
PUBLIC
SAP HANA Platform 2.0 SPS 04
Document Version: 1.1 – 2019-10-31

SAP HANA Graph Reference

©
 2

01
9

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll

rig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 SAP HANA Graph Reference. .4

2 Introduction. 5

3 SAP HANA Graph Data Model. .6

4 Graph Workspaces. 9
4.1 Create and Drop Graph Workspaces. 9
4.2 Export and Import Graph Workspaces. 11

5 Graph Data Modification. 12

6 GraphScript Language. 14
6.1 Data Types. 14
6.2 General Script Structure. 17
6.3 Integration of GraphScript into Stored Procedure Environment. 18
6.4 Types. 18
6.5 Comments. 18
6.6 Expressions. 19
6.7 Statements. 32
6.8 Built-In Functions. 38
6.9 Reserved Keywords. 42
6.10 Restrictions for GraphScript Procedures. 48
6.11 Complex GraphScript Examples. .48

7 openCypher Pattern Matching. 50
7.1 OPENCYPHER_TABLE SQL Function. 50
7.2 openCypher Query Language. .52

Match Clause. 52
Return Clause. 56
Keywords. 59
Built-In Functions. 60
Basic Building Blocks. 63

8 Graph Algorithms. 65
8.1 Neighborhood Search (Breadth-First Search). 65
8.2 Shortest Path. 67

Shortest Path (One-to-All). 67
Shortest Path (One-to-One). 71

2 P U B L I C
SAP HANA Graph Reference

Content

8.3 Strongly Connected Components. .73
8.4 Graph Algorithm Variables. 75
8.5 Pattern Matching. 76

Graphical Pattern Editor. 76
Query Language. 77

9 Additional Information. 79
9.1 Appendix A – SAP HANA Graph Viewer. 79

Install SAP HANA Graph Viewer. .79
9.2 Appendix B - Greek Mythology Graph Example. 80
9.3 Appendix C - Notation. 82

SAP HANA Graph Reference
Content P U B L I C 3

1 SAP HANA Graph Reference

This reference provides information about SAP HANA Graph. It is organized as follows:

● Introduction
Introduction to SAP HANA Graph.

● SAP HANA Graph Data Model
Description of SAP HANA Graph data model using a simple example.

● Graph Workspaces
Description of SQL statements for creating and manipulating graph workspaces.

● Graph Data Modification
Description of SQL statements for modifying graph data.

● GraphScript Language
Description of the GraphScript stored procedure language.

● openCypher Query Language
Description of the openCypher query language interface in SAP HANA (Cypher is a registered trademark of
Neo4j, Inc.).

● Graph Algorithms
Description of supported graph algorithms in SAP HANA calculation scenarios.

● Additional Information
A collection of additional information.

4 P U B L I C
SAP HANA Graph Reference

SAP HANA Graph Reference

2 Introduction

SAP HANA Graph is an integral part of SAP HANA core functionality. It expands the SAP HANA platform with
native support for graph processing and allows you to execute typical graph operations on the data stored in an
SAP HANA system.

 Caution
The usage of cross-database access in a scenario with more than one tenant database in combination with
SAP HANA Graph is not supported.

SAP HANA Graph Reference
Introduction P U B L I C 5

3 SAP HANA Graph Data Model

Graphs are a powerful abstraction that can be used to model different kinds of networks and linked data
coming from many industries, such as logistics and transportation, utility networks, knowledge representation,
text processing, and many more.

In SAP HANA, a graph is a set of vertices and a set of edges. Each edge connects two vertices; one vertex is
denoted as the source and the other as the target. Edges are always directed. Any number of edges may
connect the same two vertices. Vertices and edges can have an arbitrary number of attributes. Such an
attribute consists of a name that is associated with a data type and a value.

The following image provides an example of a graph in which vertices represent Greek mythology members
and edges represent the relationships among them. All vertices have attributes "NAME" (shown in the image)
and "TYPE" (shown in the image). "TYPE" takes one of the following values: 'primordial deity', 'god', 'titan'.
Some vertices have an attribute "RESIDENCE" (not shown in the image). All edges have attributes "KEY" (not
shown in the image) and "TYPE", which takes one of the following values: 'marriedTo', 'hasSon', and
'hasDaughter'.

