlscript section.

14.4 SQLScript Debugger

With the SQLScript debugger you can investigate functional issues. The debugger is available in the SAP
WebIDE for SAP HANA (WebIDE) and in ABAP in Eclipse (ADT Debugger). In the following we want to give you
an overview of the available functionality and also in which IDE it is supported. For a detailed description of how
to use the SQLScript debugger, see the documentation of SAP WebIDE for SAP HANA and ABAP in Eclipse
available at the SAP HANA Help Portal.

Feature Procedures Table Functions Scalar Functions Anonymous Blocks

Debugging WebIDE

ADT Debugger

WebIDE

ADT Debugger 1

WebIDE2
-

Breakpoints WebIDE

ADT Debugger

WebIDE

ADT Debugger

WebIDE -

Conditonal Breakpoint WebIDE WebIDE WebIDE -

Watchpoints WebIDE WebIDE - -

Break on Error WebIDE WebIDE WebIDE -

Save Table WebIDE WebIDE WebIDE -

1 NetWeaver 751, NetWeaver 765
2 Only works if the scalar function is assigned to a variable within a procedure or a table function that also has a breakpoint set - the user will

get this information in a warning when setting a breakpoint

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 269

http://help.sap.com/saphelp_hanaplatform

14.4.1 Conditional Breakpoints

A conditional breakpoint can be used to break the debugger in the breakpoint-line only when certain conditions
are met. This is especially useful when a Breakpoint is set within a loop.

Each breakpoint can have only one condition. The condition expressions can contain any SQL function. A
condition must either contain an expression that results in true or false, or can contain a single variable or a
complex expression without restrictions in the return type.

When setting a conditional breakpoint, the debugger will check all conditions for potential syntax errors. It
checks for:

● syntax errors like missing brackets or misuse of operators
● unknown or wrong function calls
● unknown variables
● wrong return type (isTrue condition must return true or false)

At execution time the debugger will check and evaluate the conditions of the conditional breakpoints, but with
the given variables and its values. If the value of a variable in a condition is not accessible and therefor the
condition cannot be evaluated, the debugger will send a warning and will break for the breakpoint anyway.

 Note
The debugger will also break and send a warning, if there are expressions set, that access a variable that is
not yet accessible at this point (NULL value).

 Note
Conditional breakpoints are only supported for scalar variables.

For more information on SQL functions, see FUNCTION in the SAP HANA SQL and System Views Reference on
the SAP Help Portal.

14.4.2 Watchpoints

Watchpoints give you the possibility to watch the values of variables or complex expressions and break the
debugger, if certain conditions are met.

For each watchpoint you can define an arbitrary number of conditions. The conditions can either contain an
expression that results in true or false or contain a single variable or complex expression without restrictions in
the return type.

When setting a watchpoint, the debugger will check all conditions for potential syntax errors. It checks for:

● syntax errors like missing brackets or misuse of operators
● unknown or wrong function calls

At execution time the debugger will check and evaluate the conditions of the watchpoints, but with the given
variables and its values. A watchpoint will be skipped, if the value of a variable in a condition is not accessible.
But in case the return type of the condition is wrong , the debugger will send a warning to the user and will
break for the watchpoint anyway.

270 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 Note
If a variable value changes to NULL, the debugger will not break since it cannot evaluate the expression
anymore.

14.4.3 Break on Error

You can activate the Exception Mode to allow the Debugger to break, if an error in the execution of a procedure
or a function occurs. User-defined exceptions are also handled.

The debugger stops on the line, where the exception is thrown, and allows access to the current value of all
local variables, the call stack and a short information about the error. After that, the execution can continue
and you can step into the exception handler or into further exceptions (fore example, on a CALL statement).

14.4.4 Save Table

Save Table allows you to store the result set of a table variable into a persistent table in a predefined schema in
a debugging session.

14.5 EXPLAIN PLAN for Call

Syntax

EXPLAIN PLAN [SET STATEMENT_NAME = <statement_name>] FOR <explain_plan_entry>

Syntax Elements

Syntax Element Description

<statement_name> ::= <string_literal> Specifies the name of a specific execution plan in the output
table for a given SQL statement

<explain_plan_entry> Specifies the entry to explain

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 271

Syntax Element Description

<explain_plan_entry> ::=
<call_statement> | SQL PLAN CACHE ENTRY
<plan_id>

<plan_id> ::= <integer_literal>

<plan_id> specifies the identifier of the entry in the SQL
plan cache to be explained. Refer to the
M_SQL_PLAN_CACHE monitoring view to find the
<plan_id> for the desired cache entry.

<call_statement> specifies the procedure call to ex­
plain the plan for. For more information about subqueries,
see the CALL statement.

 Note
The EXPLAIN PLAN [SET STATEMENT_NAME = <statement_name>] FOR SQL PLAN CACHE ENTRY
<plan_id> command can only be run by users with the OPTIMIZER_ADMIN privilege.

Description

EXPLAIN PLAN provides information about the compiled plan of a given procedure. It inserts each piece of
information into a system global temporary table named EXPLAIN_CALL_PLANS. The result is visible only
within the session where the EXPLAIN PLAN call is executed.

EXPLAIN PLAN generates the plan information by using the given SQLScript Engine Plan structure. It traverses
the plan structure and records each information corresponding to the current SQLScript Engine Operator.

In the case of invoking another procedure inside of a procedure, EXPLAIN PLAN inserts the results of the
invoked procedure (callee) under the invoke operator (caller), although the actual invoked procedure is a sub-
plan which is not located under the invoke operator.

Another case is the else operator. EXPLAIN PLAN generates a dummy else operator to represent alternative
operators in the condition operator.

Example

CREATE PROCEDURE proc_p1(a int) as begin
 declare i int default 0;
 create table tab1 (attr1 int);
 if a > 0 then
 select 5 from dummy;
 else
 select 10 from dummy;
 end if;
 while i < 10 do
 insert into tab1 values (1);
 i := i + 1;
 end while;
 drop table tab1; end;

272 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

EXPLAIN PLAN SET STATEMENT_NAME = 'test' FOR CALL proc_p1(1);

You can retrieve the result by selecting from the table EXPLAIN_CALL_PLANS.

SELECT * FROM EXPLAIN_CALL_PLANS WHERE STATEMENT_NAME = 'test';

The EXPLAIN PLAN FOR select query deletes its temporary table by HDB client but in the case of EXPLAIN
PLAN FOR call, it is not yet supported. To delete rows in the table, execute a delete query from
EXPLAIN_CALL_PLANS table or close the current session.

 Note
Client integration is not available yet. You need to use the SQL statement above to retrieve the plan
information.

14.6 EXPLAIN PLAN for Table User-Defined Functions

Syntax

EXPLAIN PLAN [SET STATEMENT_NAME = <statement_name>] FOR <explain_plan_entry>

Description

To improve supportability, SQLScript now provides more detailed information on the SQLScript Table User-
Defined Function (TUDF) native operator in EXPLAIN PLAN.

TUDF is automatically unfolded when applicable. If unfolding is blocked, the cause is listed in EXPLAIN PLAN.
This feature automatically applies to EXPLAIN PLAN FOR select statements under the following conditions:

● the SELECT query uses a TUDF
● the TUDF cannot be unfolded.

If the two conditions are met, an SQL PLAN is automatically generated along with an SQLScript Engine Plan of
the TUDF.

Behavior

EXPLAIN PLAN for SQLScript TUDF native operator provides the following compiled plans:

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 273

● EXPLAIN PLAN FOR select statement from SQL PLAN. The result is retrievable from the table
EXPLAIN_PLAN_TABLE.

● EXPLAIN PLAN FOR CALL from SQLScript Plan. The result is retrievable from the table
EXPLAIN_CALL_PLANS.

EXPLAIN_PLAN_TABLE EXPLAIN_CALL_PLANS

OPERATOR_PROPERTIES field:

● lists the detailed reasons why the SQLScript TUDF is
not unfolded (see the table below)

● contains a comma-separated list of objects used within
the TUDF

The internal SQLScript plan of the outermost TUDF is ex­
plained. It is automatically generated along with EX­
PLAIN_PLAN_TABLE with the same STATEMENT_NAME.

List of Possible Reasons Why TUDF Is Not Unfolded

Reasons Explanation

NOT UNFOLDED BECAUSE FUNCTION BODY CANNOT BE
SIMPLIFIED TO A SINGLE STATEMENT

Multiple statements in TUDF body cannot be simplified into
a single statement.

NOT UNFOLDED DUE TO ANY TABLE TUDF uses ANY TABLE type.

NOT UNFOLDED DUE TO BINARY TYPE PARAMETER TUDF has a binary type as its parameter.

NOT UNFOLDED DUE TO DEV_NO_SQLSCRIPT_SCENARIO
HINT

The caller of TUDF disables unfolding with the
DEV_NO_PREPARE_SQLSCRIPT_SCENARIO hint.

NOT UNFOLDED DUE TO DEBUGGING SESSION TUDF is executed in debugging session.

NOT UNFOLDED DUE TO ENCRYPTED PROCEDURE OR
FUNCTION

TUDF is an encrypted function.

NOT UNFOLDED DUE TO IMPERATIVE LOGICS TUDF has an imperative logic, including SQLScript IF,
FOR,WHILE, or LOOP statements.

NOT UNFOLDED DUE TO INTERNAL SQLSCRIPT OPERA­
TOR

TUDF unfolding is blocked by an internal SQLScript operator.

NOT UNFOLDED DUE TO INPUT PARAMETER TYPE MIS­
MATCH

The type of the input argument does not match the defined
type of the TUDF input parameter.

NOT UNFOLDED DUE TO JSON OR SYSTEM FUNCTION TUDF uses JSON or system function.

NOT UNFOLDED DUE TO NATIVE SQLSCRIPT OPERATOR TUDF has a SQLScript native operator, which does not have
an appropriate SQL counterpart.

NOT UNFOLDED DUE TO NO CALCULATION VIEW UNFOLD­
ING

The caller of TUDF disables Calculation View unfolding.

NOT UNFOLDED DUE TO PRIMARY KEY CHECK TUDF has a primary key check.

NOT UNFOLDED DUE TO RANGE RESTRICTION Table with RANGE RESTRICTION is used within the TUDF.

NOT UNFOLDED DUE TO RECURSION The TUDF has a recursive call.

NOT UNFOLDED DUE TO SEQUENCE OBJECT A SEQUENCE variable is used within the TUDF.

NOT UNFOLDED DUE TO SEQUENTIAL EXECUTION TUDF is executed with SEQUENTIAL EXECUTION clause.

NOT UNFOLDED DUE TO SPATIAL TYPE PARAMETER TUDF has a spatial type as its parameter.

NOT UNFOLDED DUE TO TIME TRAVEL OPTION TUDF uses a history table OR the time travel option is used.

NOT UNFOLDED DUE TO WITH CLAUSE TUDF uses a WITH clause.

274 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Reasons Explanation

NOT UNFOLDED DUE TO WITH HINT TUDF uses a WITH HINT clause that cannot be unfolded.

NOT UNFOLDED DUE TO WITH PARAMETERS CLAUSE TUDF uses a WITH PARAMETERS clause.

NOT UNFOLDED DUE TO XML CLAUSE TUDF has an XML clause.

Example

 Sample Code

create function func() returns table (a int) as begin
 declare k int = 0;
 declare x int = 0;
 for x in 1..4 do -- imperative logic
 k := :k + :x;
 end for;
 return select :k as a from dummy;
end;

 Sample Code

explain plan set statement_name = 'TUDF_PLAN' for select * from func();

You can retrieve the SQL Plan from the EXPLAIN_PLAN_TABLE.

 Sample Code

select statement_name, operator_name, operator_details, operator_properties,
schema_name, table_name from explain_plan_table where statement_name
='TUDF_PLAN';

STATE­
MENT_NAME

OPERA­
TOR_NAME

OPERATOR_DE­
TAILS

OPERA­
TOR_PROPER­
TIES

SCHEMA_NAME TABLE_NAME

TUDF_PLAN COLUMN SEARCH FUNC.A LATE MATERIALI­
ZATION,
ENUM_BY: CS_TA­
BLE

? ?

TUDF_PLAN TABLE FUNCTION NOT UNFOLDED
DUE TO IMPERA­
TIVE LOGICS,

ACCESSED_OB­
JECT_NAMES:
SYS.DUMMY, PUB­
LIC.DUMMY

SYSTEM FUNC

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 275

You can retrieve the SQL Plan from the table EXPLAIN_CALL_PLANS.

