
PUBLIC
2017-10-26

Object Store Service

©
 2

01
8

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Object Store Service . 3

2 Object Store Service on Azure Blob Storage. 4
2.1 Configure Object Store to use Azure Blob Storage. 4

2.2 Create Service-Keys for an ObjectStore Service Instance. 6

Reference Script to Automate the Process Mentioned Above. 6

2.3 Supported Operations. 8

2.4 Java Code Snippets. 8

3 Object Store Service on Amazon Web Service. .10
3.1 Configure Object Store to use Amazon Simple Storage Service. 10

. 10

3.2 Use Service Keys to Access Object Store Service Instance. 12

Reference Script to Automate the Above Procedure. .13

3.3 Supported Operations. 14

3.4 Java Code Snippets. 15

3.5 Sample Script Snippets to Overcome Service Binding Limitations. 16

4 Object Store Service on SAP Infrastructure. 18
4.1 Configure Object Store to use SAP Infrastructure. 18

4.2 Use Object Store Resource . 20

Supported Endpoints for Making Object or Container Related API Calls. 21

Implementation Using Open Source Libraries. 22

4.3 Delete Container. .23

5 Object Store Service on GCP . 24
5.1 Configure Object Store to use GCP . 24

5.2 Use Service Keys to Access Object Store Service Instance. 26

5.3 Supported Operations. .27

5.4 Java Code Snippets. .27

5.5 Sample Script Snippets to Overcome Service Binding Limitations. 29

6 Data Protection and Privacy. 31

7 Data Encryption Strategy. .34

8 Frequently Asked Questions. 35

2 P U B L I C
Object Store Service

Content

1 Object Store Service

Object Store service enables storage and management of objects, which involves creation, upload, download,
and deletion of objects. This service is specific to the IaaS layer i.e,

Features

● Easy and secure access - Creates S3 buckets and passes secure credentials to the application to access
the buckets.

● High availability - Ensures that the storage for solutions is always available, without any interruptions.
● High durability - Ensures durability as the underlying technologies that we use provide storage replication.
● Scalability - Offers highly scalable storage that can be used by cloud foundry applications to store and

manage objects.

Cloud Foundry Service Plans

Plan Description Feature

s3-standard Provides an objectstore on AWS S3 that CF applications
can use to store & manage objects

AWS-S3 Standard Storage class (Avail
able only in AWS based Landscapes).

swift-standard Provides scalable cloud blob storage on Openstack
Swift that CF applications can use to store & manage
objects

Swift service (Available only in SAP
based Landscapes).

gcs-standard Provides an objectstore on Google Cloud Storage that
CF applications can use to store & manage objects

GCS regional storage class (Available
only in GCP based Landscapes).

azure-standard Provides an objectstore on Azure BlobStorage account
that CF applications can use to store & manage objects

Azure LRS Storage class (Available only
in Azure based Landscapes).

Related Information

Configure Object Store to use Azure Blob Storage [page 4]
Configure Object Store to use Amazon Simple Storage Service [page 10]
Configure Object Store to use SAP Infrastructure [page 18]
Configure Object Store to use GCP [page 24]

Object Store Service
Object Store Service P U B L I C 3

2 Object Store Service on Azure Blob
Storage

2.1 Configure Object Store to use Azure Blob Storage

The Object Store service in the Azure landscape provides Azure BlobStorage containers as object store
resource.

Context

The Object Store service supports following operations: Create Azure BlobStorage container (Service
instance), delete container, create credentials to access the container via cf bind-service and create-service-
key call, and delete credentials via cf unbind-service and delete-service-key call.

 Note
By Azure's subscription structure, a container has to be created within a storage account. In Object Store
service, an Azure BlobStorage account is created for each CF space, and for each service instance in that
CF space creates a container within that BlobStorage account. Usage billing takes place at the Cloud
Foundry (CF) space level (BlobStorage account level) rather than at the service instance (or container)
level. To perform object-related operations (upload, download, delete, and so on), you can directly make
calls to Azure using the Azure SDKs.

Procedure

1. Look for the service on Cloud Foundry using the command cf marketplace.

Service: objectstore Plans: azure-standard Description: Objectstore service

You see a service called "objectstore" is available, with plan "azure-standard."
2. Create a service instance using the command cf create-service objectstore azure-standard

<serviceInstanceName>. This creates a service instance and a container in Azure blob storage. A
container is created in the same region as the underlying Cloud Foundry infrastructure.

3. List the services available using the command cf services.

Name || Service || Plan || Bound apps || Last operation <serviceInstanceName> || objectstore || azure-standard

4 P U B L I C
Object Store Service

Object Store Service on Azure Blob Storage

4. Get credentials.

For container and blob operations, the application requires certain parameters (container name, container
URI, SAS Token). There are two ways a user can get these credentials; either by binding the service
instance to an application directly, or by using the Cloud Foundry Service-Key concept.

5. Bind an Object Store service instance to an application. cf bind-service <yourApplicatioName>
<serviceInstanceName>

6. The application now appears as bound with the service. Use the command cf services to obtain the
following output.
Output:

Name || Service || Plan || Bound apps || Last operation <serviceInstanceName> || objectstore || azure-standard || <ApplicatioName>

7. Read environment variables using the command cf env <ApplicatioName>

System-Provided: {
 "VCAP_SERVICES": {
 "objectstore": [
 {
 "credentials": {
 "account_name": "<storage_account_name>",
 "container_name": "<container_name_corresponding_to_service_instance>",
 "container_uri": "<container_uri>",
 "sas_token": "<sas_token>",
 "region": "<azure_container_region>"
 },
 "label": "objectstore",
 "name": "<serviceInstanceName>",
 "plan": "azure-standard",
 "provider": null,
 "syslog_drain_url": null,
 "tags": [
 "blobStore",
 "objectStore"
],
 "volume_mounts": []
 }
]
 } }

When you bind your application to a service instance, Cloud Foundry sets the environment variable:
VCAP_SERVICES. From VCAP_SERVICES, your application should read the following:
○ account_name
○ container_name
○ container_uri
○ sas_token
○ region

Object Store Service
Object Store Service on Azure Blob Storage P U B L I C 5

2.2 Create Service-Keys for an ObjectStore Service
Instance

Procedure

1. Create a service-key using the command: cf create-service-key <serviceInstanceName>
<KeyName>

2. View the service-key that was created using the command cf service-key
<serviceInstanceName> <Key Name>. The output would be like:

Getting key <KeyName> for service instance <serviceInstanceName> as admin... {
 "account_name": "<storage_account_name>",
 "container_name": "<container_name_corresponding_to_service_instance>",
 "container_uri": "<container_uri>",
 "sas_token": "<sas_token>",
 "region": "<azure_container_region>" }

A json file with following fields appear in the output:

○ account_name
○ container_name
○ container_uri
○ sas_token
○ region

Reference Script to Automate the Process Mentioned Above

Context

The script snippet in the steps below may assist you to automate the process of passing credentials as
environment variables to the application. We have a limitation on the number of service instance bindings that
can be created per service instance in Cloud Foundry to 5. If user has a use case where one needs more than 5
bindings. In those cases, we recommend users to use cf service-keys concept from Cloud Foundry.