6 P U B L I C
SAP HANA Graph Reference

SAP HANA Graph Data Model

The primary storage of a graph are two relational objects that can be tables or views or table or view synonyms.
We will refer to them as vertex table and edge table for the sake of simplicity. The vertex table stores the set of

SAP HANA Graph Reference
SAP HANA Graph Data Model P U B L I C 7

vertices and the edge table stores the set of edges. Vertex attributes match to columns of the vertex table.
Edge attributes match to columns of the edge table. The maximum number of attributes is bound by the
maximum number of columns for the underlying tables (for more information see the SAP HANA SQL
Reference Guide). One of the vertex attributes must uniquely identify vertices. This attribute is also referred to
as vertex key. Similarly, one of the edge attributes must uniquely identify edges and is referred to as edge key.
The edge table contains two additional columns referencing the key column of the vertex table. One of them
identifies the source vertex and the other identifies the target vertex of an edge.

The following tables show the tabular storage of the Greek mythology graph.

NAME (Unique Key) TYPE RESIDENCE

Cronus titan Tartarus

Rhea titan Tartarus

Zeus god Olympus

Hades god Underworld

...

KEY (Unique Key) SOURCE TARGET TYPE

1 Cronus Rhea marriedTo

2 Rhea Cronus marriedTo

3 Cronus Zeus hasSon

4 Rhea Zeus hasSon

...

Relational storage allows the whole feature set of SAP HANA to be applied to the graph data: access control,
backup and recovery, etc. It also allows all SAP HANA Graph functions to be applied to the graph data stored in
relational format coming from business applications. SAP HANA Graph provides a dedicated catalog object,
which is referred to as a graph workspace, for defining a graph in terms of the existing SAP HANA tables.

Related Information

SAP HANA SQL and System Views Reference

8 P U B L I C
SAP HANA Graph Reference

SAP HANA Graph Data Model

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html

4 Graph Workspaces

A graph workspace is a catalog object that defines a graph in terms of tables and columns:

● Vertex table
● Edge table
● Key column in the vertex table
● Key column in the edge table
● Source vertex column in the edge table
● Target vertex column in the edge table

 Caution
Caching is not supported for graph workspaces that refer to virtual tables.

A graph workspace is uniquely identified by the database schema it resides in and the workspace name. An
SAP HANA instance can contain multiple graph workspaces in the same schema (with different workspace
names) or different database schemas.

Graph workspace information is provided using the GRAPH_WORKSPACES system view.

Related Information

SAP HANA SQL and System Views Reference

4.1 Create and Drop Graph Workspaces

SAP HANA Graph provides SQL extensions for creating and dropping graph workspaces.

Before creating a graph workspace, check that the underlying tables, views or synonyms for vertices and edges
exist. The following SQL commands create a vertex table "MEMBERS" and an edge table "RELATIONSHIPS" in
a schema "GREEK_MYTHOLOGY".

CREATE SCHEMA "GREEK_MYTHOLOGY"; CREATE COLUMN TABLE "GREEK_MYTHOLOGY"."MEMBERS" (
 "NAME" VARCHAR(100) PRIMARY KEY,
 "TYPE" VARCHAR(100),
 "RESIDENCE" VARCHAR(100)
);
CREATE COLUMN TABLE "GREEK_MYTHOLOGY"."RELATIONSHIPS" (
 "KEY" INT UNIQUE NOT NULL,
 "SOURCE" VARCHAR(100) NOT NULL
 REFERENCES "GREEK_MYTHOLOGY"."MEMBERS" ("NAME")
 ON UPDATE CASCADE ON DELETE CASCADE,
 "TARGET" VARCHAR(100) NOT NULL
 REFERENCES "GREEK_MYTHOLOGY"."MEMBERS" ("NAME")

SAP HANA Graph Reference
Graph Workspaces P U B L I C 9

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html

 ON UPDATE CASCADE ON DELETE CASCADE,
 "TYPE" VARCHAR(100));

Having created all necessary tables, we can now create a graph workspace "GRAPH" in the schema
"GREEK_MYTHOLOGY" with the following CREATE GRAPH WORKSPACE statement.