 Sample Code

select statement_name, operator_name, operator_string, procedure_name,
execution_engine from explain_call_plans where statement_name ='TUDF_PLAN';

STATEMENT_NAME OPERATOR_NAME OPERATOR_STRING PROCEDURE_NAME EXECUTION_ENGINE

TUDF_PLAN Function select * from
func()

FUNC SQLScript

TUDF_PLAN Sequential Op FUNC SQLScript

TUDF_PLAN Initial Op FUNC SQLScript

TUDF_PLAN Expression Op FUNC SQLScript

TUDF_PLAN Range Op FUNC SQLScript

TUDF_PLAN Assign FUNC SQLScript

TUDF_PLAN Loop Op FUNC SQLScript

TUDF_PLAN Sequential Op FUNC SQLScript

TUDF_PLAN Range Op FUNC SQLScript

TUDF_PLAN Range Op FUNC SQLScript

TUDF_PLAN Expression Op FUNC SQLScript

TUDF_PLAN Assign FUNC SQLScript

TUDF_PLAN Continue FUNC SQLScript

TUDF_PLAN Assign select
__typed_Integer
__($1) as a
from dummy

FUNC SQLScript, EAPI

TUDF_PLAN Return FUNC SQLScript

TUDF_PLAN Terminal Op FUNC SQLScript

Limitations

● EXPLAIN PLAN is generated once per statement. It will not be regenerated regardless of configuration
changes. To regenerate EXPLAIN PLAN, the SQL PLAN CACHE should be cleared via ALTER SYSTEM
CLEAR SQL PLAN CACHE.

● EXPLAIN_CALL_PLAN accumulates execution plans over time. That content is not be automatically
deleted.

276 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

14.7 SQLScript Code Coverage

Description

SAP HANA stores the results of a code coverage session in the M_SQLSCRIPT_CODE_COVERAGE_RESULTS
monitoring view and stores the definitions of objects that were used during a code coverage session in the
M_SQLSCRIPT_CODE_COVERAGE_OBJECT_DEFINITIONS monitoring view.

Syntax

To start SQLScript code coverage:

ALTER SYSTEM START SQLSCRIPT CODE COVERAGE [FOR DEBUG TOKEN <token_id>]
 [FOR USER <user_id>]
 [FOR APPLICATION USER <application_user_id>] [FOR SESSION <session_id>]

To stop SQLScript code coverage:

ALTER SYSTEM STOP SQLSCRIPT CODE COVERAGE

Syntax Elements

<token_id>: specifies the token that the code coverage applies to.

<user_id>: specifies the database user ID that the code coverage applies to.

<application_user_id>: specifies the ID of the application user that the code coverage applies to.

<session_id>: specifies the ID of the session that the code coverage applies to.

Select from the monitoring views at any time, and from any column, you are interested in after starting code
coverage. However, the full content of code coverage run is visible only after the query triggered in the second
session (which is being covered) finishes (described in the second example, below).

The content in the monitoring views is overwritten in these views each time you stop a SQLScript code
coverage session and start a new one. Since the data is temporary, copy or export the content from these views
to retain data recorded by a SQLScript code coverage session before executing ALTER SYSTEM STOP
SQLSCRIPT CODE COVERAGE.

You must have at least two connections for code coverage. In the first session you execute the codes on which
you run code coverage, and in the second session you start the code coverage for a specific connection ID to
record the coverage.

 Caution
You must have the EXECUTE, DEBUG, and ATTACH_DEBUGGER privileges to perform code coverage.

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 277

Example

SAP HANA requires two sessions to perform the code coverage. The examples below use session A to execute
the code on which you run code coverage, and session B starts the code coverage for a specific connection ID
to record the coverage.

1. In either session, create the limitedLoop and dummy_proc procedures:

CREATE PROCEDURE limitedLoop() AS BEGIN
DECLARE i BIGINT := 0;
LOOP
i := i + 1;
IF :i > 27 THEN
BREAK;
END IF;
END LOOP;
END;
CREATE PROCEDURE dummy_proc() AS
BEGIN
SELECT * FROM DUMMY;
CALL limitedLoop();
END;

2. From session A, issue this to determine the connection ID:

SELECT SESSION_CONTEXT('CONN_ID') FROM DUMMY;

3. In session B, start code coverage by using the connection ID of the user who is executing the code in
session A (this example uses a connection ID of 203247):

ALTER SYSTEM START SQLSCRIPT CODE COVERAGE FOR SESSION '203247';

4. From session A, call the dummy_proc procedure:

CALL dummy_proc();

5. From session B, view the code coverage by querying the M_SQLSCRIPT_CODE_COVERAGE_RESULTS and
M_SQLSCRIPT_CODE_COVERAGE_OBJECT_DEFINITIONS monitoring views

SELECT * FROM M_SQLSCRIPT_CODE_COVERAGE_RESULTS; SELECT * FROM M_SQLSCRIPT_CODE_COVERAGE_OBJECT_DEFINITIONS;

If required, store the contents of the monitoring views for future reference (this can be a regular or a local
temporary table):

CREATE LOCAL TEMPORARY TABLE "#SomeTableName" AS (SELECT * FROM
M_SQLSCRIPT_CODE_COVERAGE_RESULTS) WITH DATA;

6. From session B, disable the code coverage (this also clears the existing code coverage):

ALTER SYSTEM STOP SQLSCRIPT CODE COVERAGE;

278 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

14.8 SQLScript Code Analyzer

The SQLScript Code Analyzer consists of two built-in procedures that scan CREATE FUNCTION and CREATE
PROCEDURE statements and search for patterns indicating problems in code quality, security or performance.

Interface

The view SQLSCRIPT_ANALYZER_RULES listing the available rules is defined in the following way:

Column Name Type

RULE_NAMESPACE VARCHAR(16)

RULE_NAME VARCHAR(64)

CATEGORY VARCHAR(16)

SHORT_DESCRIPTION VARCHAR(256)

LONG_DESCRIPTION NVARCHAR(5000)

RECOMMENDATION NVARCHAR(5000)

Procedure ANALYZE_SQLSCRIPT_DEFINITION

The procedure ANALYZE_SQLSCRIPT_DEFINITION can be used to analyze the source code of a single
procedure or a single function that has not been created yet. If not yet existing objects are referenced, the
procedure or function cannot be analyzed.

 Sample Code

CREATE PROCEDURE ANALYZE_SQLSCRIPT_DEFINITION(IN OBJECT_DEFINITION NCLOB, IN RULES TABLE(RULE_NAMESPACE
VARCHAR(16), RULE_NAME VARCHAR(64), CATEGORY VARCHAR(16)),
 OUT FINDINGS
TABLE(RULE_NAMESPACE VARCHAR(16), RULE_NAME VARCHAR(64), CATEGORY VARCHAR(16),

SHORT_DESCRIPTION NVARCHAR(256), START_POSITION INT, END_POSITION INT)
) AS BUILTIN

Parameter Description

OBJECT_DEFINITION Contains the DDL string of the SQLScript function or proce­
dure that should be analyzed

RULES Rules to be used for the analysis. Available rules can be re­
trieved from the view SQLSCRIPT_ANALYZER_RULES

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 279

Parameter Description

FINDINGS Lists potential problems found during the analysis

Procedure ANALYZE_SQLSCRIPT_OBJECTS

The procedure ANALYZE_SQLSCRIPT_OBJECTS can be used to analyze the source code of multiple already
existing procedures or functions.

 Sample Code

CREATE PROCEDURE ANALYZE_SQLSCRIPT_OBJECTS(IN OBJECTS_TO_ANALYZE
TABLE(SCHEMA_NAME NVARCHAR(256), OBJECT_NAME NVARCHAR(256)), IN RULES TABLE(RULE_NAMESPACE
VARCHAR(16),RULE_NAME VARCHAR(64), CATEGORY VARCHAR(16)),
 OUT OBJECT_DEFINITIONS
TABLE(OBJECT_DEFINITION_ID INT, SCHEMA_NAME NVARCHAR(256), OBJECT_NAME
NVARCHAR(256), OBJECT_DEFINITION NCLOB),
 OUT FINDINGS
TABLE(OBJECT_DEFINITION_ID INT, RULE_NAMESPACE VARCHAR(16), RULE_NAME
VARCHAR(64), CATEGORY VARCHAR(16),
SHORT_DESCRIPTION NVARCHAR(256), START_POSITION INT, END_POSITION INT)) AS
BUILTIN

Parameter Description

OBJECTS A list of existing SQLScript procedures and functions that
should be analyzed

RULES Rules that should be used for the analysis. Available rules
can be retrieved from the view SQLSCRIPT_ANA­
LYZER_RULES.

OBJECT_DEFINITIONS Contains the names and definitions of all objects that were
analyzed, including those without any findings

FINDINGS Lists potential problems found by the analysis. Affected ob­
jects are identified by their OBJECT_DEFINITION_ID, which
is also used in OBJECT_DEFINITIONS

Rules

The following rules, provided by SAP, are currently available:

Rule Name Category

UNNECESSARY_VARIABLE [page 281] CONSISTENCY

UNUSED_VARIABLE_VALUE [page 281] CONSISTENCY

280 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Rule Name Category

UNCHECKED_SQL_INJECTION_SAFETY [page 281] SECURITY

SINGLE_SPACE_LITERAL [page 281] CONSISTENCY

COMMIT_OR_ROLLBACK_IN_DYNAMIC_SQL [page 281] STYLE

USE_OF_SELECT_IN_SCALAR_UDF [page 282] PERFORMANCE

USE_OF_UNASSIGNED_SCALAR_VARIABLE [page 282] CONSISTENCY

DML_STATEMENTS_IN_LOOPS [page 283] PERFORMANCE

USE_OF_CE_FUNCTIONS [page 284] PERFORMANCE

USE_OF_DYNAMIC_SQL [page 284] PERFORMANCE

ROW_COUNT_AFTER_SELECT [page 284] BEHAVIOR

ROW_COUNT_AFTER_DYNAMIC_SQL [page 284] BEHAVIOR

UNNECESSARY_VARIABLE
For each variable, it is tested if it is used by any output parameter of the procedure or if it influences the
outcome of the procedure. Statements relevant for the outcome could be DML statements, implicit result sets,
conditions of control statements.

UNUSED_VARIABLE_VALUE
If a value, assigned to a variable, is not used in any other statement, the assignment can be removed. In case of
default assignments in DECLARE statements, the default is never used.

UNCHECKED_SQL_INJECTION_SAFETY
Parameters of type string should always be checked for SQL injection safety, if they are used in dynamic SQL.
This rule checks if the function is_sql_injection_safe is called for every parameter of that type.

For a simple conditional statement like IF is_sql_injection_safe(:var) = 0 THEN..., the control
flow in the true branch is checked. The procedure should either end (by returning or by throwing an error) or
the unsafe parameter value should be escaped with the functions escape_single_quotes or
escape_double_quotes, depending on where the value is used.

If the condition is more complex (for example, more than one variable is checked in one condition), a warning
will be displayed because it is only possible to check if any execution of the dynamic SQL has passed the SQL
injection check.

SINGLE_SPACE_LITERAL
This rule searches for string laterals consisting of only one space. If ABAP VARCHAR MODE is used, such string
literals are treated as empty strings. In this case CHAR(32) can be used instead of ' '.

COMMIT_OR_ROLLBACK_IN_DYNAMIC_SQL
This rule detects dynamic SQL that uses the COMMIT or ROLLBACK statements. It is recommended to use
COMMIT and ROLLBACK directly in SQLScript, thus eliminating the need of dynamic SQL.

This rule has some limitations in terms of analyzing dynamic SQL:

● It can only check dynamic SQL that uses a constant string (for example, EXEC 'COMMIT';). It cannot detect
dynamic SQL that evaluates any expression (for example, EXEC 'COM' || 'MIT';)

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 281

● It can only detect simple strings containing COMMIT or ROLLBACK and whitespaces, as well as simple
comments. More complex strings might not be detected by this rule.

USE_OF_SELECT_IN_SCALAR_UDF
This rule detects and reports SELECT statements in scalar UDFs. SELECT statements in scalar UDFs can affect
performance. If table operations are really needed, procedures or table UDFs should be used instead.

 Sample Code
USE_OF_SELECT_IN SCALAR_UDF

 DO BEGIN
 tab = SELECT RULE_NAMESPACE, RULE_NAME, category FROM
SQLSCRIPT_ANALYZER_RULES where rule_name = 'USE_OF_SELECT_IN_SCALAR_UDF';
 CALL ANALYZE_SQLSCRIPT_DEFINITION('
 CREATE FUNCTION f1(a INT) RETURNS b INT AS
 BEGIN
 DECLARE x INT;
 SELECT count(*) into x FROM _sys_repo.active_object;
 IF :a > :x THEN
 SELECT count(*) INTO b FROM _sys_repo.inactive_object;
 ELSE
 b = 100;
 END IF;
 END;', :tab, res);
 SELECT * FROM :res; END;

The following findings will be reported in this example:

RULE_NAME­
SPACE RULE_NAME Category

SHORT_DESCRIP­
TION START_POSITION END_POSITION

SAP USE_OF_SE­
LECT_IN_SCA­
LAR_UDF

PERFORMANCE Found SELECT
statement in Sca­
lar UDF

186 240

SAP USE_OF_SE­
LECT_IN_SCA­
LAR_UDF

PERFORMANCE Found SELECT
statement in Sca­
lar UDF

97 149

USE_OF_UNASSIGNED_SCALAR_VARIABLE
The rule detects variables which are used but were never assigned explicitly. Those variables still have their
default value when used, which might be undefined. It is recommended to assign a default value (that can be
NULL) to be sure that you get the intended value when you read from the variable. If this rule returns a warning
or an error, check in your code if have not assigned a value to the wrong variable. Always rerun this rule after
changing code, since it is possible that multiple errors trigger only a single message and the error still persists.