Suppose multiple applications have to use a particular service instance and if the cf bind-service
command is used, then one can exhaust the Binding limits. To overcome that, please make use of cf
service-key concept.

Also, if one follows blue-green deployment of application to overcome downtime, there would be a time when 2
bindings for a service instance would be needed at a time - leading to exhaust Binding limits if other
applications are also bound. In this case also, below steps can be used in the script to overcome binding
limitations.

6 P U B L I C
Object Store Service

Object Store Service on Azure Blob Storage

Procedure

1. Create a service key using the command cf create-service-key< serviceInstanceName>
<KeyName>.

2. Retrieve credentials from the service key and store it in a variable using the command
credentialJSON=`cf service-key <servicenInstanceName> <KeyName> | sed -n '1,2!p'`.

3. Store the credentials into separate variables using the following commands:

accountName=`echo "${credentialsJSON}" | jq -r '.account_name'` containerName=`echo "${credentialsJSON}" | jq -r '.container_name'`
containerUri=`echo "${credentialsJSON}" | jq -r '.container_uri'`
sasToken=`echo "${credentialsJSON}" | jq -r '.sas_token' region=`echo "${credentialsJSON}" | jq -r '.region'`

4. Pass the credentials stored in above variables to your app.

For CF application, users can pass the above credentials to an application by setting environment variables.
To pass the variables as environment variables using application's manifest.yml file, make following entries
in your manifest.yml file:

env: vcap.services.<serviceInstanceName>.credentials.account_name:
 vcap.services.<serviceInstanceName>.credentials.container_name:
 vcap.services.<serviceInstanceName>.credentials.container_uri:
 vcap.services.<serviceInstanceName>.credentials.sas_token: vcap.services.<serviceInstanceName>.credentials.region:

And in the script, one can update these environment variables in manifest.yml using following commands,
to be done before deployment:

sed -i "s/vcap.services.<serviceInstanceName>.credentials.account_name.*/
vcap.services.<serviceInstanceName>.credentials.account_name: $accountName /
g" ./manifest.yml sed -i "s/vcap.services.<serviceInstanceName>.credentials.container_name.*/
vcap.services.<serviceInstanceName>.credentials.container_name:
$containerName /g" ./manifest.yml
sed -i
"s~vcap.services.<serviceInstanceName>.credentials.container_uri.*~vcap.servic
es.<serviceInstanceName>.credentials.container_uri: $containerUri ~g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.sas_token.*/
vcap.services.<serviceInstanceName>.credentials.sas_token: $sasToken /g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.region.*/
vcap.services.<serviceInstanceName>.credentials.region: $region /g" ./
manifest.yml

Object Store Service
Object Store Service on Azure Blob Storage P U B L I C 7

2.3 Supported Operations

Operations supported on containers/blobs

Operations

● List (List blobs in the container)
● Delete (Delete blob in the container)
● Write (Create or write content, properties, metadata, or block list)
● Create (Write a new blob, snapshot a blob, or copy a blob to a new blob)
● Add (Add a block to an append blob)
● Read (Read the content, properties, metadata and block list)

 Restriction
● Number of service instance bindings that can be created per service instance in Cloud Foundry: 5
● At each CF Space level, there is a storage size limit of 500TB, this limit is set by Azure. For more

information, see Storage Limits .

References

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-dotnet-how-to-use-blobs

2.4 Java Code Snippets

You can use the following sample code snippets as a reference:

● Read VCAP_SERVICES

 Sample Code

@Value("${vcap.services.objectstore.credentials.account_name}") String accountName;
@Value("${vcap.services.objectstore.credentials.container_name}")
String containerName;
@Value("${vcap.services.objectstore.credentials.container_uri}")
String containerUri;
@Value("${vcap.services.objectstore.credentials.sas_token}")
String sasToken;
@Value("${vcap.services.objectstore.credentials.region}") String region;

8 P U B L I C
Object Store Service

Object Store Service on Azure Blob Storage

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fazure-subscription-service-limits%23storage-limits
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fstorage%2Fblobs%2Fstorage-blobs-introduction
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fstorage%2Fblobs%2Fstorage-dotnet-how-to-use-blobs

● Get container reference

 Sample Code

CloudBlobContainer cloudBlobContainer = new CloudBlobContainer(new
URI(containerUri + "?" + sasToken));

● Get BlockBlob reference

 Sample Code

String blobName = "test-blob-1"; CloudBlockBlob cloudBlockBlob = new CloudBlockBlob(new URI(containerUri +
"/" + blobName + "?" + sasToken));

● List blobs in the container

 Sample Code

for (ListBlobItem listBlobItem : cloudBlobContainer.listBlobs()) { System.out.println("Storage URI: " + listBlobItem.getStorageUri()); }

● Upload blob

 Sample Code

String blobContent = "This is blob content text."; InputStream inputStream = new
ByteArrayInputStream(blobContent.getBytes("UTF-8")); cloudBlockBlob.upload(inputStream, blobContent.length());

● Download blob

 Sample Code

OutputStream outputStream = new ByteArrayOutputStream(); cloudBlockBlob.download(outputStream);

● Delete Blob

 Sample Code

cloudBlockBlob.deleteIfExists();

Instead of providing blob content as text, you can provide blobs by providing file path. For more information,
see Blob operations .

Object Store Service
Object Store Service on Azure Blob Storage P U B L I C 9

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fstorage%2Fblobs%2Fstorage-java-how-to-use-blob-storage%23upload-a-blob-into-a-container

3 Object Store Service on Amazon Web
Service

3.1 Configure Object Store to use Amazon Simple Storage
Service

Configuring enables you to bind your application with an Object Store instance and store objects.

Context

Provision using:

● Object Store
This involves restaging after binding the service to an application.

 Note
- Object store service supports STANDARD storage class objects.

- Objectstore service is a paid service, and the plans are sold as units of 100GBs. For more information,
refer SAP Cloud Platform Marketplace . When user creates a service instance, an AWS S3 bucket is
created, and user can store all the units in a single S3 bucket or in multiple S3 buckets.

- Creating a new service instance for every purchased unit of Object store service is not advised.

Procedure

1. Open the command line interface.
2. List the Object Store service from the marketplace using the command cf marketplace. A service called

“objectstore” with the plan “s3-standard” is available on Cloud Foundry environment.

Service Plan Description

<objectstore> <s3-standard> ObjectStore service with storage
space on Amazon s3.

3. Create an instance of the service using the command cf create-service objectstore s3-
standard <serviceInstanceName>.

10 P U B L I C
Object Store Service

Object Store Service on Amazon Web Service

http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloudplatform.sap.com%2Fdmp%2Fcapabilities%2Fus%2Fproduct%2FObject-Store-on-SAP-Cloud-Platform%2F55e3958b-e872-49e3-8d2c-8634d200c36a

 Note
You can create only 5 service instances per org.