CREATE GRAPH WORKSPACE "GREEK_MYTHOLOGY"."GRAPH" EDGE TABLE "GREEK_MYTHOLOGY"."RELATIONSHIPS"
 SOURCE COLUMN "SOURCE"
 TARGET COLUMN "TARGET"
 KEY COLUMN "KEY"
 VERTEX TABLE "GREEK_MYTHOLOGY"."MEMBERS" KEY COLUMN "NAME";

The vertex table, the edge table, and the graph workspace can reside in different schemas. If any of the
schemas are omitted, the default schema is assumed.

The columns of the edge table and the vertex table are interpreted correspondingly as edge and vertex
attributes. In the example in SAP HANA Graph Data Model [page 6], the vertices in the table
"GREEK_MYTHOLOGY"."MEMBERS" have the attributes "TYPE" and "RESIDENCE", which may contain NULL
values. A row in the vertex table or the edge table is interpreted correspondingly as a vertex or an edge.

The vertex and edge key columns can be of one of the following SQL types: TINYINT, SMALLINT, INTEGER,
BIGINT, VARCHAR, and NVARCHAR. Integer types (TINYINT, SMALLINT, INTEGER, BIGINT) are recommended.

During the creation of a new graph workspace, the SAP HANA system checks that all specified tables and
columns exist, and have supported data types. A newly created graph workspace is valid as long as the
specified columns and tables exist and fulfill the following validity requirements.

Characteristics of vertex key and edge key columns:

● supported key types: TINYINT, SMALLINT, INTEGER, BIGINT, VARCHAR, and NVARCHAR
● NOT NULL flag
● UNIQUE flag

Characteristics of source and target columns:

● same data type as the vertex key column
● NOT NULL flag

A valid graph workspace is consistent if both source and target columns contain existing values from the vertex
key column. In the CREATE statements listed above, the referential constraints ("REFERENCES") are used to
guarantee the consistency of the workspace.

An existing graph workspace "GRAPH" in schema "GREEK_MYTHOLOGY" can be deleted with the following
statement.

DROP GRAPH WORKSPACE "GREEK_MYTHOLOGY"."GRAPH";

Creating or dropping graph workspaces does not modify the content of the underlying vertex and edge tables.

To create a graph workspace, a user needs the CREATE ANY privilege for the intended schema and the SELECT
privilege for both vertex and edge tables. To drop a graph workspace, a user must be the creator of the graph
workspace or must have the DROP privilege for the given graph workspace.

10 P U B L I C
SAP HANA Graph Reference

Graph Workspaces

Related Information

SAP HANA Graph Data Model [page 6]

4.2 Export and Import Graph Workspaces

Graph workspace objects can be exported from or imported into an SAP HANA system using the existing
export and import SQL commands.

Exporting or importing a schema automatically exports or imports all graph workspaces contained in that
schema. For the full set of options for IMPORT and EXPORT commands, see the SAP HANA SQL Reference
Guide . The vertex and edge tables are by default exported together with a graph workspace unless the NO
DEPENDENCIES parameter is used.

Assuming the database instance is installed under /usr/sap/HDB/HDB00 , the following statement exports
the graph workspace "GREEK_MYTHOLOGY"."GRAPH" together with the vertex table
"GREEK_MYTHOLOGY"."MEMBERS" and the edge table "GREEK_MYTHOLOGY"."RELATIONSHIPS"
to /usr/sap/HDB/HDB00/work

EXPORT "GREEK_MYTHOLOGY"."GRAPH" AS BINARY INTO '/usr/sap/HDB/HDB00/work';

The following statement imports the graph workspace "GREEK_MYTHOLOGY"."GRAPH" together with the
vertex table "GREEK_MYTHOLOGY"."MEMBERS" and the edge table
"GREEK_MYTHOLOGY"."RELATIONSHIPS" from /usr/sap/HDB/HDB00/work

IMPORT "GREEK_MYTHOLOGY"."GRAPH" AS BINARY FROM '/usr/sap/HDB/HDB00/work';

Related Information

SAP HANA SQL and System Views Reference

SAP HANA Graph Reference
Graph Workspaces P U B L I C 11

https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html

5 Graph Data Modification

Any change to the edge table or the vertex table will affect the edges or the vertices of the graph.