For every DECLARE statement this rule returns one of the following:

● <nothing>: if the variable is always assigned before use or not used. Everything is correct.
● Variable <variable> may be unassigned: if there is at least one branch, where the variable is unassigned

when used, even if the variable is assigned in other branches.
● Variable <variable> is used but was never assigned explicitly: if the variable will never have a value assigned

when used.

282 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

DML_STATEMENTS_IN_LOOPS

The rule detects the following DML statements inside loops - INSERT, UPDATE, DELETE, REPLACE/UPSERT.
Sometimes it is possible to rewrite the loop and use a single DML statement to improve performance instead.

In the following example a table is updated in a loop. This code can be rewritten to update the table with a
single DML statement.

 Sample Code
DML Statements in Loops

DO BEGIN tab = select rule_namespace, rule_name, category from
sqlscript_analyzer_rules;
call analyze_sqlscript_definition('

Create procedure example() AS
BEGIN
 declare i int = 0;
 declare size int;
 declare olda int;
 declare newa int;
 CREATE TABLE T1 (a INT);
 INSERT INTO T1 VALUES(1);
 INSERT INTO T1 VALUES(-2);
 INSERT INTO T1 VALUES(-1);
 INSERT INTO T1 VALUES(3);
 T2 = SELECT * FROM T1;
 SELECT COUNT(*) INTO size FROM T1;
 FOR i IN 1 .. :size DO
 olda = :T2.A[:i];
 newa = :olda;
 if :olda < 0 then
 newa = 0;
 end if;
 UPDATE T1 SET A= :newa WHERE A = :olda;
 END FOR;
 SELECT * FROM T1;
END;

 ', :tab, res);
select * from :res;
end;

// Optimized version

drop procedure example2;
Create procedure example2() AS
BEGIN
 declare i int = 0;
 declare size int;
 declare olda int;
 declare newa int;
 CREATE TABLE T1 (a INT);
 INSERT INTO T1 VALUES(1);
 INSERT INTO T1 VALUES(-2);
 INSERT INTO T1 VALUES(-1);
 INSERT INTO T1 VALUES(3);
 UPDATE T1 SET A = 0 WHERE A < 0;
 SELECT * FROM T1;
END;

DROP TABLE T1; CALL EXAMPLE2();

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 283

USE_OF_CE_FUNCTIONS

The rule checks whether Calculation Engine Plan Operators (CE Functions) are used. Since they make
optimization more difficult and lead to performance problems, they should be avoided. For more information
and how to replace them using only plain SQL, see Calculation Engine Plan Operators [page 216]

USE_OF_DYNAMIC_SQL

The rule checks and reports, if dynamic SQL is used within a procedure or a function.

ROW_COUNT_AFTER_SELECT

The rule checks, if the system variable ::ROWCOUNT is used after a SELECT statement.

ROW_COUNT_AFTER_DYNAMIC_SQL

The rule checks, if the system variable ::ROWCOUNT is used after the use of dynamic SQL.

Examples

 Sample Code

DO BEGIN tab = SELECT rule_namespace, rule_name, category FROM
SQLSCRIPT_ANALYZER_RULES; -- selects all rules
 CALL ANALYZE_SQLSCRIPT_DEFINITION('
 CREATE PROCEDURE UNCHECKED_DYNAMIC_SQL(IN query NVARCHAR(500)) AS
 BEGIN
 DECLARE query2 NVARCHAR(500) = ''SELECT '' || query || '' from
tab'';
 EXEC :query2;
 query2 = :query2; --unused variable value
 END', :tab, res);
 SELECT * FROM :res; END;

 Sample Code

DO BEGIN tab = SELECT rule_namespace, rule_name, category FROM
SQLSCRIPT_ANALYZER_RULES;
 to_scan = SELECT schema_name, procedure_name object_name, definition
 FROM sys.procedures
 WHERE procedure_type = 'SQLSCRIPT2' AND schema_name
IN('MY_SCHEMA','OTHER_SCHEMA')
 ORDER BY procedure_name;
 CALL analyze_sqlscript_objects(:to_scan, :tab, objects, findings);
 SELECT t1.schema_name, t1.object_name, t2.*, t1.object_definition
 FROM :findings t2
 JOIN :objects t1
 ON t1.object_definition_id = t2.object_definition_id; END;

284 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Manual Rule Suppression

Due to the nature of static code analysis, the SQLScript Code Analyzer may produce false positives. To avoid
confusion when analyzing large procedures with many findings, and potentially many false positives, the Code
Analyzer offers a way to manually suppress these false positives.

You can use SQLScript Pragmas to define which rules should be suppressed. The pragma name is
AnalyzerSuppress and it must at least one argument describing which rule should be suppressed.

 Sample Code

create procedure proc as begin @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 declare a int; end

Related Information

Limitations in the SQLScript Code Analyzer [page 285]

14.8.1 Limitations in the SQLScript Code Analyzer

Limited Support for Continue Handler

The Code Analyzer has limited support for Continue Handler. The Continue Handler blocks are currently not
analyzed as a normal part of a procedure. Consider the following example:

 Sample Code

create procedure wrong_proc(in tablename nvarchar(50)) as begin declare fallbackquery nvarchar(100) = 'select * from "' ||
escape_double_quotes(tablename) || '" where a > 5';
 declare continue handler for sqlexception exec :fallbackquery;
 -- do some computations
 select 1/0 from dummy; end

The Code Analyzer will return a finding that the parameter 'tablename' is used within DSQL, although the
example is safe against injections.

If you look into the following example, you will see that the the handler block is analyzed on its own:

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 285

 Sample Code

create procedure proc(in tablename nvarchar(50)) as begin declare continue handler for sqlexception
 begin
 declare fallbackquery nvarchar(100) = 'select * from "' ||
escape_double_quotes(tablename) || '" where a > 5';
 exec :fallbackquery;
 end;
 --do some computations
 select 1/0 from dummy; end

In this case the Code Analyzer will not return a finding because the injection handling is performed in the
handler block itself.

Library Variables Not Supported

 Sample Code

create library libraryZ language sqlscript as begin public variable var2 varchar(10);
 public procedure callee_internal(in query1 varchar(20)) as begin
 var2 = 'i am not used';
 var2 = :query1 || :query1;
 select var2 from dummy;
 end; end

In this case it is expected that the Code Analyzer will return a finding stating that that the value of 'var2' is
not used. However, currently most checks related to library member variables are not supported, including the
following scenario:

 Sample Code

create library libraryY language sqlscript as begin public variable var2 varchar(10);
 public procedure callee_internal(in query1 varchar(20)) as begin
 var2 = :query1;
 exec var2;
 end; end

In this case the Code Analyzer does not return a warning stating that 'query1' is used in dynamic SQL
without being checked.

Limitations of UNCHECKED_SQL_INJECTION_SAFETY

The following issues are limited only to the UNCHECKED_SQL_INJECTION_SAFETY rule:

286 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

1. Pure SQL queries are not analyzed. This means that expressions inside those queries are not taken into
consideration, for example validators for SQL injection.

 Sample Code
Validator in pure SQL

create procedure safe_dynamic_sql(in query nvarchar(500)) as begin declare escaped_query nvarchar(550);
 select escape_single_quotes(:query) into escaped_query from dummy;
 exec escaped_query; end

The example above returns a finding even though the procedure is injection safe.
If a SQLScript variable is used within a query, the Code Analyzer assumes that it is contained in the result.

 Sample Code
SQLScript variable as input for pure SQL

create procedure safe_dynamic_sql(in query nvarchar(500)) as begin declare some_value nvarchar(550);
 select b into some_value from some_tabe where :query = a;
 exec some_value; end

In the example above 'query' is not contained in 'some_value' but is considered unsafe. There is no
further analysis whether the output of the query possibly contains (parts of) the SQLScript variable inputs.

2. Nested procedure calls are also not analyzed.

 Sample Code
Nested Procedure Call Example

create procedure escape_proc(in query nvarchar(500), out escaped_query
nvarchar(600)) as begin escaped_query = escape_single_quotes(query);
end

create procedure safe_dynamic_sql(in query nvarchar(500)) as begin
 declare escaped_value nvarchar(550);
 call escape_proc(query, escaped_value);
 exec escaped_value; end

In example above, the Code Analyzer also returns a finding because it does not analyze the inner procedure
'escape_proc'.

3. There are also limitations for structured types, like array variables, row variables or table variables.
A variable of structured type is considered one unit. It is either affected by an unchecked input completely,
or not at all.

 Sample Code
Container Example

create procedure row_type_injection(in query nvarchar(500)) as begin declare r row(a nvarchar(500), b nvarchar(650));
 r.a = query;

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 287

 r.b = escape_double_quotes(query);
 exec :r.b; end

In the example above, the Code Analyzer will return a finding because the row variable 'r' is considered
one unit. Because the in parameter 'query' is assigned directly (without escaping) to 'r.a', the variable
'r' as a whole is considered affected by the input variable. Thus every operation that uses any part of 'r'
is assumed to use the unescaped version of 'query'.

Related Information

SQLScript Code Analyzer [page 279]

14.9 SQLScript Plan Profiler

SQLScript Plan Profiler is a new performance analysis tool designed mainly for the purposes of stored
procedures and functions. When SQLScript Plan Profiler is enabled, a single tabular result per call statement is
generated. The result table contains start time, end time, CPU time, wait time, thread ID, and some additional
details for each predefined operation. The predefined operations can be anything that is considered of
importance for analyzing the engine performance of stored procedures and functions, covering both
compilation and execution time. The tabular results are displayed in the new monitoring view
M_SQLSCRIPT_PLAN_PROFILER_RESULTS in HANA.

 Note
Currently, only stored procedures are supported.

Starting the Profiler

There are two ways to start the profiler and to check the results.

ALTER SYSTEM

You can use the ALTER SYSTEM command with the following syntax:

 Code Syntax

ALTER SYSTEM <command> SQLSCRIPT PLAN PROFILER [<filter>] <command> := START | STOP | CLEAR <filter> := FOR SESSION <session_id> | FOR PROCEDURE <procedure_name>

288 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 Note
You cannot filter by both session ID and procedure name.

The commands behave as follows:

● START
When the START command is executed, the profiler checks if the exact same filter has already been
applied and if so, the command is ignored. You can check the status of enabled profilers in the monitoring
view M_SQLSCRIPT_PLAN_PROFILERS. Results are available only after the procedure execution has
finished. If you apply a filter by procedure name, only the outermost procedure calls are returned.

 Sample Code

a) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR SESSION 111111; b) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR SESSION 222222;
c) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR SESSION 222222; --
ignored because the profiler has already been started for session 222222
d) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR PROCEDURE P1;
e) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR PROCEDURE S1.P1; -- not
ignored, the filter is not the same (P1 != S1.P1) f) ALTER SYSTEM START SQLSCRIPT PLAN PROFILER ; -- every procedures will
be profiled

● STOP
When the STOP command is executed, the profiler disables all started commands, if they are included in
the filter condition (no exact filter match is needed). The STOP command does not affect the results that
are already profiled.

<continued from the example above> g) ALTER SYSTEM STOP SQLSCRIPT PLAN PROFILER FOR SESSION 222222; -- only b)
will be disabled
h) ALTER SYSTEM STOP SQLSCRIPT PLAN PROFILER FOR PROCEDURE P1; -- both d) and
e) will be disabled i) ALTER SYSTEM STOP SQLSCRIPT PLAN PROFILER; -- both a) and f) will be
disabled

● CLEAR
The CLEAR command is independent of the status of profilers (running or stopped). The CLEAR command
clears profiled results based on the PROCEDURE_CONNECTION_ID, PROCEDURE_SCHEMA_NAME, and
PROCEDURE_NAME in M_SQLSCRIPT_PLAN_PROFILER_RESULTS. If the results are not cleared, the
oldest data will be automatically deleted when the maximum capacity is reached.

j) ALTER SYSTEM CLEAR SQLSCRIPT PLAN PROFILER FOR SESSION 222222; -- deletes
records with PROCEDURE_CONNECTION_ID = 222222 k) ALTER SYSTEM CLEAR SQLSCRIPT PLAN PROFILER FOR PROCEDURE S1.P1; -- delete
records with PROCEDURE_SCHEMA_NAME = S1 and PROCEDURE_NAME = P1 l) ALTER SYSTEM CLEAR SQLSCRIPT PLAN PROFILER; -- deletes all records

 Note
The <filter> does not check the validity or existence of <session id> or <procedure_id>.

SQL Hint

You can use the SQL HINT command to start the profiler with the following syntax:

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 289

 Code Syntax

CALL <procedure name> WITH HINT(SQLSCRIPT_PLAN_PROFILER);

SQL Hint is the most convenient way to enable the profiler. In that way, the profiling result is returned as an
additional result set. If the profiler has already been enabled by means of the ALTER SYSTEM command, the
result will be also visible in the monitoring view.

Currently both hint and system commands can be used to enable the SQLScript Plan Profiler for anonymous
blocks.