4. List the service instance using the command cf services. The output lists the service instance details.

Name Service Plan Bound Apps Last Operation

<serviceInstance
Name>

<objectstore> <s3-standard> none none

5. Bind an application to the object store service instance using the command cf bind-service
<yourApplicationName> <serviceInstanceName>.

 Note
You can bind only 5 applications per service instance. For more information, see Use Service Keys to
Access Object Store Service Instance [page 12]

Binding enables Cloud Foundry environment to set the environment variable “VCAP_SERVICES”. The
bound application uses the environment variable to fetch the credentials for the service instance.

6. Restage your application using the command cf restage <yourApplicationName>.
Restaging enables the application to use the environment variables at runtime.

7. Verify the binding using the command cf services. The output lists the details including the name of the
application bounded to the objectstore service instance <serviceInstanceName>.

Name Service Plan Bound Apps Last Operation

<serviceInstance
Name>

<objectstore> <s3-standard> <yourApplication
Name>

none

8. View the environment variable used by the application using the command cf env
<yourApplicationName>.

 Note
Application reads the following details from the “VCAP_SERVICES”:

○ bucket
○ access_key_id
○ secret_access_key
○ host
○ region
○ username

You can access Amazon Simple Storage Service (Amazon S3) using the credentials mentioned in the
environment variable.

 Sample Code

System-Provided:

Object Store Service
Object Store Service on Amazon Web Service P U B L I C 11

 {
 "VCAP_SERVICES": {
 "objectstore": [
 {
 "credentials": {
 "access_key_id": "<some_access_key_id>",
 "bucket": "<some_bucket_name>",
 "host": "<region_specific_s3_endpoint>",
 "region": "<region>",
 "secret_access_key": "<some_secret_access_key>",
 "uri": "s3://
<some_access_key_id>:<some_secret_access_key>@<region_specific_s3_endpoint>
/<some_bucket_name>",
 "username": "<some_username>"
 },
 "label": "objectstore",
 "name": "<serviceInstanceName>",
 "plan": "s3-standard",
 "provider": null,
 "syslog_drain_url": null,
 "tags": [
 "blobStore",
 "objectStore"
],
 "volume_mounts": []
 }
] }

3.2 Use Service Keys to Access Object Store Service
Instance

Applications use service keys to access Object Store service instance.

Context

Follow the steps below to create a service key:

Procedure

1. Create a service key using the command cf create-service-key< serviceInstanceName>
<KeyName>.

2. View the generated service key using the command cf service-key <serviceInstanceName>
<KeyName>.

The sample output is as shown below:

Getting key <KeyName> for service instance <serviceInstanceName> as admin...

12 P U B L I C
Object Store Service

Object Store Service on Amazon Web Service

{
 "access_key_id": "<some_access_key_id>",
 "bucket": "<some_bucket_name>",
 "host": "<s3_endpoint_depending_on_region>",
 "region": "<region_of_bucket>",
 "secret_access_key": "<some_secret_access_key>",
 "uri": "s3://
<some_access_key_id>:<some_secret_access_key>@"<s3_endpoint_depending_on_regio
n>/<some_bucket_Name>",
 "username": "<some_username>"
}

A json file with the following fields appears in the output:
○ bucket
○ access_key_id
○ secret_access_key
○ host
○ region
○ username

Reference Script to Automate the Above Procedure

Context

The script snippet in the steps below may assist you to automate the process of passing credentials as
environment variables to the application.

Procedure

1. Create a service key using the command cf create-service-key< serviceInstanceName>
<KeyName>.

2. Retrieve credentials from the service key and store it in a variable using the command
credentialJSON=`cf service-key <servicenInstanceName> <KeyName> | sed -n '1,2!p'`.

3. Store the credentials into separate variables using the following commands:
○ accessKey=`echo "${credentialsJSON}" | jq -r '.access_key_id'`
○ secretKey=`echo "${credentialsJSON}" | jq -r '.secret_access_key'`
○ host=`echo "${credentialsJSON}" | jq -r '.host'`
○ region=`echo "${credentialsJSON}" | jq -r '.region'`
○ bucket=`echo "${credentialsJSON}" | jq -r '.bucket'`

4. Set the environment variable by creating a section named env in the “manifest.yml” file.

env: vcap.services.<serviceInstanceName>.credentials.access_key_id:
 vcap.services.<serviceInstanceName>.credentials.secret_access_key:
 vcap.services.<serviceInstanceName>.credentials.host:
 vcap.services.<serviceInstanceName>.credentials.region:

Object Store Service
Object Store Service on Amazon Web Service P U B L I C 13

 vcap.services.<serviceInstanceName>.credentials.bucket:

 Note
For Cloud Foundry application, you can pass the credentials to an application by setting environment
variables in the “manifest.yml” file.

5. Update the environment variables in the “manifest.yml” using the following commands :

sed -i "s/vcap.services.<serviceInstanceName>.credentials.access_key_id.*/
vcap.services.<serviceInstanceName>.credentials.access_key_id: $accessKey /
g" ./manifest.yml sed -i
"s~vcap.services.<serviceInstanceName>.credentials.secret_access_key.*~vcap.se
rvices.<serviceInstanceName>.credentials.secret_access_key: $secretKey ~g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.host.*/
vcap.services.<serviceInstanceName>.credentials.host: $host /g" ./manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.region.*/
vcap.services.<serviceInstanceName>.credentials.region: $region /g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.bucket.*/
vcap.services.<serviceInstanceName>.credentials.bucket: $bucket /g" ./
manifest.yml

6. Deploy the application to Cloud Foundry using the command cf push -f manifest.yml

3.3 Supported Operations

Here are the list of supported operations:

Operation supported on Buckets
List Bucket (List of objects in a bucket)

Operations supported on Objects
● Abort Multipart Upload
● Delete Object
● Delete Object Tagging
● Get Object
● Get Object ACL
● Get Object Torrent
● Get Object Tagging
● List Multipart Upload Parts
● Put Object
● Put Object ACL
● Put Object Version ACL

 Note
To perform object related operations (upload, download, delete etc) users can directly make calls to AWS
using the AWS SDKs.

14 P U B L I C
Object Store Service

Object Store Service on Amazon Web Service

For more information, see the documentation on the Amazon Web Services Web site.