The following SQL statements create two new vertices with vertex keys 'Oceanus' and 'Tethys' and an edge in
the workspace "GREEK_MYTHOLOGY"."GRAPH". For the complete list of statements for creating the example
graph in SAP HANA Graph Data Model [page 6], see Appendix B - Greek Mythology Graph Example [page 80].

INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Oceanus', 'titan', 'Othrys');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Tethys', 'titan', 'Othrys');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (35, 'Oceanus', 'Tethys', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (36, 'Tethys', 'Oceanus', 'marriedTo');

Vertices can be modified and deleted using SQL update and delete statements. The following statement
modifies the "RESIDENCE" attribute of all vertices with "RESIDENCE" 'Othrys'.

UPDATE "GREEK_MYTHOLOGY"."MEMBERS" SET "RESIDENCE" = 'Tartarus' WHERE "RESIDENCE" = 'Othrys';

The following statement deletes those edges from the graph workspace "GREEK_MYTHOLOGY"."GRAPH" that
contain 'Oceanus' as "SOURCE" or "TARGET".

DELETE FROM "GREEK_MYTHOLOGY"."RELATIONSHIPS" WHERE "SOURCE" = 'Oceanus' or "TARGET" = 'Oceanus';

Vertices can be inserted, updated, and deleted in the same way as edges.

DELETE FROM "GREEK_MYTHOLOGY"."MEMBERS" WHERE "NAME" IN ('Oceanus', 'Tethys');

If the consistency of a graph workspace is not guaranteed by referential constraints (see Create and Drop
Graph Workspaces [page 9]), modifications of the referenced graph tables can lead to an inconsistent graph
workspace. The exact behavior in case of inconsistent graph workspaces is different for each Graph Engine
component. Details are provided in the relevant chapters.

The uniqueness of vertices in the workspace "GREEK_MYTHOLOGY"."GRAPH" can be checked with the
following query on the vertex table:

SELECT "NAME", COUNT(*) FROM "GREEK_MYTHOLOGY"."MEMBERS"
 GROUP BY "NAME" HAVING COUNT(*) > 1;

If the result of above query is not empty, then the vertex key column ("NAME") contains duplicates and the
graph workspace is inconsistent.

A similar query can be used on the edge table to check the uniqueness of edge keys:

SELECT "KEY", COUNT(*) FROM "GREEK_MYTHOLOGY"."RELATIONSHIPS"

12 P U B L I C
SAP HANA Graph Reference

Graph Data Modification

 GROUP BY "KEY" HAVING COUNT(*) > 1;

The correctness of the source and target vertex references can be checked with the following query:

SELECT "KEY", "SOURCE", "TARGET" FROM "GREEK_MYTHOLOGY"."RELATIONSHIPS"
 WHERE
 "SOURCE" NOT IN (SELECT "NAME" FROM "GREEK_MYTHOLOGY"."MEMBERS")
 OR "TARGET" NOT IN (SELECT "NAME" FROM "GREEK_MYTHOLOGY"."MEMBERS");

If the result of the above query is not empty, then either the source or target of the resulting edge is not a valid
vertex key, leading to an inconsistent graph workspace.

SAP HANA Graph Reference
Graph Data Modification P U B L I C 13

6 GraphScript Language

GraphScript is an imperative programming language that provides application developers with a high-level
interface for accessing the graph data defined by a graph workspace.

The GraphScript language is designed to ease the development of application-specific graph algorithms and to
integrate them into SQL-based data processing. Furthermore, GraphScript provides optimized built-in
algorithms to solve common graph-related problems, such as finding the shortest path from one vertex to
another. These algorithms are available as built-in functions which can be re-used in any GraphScript program,
thus greatly simplifying the development of efficient solutions for customer-specific graph-related problems.

In case of inconsistent graph workspaces, GraphScript procedures exit with an error.

GraphScript procedures support debugging from the SAP HANA Database Explorer. For more information see
Debug Procedures in the SAP HANA Database Explorer in SAP HANA Developer Guide for SAP HANA XS
Advanced Model.

Related Information

SAP HANA Developer Guide for XS Advanced Model

6.1 Data Types

This section describes the data types that are available in GraphScript.