 Sample Code
Example using SQL Hint

DO BEGIN select * from dummy; END WITH HINT(SQLSCRIPT_PLAN_PROFILER); -- returns additional result set

 Sample Code
Example using system command

ALTER SYSTEM START SQLSCRIPT PLAN PROFILER FOR SESSION <SESSION_ID>; DO BEGIN
 select * from dummy; END; -- profiling result can be checked in m_sqlscript_plan_profiler_results

Checking Status and Results

You can check the status of the profiler by using the following command:

SELECT * FROM M_SQLSCRIPT_PLAN_PROFILERS;

You can check the results by using the following command:

SELECT * FROM M_SQLSCRIPT_PLAN_PROFILER_RESULTS;

 Sample Code
Example

ALTER SYSTEM START SQLSCRIPT PLAN PROFILER; CALL P1;
CALL P2; SELECT * FROM M_SQLSCRIPT_PLAN_PROFILER_RESULTS WHERE PROCEDURE_NAME = 'P1'
OR PROCEDURE_NAME = 'P2';

290 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

14.9.1 M_SQLSCRIPT_PLAN_PROFILER_RESULTS View

The M_SQLSCRIPT_PLAN_PROFILER_RESULTS view contains the following columns:

Name Data Type Description

PROCEDURE_DATABASE_ID INTEGER Connection ID of the outermost proce­
dure

PROCEDURE_DATABASE_NAME NVARCHAR(256) Database name of outermost proce­
dure

PROCEDURE_SCHEMA_NAME NVARCHAR(256) Schema name of outermost procedure

PROCEDURE_LIBRARY_NAME NVARCHAR(256) Library name of outermost procedure

PROCEDURE_NAME NVARCHAR(256) Name of outermost procedure

RESULT_ID INTEGER Profile result ID

OPERATOR VARCHAR(5000) Name of operation

OPERATOR_STRING NCLOB Operator string

OPERATOR_DETAILS NCLOB Operation details

START_TIME TIMESTAMP Start time of the operation

END_TIME TIMESTAMP End time of the operation

DURATION BIGINT Clock time in microseconds between
START_TIME and END_TIME

ACTIVE_TIME_SELF BIGINT Clock time in microseconds spent in
the operation itself, excluding its chil­
dren

ACTIVE_TIME_CUMULATIVE BIGINT Total clock time in microseconds spent
in the operation itself and its children

CPU_TIME_SELF BIGINT CPU time in microseconds spent in the
operation itself, excluding its children

CPU_TIME_CUMULATIVE BIGINT Total CPU time in microseconds spent
in the operation itself and its children

CONNECTION_ID INTEGER Connection ID used for the operation

TRANSACTION_ID INTEGER Transaction ID used for the operation

STATEMENT_ID VARCHAR(20) Statement ID used for the operation

THREAD_ID BIGINT Thread ID used for the operation

OPERATOR_DATABASE_NAME NVARCHAR(256) Database name of the procedure or
function where operator is defined

OPERATOR_SCHEMA_NAME NVARCHAR(256) Schema name of the procedure or func­
tion where operator is defined

OPERATOR_LIBRARY_NAME NVARCHAR(256) Library name of procedure/function
where operator is defined

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 291

Name Data Type Description

OPERATOR_PROCEDURE_NAME NVARCHAR(256) Name of procedure/function where op­
erator is defined

OPERATOR_LINE INTEGER SQL line of operator

OPERATOR_COLUMN INTEGER SQL column of operator

OPERATOR_POSITION INTEGER SQL position of operator

OPERATOR_HOST VARCHAR(64) Host where the operation occurred

OPERATOR_PORT INTEGER Port where the operation occurred

OPERATOR_ID INTEGER ID of operation (cannot be joined to any
other views having the same name)

PARENT_OPERATOR_ID INTEGER ID of parent operation (cannot be joined
to any other views having the same
name)

PROCEDURE_HOST VARCHAR(64) Name of the host where the outermost
procedure started

PROCEDURE_PORT INTEGER Port where the outermost procedure
has started

USED_MEMORY_SIZE_SELF BIGINT Memory used in the operation itself, ex­
cluding its children (in bytes)

USED_MEMORY_SIZE_CUMULATIVE BIGINT Total memory used in the operation it­
self and its children (in bytes)

Memory Usage

Description

The following columns are used to track the memory usage of each operator (similarly to CPU times and
ACTIVE times):

● USED_MEMORY_SIZE_SELF: Memory used in the operation itself, excluding its children (in bytes)
● USED_MEMORY_SIZE_CUMULATIVE: Total memory used in the operation itself and its children (in bytes)

Those columns show the memory usage of each SQL statement, such as
STATEMENT_EXECUTION_MEMORY_SIZE and STATEMENT_MATERIALIZATION_MEMORY_SIZE in
M_ACTIVE_PROCEDURES. For entries whose memory consumption is not collected or not calculated, the
value displayed is '-1'.

The following two configurations must be enabled to activate the resource tracking:

alter system alter configuration ('global.ini', 'system') set
('resource_tracking', 'enable_tracking') = 'true' with reconfigure;

alter system alter configuration ('global.ini', 'system') set
('resource_tracking', 'memory_tracking') = 'true' with reconfigure;

292 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Example

 Sample Code

do begin v1 = select * from small_table with hint(no_inline);
 v2 = select * from big_table with hint(no_inline);
 select * from :v1 union all select * from :v2; end with hint(sqlscript_plan_profiler);

Simplified result in M_SQLSCRIPT_PLAN_PROFILER_RESULTS:

OPERATOR OPERATOR_STRING OPERATOR_DETAILS
USED_MEM­
ORY_SELF

USED_MEMORY_CU­
MULATIVE

Do -1 4084734

Execute SePlan -1 4084734

Sequential Op -1 4084734

Initial Op -1 -1

Parallel Op -1 4084734

Parallel Evaluation -1 4084734 (<a> +
+ <c> + <d> + <e>)

Table Assign Op select * from big_ta­
ble with hint(no_in­
line)

-1 4035899

Execute SQL State­
ment

..., statement execu­
tion memory: <a>,
itab size:

4035899 (<a> +) 4035899

Table Assign Op select * from
small_table with
hint(no_inline)

-1 16067

Execute SQL State­
ment

..., statement execu­
tion memory: <c>,
itab size: <d>

16067 (<c> + <d>) 16067

Select Op select * from $
$_SS_SE_TAB_VAR_V
1_2$$ "V1" union all ...

-1 32768

Execute SQL State­
ment

..., statement execu­
tion memory: <e>

32768 (<e>) 32768

Flow Control Op -1 -1

Terminal Op -1 -1

Nested Calls

Description
The following columns provide more detailed information about nested calls:

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 293

● OPERATOR_DATABASE_NAME
● OPERATOR_SCHEMA_NAME
● OPERATOR_LIBRARY_NAME
● OPERATOR_PROCEDURE_NAME
● OPERATOR_LINE
● OPERATOR_COLUMN
● OPERATOR_POSITION

Example

 Sample Code
The example illustrates the content of the columns above.

create or replace procedure p2(out o table(a int))
as begin

 insert into t1 values (2);

 o = select * from t1;

end;

create or replace procedure p1

as begin

 call p2(v) with hint(no_inline);

 select * from :v;

end;
 call p1 with hint(sqlscript_plan_profiler);

The table below shows a simplified result output.

PROCE­
DURE_SCH
EMA_NAM
E

PROCE­
DURE_NA
ME OPERATOR

OPERA­
TOR_STRI
NG

OPERA­
TOR_SCHE
MA_NAME

OPERA­
TOR_PRO­
CE­
DURE_NA
ME

OPERA­
TOR_LINE

OPERA­
TOR_COL­
UMN

OPERA­
TOR_POSI­
TION

SYSTEM P1 Call call p1

SYSTEM P1 Compile

SYSTEM P1 Execute Se­
Plan

SYSTEM P1 Initial Op

SYSTEM P1 Call Op call p2(v)
with
hint(no_in­
line)

SYSTEM P1 3 2 32

SYSTEM P1 Compile

294 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

PROCE­
DURE_SCH
EMA_NAM
E

PROCE­
DURE_NA
ME OPERATOR

OPERA­
TOR_STRI
NG

OPERA­
TOR_SCHE
MA_NAME

OPERA­
TOR_PRO­
CE­
DURE_NA
ME

OPERA­
TOR_LINE

OPERA­
TOR_COL­
UMN

OPERA­
TOR_POSI­
TION

SYSTEM P1 Execute Se­
Plan

SYSTEM P1 Initial Op

SYSTEM P1 DML Op insert into
t1 values (2)

SYSTEM P2 3 2 52

SYSTEM P1 Table As­
sign Op

select *
from t1

SYSTEM P2 4 2 81

SYSTEM P1 Terminal Op

SYSTEM P1 Get Ele­
ment Op

SYSTEM P1 3 10 40

SYSTEM P1 Select Op select *
from :v

SYSTEM P1 4 2 67

SYSTEM P1 Terminal Op

14.10 SQLScript Pragmas

With pragmas SQLScript offers a new way for providing meta information. Pragmas can be used to annotate
SQLScript code, but they do not have a function themselves and only affect other statements and declarations.
Pragmas are clearly distinct syntax elements similar to comments, but while comments provide information to
the reader of the code, pragmas provide information to the compiler and the code analyzer.

Syntax

 Code Syntax
Procedure Head

 <parameter_clause> ::= <parameter_with_pragma> [{',' <parameter_with_pragma>}]

<parameter_with_pragma> ::= {<single_pragma>} <parameter>

<single_pragma> ::= '@' <identifier> '(' [<single_pragma_parameter_clause>]
')'

<single_pragma_parameter_clause> ::= <string_literal> [{',' <string_literal>}]
 <parameter> ::= [<param_inout>] <param_name> <param_type>

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 295

 Code Syntax
Procedure Body

<proc_decl_list> ::= <proc_decl_or_pragma> [{, <proc_decl_or_pragma>}]
<proc_decl_or_pragma> ::= <proc_decl> | <single_pragma> | <pragma_scope>

<pragma_scope> ::= '@' PUSHSCOPE '(' <single_pragma> [{',' <single_pragma>}]
')'
 | '@' POPSCOPE '(' ')'

<proc_stmt_list> ::= {<proc_stmt_or_pragma>}
 <proc_stmt_or_pragma> ::= <proc_stmt> | <single_pragma> | <pragma_scope>

 Note
The keywords pushscope and popscope are not case sensitive. PuShScopE is equal to pushscope and
PUSHSCOPE.

Semantics

While the exact semantics depend on the specific pragma type, there are rules that apply to pragmas in
general. The identifier is case insensitive, which means that pragma and PrAgMa are recognized as the same
pragma. However, pragma arguments are case sensitive.

Pragma scopes affect all declarations or statements between one pushscope and the next popscope with all
the pragmas that are specified in the pushscope.

 Sample Code

do begin @pushscope(@AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY'))
 declare a int;
 declare b nvarchar(500);
 @popscope()
 declare c date;
 select :c from dummy; end

In the example above the declarations for a and b will be affected by the pragma 'AnalyzerSuppress', while the
declaration for c and the SELECT statement, are not affected.

Pragma scopes are independent of the logical structure of the code. This means that irrespective of which
parts of the code are executed, the pragma scopes always affect the same statements and declarations.

 Sample Code

create procedure proc(in a int, in b int) as begin

@pushscope(@AnalyzerSuppress('SAP.USE_OF_UNASSIGNED_SCALAR_VARIABLE.CONSISTENC
Y'))
 if a < b then

296 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 declare c date;
 select :c from dummy;
 @popscope()
 end if;
 a = :b; -- line 9 end

In this example, the assignment on line 9 will never be affected by the pragma. The SELECT statement, on the
other hand, will always be affected by the pragma.

When using both pushscopes and single pragmas before declarations or statements, all pushscopes must
precede the first single pragma. It is not allowed to mix pushscopes and single pragmas arbitrarily. For more
information, see the examples in the section Limitations.

Single pragmas affect the next statement or declaration. This includes everything that is contained by the
statement or declaration.

 Sample Code

do begin @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 declare a, b, c int;
 @AnalyzerSuppress('SAP.USE_OF_UNASSIGNED_SCALAR_VARIABLE.CONSISTENCY')
 a = :b + 1; end

In this example the single pragma on line 2 will affect the declarations of the three variables a, b and c. The
single pragma on line 4 will affect the assignment and all parts of it. This also includes the expression :b + 1 on
the right hand side.

There is an exception for statements that contain blocks, that is basic blocks, loops and conditionals. The
pragmas that are attached to a basic block, a loop or a conditional will not affect the declarations and
statements within those blocks.

 Sample Code

do begin @AnalyzerSupress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 begin
 declare a nvarchar(50);
 select * from dummy;
 end; end

In this example neither the declaration of a, nor the SELECT statement are affected by the pragma. Since such
blocks belong to the normal SQLScript code, you can add a pragma or pragma scopes directly.

Available Pragmas

AnalyzerSuppress('NAME_SPACE.RULE_NAME.CATEGORY', ...)

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 297

Limitations

Single pragmas may not be followed directly by pragma scopes.