3.4 Java Code Snippets

You can use the following sample code snippets as a reference:

● Read VCAP_SERVICES

 Sample Code

@Value("${vcap.services.objectstore.credentials.access_key_id}") String accessKeyId;
@Value("${vcap.services.objectstore.credentials.secret_access_key}")
String secretAccessKey;
@Value("${vcap.services.objectstore.credentials.bucket}")
String bucketName;
@Value("${vcap.services.objectstore.credentials.host}")
String endPoint;
@Value("${vcap.services.objectstore.credentials.region}")
String bucketRegion;

● Get an Amazon S3 client

 Sample Code

//Using setEndPoint method AWSCredentials credentials = new BasicAWSCredentials(accessKeyId,
secretAccessKey);
AmazonS3 s3client = null;
s3client = new AmazonS3Client(credentials);
s3client.setEndPoint(endPoint);
s3client.setRegion(bucketRegion);
//Using region method
AWSCredentials credentials = new BasicAWSCredentials(accessKeyId,
secretAccessKey);
AmazonS3 s3client = null;
s3client = new AmazonS3Client(credentials); s3client.setRegion(bucketRegion);

● Upload an object

 Sample Code

s3client.putObject(new PutObjectRequest(bucketName, objectName, file));

● Download an object

 Sample Code

s3client.getObject(new GetObjectRequest(bucketName, objectName));

● Delete an object

Object Store Service
Object Store Service on Amazon Web Service P U B L I C 15

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.aws.amazon.com%2FAmazonS3%2Flatest%2FAPI%2FRESTObjectOps.html

 Sample Code

s3client.deleteObject(bucketName, objectName);

3.5 Sample Script Snippets to Overcome Service Binding
Limitations

There is a limitation on the number of service instance bindings that can be created per service instance in
Cloud Foundry to five. If you have a use case where you need more than five bindings, you should use cf
service-keys concept from Cloud Foundry.

Suppose multiple applications have to use a particular service instance and if the cf bind-service command is
used, then you can exhaust the Binding limits. To overcome that, make use of cf service-key concept.

Also, if you follow blue-green deployment of application to overcome downtime, there is a time when two
bindings for a service instance is needed at a time - leading to exhaust binding limits if other applications are
also bound. In this case also, below steps can be used in the script to overcome binding limitations. Here is how
you can make use of service-key functionality in a programmatic way to overcome binding limitations:

1. Create a service key.
2. Retrieve credentials from the service key and store it in a variable using the command

credentialJSON=`cf service-key <servicenInstanceName> <KeyName> | sed -n '1,2!
p'`

3. Store the credentials obtained in above step in variables.

accessKey=`echo "${credentialsJSON}" | jq -r '.access_key_id'` secretKey=`echo "${credentialsJSON}" | jq -r '.secret_access_key'`
host=`echo "${credentialsJSON}" | jq -r '.host'`
region=`echo "${credentialsJSON}" | jq -r '.region'` bucket=`echo "${credentialsJSON}" | jq -r '.bucket'`

4. Pass the credentials stored in above variables to your application.
For CF application, you can pass the above credentials to an application by setting environment variables.
To pass the variables as environment variables using application's manifest.yml file, make following entries
in your manifest.yml file:

env: vcap.services.<serviceInstanceName>.credentials.access_key_id:
 vcap.services.<serviceInstanceName>.credentials.secret_access_key:
 vcap.services.<serviceInstanceName>.credentials.host:
 vcap.services.<serviceInstanceName>.credentials.region: vcap.services.<serviceInstanceName>.credentials.bucket:

And in the script, you can update these environment variables in manifest.yml using the following
commands before deployment:

sed -i "s/vcap.services.<serviceInstanceName>.credentials.access_key_id.*/
vcap.services.<serviceInstanceName>.credentials.access_key_id: $accessKey /
g" ./manifest.yml sed -i
"s~vcap.services.<serviceInstanceName>.credentials.secret_access_key.*~vcap.se

16 P U B L I C
Object Store Service

Object Store Service on Amazon Web Service

rvices.<serviceInstanceName>.credentials.secret_access_key: $secretKey ~g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.host.*/
vcap.services.<serviceInstanceName>.credentials.host: $host /g" ./manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.region.*/
vcap.services.<serviceInstanceName>.credentials.region: $region /g" ./
manifest.yml sed -i "s/vcap.services.<serviceInstanceName>.credentials.bucket.*/
vcap.services.<serviceInstanceName>.credentials.bucket: $bucket /g" ./
manifest.yml

Object Store Service
Object Store Service on Amazon Web Service P U B L I C 17

4 Object Store Service on SAP
Infrastructure

4.1 Configure Object Store to use SAP Infrastructure

Object store service on SAP infrastructure provides swift containers as object store resource.

Prerequisites

Ensure that you have space developer privileges in an org and space.

Context

The Objectstore service supports the following operations:

● Create Swift container (service instance) - containers are managed in the object store service tenant.
● Delete swift container.
● Create credentials to access the container using the cf bind-service call.
● Delete credentials using the cf unbind-service call.

 Note
● The Objectstore service is a paid service; plans are sold as units of 100GBs.
● When a user creates a service instance, a swift container is created and the user can store all the units

in a single or multiple Swift containers.
● We recommend that you do not create a new service instance for every purchased unit of Objectstore

service.

Procedure

1. Look for available services on Cloud Foundry using the command cf marketplace.

Service: objectstore Plans: swift-standard Description: Highly available, distributed, eventually consistent objectstore

2. Create a service instance of the above service and plan using the command cf create-service
objectstore swift-standard <serviceInstanceName>.

18 P U B L I C
Object Store Service

Object Store Service on SAP Infrastructure

3. List the services available using the command cf services.

Name || Service || Plan || Bound apps || Last operation

<serviceInstanceName> || objectstore || swift-standard
4. Get credentials.

To use the Object Store-as-a-Service APIs for object upload, download, delete, and so on, the application
requires certain parameters (container_name, domain, password, tenant, url and user name). The
following steps fetch these parameters:

5. Bind an Object Store service instance to an application using the following commands: cf bind-service
<ApplicationName> <serviceInstanceName> and cf restage <ApplicationName>

6. The application is shown as bound with the service. Use the command cf services to obtain the
following output.
Output:

Name || Service || Plan || Bound apps || Last operation <serviceInstanceName> || objectstore || swift-standard || <ApplicatioName>

7. Read the environment variables using the command cf env <ApplicatioName>

{ "VCAP_SERVICES": {
 "objectstore": [{
 "credentials": {
 "container_name": "<some_container_name>",
 "user_domain": "<some_user_domain_name>",
 "project_domain": "<some_project_domain_name>",
 "password": "<some_password>",
 "project": "<some_project_name>",
 "auth_url": "some_URL",
 "username": "some_username"
 },
 "label": "objectstore",
 "name": "<serviceInstanceName>",
 "plan": "swift-standard",
 "provider": null,
 "syslog_drain_url": null,
 "tags": ["blobStore", "objectStore"],
 "volume_mounts": []
 }]
 } }

When binding your application with a service instance, cloud foundry sets the environment
variableVCAP_SERVICES. From VCAP_SERVICES, your application should read the following:
○ container_name: To get the unique name of container.
○ user_domain: User domain to be used in the request body for authentication.
○ project_domain: Project domain to be used in the request body for authentication.
○ password: Password to be used in the request body for authentication.
○ project: Project name to beused in the request body for authentication.
○ auth_url: Base URL for authentication API.
○ username: User name to be used in the request body for authentication.

Object Store Service
Object Store Service on SAP Infrastructure P U B L I C 19

4.2 Use Object Store Resource
This section helps you to use objectstore resource (Swift container). Before any operations on the container,
user will have to generation the Authentication Token and then can make object related calls, details explained
below

Procedure

1. Get authentication token to make object-related calls.
In exchange for a set of authentication credentials, the identity service generate tokens. A token represents
the authenticated identity of a user, and grants authorization on a specific project or domain. Currently,
password-based authentication with scoped authorization is supported.

2. API specifications.

Request Method: POST

URL: {auth_url} + /v3/auth/tokens

Description: The request body must include a payload that specifies the password authentication method,
the credentials, and the project or domain authorization scope. The payload values are from the
environment variables obtained in Configure Object Store to use SAP Infrastructure [page 18].

 Sample Code

{ "auth": {
 "identity": {
 "password": {
 "user": {
 "id": "<username >",
 "password": "<password >",
 "domain": {
 "name": "<user domain >"
 }
 }
 },
 "methods": ["password"]
 },
 "scope": {
 "project": {
 "name": "<project name>",
 "domain": {
 "name": "<project domain >"
 }
 }
 }
 } }

The response of the above request includes the following:
○ X-Subject-Token in Response Header: The value of X-Subject-Token must be set in X-Auth-Token

header while making object/container API calls.
○ Endpoint URL in Response body: This URL is used as the base URL to make an object or container-

related call, and may also be referred to as the <endpoint_url>.

20 P U B L I C
Object Store Service

Object Store Service on SAP Infrastructure

4.2.1 Supported Endpoints for Making Object or Container
Related API Calls

Object Endpoints

● Upload object
Method: PUT
URI: <endpoint_url> + /{container}/{object}
Description: Creates an object with data content and metadata, or replaces an existing object with data
content and metadata.

● Download object
Method: GET
URI: <endpoint_url> + /{container}/{object}
Description: Downloads the object content and gets the object metadata.

● Delete object
Method: DELETE
URI: <endpoint_url> + /{container}/{object}
Description: Permanently deletes an object from the object store.

● Show object metadata
Method: HEAD
URI: <endpoint_url> + /{container}/{object}
Description: Shows object metadata.

● Create or update object metadata
Method: POST
URI: <endpoint_url> + /{container}/{object}
Description: Creates or updates object metadata.

Container Endpoints

● Show container details
Method: GET
URI: <endpoint_url> + /{container}
Description: Shows details of a container and lists objects, sorted by name in the container.

● Show container metedata
Method: HEAD
URI: <endpoint_url> + /{container}
Description: Shows container metadata, including the number of objects and the total bytes of all objects
stored in the container.

 Note
For the detailed documentation of the above mentioned APIs, refer the open stack documentation at
http://developer.opens tact.org/api-ref-objectstorage-v1.htm. We support most of the
request header and query parameters for each of the APIs listed above. However, there are a few that we do
not support.

Object Store Service
Object Store Service on SAP Infrastructure P U B L I C 21

4.2.2 Implementation Using Open Source Libraries

There are a few open source libraries that can be used by user applications for making API calls. For example
OpenStack4j, JClouds, and so on.

The following sample code snippets are for each of the APIs using the Openstack4j library:

● Get authentication token:

OSClientV3 osClient = OSFactory.builderV3().endpoint(<base_url> + "/v3"). credentials(username, password,
Identifier.byName(domain)).scopeToProject(Identifier.byName(tenant), Identifier.byName(domain)).authenticate();

● Object upload:

osClient.objectStorage().objects().put(containerName, objectName,
Payloads.create(fileToBeUploaded));

● Object download:

SwiftObject swiftObject = os.objectStorage().objects().get(containerName,
objectName);

● Object delete:

ActionResponse actionResponse =
os.objectStorage().objects().delete(containerName, objectName);

● Object metadata:

Map<String, String> map = os.objectStorage().objects().get(containerName,
objectName).getMetadata();

● Object list in container:

final List<? extends SwiftObject> list =
osClient.objectStorage().objects().list(containerName);

● Container metadata:

Map<String, String> map =
os.objectStorage().containers().getMetadata(containerName);

● Create or update object metadata:

boolean updated = os.objectStorage().objects().updateMetadata(objectLocation,
metadata);

22 P U B L I C
Object Store Service

Object Store Service on SAP Infrastructure

4.3 Delete Container

Follow the steps below to delete a container.

Procedure

1. Unbind the application from the service.

Before deleting the container, you must delete all the credentials that are relevant to it, using the following
command:

cf unbind-service <applicationName> <serviceInstanceName>

Command: cf services

Output:
Name || Service || Plan || Bound apps || Last operation
<serviceInstanceName> || objectstore || swift-standard

The application name does not appear in the bound apps section.

Command: cf env appname

Output: The credentials disappear from VCAP_SERVICES.
2. Delete the service instance.

○ Command: cf delete-service <serviceInstanceName>
Output: Container will be permanently deleted.

○ Command: cf services
Output: The service instance entry will not be found in the output.

Object Store Service
Object Store Service on SAP Infrastructure P U B L I C 23

5 Object Store Service on GCP

5.1 Configure Object Store to use GCP

Object store service on GCP provides GCS bucket as object store resource.

Prerequisites

Ensure that you have space developer privileges in an org and space.

Context

The Objectstore service supports the following operations:

● Create GCS bucket (service instance) - GCS buckets are managed in the Object store service's GCP
project.

● Delete GCS bucket.
● Create credentials to access GCS bucket using the cf bind-service and create-service-key call.
● Delete credentials using the cf unbind-service and delete-service-key call.

 Note
● Number of service instances that can be created per Cloud Foundry org: 100
● Number of service instance bindings that can be created per service instance in Cloud Foundry: 5
● To perform object related operations (upload, download, delete etc) users can directly make calls to

GCP using the GCP SDKs.
● Objectstore service supports only REGIONAL storage class objects.
● Objectstore service is a paid service, and the plans are sold as units of 100GBs. For more information,

see SAP Cloud Platform Market Place . When user creates a service instance, a GCP GCS bucket will
be created, and user can store all the units in a single GCS bucket or in multiple GCS buckets (limits on
buckets per org apply as mentioned).

● Creating a new service instance for every purchased unit of Objectstore service is not advised.

24 P U B L I C
Object Store Service

Object Store Service on GCP

http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloudplatform.sap.com%2Fdmp%2Fcapabilities%2Fus%2Fproduct%2FObject-Store-on-SAP-Cloud-Platform%2F55e3958b-e872-49e3-8d2c-8634d200c36a

Procedure

1. Look for available services on Cloud Foundry using the command cf marketplace.

Service: objectstore Plans: gcs-standard Description: Objectstore service

A service called ‘objectstore’ with plan ‘gcs-standard’ is available on cloud foundry.
2. Create a service instance of the above service and plan using the command cf create-service

objectstore gcs-standard <serviceInstanceName>.

3. List the services available using the command cf services.

Name || Service || Plan || Bound apps || Last operation <serviceInstanceName> || objectstore || gcs-standard

4. Get credentials.

For bucket and object operations, the application requires certain parameters (bucket,
base64EncodedPrivateKeyData, projectId, keyAlgo and region). There are two ways user can get the
credentials. One is by Binding the service instance to an application directly. Other way is to use Service-
Key concept from Cloud Foundry.