 Sample Code

do begin /* NOT allowed*/ @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 @pushScope(@AnalyzerSuppress('SAP.UNUSED_VARIABLE_VALUE.CONSISTENCY'))
 declare a, b int = 5;
 @popscope()
end

do begin /* NOT allowed*/
 @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 @pushScope(@AnalyzerSuppress('SAP.UNUSED_VARIABLE_VALUE.CONSISTENCY'))
 @someOtherPragma()
 declare a, b int = 5;
 @popscope()
end

do begin /*allowed*/
 @pushScope(@AnalyzerSuppress('SAP.UNUSED_VARIABLE_VALUE.CONSISTENCY'))
 @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 declare a, b int = 5;
 @popscope()
end

do begin /*allowed*/
 @pushScope(@AnalyzerSuppress('SAP.UNUSED_VARIABLE_VALUE.CONSISTENCY'))
 declare a int;
 @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 declare b int = 5;
 @popscope()
end

do begin /*allowed*/
 @pushScope(@AnalyzerSuppress('SAP.UNUSED_VARIABLE_VALUE.CONSISTENCY'))
 declare a int;
 @AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY')
 @someOtherPragma()
 declare b int = 5;
 @popscope() end

It is not allowed to use pragma scopes within the parameter declaration list and in the declaration list before
the initial begin of a procedure.

 Sample Code

-- not allowed create procedure
wrong_proc(@pushscope(@AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY'
)) in a int, in b nvarchar @popscope())
as begin
 select * from dummy;
end

-- not allowed
create procedure wrong_proc as
 @pushscope(@AnalyzerSuppress('SAP.UNNECESSARY_VARIABLE.CONSISTENCY'))
 a int;
 b nvarchar;

298 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 @popscope()
begin
 select * from dummy; end

Related Information

SQLScript Code Analyzer [page 279]

14.11 End-User Test Framework in SQLScript

The already existing mechanism of using libraries in SQLScript is re-used for the purposes of writing end-user
tests. The language type SQLSCRIPT TEST has been introduced to specify that a library contains end-user
tests. Currently, this language type can be only used for libraries.

 Note
To ensure a clear separation between productive and test-only coding, libraries of that language type
cannot be used in any function, procedure or library that does not utilize the language type SQLSCRIPT
TEST.

CREATE LIBRARY LIB_TEST LANGUAGE SQLSCRIPT TEST AS BEGIN <body> END;

Within the body of such a test library, you can use some of the SQLScript pragmas to mark a library member
procedure as a test or test-related coding: @Test(), @TestSetup(), @TestTeardown(),
@TestSetupConfig('ConfigName'), @TestTeardownConfig('ConfigName'),
@TestSetupLibrary() as well as @TestTearDownLibrary(). Those pragmas are supported only for
library member procedures and the procedures may not have any parameters.

 Note
All of these pragmas are optional and not required by default within an SQLSCRIPT TEST library. But to
enable a library member procedure to be invoked as end-user test by the SQLScript Test Framework, at
least the @Test() pragma is required.

 Sample Code

CREATE LIBRARY LIB_TEST LANGUAGE SQLSCRIPT TEST AS BEGIN
 @TestSetUpLibrary()
 public procedure SetUpLibrary() as
 begin
 select 'SetUpLibrary' from dummy;
 end;
 @TestTearDownLibrary()
 public procedure TearDownLibrary() as
 begin
 select 'whatever' from dummy;

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 299

 end;

 @TestClassification('FAST','base')
 @TestSetUpConfig('config1')
 public procedure SetUpConfig1() as
 begin
 truncate table tab_test;
 insert into tab_test values(1, 'first entry');
 insert into tab_test values(2, 'second entry');
 insert into tab_test values(3, 'third entry');
 end;
 @TestSetUpConfig('config2')
 public procedure SetUpConfig2() as
 begin
 truncate table tab_test;
 insert into tab_test values(5, 'fifth entry');
 insert into tab_test values(6, 'sixth entry');
 insert into tab_test values(7, 'seventh entry');
 end;
 @TestSetUpConfig('config3')
 public procedure SetUpConfig3() as
 begin
 truncate table tab_test;
 insert into tab_test values(5, 'some pattern string');
 end;
 @TestTearDownConfig('config1', 'config2', 'config3')
 public procedure TearDownConfig() as
 begin
 truncate table tab_test;
 end;
 @TestSetUpTest()
 public procedure SetUpTest() as
 begin
 using sqlscript_test as testing;
 declare num_entries int = record_count(tab_test);
 testing:expect_ne(0, num_entries);
 end;
 @TestTearDownTest()
 public procedure TearDownTest() as
 begin
 select 'whatever' from dummy;
 end;

 @TestClassification('SLOW')
 @Test()
 public procedure TestA as
 begin
 using sqlscript_test as testing;
 tab1 = select 'A1' as A from dummy;
 tab2 = select 'A2' as A from dummy;
 testing:expect_table_eq(:tab1, :tab2);
 end;
 @Test()
 public procedure TestC as
 begin
 using sqlscript_test as testing;
 declare str nclob;
 call proc_test(:str);
 testing:expect_eq('some replaced string', :str);
 end; END;

To run the example SQLSCRIPT TEST library above, you would also need an object to be tested, for example the
following procedure:

300 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 Sample Code

CREATE TABLE TAB_TEST(A INT, B NCLOB); CREATE PROCEDURE PROC_TEST(OUT result VARCHAR(20)) AS
BEGIN
 DECLARE str STRING;
 SELECT B INTO str FROM TAB_TEST WHERE A = 5;
 IF LOCATE(:str, 'pattern') <> 0 THEN
 result = REPLACE(:str, 'pattern', 'replaced');
 ELSE
 result = :str;
 END IF; END;

When invoking end-user tests, the SQLScript Test Framework considers member procedures of the
SQLSCRIPT TEST library, marked with one of the pragmas mentioned above. It is, however, still possible to
have additional member functions or procedures in such a library without any pragmas. These could then serve
as helpers or be used to separate common coding.

The order of execution of library member procedures having these pragmas is defined as follows:

 1. @TestSetupLibrary()
2. @TestSetupConfig('Config1')
3. @TestSetup()
4. @Test()
5. @TestTeardown()
6. @TestSetUp()
7. @Test()
8. @TestTeardown()
9. [...]
10. @TestTeardownConfig('Config1')
11. @TestSetupConfig('Config2')
12. @TestSetup()
13. @Test()
14. @TestTeardown()
15. @TestSetUp()
16. @Test()
17. @TestTeardown()
18. [...]
19. @TestTeardownConfig('Config2')
20. [...] 21. @TestTeardownLibrary()

 Note
In case the execution of a library member procedure having one of the SetUp pragmas fails, the
corresponding TearDown, as well as the tests, will not be executed. With the @TestClassification(…)
pragma, SetUpLibrary, SetUpConfiguration and Test procedures can be assigned additional tags
that can be used in test filters.

Related Information

Invoking End-User Tests [page 302]
Listing End-User Tests [page 306]
Matchers for End-User Tests [page 307]

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 301

14.11.1 Invoking End-User Tests

The entry point of the end-user test framework in SQLScript is the built-in procedure
SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA.

 Note
As the name of the procedure indicates, the tests are run on the existing data in the system. You need to
pay special attention when writing tests that change or delete objects or data in the system because others
may be influenced by these changes. Tests themselves may also be influenced by other tests running in
parallel on the same system.

Users do not have the EXECUTE privilege for the built-in procedure
SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA by default. You need to get this privilege granted (for
example, by a SYSTEM user).

To invoke end-user tests in the SQLScript test framework, the following CALL statement has to be executed.

CALL SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA('<json_string>', ?, ?, ?)

The first parameter of SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA specifies the test plan to be
executed and has to be provided in JSON format. The test plan specifies which tests and with what
configuration shall be run. It also contains information about which test libraries are to be executed by the test
framework.

 Note
Wildcards can be used to specify values in the JSON string ('*' for multiple wildcard characters, '?' for
exactly one wildcard character).

CALL
SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA('{"schema":"MY_SCHEMA","library":"*"}',
?, ?, ?) CALL
SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA('{"schema":"MY_SCHEMA","library":"LIB*TE
ST"}', ?, ?, ?) CALL
SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA('[{"schema":"MY_SCHEMA","library":"SOME_
PREFIX_*"},{"schema":"OTHER_SCHEMA","library":"*_SOME_SUFFIX"}]', ?, ?, ?)

The first call to SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA will run all tests (in all their configurations
respectively) of all libraries with language type SQLSCRIPT TEST in the schema MY_SCHEMA. The second call
will do the same but applies a filter to the libraries that are to be executed. Here, only SQLSCRIPT TEST
libraries having a name starting with 'LIB' and ending with 'TEST' will be executed by the test framework. For
the third call, also libraries with language type SQLSCRIPT TEST in the schema OTHER_SCHEMA will be
executed but their name has to end with '_SOME_SUFFIX'.

The complete definition of what can be provided in the JSON string of the test plan is described below.

<test_plan> ::= <lib_spec> || <lib_spec_list>
<lib_spec_list> ::= '[' <lib_spec> [',' <lib_spec>] ']'

<lib_spec> ::= '{' ["schema":"' <wildcard_pattern> '",] "library":"'
<wildcard_pattern> '"' [', "classifications":' <wildcard_pattern_list>] [',

302 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

"exclude-classifications":' <wildcard_pattern_list>] [', "run":'
<run_spec_list>] '}'

<run_spec_list> ::= '[' <run_spec> [',' <run_spec>] ']'

<run_spec> ::= '{' <run_spec_member> [',' <run_spec_member] '}'

<run_spec_member> ::= ['"tests":[' <wildcard_pattern_list> ']' ||
'"configurations":[' <wildcard_pattern_list> ']' || '"exclude-tests":['
<wildcard_pattern_list> ']' || '"exclude-configurations":['
<wildcard_pattern_list> ']']

<wildcard_pattern_list> ::= '"' <wildcard_pattern> '"' [', "' <wildcard_pattern>
'"']
 <wildcard_pattern> ::= letter_or_digit_or_asterisk+

 Note
<wildcard_pattern> is always case-sensitive.

Examples:

 Sample Code

[{ "schema":"MY_SCHEMA",
 "library":"*"
},
{
 "library": "MY_LIB",
 "run": [{
 "exclude-tests": ["A", "B"],
 "configurations": ["config1", "config3"]
 },
 {
 "tests": ["A", "B"],
 "exclude-configurations": ["config2"]
 }]
},
{
 "schema": "MY_SCHEMA",
 "library": "*",
 "run": [{
 "tests": ["*TEST*KERNEL*"],
 "exclude-tests": ["DISABLED_*"],
 "exclude-configurations": ["*SCALE_OUT*"]
 },
 {
 "configurations": ["*SINGLE_NODE*", "*SCALE_OUT*"],
 "exclude-configurations": ["*STRESS_TEST*"]
 }] }]

Behavior

● Invalid syntax or semantics result in an error.
● Unknown properties produce a warning.

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 303

● The property library is mandatory but there are default values for other properties:
○ If "schema" is not specified, current session schema will be used.
○ If "run" is not specified, all configurations and tests will be selected. That is identical to "run":

[{ "tests": ["*"], "configurations": ["*"] }].
● When "tests" and "exclude-tests" match exactly the same values, an error will be thrown. The same applies

to "configurations" and "exclude-configurations".
● When both "exclude-tests" and "tests" are given, "exclude-tests" will always have higher precedence. The

same applies to "exclude-configurations" and "configurations".
● If a library or a configuration does not contain any tests (after applying the filter), neither the setup, nor the

teardown of this library or configuration will be executed.
● An empty test plan will be generated if the input does not match any tests and no error will be thrown. Also

no entries will be added to the output tables.

 Note
Each entry in <run_spec_list> will cause a separate list of tests and configurations to be added to the
test plan depending on the values of the inner <run_spec_member> entries. In that way some tests as well
as configurations of the same library may be executed repeatedly by the test framework.

Classifications and Exclude-Classifications

Classifications can be specified on multiple levels and the filtering based on classifications also needs to be
performed on multiple levels.

For exclude-classifications this means the following:

● If a classification specifier of a library member (the classification specified with the pragma) matches a
pattern in the exclude-specification, this member and everything it includes will not be executed. For
example, if a SetUpLibrary matches an exclude-classification, nothing in this library will be executed. For
a config it means that no test will be executed in this config. And for a test it just means that this test is
not executed.

● If the classifications specifier does not match the exclude-specification, the library, the configuration or the
test is executed.

For classifications this means the following:

● If a classifications specifier of a library member matches a pattern in the specification this member and
everything it includes, it will be executed unless an exclude specification matches.

● If the classification specifier does not match the specification, only the members included that match the
specification will be executed.

● If tests do not match, they will not be executed.

Consider the following example:

 Sample Code

CREATE LIBRARY LIB_TEST LANGUAGE SQLSCRIPT TEST AS BEGIN @TestClassification('clas0')
 @TestSetUpLibrary()
 PUBLIC PROCEDURE SETUPLIB AS BEGIN END;

304 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

 @TestClassification('clas1')
 @TestSetUpConfig('A')
 PUBLIC PROCEDURE SETUPCONFIGA AS BEGIN END;
 @TestSetUpConfig('B')
 PUBLIC PROCEDURE SETUPCONFIGB AS BEGIN END;
 @TestClassification('clas2')
 PUBLIC PROCEDURE TESTA AS BEGIN END;

 PUBLIC PROCEDURE TESTB AS BEGIN END; END

If classification 'clas0' is included, everything will be executed. If classification 'clas1' is included, everything in
configuration 'A' will be executed. If classification 'clas2' is included, only 'TESTA' will be executed but in both
configurations - 'A' and 'B'.