5. Bind an Object Store service instance to an application: cf bind-service <ApplicatioName>
<serviceInstanceName>

6. The application binds to the service instance. Then execute the following command. cf restage
<ApplicationName>

7. The application is shown as bound with the service. Use the command cf services to obtain the
following output.
Output:

Name || Service || Plan || Bound apps || Last operation <serviceInstanceName> || objectstore || gcs-standard || <ApplicatioName>

8. Read the environment variables using the command cf env <ApplicatioName>

System-Provided: {
 "VCAP_SERVICES": {
 "objectstore": [
 {
 "credentials": {
 "base64EncodedPrivateKeyData":
"<base64_encoded_service_account_credentials>",
 "projectId": "<project_id>",
 "keyAlgo": "<service_account_key_generation_algo>",
 "region": "<region_of_bucket>",
 "bucket": "<some_bucket_name>"
 },
 "label": "objectstore",
 "name": "<serviceInstanceName>",
 "plan": "gcs-standard",
 "provider": null,
 "syslog_drain_url": null,
 "tags": [
 "blobStore",
 "objectStore"
],

Object Store Service
Object Store Service on GCP P U B L I C 25

 "volume_mounts": []
 }
]
 } }

When binding your application with a service instance, cloud foundry sets the environment variable
VCAP_SERVICES. From VCAP_SERVICES, your application can read the following:
○ base64EncodedPrivateKeyData
○ projectId
○ keyAlgo
○ region
○ bucket

5.2 Use Service Keys to Access Object Store Service
Instance

Applications use service keys to access Object Store service instance.

Context

Follow the steps below to create a service key:

Procedure

1. Create a service key using the command cf create-service-key< serviceInstanceName>
<KeyName>.

2. View the generated service key using the command cf service-key <serviceInstanceName>
<KeyName>.

The sample output is as shown below:

Getting key <KeyName> for service instance <serviceInstanceName> as admin... {
 "base64EncodedPrivateKeyData":
"<base64_encoded_service_account_credentials>",
 "projectId": "<project_id>",
 "keyAlgo": "<service_account_key_generation_algo>",
 "region": "<region_of_bucket>",
 "bucket": "<some_bucket_name>"
}

A json file with the following fields appears in the output:
○ base64EncodedPrivateKeyData

26 P U B L I C
Object Store Service

Object Store Service on GCP

○ projectId
○ keyAlgo
○ region
○ bucket

5.3 Supported Operations

Here are the list of supported operations:

Operation supported on Buckets
List Bucket (List of objects in a bucket)

Operations supported on Objects
● Get Object
● Get Object ACL
● Put Object
● Update Object's metadata
● Copy Object from one bucket to another
● Delete Object

Users can make use of SDKs provided by GCP to access the GCS bucket.

Related Information

Buckets
Objects

5.4 Java Code Snippets

You can use the following sample code snippets as a reference:

● Read VCAP_SERVICES

 Sample Code

@Value("$
{vcap.services.objectstore.credentials.base64EncodedPrivateKeyData}") String base64EncodedPrivateKeyData;
@Value("${vcap.services.objectstore.credentials.projectId}")
String projectId;
@Value("${vcap.services.objectstore.credentials.keyAlgo}")
String keyAlgo;

Object Store Service
Object Store Service on GCP P U B L I C 27

http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Fjson_api%2Fv1%2Fbuckets
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fstorage%2Fdocs%2Fjson_api%2Fv1%2Fobjects

@Value("${vcap.services.objectstore.credentials.region}")
String bucketRegion;
@Value("${vcap.services.objectstore.credentials.bucket}")
String bucketName;

● Get Storage Client

 Sample Code

String credentials =
Base64.decodeBase64(base64EncodedPrivateKeyData).toString(); InputStream is = new
ByteArrayInputStream(credentials.getBytes(Charset.forName("UTF-8")));
ServiceAccountCredentials sac = ServiceAccountCredentials.fromStream(is);
Storage storageClient = StorageOptions.newBuilder()
 .setProjectId(projectId)
 .setCredentials(sac)
 .build() .getService();

● Upload an object

 Sample Code

BlobId blobId = BlobId.of(bucketName, <path_to_object>); // Here, <path_to_object> = <path1>/<path2>/objectName;
BlobInfo blobInfo = null;
blobInfo = BlobInfo.newBuilder(blobId)
 .setContentType("text/plain")
 .build();
String content = <content to upload>; storageClient.create(blobInfo, content.getBytes(Charset.forName("UTF-8")));

● Download an object

 Sample Code

Blob blob = null; BlobId blobId = BlobId.of(bucketName, <path_to_object>);
// Here, <path_to_object> = <path1>/<path2>/objectName;
String blobContent = null;
blob = storageClient.get(blobId); blobContent = new String(blob.getContent(), Charset.forName("UTF-8"));

● Delete an object

 Sample Code

BlobId blobId = BlobId.of(bucketName, <path_to_object>); // Here, <path_to_object> = <path1>/<path2>/objectName; storageClient.delete(blobId);

28 P U B L I C
Object Store Service

Object Store Service on GCP

5.5 Sample Script Snippets to Overcome Service Binding
Limitations

There is a limitation on the number of service instance bindings that can be created per service instance in
Cloud Foundry to five. If you have a use case where you need more than five bindings, you should use cf
service-keys concept from Cloud Foundry.

Suppose multiple applications have to use a particular service instance and if the cf bind-service command is
used, then you can exhaust the Binding limits. To overcome that, make use of cf service-key concept.

Also, if you follow blue-green deployment of application to overcome downtime, there is a time when two
bindings for a service instance is needed at a time - leading to exhaust binding limits if other applications are
also bound. In this case also, below steps can be used in the script to overcome binding limitations. Here is how
you can make use of service-key functionality in a programmatic way to overcome binding limitations:

1. Create a service key.
2. Retrieve credentials from the service key and store it in a variable using the command

credentialJSON=`cf service-key <servicenInstanceName> <KeyName> | sed -n '1,2!
p'`

3. Store the credentials obtained in above step in variables.

base64EncodedPrivateKeyData=`echo "${credentialsJSON}" | jq -r
'.base64EncodedPrivateKeyData'` projectId=`echo "${credentialsJSON}" | jq -r '.projectId'`
keyAlgo=`echo "${credentialsJSON}" | jq -r '.keyAlgo'`
region=`echo "${credentialsJSON}" | jq -r '.region'` bucket=`echo "${credentialsJSON}" | jq -r '.bucket'`

4. Pass the credentials stored in above variables to your application.
For CF application, you can pass the above credentials to an application by setting environment variables.
To pass the variables as environment variables using application's manifest.yml file, make following entries
in your manifest.yml file:

env:
vcap.services.<serviceInstanceName>.credentials.base64EncodedPrivateKeyData:
 vcap.services.<serviceInstanceName>.credentials.projectId:
 vcap.services.<serviceInstanceName>.credentials.keyAlgo:
 vcap.services.<serviceInstanceName>.credentials.region: vcap.services.<serviceInstanceName>.credentials.bucket:

And in the script, you can update these environment variables in manifest.yml using the following
commands before deployment:

sed -i "s/
vcap.services.<serviceInstanceName>.credentials.base64EncodedPrivateKeyData.*/
vcap.services.<serviceInstanceName>.credentials.base64EncodedPrivateKeyData:
$base64EncodedPrivateKeyData /g" ./manifest.yml sed -i
"s~vcap.services.<serviceInstanceName>.credentials.projectId.*~vcap.services.<
serviceInstanceName>.credentials.projectId: $projectId ~g" ./manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.keyAlgo.*/
vcap.services.<serviceInstanceName>.credentials.keyAlgo: $keyAlgo /g" ./
manifest.yml
sed -i "s/vcap.services.<serviceInstanceName>.credentials.region.*/
vcap.services.<serviceInstanceName>.credentials.region: $region /g" ./
manifest.yml

Object Store Service
Object Store Service on GCP P U B L I C 29

 sed -i "s/vcap.services.<serviceInstanceName>.credentials.bucket.*/
vcap.services.<serviceInstanceName>.credentials.bucket: $bucket /g" ./
manifest.yml

30 P U B L I C
Object Store Service

Object Store Service on GCP

6 Data Protection and Privacy

Governments place legal requirements on industry to protect data and privacy. We provide features and
functions to help you meet these requirements.

 Note
SAP does not provide legal advice in any form. SAP software supports data protection compliance by
providing security features and specific data protection-relevant functions, such as simplified blocking and
deletion of personal data. In many cases, compliance with applicable data protection and privacy laws will
not be covered by a product feature. Definitions and other terms used in this document are not taken from
a particular legal source.

The following sections provide information about the Object Store service. For the central data protection and
privacy statement for SAP Cloud Platform, see Data Protection and Privacy

User Consent

We assume that software operators, such as SAP customers, collect and store the consent of data subjects,
before collecting personal data from data subjects. A data privacy specialist can later determine whether data
subjects have granted, withdrawn, or denied consent.

The Object Store service does not provide any support for collecting and storing the consent of data subjects
for applications built on SAP Cloud Platform. It is the responsibility of your developers to provide such support.

Read-Access Logging and Change Log

Audit logs are available for all broker related operations of Object Store (like create service, bind service,
unbind service, update service, create service-key, delete service) on all SAP supported infrastructures.

In case of AWS, Microsoft Azure and GCP, a CF application that is bound to an ObjectStore instance, gets a
direct URL to the underlying Object tStore (S3/Azure/GCS), along with relevant access to perform object
related operations (like upload, download, delete objects) directly. Therefore, the ObjectStore-as-a-Service
cannot audit log any of the object related operations. However on SAP DC, the service intercepts all object
related calls to Swift. Therefore, each of the object related calls are audit logged in addition to the service
broker operations. For the object related operations, please note that the audit logs include the technical user
details and not the actual Cloud Foundry user.

The Object Store service doesn’t deal with any personal data. However, the service has no control over the kind
of data that is written to an Object Store (S3/Azure/GCS/Swift).

To extract the audit logs, you need to create a BCP ticket against Object store in the component BC-NEO-CF-
OSAAS. The audit log data stored for your account will be retained for 30 days, after which it will be deleted.

Object Store Service
Data Protection and Privacy P U B L I C 31

https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/7e513d31704a4a87831191e504ca850a.html

Erasure

When handling personal data, consider the legislation in the different countries where your organization
operates. After the data has passed the end of purpose, regulations may require you to delete the data.
However, additional regulations may require you to keep the data longer. During this period you must block
access to the data by unauthorized persons until the end of the retention period, when the data is finally
deleted.

You can delete your Object Store service, and therefore, all the data stored in your databases. To do so, navigate
to your sub account using the procedure Navigate to Global Accounts, Subaccounts, Orgs, and Spaces in the
Cockpit and delete the service from the Overview page.

If you want to delete the objects from S3 buckets or containers, you can do so by making object delete calls. If
you want to delete the bucket or container, then you can make a cf delete-service instance call. The time
taken to delete the container/S3 bucket depends on the number of objects present in the container/S3 bucket.

There is no data backup in Objectstore, as one of the common use case of objectstore is to store backup of
other data. However there is data replication that happen at the IaaS layer (AWS infrastructure, Openstack
infrastructure). The replicas are also deleted when the object delete or the container/S3 bucket delete call is
performed.

Glossary

Term Definition

Consent The action of the data subject confirming that the usage of
his or her personal data shall be allowed for a given purpose.
A consent functionality allows the storage of a consent re
cord in relation to a specific purpose and shows if a data
subject has granted, withdrawn, or denied consent.

Deletion Deletion of personal data so that the data is no longer avail
able.

Personal data Any information relating to an identified or identifiable natu
ral person ("data subject"). An identifiable natural person is
one who can be identified, directly or indirectly, in particular
by reference to an identifier such as a name, an identification
number, location data, an online identifier or to one or more
factors specific to the physical, physiological, genetic, men
tal, economic, cultural, or social identity of that natural per
son

32 P U B L I C
Object Store Service

Data Protection and Privacy

https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/5bf87353bf994819b8803e5910d8450f.html
https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/5bf87353bf994819b8803e5910d8450f.html

Term Definition

Retention period The period of time between the end of the last business ac
tivity involving a specific object (for example, a business
partner) and the deletion of the corresponding data, subject
to applicable laws. The retention period is a combination of
the residence period and the blocking period.

Sensitive personal data A category of personal data that usually includes the follow
ing type of information:

● Special categories of personal data, such as data reveal
ing racial or ethnic origin, political opinions, religious or
philosophical beliefs, trade union membership, genetic
data, biometric data, data concerning health or sex life
or sexual orientation, or personal data concerning bank
and credit accounts.

● Personal data subject to professional secrecy
● Personal data relating to criminal or administrative of

fenses
● Personal data concerning insurances and bank or credit

card accounts

Object Store Service
Data Protection and Privacy P U B L I C 33

7 Data Encryption Strategy

Your crucial information stored in the database is maintained in a highly secure manner as we at SAP use the
encryption capabilities provided by the underlying IaaS providers AWS, Azure, GCP and SAP DC. Encryption
details for each of the IaaS provides are described below:

Data Center Data stored on persistent disk Backup data Reference

Amazon
Web Service

Data is stored on encrypted Elastic Block
Store (EBS) volumes.

EBS uses Amazon Key Management Serv
ice (AWS KMS) customer master keys
(CMKs) to encrypt volumes/disks.

AWS manages the key per account and this
key is used for all encryptions in that ac
count.

Encrypted EBS volume snapshots
stored on AWS S3.

EBS uses Amazon Key Manage
ment Service (AWS KMS) cus
tomer master keys (CMKs) to en
crypt snapshots.