If classification 'clas0' is included and 'clas1' excluded, only the configuration 'B' will be executed (with both
tests). If classification 'clas0' is included and 'clas2' is excluded, only 'TESTB' will be executed but in both
configurations - 'A' and 'B'. If classification 'clas1' is included and 'clas2' excluded, only 'TESTB' in configuration
'A' will be executed.

If classification 'clas2' is included and 'clas0' excluded, nothing will be executed. If classification 'clas2' is
included and 'clas1' excluded, only 'TESTA' will be executed and only in configuration 'B'. If classification 'clas1'
is included and 'clas0' excluded, nothing will be executed.

Output

The three output parameters of SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA have the following table
structures.

Results

Column Name Type Description

SCHEMA_NAME NVARCHAR(256) Schema name

LIBRARY_NAME NVARCHAR(256) Library name

CONFIGURATION_NAME NVARCHAR(256) Configuration name

TEST_NAME NVARCHAR(256) Test name

TEST_EXECUTION_ID BIGINT Unique identifier for look-up in details
output table

TEST_EXECUTION_TIME BIGINT Duration in microseconds

TEST_EXECUTION_MEMORY_SIZE BIGINT Memory size used during test execution
(cf. M_ACTIVE_PROCEDURES)

TEST_EXECUTION_RESULT_STATE VARCHAR(16) Test result

PASSED | FAILED | ERROR | SKIPPED |
CANCELLED

TEST_COMMENTS NVARCHAR(5000) User-defined comment defined for cor­
responding member in test library

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 305

Details

Column Name Type Description

TEST_EXECUTION_ID BIGINT Identifier for particular test run

RESULT_DETAIL_ID BIGINT Unique identifier for look-up in call
stacks output table

RESULT_DETAIL NCLOB Long text describing what failed / which
error occurred during test run

Call Stacks

Column name Type Description

RESULT_DETAIL_ID BIGINT Identifier for a particular call stack

FRAME_LEVEL INTEGER Level of the call stack frame

DATABASE_NAME NVARCHAR(256) Database name

SCHEMA_NAME NVARCHAR(256) Schema name

OBJECT_NAME NVARCHAR(256) Object name

MEMBER_NAME NVARCHAR(256) Library member name

LINE INTEGER SQL line number

COLUMN INTEGER SQL column value

POSITION INTEGER SQL position value

14.11.2 Listing End-User Tests

For checking which tests and configurations will be invoked by the test framework when providing a JSON
string as test plan description, the built-in library SYS.SQLSCRIPT_TEST contains two additional procedures.
LIST_TESTS returns every test that would be executed at least once. LIST_CONFIGURATIONS returns every
configuration that would execute at least one test. The result set will not contain any duplicates.

CALL SYS.SQLSCRIPT_TEST:LIST_TESTS('<json_string>') CALL SYS.SQLSCRIPT_TEST:LIST_CONFIGURATIONS('<json_string>')

 Sample Code
Examples

CALL SYS.SQLSCRIPT_TEST:LIST_TESTS('{"schema":"MY_SCHEMA","library":"*"}', ?) CALL
SYS.SQLSCRIPT_TEST:LIST_TESTS('{"schema":"MY_SCHEMA","library":"LIB*TEST"}', ?
) CALL
SYS.SQLSCRIPT_TEST:LIST_CONFIGURATIONS('[{"schema":"MY_SCHEMA","library":"SOME
PREFIX*"},{"schema":"OTHER_SCHEMA","library":"*_SOME_SUFFIX"}]', ?)

Both will return the following tabular output.

306 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

Column Name Type Description

SCHEMA_NAME NVARCHAR(256) Schema name

LIBRARY_NAME NVARCHAR(256) Library name

CONFIGURATION/TEST_NAME NVARCHAR(256) Configuration/Test name

COMMENTS NCLOB Description

14.11.3 Matchers for End-User Tests

Within the SQLSCRIPT TEST libraries, certain procedures of the built-in library SYS.SQLSCRIPT_TEST can be
used to verify results within end-user tests.

Currently, there are several matchers for scalar variables, one matcher for table variables and one that aborts
the execution of the current test. The matchers for scalar variables are:

Matcher Name Description

EXPECT_EQ Checks if the inputs are equal

EXPECT_NE Checks if the inputs are not equal

EXPECT_GE Checks if the first input is greater than or equal to the sec­
ond input

EXPECT_GT Checks if the first input is greater than the second input

EXPECT_LE Checks if the first input is less than or equal to the second
input

EXPECT_LT Checks if the first input is less than the second input

EXPECT_NULL Checks if the input is null

All scalar matchers, except EXPECT_NULL, take exactly two scalar input arguments. The data types of these
two inputs must be comparable in SQLScript. Most of the data types can be categorized in three classes: string
types, numeric types and date types. While all types within the same class are comparable to each other, it is
not possible to compare date and numeric types. String types can be compared to every other data type but
will be converted to a non-string type prior to the comparison. Whenever two different data types are
compared, at least one of the inputs will be converted. When the conversion fails, it is considered a normal
execution error instead of reporting a matcher failure.

The table matcher (EXPECT_TABLE_EQ) has three input arguments. Besides the two table variables that
should be compared, there is a third optional input - IGNORE_ORDER. This parameter is TRUE by default and
will compare the table variables without considering the order of rows. For example row 2 of the first input
might match row 5 of the second input. However, every row will be matched at most to one row in the other
table variable. The two input table variables must have an equal number of columns and the columns must
have same names. The data types of the columns have to be comparable as well. If the types of the table
columns are different, one of the columns will be converted before the comparison. Unlike in scalar
comparisons, this will not lead to a run-time error if such a conversion fails. Instead, the row will always be
considered a mismatch. One additional difference to scalar matchers is the handling of NULL values. For scalar
matchers, anything compared to NULL is false (even NULL). The table matcher assumes that NULL is equal to
NULL.

SAP HANA SQLScript Reference for SAP HANA Platform
Supportability PUBLIC 307

In case a matcher fails, a human-readable output will be added to the Details output table of the built-in
procedure SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA. A call stack is also generated for such a
matcher failure to make it possible to determine its exact code location. The table matcher will report a
maximum of 100 row mismatches for the sake of readability.

The built-in library SQLSCRIPT_TEST also contains a procedure named FAIL. This procedure will (similarly to a
matcher) add an entry to the Details output table of SYS.SQLSCRIPT_RUN_TESTS_ON_ORIGINAL_DATA
whereby the error message that was provided as an input argument to the procedure FAIL will be included as a
message. After that, this procedure will abort the execution of the current test. The subsequent tests will still
be executed.

308 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Supportability

15 Best Practices for Using SQLScript

So far this document has introduced the syntax and semantics of SQLScript. This knowledge is sufficient for
mapping functional requirements to SQLScript procedures. However, besides functional correctness, non-
functional characteristics of a program play an important role for user acceptance. For instance, one of the
most important non-functional characteristics is performance.

The following optimizations all apply to statements in SQLScript. The optimizations presented here cover how
dataflow exploits parallelism in the SAP HANA database.

● Reduce Complexity of SQL Statements: Break up a complex SQL statement into many simpler ones. This
makes a SQLScript procedure easier to comprehend.

● Identify Common Sub-Expressions: If you split a complex query into logical sub queries it can help the
optimizer to identify common sub expressions and to derive more efficient execution plans.

● Multi-Level-Aggregation: In the special case of multi-level aggregations, SQLScript can exploit results at a
finer grouping for computing coarser aggregations and return the different granularities of groups in
distinct table variables. This could save the client the effort of reexamining the query result.

● Reduce Dependencies: As SQLScript is translated into a dataflow graph, and independent paths in this
graph can be executed in parallel, reducing dependencies enables better parallelism, and thus better
performance.

● Avoid Using Cursors: Check if use of cursors can be replaced by (a flow of) SQL statements for better
opportunities for optimization and exploiting parallel execution.

● Avoid Using Dynamic SQL: Executing dynamic SQL is slow because compile time checks and query
optimization must be done for every invocation of the procedure. Another related problem is security
because constructing SQL statements without proper checks of the variables used may harm security.

15.1 Reduce the Complexity of SQL Statements

Variables in SQLScript enable you to arbitrarily break up a complex SQL statement into many simpler ones.
This makes a SQLScript procedure easier to comprehend.

To illustrate this point, consider the following query:

books_per_publisher = SELECT publisher, COUNT (*) AS cnt FROM :books GROUP BY publisher;
largest_publishers = SELECT * FROM :books_per_publisher
WHERE cnt >= (SELECT MAX (cnt) FROM :books_per_publisher);

Writing this query as a single SQL statement requires either the definition of a temporary view (using WITH), or
the multiple repetition of a sub-query. The two statements above break the complex query into two simpler
SQL statements that are linked by table variables. This query is much easier to understand because the names
of the table variables convey the meaning of the query and they also break the complex query into smaller
logical pieces.

SAP HANA SQLScript Reference for SAP HANA Platform
Best Practices for Using SQLScript PUBLIC 309

The SQLScript compiler will combine these statements into a single query or identify the common sub-
expression using the table variables as hints. The resulting application program is easier to understand without
sacrificing performance.

15.2 Identify Common Sub-Expressions

The query examined in the previous topic contained common sub-expressions. Such common sub-expressions
might introduce expensive repeated computation that should be avoided.

It is very complicated for query optimizers to detect common sub-expressions in SQL queries. If you break up a
complex query into logical subqueries it can help the optimizer to identify common sub-expressions and to
derive more efficient execution plans. If in doubt, you should employ the EXPLAIN plan facility for SQL
statements to investigate how the SAP HANA database handles a particular statement.

15.3 Multi-Level Aggregation

Computing multi-level aggregation can be achieved by using grouping sets. The advantage of this approach is
that multiple levels of grouping can be computed in a single SQL statement.

For example:

SELECT publisher, name, year, SUM(price) FROM :it_publishers, :it_books
WHERE publisher=pub_id AND crcy=:currency GROUP BY GROUPING SETS ((publisher, name, year), (year))

To retrieve the different levels of aggregation, the client must typically examine the result repeatedly, for
example, by filtering by NULL on the grouping attributes.

In the special case of multi-level aggregations, SQLScript can exploit results at a finer grouping for computing
coarser aggregations and return the different granularities of groups in distinct table variables. This could save
the client the effort of re-examining the query result. Consider the above multi-level aggregation expressed in
SQLScript:

books_ppy = SELECT publisher, name, year, SUM(price) FROM :it_publishers, :it_books
WHERE publisher = pub_id AND crcy = :currency
GROUP BY publisher, name, year;
 books_py = SELECT year, SUM(price)
FROM :books_ppy GROUP BY year;

310 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Best Practices for Using SQLScript

15.4 Reduce Dependencies

One of the most important methods for speeding up processing in the SAP HANA database is through
massively parallelized query execution.

Parallelization is exploited at multiple levels of granularity. For example, the requests of different users can be
processed in parallel, and single relational operators within a query can also be executed on multiple cores in
parallel. It is also possible to execute different statements of a single SQLScript procedure in parallel if these
statements are independent of each other. Remember that SQLScript is translated into a dataflow graph, and
independent paths in this graph can be executed in parallel.

As an SQLScript developer, you can support the database engine in its attempt to parallelize execution by
avoiding unnecessary dependencies between separate SQL statements, and by using declarative constructs if
possible. The former means avoiding variable references, and the latter means avoiding imperative features,
such as cursors.

15.5 Avoid Using Cursors

While the use of cursors is sometime required, they also imply row-by-row processing. Consequently,
opportunities for optimizations by the SQL engine are missed. You should therefore consider replacing cursors
with loops in SQL statements.

Read-Only Access

For read-only access to a cursor, consider using simple selects or joins:

CREATE PROCEDURE foreach_proc LANGUAGE SQLSCRIPT AS Reads SQL DATA
BEGIN
 DECLARE val decimal(34,10) = 0;
 DECLARE CURSOR c_cursor1 FOR
 SELECT isbn, title, price FROM books;
 FOR r1 AS c_cursor1 DO
 val = :val + r1.price;
 END FOR; END;

This sum can also be computed by the SQL engine:

SELECT sum(price) into val FROM books;

Computing this aggregate in the SQL engine may result in parallel execution on multiple CPUs inside the SQL
executor.

SAP HANA SQLScript Reference for SAP HANA Platform
Best Practices for Using SQLScript PUBLIC 311

Updates and Deletes

For updates and deletes, consider using the following:

CREATE PROCEDURE foreach_proc LANGUAGE SQLSCRIPT AS BEGIN
 DECLARE val INT = 0;
 DECLARE CURSOR c_cursor1 FOR
 SELECT isbn, title, price FROM books;
 FOR r1 AS c_cursor1 DO
 IF r1.price > 50 THEN
 DELETE FROM Books WHERE isbn = r1.isbn;
 END IF;
 END FOR; END;

This delete can also be computed by the SQL engine:

DELETE FROM Books WHERE isbn IN (SELECT isbn FROM books WHERE price > 50);

Computing this in the SQL engine reduces the calls through the runtime stack of the SAP HANA database. It
also potentially benefits from internal optimizations like buffering and parallel execution.

Insertion into Tables

CREATE PROCEDURE foreach_proc LANGUAGE SQLSCRIPT AS BEGIN
 DECLARE val INT = 0;
 DECLARE CURSOR c_cursor1 FOR SELECT isbn, title, price FROM books;
 FOR r1 AS c_cursor1 DO
 IF r1.price > 50
 THEN
 INSERT INTO ExpensiveBooks VALUES(..., r1.title, ...);
 END IF;
 END FOR; END;

This insertion can also be computed by the SQL engine:

 SELECT ..., title, ... FROM Books WHERE price > 50 INTO ExpensiveBooks;

Like updates and deletes, computing this statement in the SQL engine reduces the calls through the runtime
stack of the SAP HANA database. It also potentially benefits from internal optimizations like buffering and
parallel execution.

15.6 Avoid Using Dynamic SQL

Dynamic SQL is a powerful way to express application logic. It allows SQL statements to be constructed at the
execution time of a procedure. However, executing dynamic SQL is slow because compile-time checks and

312 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Best Practices for Using SQLScript

query optimization must be performed each time the procedure is called. When there is an alternative to
dynamic SQL using variables, this should be used instead.

Another related problem is security because constructing SQL statements without proper checks of the
variables used can create a security vulnerability, like an SQL injection, for example. Using variables in SQL
statements prevents these problems because type checks are performed at compile time and parameters
cannot inject arbitrary SQL code.

The table below summarizes potential use cases for dynamic SQL:

Dynamic SQL Use Cases

Feature Proposed Solution

Projected attributes Dynamic SQL

Projected literals SQL + variables

FROM clause SQL + variables; result structure must remain unchanged

WHERE clause – attribute names and Boolean operators APPLY_FILTER

SAP HANA SQLScript Reference for SAP HANA Platform
Best Practices for Using SQLScript PUBLIC 313

16 Developing Applications with SQLScript

This section contains information about creating applications with SQLScript for SAP HANA.

16.1 Handling Temporary Data

In this section we briefly summarize the concepts employed by the SAP HANA database for handling
temporary data.

Table Variables are used to conceptually represent tabular data in the data flow of a SQLScript procedure. This
data may or may not be materialized into internal tables during execution. This depends on the optimizations
applied to the SQLScript procedure. Their main use is to structure SQLScript logic.

Temporary Tables are tables that exist within the life time of a session. For one connection one can have
multiple sessions. In most cases disconnecting and reestablishing a connection is used to terminate a session.
The schema of global temporary tables is visible for multiple sessions. However, the data stored in this table is
private to each session. In contrast, for local temporary tables neither the schema nor the data is visible
outside the present session. In most aspects, temporary tables behave like regular column tables.

Persistent Data Structures are like sequences and are only used within a procedure call. However, sequences
are always globally defined and visible (assuming the correct privileges). For temporary usage – even in the
presence of concurrent invocations of a procedure, you can invent a naming schema to avoid sequences. Such
a sequence can then be created using dynamic SQL.

16.2 SQL Query for Ranking

Ranking can be performed using a Self-Join that counts the number of items that would get the same or lower
rank. This idea is implemented in the sales statistical example below.

create table sales (product int primary key, revenue int); select product, revenue,
 (select count(*)
 from sales s1 where s1.revenue <= s2.revenue) as rank
from sales s2
order by rank asc

Related Information

Window Functions and the Window Specification

314 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Developing Applications with SQLScript

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.05/en-US/20a353327519101495dfd0a87060a0d3.html

16.3 Calling SQLScript From Clients

The following chapters discuss the syntax for creating SQLScript procedures and calling them. Besides the
SQL command console for invoking a procedure, calls to SQLScript will also be embedded into client code. This
section shows examples of how this can be done.

16.3.1 Calling SQLScript from ABAP

Using ABAP Managed Database Procedures (AMDP)

The best way to call SQLScript from ABAP is by means of the AMDP framework. That framework manages the
lifecycle of SQLScript objects and embeds them as ABAP objects (classes). The development, maintenance,
and transport is performed on the ABAP side. A call of an AMDP corresponds to a class method call in ABAP.
The AMDP framework takes care of generating and calling the corresponding database objects.

For more information, see ABAP - Keyword Documentation → ABAP - Reference → Processing External Data →
ABAP Database Accesses → AMDP - ABAP Managed Database Procedures.

Using CALL DATABASE PROCEDURE

 Tip
You can call SQLScript from ABAP by using a procedure proxy that can be natively called from ABAP by
using the built-in command CALL DATABASE PROCEDURE. However, it is recommended to use AMDP.

The SQLScript procedure has to be created normally in the SAP HANA Studio with the HANA Modeler. After
this a procedure proxy can be creating using the ABAP Development Tools for Eclipse. In the procedure proxy
the type mapping between ABAP and HANA data types can be adjusted. The procedure proxy is transported
normally with the ABAP transport system while the HANA procedure may be transported within a delivery unit
as a TLOGO object.

Calling the procedure in ABAP is very simple. The example below shows calling a procedure with two inputs
(one scalar, one table) and one (table) output parameter:

CALL DATABASE PROCEDURE z_proxy EXPORTING iv_scalar = lv_scalar
 it_table = lt_table IMPORTING et_table1 = lt_table_res.

Using the connection clause of the CALL DATABASE PROCEDURE command, it is also possible to call a
database procedure using a secondary database connection. Please consult the ABAP help for detailed
instructions of how to use the CALL DATABASE PROCEDURE command and for the exceptions may be raised.

SAP HANA SQLScript Reference for SAP HANA Platform
Developing Applications with SQLScript PUBLIC 315

https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/index.htm

It is also possible to create procedure proxies with an ABAP API programmatically. Please consult the
documentation of the class CL_DBPROC_PROXY_FACTORY for more information on this topic.

For more information, see ABAP - Keyword Documentation → ABAP - Reference → Processing External Data →
ABAP Database Accesses → ABAP and SAP HANA → Access to Objects in SAP HANA XS → Access to SAP
HANA XSC Objects → Database Procedure Proxies for SQLScript Procedures in XSC → CALL DATABASE
PROCEDURE.

Using ADBC

&--- *& Report ZRS_NATIVE_SQLSCRIPT_CALL
&---
*&
&---
report zrs_native_sqlscript_call.
parameters:
 con_name type dbcon-con_name default 'DEFAULT'.
types:
* result table structure
 begin of result_t,
 key type i,
 value type string,
 end of result_t.
data:
* ADBC
 sqlerr_ref type ref to cx_sql_exception,
 con_ref type ref to cl_sql_connection,
 stmt_ref type ref to cl_sql_statement,
 res_ref type ref to cl_sql_result_set,
* results
 result_tab type table of result_t,
 row_cnt type i.
start-of-selection.
 try.
 con_ref = cl_sql_connection=>get_connection(con_name).
 stmt_ref = con_ref->create_statement().

** Setup test and procedure

* Create test table
 try.
 stmt_ref->execute_ddl('DROP TABLE zrs_testproc_tab').
 catch cx_sql_exception.
 endtry.
 stmt_ref->execute_ddl(
 'CREATE TABLE zrs_testproc_tab(key INT PRIMARY KEY, value
NVARCHAR(255))').
 stmt_ref->execute_update(
 'INSERT INTO zrs_testproc_tab VALUES(1, ''Test value'')').
* Create test procedure with one output parameter
 try.
 stmt_ref->execute_ddl('DROP PROCEDURE zrs_testproc').
 catch cx_sql_exception.
 endtry.
 stmt_ref->execute_ddl(
 `CREATE PROCEDURE zrs_testproc(OUT t1 zrs_testproc_tab) ` &&
 `READS SQL DATA AS ` &&
 `BEGIN ` &&
 ` t1 = SELECT * FROM zrs_testproc_tab; ` &&
 `END`
).

316 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Developing Applications with SQLScript

https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abapcall_database_procedure.htm?file=abapcall_database_procedure.htm
https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abapcall_database_procedure.htm?file=abapcall_database_procedure.htm

** Execution time

 perform execute_with_transfer_table.
 perform execute_with_gen_temptables.
 con_ref->close().
 catch cx_sql_exception into sqlerr_ref.
 perform handle_sql_exception using sqlerr_ref.
 endtry.
form execute_with_transfer_table.
 data lr_result type ref to data.
* Create transfer table for output parameter
* this table is used to transfer data for parameter 1 of proc zrs_testproc
* for each procedure a new transfer table has to be created
* when the procedure is executed via result view, this table is not needed
* If the procedure has more than one table type parameter, a transfer table is
needed for each parameter
* Transfer tables for input parameters have to be filled first before the call
is executed
 try.
 stmt_ref->execute_ddl('DROP TABLE zrs_testproc_p1').
 catch cx_sql_exception.
 endtry.
 stmt_ref->execute_ddl(
 'CREATE GLOBAL TEMPORARY COLUMN TABLE zrs_testproc_p1(key int, value
NVARCHAR(255))'
).
* clear output table in session
* should be done each time before the procedure is called
 stmt_ref->execute_ddl('TRUNCATE TABLE zrs_testproc_p1').
* execute procedure call
 res_ref = stmt_ref->execute_query('CALL zrs_testproc(zrs_testproc_p1) WITH
OVERVIEW').
 res_ref->close().
* read result for output parameter from output transfer table
 res_ref = stmt_ref->execute_query('SELECT * FROM zrs_testproc_p1').
* assign internal output table
 clear result_tab.
 get reference of result_tab into lr_result.
 res_ref->set_param_table(lr_result).
* get the complete result set in the internal table
 row_cnt = res_ref->next_package().
 write: / 'EXECUTE WITH TRANSFER TABLE:', / 'Row count: ', row_cnt.
 perform output_result.
endform.
form execute_with_gen_temptables.
* mapping between procedure output parameters
* and generated temporary tables
 types:
 begin of s_outparams,
 param_name type string,
 temptable_name type string,
 end of s_outparams.
 data lt_outparam type standard table of s_outparams.
 data lr_outparam type ref to data.
 data lr_result type ref to data.
 field-symbols <ls_outparam> type s_outparams.
* call the procedure which returns the mapping between procedure parameters
* and the generated temporary tables
 res_ref = stmt_ref->execute_query('CALL zrs_testproc(null) WITH OVERVIEW').
 clear lt_outparam.
 get reference of lt_outparam into lr_outparam.
 res_ref->set_param_table(lr_outparam).
 res_ref->next_package().
* get the temporary table name for the parameter T1
 read table lt_outparam assigning <ls_outparam>
 with key param_name = 'T1'.
 assert sy-subrc is initial.

SAP HANA SQLScript Reference for SAP HANA Platform
Developing Applications with SQLScript PUBLIC 317

* retrieve the procedure output from the generated temporary table
 res_ref = stmt_ref->execute_query('SELECT * FROM ' && <ls_outparam>-
temptable_name).
 clear result_tab.
 get reference of result_tab into lr_result.
 res_ref->set_param_table(lr_result).
 row_cnt = res_ref->next_package().
 write: / 'EXECUTE WITH GENERATED TEMP TABLES:', / 'Row count:', row_cnt.
 perform output_result.
endform.
form handle_sql_exception
 using p_sqlerr_ref type ref to cx_sql_exception.
 format color col_negative.
 if p_sqlerr_ref->db_error = 'X'.
 write: / 'SQL error occured:', p_sqlerr_ref->sql_code, "#EC NOTEXT
 / p_sqlerr_ref->sql_message.
 else.
 write:
 / 'Error from DBI (details in dev-trace):', "#EC NOTEXT
 p_sqlerr_ref->internal_error.
 endif.
endform.
form output_result.
 write / 'Result table:'.
 field-symbols <ls> type result_t.
 loop at result_tab assigning <ls>.
 write: / <ls>-key, <ls>-value.
 endloop.
endform.