EBS Encryption

Microsoft
Azure

Data is stored on encrypted Managed
Disks.

Azure SSE (Storage Service Encryption)
provides encryption-at-rest for managed
disks.

Encrypted managed disk snap
shots stored on Azure Zone Re
dundant Storage (ZRS).

Azure Manage Disks

GCP Data is stored on encrypted Persistent
Disks.

Persistent disk is encrypted with system-
defined keys (managed by GCP).

Encrypted persistent disk snap
shots are taken.

Create Snapshots

SAP DC Data is stored on persistent volume/disks. Encrypted backups are uploaded
to SAP Swift storage.

SAP controls the keys for SAP
Cloud Platform in SAP data cen
ters.

34 P U B L I C
Object Store Service

Data Encryption Strategy

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.aws.amazon.com%2FAWSEC2%2Flatest%2FUserGuide%2FEBSEncryption.html%23EBSEncryption_key_mgmt
http://help.sap.com/disclaimer?site=https%3A%2F%2Fazure.microsoft.com%2Fen-in%2Fblog%2Fazure-managed-disks-sse%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fcloud.google.com%2Fcompute%2Fdocs%2Fdisks%2Fcreate-snapshots

8 Frequently Asked Questions

In this section you will find answers to all your basic queries about Object Store on SAP Cloud Platform in Cloud
Foundry environment.

Why do we need object store against file store / block storage?

Object Store Block Store

Performance Performs best for big content and high
stream throughput

Strong performance with database and
transactional data

Geography Data can be stored across multiple re
gions

The further the distance between stor
age and application, the higher the la
tency

Scalability Can scale infinitely to petabytes and be
yond

Addressing requirements limit scalabil
ity

Analytics Customizable metadata allows data to
be easily organized and retrieved

No metadata

Can object store be my primary database?

Object storage can be used either as primary storage or as external storage. When it is used as primary
storage, the object store only store the file content by using a unique identifier. No metadata are stored in the
object store: no files names, no directory structures, etc.

What are the regions in which Object Store is available?

Infrastructure Region

AWS Europe (Frankfurt)

US East (VA)

Brazil (São Paulo)

Japan (Tokyo)

Object Store Service
Frequently Asked Questions P U B L I C 35

Infrastructure Region

GCP US Central (IA)

Azure Europe (Netherlands)

Is my data encrypted?

Your crucial information stored in the database is maintained in a highly secure manner as we at SAP use the
encryption capabilities provided by the underlying IaaS providers AWS, Azure, and GCP. Encryption details for
each of the IaaS provides are described Data Protection and Privacy [page 31].

How to use Postman to make object related calls on AWS?

To perform REST calls (GET, PUT DELETE) on the AWS S3 bucket using Postman, following information needs
to be provided:

● HTTP Method: GET/PUT/DELETE
● URL: https://<host>/<bucketName>/<objectName>
● AWS AccessKey: access_key_id - The key that get from the credentials json (on binding or creating service

key).
● AWS SecretKey: secret_access_key - The key that get from the credentials json (on binding or creating

service key).
● AWS Region: region - The region name that get from the credentials json (on binding or creating service

key).
● Service Name: s3 - This key is not passed in the credentials json, since Objectstore uses only S3, value to

be used will be a constant : "s3"
For GET Objects in a bucket (List objects API), you can use following URL: https://<host>/bucketName>

Could you also guide if there is a way to view the uploaded images(once
done) on the SAP cloud cockpit?

We do not have a UI console for Objectstore service instance today, so sorry SAP Cloud cockpit will not help
you to view the uploaded images. However you can make a List Objects API (GET call mentioned above) from
Postman or from code, to view the uploaded objects.

36 P U B L I C
Object Store Service

Frequently Asked Questions

To successfully create/upload blob on Azure, follow the below mentioned
steps:

1. Use the Request Method : PUT

2. Blob end point : <container_uri>/<objectname>?<sass-token> <container_uri> as obtained from the
credentials after binding to object store service instance.

3. Headers : x-ms-blob-type:BlockBlob

Note : The http header "x-ms-blob-type" with value "BlockBlob" is mandatory to successfully upload blob using
this request.

How to enable a particular plan in a particular region

ObjectStore as a Service is available on Europe (Frankfurt) region.

It might be the case that you are trying to look for the service in Europe (Rot) region instead of Europe
(Frankfurt) region.

The sub-account is in Europe (Frankfurt) region. Hence, you aren't able to find the service.

Request you to please try looking into the correct region. Kindly follow the steps below:

1. Click on the global account
2. Click on the sub-account tile with name : TCS Innovation IoT AE
3. Click on Spaces on the left menu bar
4. Create a space if it doesn't exist already
5. Click on Service Marketplace under Services on the left menu bar.
6. You should be able to see a tile named ObjectStore.

If the above mentioned steps don't help, then it could be possible that the service plan isn't enabled in a
particular sub-account.

This can be verified by doing the following:

1. Click on the global account
2. Click on Entitlements tab on the left menu bar
3. Look for Object Store
4. Verify if following entry is there - ["Your sub-account name", Europe (Frankfurt), s3-standard].

If the entry isn't there, you may have to Edit the page to add the plan in the sub-account.

This would allow you to see the service in the sub-account.

I'm facing some technical problem. How do I seek support?

For any technical issues, please create a ticket in the component BC-NEO-BS-OBJECTSTORE.

Object Store Service
Frequently Asked Questions P U B L I C 37

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

38 P U B L I C
Object Store Service

Important Disclaimers and Legal Information

Object Store Service
Important Disclaimers and Legal Information P U B L I C 39

www.sap.com/contactsap

© 2018 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Object Store Service
	Content
	1 Object Store Service
	2 Object Store Service on Azure Blob Storage
	2.1 Configure Object Store to use Azure Blob Storage
	2.2 Create Service-Keys for an ObjectStore Service Instance
	Reference Script to Automate the Process Mentioned Above

	2.3 Supported Operations
	2.4 Java Code Snippets

	3 Object Store Service on Amazon Web Service
	3.1 Configure Object Store to use Amazon Simple Storage Service
	

	3.2 Use Service Keys to Access Object Store Service Instance
	Reference Script to Automate the Above Procedure

	3.3 Supported Operations
	3.4 Java Code Snippets
	3.5 Sample Script Snippets to Overcome Service Binding Limitations

	4 Object Store Service on SAP Infrastructure
	4.1 Configure Object Store to use SAP Infrastructure
	4.2 Use Object Store Resource
	4.2.1 Supported Endpoints for Making Object or Container Related API Calls
	4.2.2 Implementation Using Open Source Libraries

	4.3 Delete Container

	5 Object Store Service on GCP
	5.1 Configure Object Store to use GCP
	5.2 Use Service Keys to Access Object Store Service Instance
	5.3 Supported Operations
	5.4 Java Code Snippets
	5.5 Sample Script Snippets to Overcome Service Binding Limitations

	6 Data Protection and Privacy
	7 Data Encryption Strategy
	8 Frequently Asked Questions
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