Output:

EXECUTE WITH TRANSFER TABLE: Row count: 1
Result table:
 1 Test value
EXECUTE WITH GENERATED TEMP TABLES:
Row count: 1
Result table_ 1 Test value

Related Information

CALL DATABASE PROCEDURE
AMDP - ABAP Managed Database Procedures

16.3.2 Calling SQLScript from Java

import java.sql.Connection; import java.sql.DriverManager;
import java.sql.CallableStatement;
import java.sql.ResultSet;
…
import java.sql.SQLException;CallableStatement cSt = null;
String sql = "call SqlScriptDocumentation.getSalesBooks(?,?,?,?)";
ResultSet rs = null;

318 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Developing Applications with SQLScript

https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/abapcall_database_procedure.htm?file=abapcall_database_procedure.htm
https://help.sap.com/doc/abapdocu_752_index_htm/7.52/en-US/index.htm?file=abenamdp.htm

Connection conn = getDBConnection(); // establish connection to database using
jdbc
try {
 cSt = conn.prepareCall(sql);
 if (cSt == null) {
 System.out.println("error preparing call: " + sql);
 return;
 }
 cSt.setFloat(1, 1.5f);
 cSt.setString(2, "'EUR'");
 cSt.setString(3, "books");
 int res = cSt.executeUpdate();
 System.out.println("result: " + res);
 do {
 rs = cSt.getResultSet();
 while (rs != null && rs.next()) {
 System.out.println("row: " + rs.getString(1) + ", " +
 rs.getDouble(2) + ", " + rs.getString(3));
 }
 } while (cSt.getMoreResults());
} catch (Exception se) {
 se.printStackTrace();
} finally {
 if (rs != null)
 rs.close();
 if (cSt != null)
 cSt.close();
}

16.3.3 Calling SQLScript from C#

Given procedure:

CREATE PROCEDURE TEST_PRO1(IN strin NVARCHAR(100), OUT SorP NVARCHAR(100)) language sqlscript AS
BEGIN
 select 10 from dummy;
 SorP = N'input str is ' || strin; END;

This procedure can be called as follows:

using System; using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.Common;
using ADODB;
using System.Data.SqlClient;
namespace NetODBC
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 DbConnection conn;
 DbProviderFactory _DbProviderFactoryObject;
 String connStr = "DRIVER={HDBODBC32};UID=SYSTEM;PWD=<password>;
 SERVERNODE=<host>:<port>;DATABASE=SYSTEM";

SAP HANA SQLScript Reference for SAP HANA Platform
Developing Applications with SQLScript PUBLIC 319

 String ProviderName = "System.Data.Odbc";
 _DbProviderFactoryObject =
DbProviderFactories.GetFactory(ProviderName);
 conn = _DbProviderFactoryObject.CreateConnection();
 conn.ConnectionString = connStr;
 conn.Open();
 System.Console.WriteLine("Connect to HANA database
successfully");
 DbCommand cmd = conn.CreateCommand();
 //call Stored Procedure
 cmd = conn.CreateCommand();
 cmd.CommandText = "call test_pro1(?,?)";
 DbParameter inParam = cmd.CreateParameter();
 inParam.Direction = ParameterDirection.Input;
 inParam.Value = "asc";
 cmd.Parameters.Add(inParam);
 DbParameter outParam = cmd.CreateParameter();
 outParam.Direction = ParameterDirection.Output;
 outParam.ParameterName = "a";
 outParam.DbType = DbType.Integer;
 cmd.Parameters.Add(outParam);
 reader = cmd.ExecuteReader();
 System.Console.WriteLine("Out put parameters = " +
outParam.Value);
 reader.Read();
 String row1 = reader.GetString(0);
 System.Console.WriteLine("row1=" + row1);
 }
 catch(Exception e)
 {
 System.Console.WriteLine("Operation failed");
 System.Console.WriteLine(e.Message);
 }
 }
 } }

320 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Developing Applications with SQLScript

17 Appendix

17.1 Example code snippets

The examples used throughout this manual make use of various predefined code blocks. These code snippets
are presented below.

17.1.1 ins_msg_proc

This code is used in the examples of this reference manual to store outputs, so that you can see the way the
examples work. It simply stores text along with a time stamp of the entry.

Before you can use this procedure, you must create the following table.

CREATE TABLE message_box (p_msg VARCHAR(200), tstamp TIMESTAMP);

You can create the procedure as follows.

CREATE PROCEDURE ins_msg_proc (p_msg VARCHAR(200)) LANGUAGE SQLSCRIPT AS BEGIN
 INSERT INTO message_box VALUES (:p_msg, CURRENT_TIMESTAMP); END;

To view the contents of the message_box, you select the messages in the table.

select * from message_box;

SAP HANA SQLScript Reference for SAP HANA Platform
Appendix PUBLIC 321

Important Disclaimer for Features in SAP
HANA

For information about the capabilities available for your license and installation scenario, refer to the Feature
Scope Description for SAP HANA.

322 PUBLIC
SAP HANA SQLScript Reference for SAP HANA Platform

Important Disclaimer for Features in SAP HANA

https://help.sap.com/viewer/de855a01ee2248dfb139088793f8802a/latest/en-US
https://help.sap.com/viewer/de855a01ee2248dfb139088793f8802a/latest/en-US

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

SAP HANA SQLScript Reference for SAP HANA Platform
Important Disclaimers and Legal Information PUBLIC 323

www.sap.com/contactsap

© 2022 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAP HANA SQLScript Reference for SAP HANA Platform
	Content
	1 SAP HANA SQLScript Reference
	2 About SAP HANA SQLScript
	3 What is SQLScript?
	3.1 SQLScript Security Considerations
	3.2 SQLScript Processing Overview

	4 Backus Naur Form Notation
	5 Data Type Extension
	5.1 Scalar Data Types
	5.2 Table Types
	5.2.1 CREATE TYPE
	5.2.2 DROP TYPE

	5.3 Row-Type Variable

	6 Logic Container
	6.1 Procedures
	6.1.1 CREATE PROCEDURE
	6.1.2 DROP PROCEDURE
	6.1.3 ALTER PROCEDURE
	6.1.4 Procedure Calls
	6.1.4.1 CALL
	6.1.4.2 CALL: Internal Procedure Call
	6.1.4.3 CALL with Named Parameters

	6.1.5 Procedure Parameters
	6.1.5.1 Value Binding during Call
	6.1.5.2 Default Values for Parameters
	6.1.5.3 DEFAULT EMPTY for Tabular Parameters

	6.1.6 Procedure Metadata
	6.1.6.1 SYS.PROCEDURES
	6.1.6.2 SYS. PROCEDURE_PARAMETERS
	6.1.6.3 SYS.OBJECT_DEPENDENCIES
	6.1.6.3.1 Object Dependencies View Examples

	6.1.6.4 PROCEDURE_PARAMETER_COLUMNS

	6.2 User-Defined Functions
	6.2.1 CREATE FUNCTION
	6.2.2 ALTER FUNCTION
	6.2.3 DROP FUNCTION
	6.2.4 Function Parameters
	6.2.5 Consistent Scalar Function Result
	6.2.6 Function Metadata
	6.2.6.1 SYS.FUNCTIONS
	6.2.6.2 SYS.FUNCTION_PARAMETERS
	6.2.6.3 FUNCTION_PARAMETER_COLUMNS

	6.2.7 Default Values for Parameters
	6.2.8 SQL Embedded Function
	6.2.9 Deterministic Scalar Functions
	6.2.10 Procedure Result Cache
	6.2.10.1 Deterministic Procedures
	6.2.10.2 Deterministic Procedure Cache

	6.3 User-Defined Libraries
	6.3.1 Library Members
	6.3.2 System Views
	6.3.3 UDL Member Procedure Call Without SQLScript Artifacts
	6.3.4 Library Member Functions and Variables

	6.4 CREATE OR REPLACE
	6.5 Procedure and Function Headers
	6.6 Anonymous Block
	6.7 SQLScript Encryption
	6.7.1 Import and Export of Encrypted SQLScript Objects

	7 Declarative SQLScript Logic
	7.1 Table Parameter
	7.1.1 Any Table Type Parameter

	7.2 Table Variable Type Definition
	7.3 Binding Table Variables
	7.4 Referencing Variables
	7.5 Column View Parameter Binding
	7.6 Map Reduce Operator
	7.7 Map Merge Operator
	7.8 Hints
	7.8.1 NO_INLINE and INLINE Hints
	7.8.2 ROUTE_TO Hint

	7.9 SQLScript Variable Cache

	8 Imperative SQLScript Logic
	8.1 Scalar Variables
	8.1.1 SELECT INTO with DEFAULT Values
	8.1.2 SQL in Scalar Expressions

	8.2 Table Variables
	8.2.1 Table Variable Operators
	8.2.1.1 Index-Based Cell Access to Table Variables
	8.2.1.2 Modifying the Content of Table Variables
	8.2.1.3 UNNEST Function
	8.2.1.4 Emptiness Check for Tables and Table Variables
	8.2.1.5 Get Number of Records for Tables and Table Variables
	8.2.1.6 Search in Table Variables

	8.2.2 SQL DML Statements on Table Variables
	8.2.3 Sorted Table Variables

	8.3 Auto Type Derivation
	8.4 Global Session Variables
	8.5 Variable Scope Nesting
	8.6 Control Structures
	8.6.1 Conditionals
	8.6.2 Loop
	8.6.3 While Loop
	8.6.4 For Loop
	8.6.5 Break and Continue
	8.6.6 Operators
	8.6.6.1 IN Operator
	8.6.6.2 EXISTS Operator
	8.6.6.3 BETWEEN Operator

	8.7 Cursors
	8.7.1 Define Cursor
	8.7.2 Open Cursor
	8.7.3 Close Cursor
	8.7.4 Fetch Query Results of a Cursor
	8.7.5 Attributes of a Cursor
	8.7.6 Looping Over Result Sets
	8.7.7 Updatable Cursor
	8.7.8 Cursor Holdability

	8.8 Autonomous Transaction
	8.9 Transactional Statements
	8.9.1 COMMIT and ROLLBACK
	8.9.2 SAVEPOINT

	8.10 Dynamic SQL
	8.10.1 EXEC
	8.10.2 EXECUTE IMMEDIATE
	8.10.3 USING and INTO Clauses in DSQL
	8.10.4 APPLY_FILTER

	8.11 Exception Handling
	8.11.1 DECLARE EXIT HANDLER
	8.11.2 DECLARE CONTINUE HANDLER
	8.11.3 DECLARE CONDITION
	8.11.4 SIGNAL and RESIGNAL
	8.11.5 Exception Handling Examples
	8.11.6 Supported Error Codes

	8.12 Array Variables
	8.12.1 Declare a Variable of Type ARRAY
	8.12.2 Set an Element of an Array
	8.12.3 Return an Element of an Array
	8.12.4 ARRAY_AGG Function
	8.12.5 TRIM_ARRAY Function
	8.12.6 CARDINALITY Function
	8.12.7 Concatenate Two Arrays
	8.12.8 Array Parameters for Procedures and Functions

	8.13 SQL Injection Prevention Functions
	8.14 Explicit Parallel Execution
	8.15 Recursive SQLScript Logic

	9 Calculation Engine Plan Operators
	9.1 Data Source Access Operators
	9.1.1 CE_COLUMN_TABLE
	9.1.2 CE_JOIN_VIEW
	9.1.3 CE_OLAP_VIEW
	9.1.4 CE_CALC_VIEW

	9.2 Relational Operators
	9.2.1 CE_JOIN
	9.2.2 CE_LEFT_OUTER_JOIN
	9.2.3 CE_RIGHT_OUTER_JOIN
	9.2.4 CE_PROJECTION
	9.2.5 CE_CALC
	9.2.5.1 Using String Functions with Multi-Byte Character Encoding

	9.2.6 CE_AGGREGATION
	9.2.7 CE_UNION_ALL

	9.3 Special Operators
	9.3.1 CE_VERTICAL_UNION
	9.3.2 CE_CONVERSION
	9.3.3 TRACE

	10 HANA Spatial Support
	11 System Variables
	11.1 ::CURRENT_OBJECT_NAME and ::CURRENT_OBJECT_SCHEMA
	11.2 ::ROWCOUNT
	11.3 ::CURRENT_LINE_NUMBER

	12 Built-In Libraries
	12.1 Built-in Library SQLSCRIPT_SYNC
	12.2 Built-in Library SQLSCRIPT_STRING
	12.3 Built-in Library SQLSCRIPT_PRINT
	12.4 Built-In Library SQLSCRIPT_LOGGING
	12.4.1 SQLSCRIPT_LOGGING Privilege
	12.4.2 SQLSCRIPT_LOGGING_TABLE_TYPE

	13 Query Parameterization: BIND_AS_PARAMETER and BIND_AS_VALUE
	14 Supportability
	14.1 M_ACTIVE_PROCEDURES
	14.2 Query Export
	14.2.1 SQLScript Query Export

	14.3 Type and Length Check for Table Parameters
	14.4 SQLScript Debugger
	14.4.1 Conditional Breakpoints
	14.4.2 Watchpoints
	14.4.3 Break on Error
	14.4.4 Save Table

	14.5 EXPLAIN PLAN for Call
	14.6 EXPLAIN PLAN for Table User-Defined Functions
	14.7 SQLScript Code Coverage
	14.8 SQLScript Code Analyzer
	14.8.1 Limitations in the SQLScript Code Analyzer

	14.9 SQLScript Plan Profiler
	14.9.1 M_SQLSCRIPT_PLAN_PROFILER_RESULTS View

	14.10 SQLScript Pragmas
	14.11 End-User Test Framework in SQLScript
	14.11.1 Invoking End-User Tests
	14.11.2 Listing End-User Tests
	14.11.3 Matchers for End-User Tests

	15 Best Practices for Using SQLScript
	15.1 Reduce the Complexity of SQL Statements
	15.2 Identify Common Sub-Expressions
	15.3 Multi-Level Aggregation
	15.4 Reduce Dependencies
	15.5 Avoid Using Cursors
	15.6 Avoid Using Dynamic SQL

	16 Developing Applications with SQLScript
	16.1 Handling Temporary Data
	16.2 SQL Query for Ranking
	16.3 Calling SQLScript From Clients
	16.3.1 Calling SQLScript from ABAP
	16.3.2 Calling SQLScript from Java
	16.3.3 Calling SQLScript from C#

	17 Appendix
	17.1 Example code snippets
	17.1.1 ins_msg_proc

	Important Disclaimer for Features in SAP HANA
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