The following table summarizes the supported data types in GraphScript and classifies them by their
characteristics as follows:

Classification Data Type

Numeric types INTEGER, BIGINT, DOUBLE

Boolean type BOOLEAN

Character string types VARCHAR, NVARCHAR

Graph-specific types GRAPH, VERTEX, EDGE, WEIGHTEDPATH

Collection types MULTISET, SEQUENCE

Datetime type TIMESTAMP

14 P U B L I C
SAP HANA Graph Reference

GraphScript Language

https://help.sap.com/viewer/4505d0bdaf4948449b7f7379d24d0f0d/2.0.04/en-US/1547c14105be409ebfc3a9e9634a7188.html

Numeric Types

Each numeric type has a maximum value and a minimum value. A numeric overflow exception is thrown if a
given value is smaller than the minimum allowed value or greater than the maximum allowed value.

● INTEGER
The INTEGER data type specifies a 32-bit signed integer. The minimum value is -2,147,483,648. The
maximum value is 2,147,483,647. Integer literals that are not suffixed with an 'L' are treated as 32-bit integer
literals. A variable of type INTEGER is default-initialized with value 0.

● BIGINT
The BIGINT data type specifies a 64-bit signed integer. The minimum value is -9,223,372,036,854,775,808.
The maximum value is 9,223,372,036,854,775,807. Literal values of type BIGINT have to be suffixed with an
'L'. A variable of type BIGINT is default-initialized with value the 0L.

● DOUBLE
The DOUBLE data type specifies a double-precision 64-bit floating-point number. The minimum value is
-1.7976931348623157E308 and the maximum value is 1.7976931348623157E308. The smallest positive
DOUBLE value is 2.2250738585072014E-308 and the largest negative DOUBLE value is
-2.2250738585072014E-308. A variable of type DOUBLE is default-initialized with value 0.0.

Boolean Type

The BOOLEAN data type stores Boolean values, which are TRUE and FALSE. A variable of type BOOLEAN is
default-initialized with value FALSE.

Character String Types

The character string data types specify character strings. The VARCHAR data type specifies ASCII character
strings and NVARCHAR is used for storing Unicode character strings.

● VARCHAR
The VARCHAR data type specifies a variable-length character string. We recommend using VARCHAR with
ASCII character-based strings only.

● NVARCHAR
The NVARCHAR data type specifies a variable-length character string.

Datetime Type

● TIMESTAMP
The TIMESTAMP data type consists of date and time information. Its default format is 'YYYY-MM-DD
HH24:MI:SS.FF7'. FFn represents the fractional seconds where n indicates the number of digits in the
fractional part. The range of the time stamp value is between 0001-01-01 00:00:00.0000000 and
9999-12-31 23:59:59.9999999. A variable of type TIMESTAMP has no default value and therefore must be
initialized explicitly.

SAP HANA Graph Reference
GraphScript Language P U B L I C 15

Graph-Specific Types

GraphScript supports four graph-specific data types: VERTEX, EDGE, GRAPH, and WEIGHTEDPATH.

● VERTEX
The VERTEX data type specifies a vertex (a node) in the graph. An existing vertex object can be retrieved
from a graph workspace using its key. Supported key types are INTEGER, BIGINT, and VARCHAR. The
creation of new vertices is not supported. A variable of type VERTEX must be initialized at the time of
declaration. There is no default initialization for variables of type VERTEX.

● EDGE
The EDGE data type specifies an edge (a relationship) in the graph. An existing edge object can be
retrieved from a graph workspace using its key. Supported key types are INTEGER, BIGINT, and VARCHAR.
The creation of new edges is not supported. A variable of type EDGE must be initialized at the time of
declaration. There is no default initialization for variables of type EDGE.

● WEIGHTEDPATH
The WEIGHTEDPATH data type specifies a path with an associated weight. A WEIGHTEDPATH consists of a
sequence of edges or a single vertex (minimal path). The sequence of edges may also be empty. A
WEIGHTEDPATH can be created by calling the built-in function SHORTEST_PATH with a graph and a pair of
vertices as parameters. GraphScript supports several operations on WEIGHTEDPATH variables, such as
extracting its vertices and edges as well as calculating the length and the weight of a path. A variable of
type WEIGHTEDPATH must be initialized at the time of declaration. There is no default initialization for
variables of type WEIGHTEDPATH. The WEIGHTEDPATH type needs to be specialized with a weight type.
The following weight types are currently supported: INT, DOUBLE, BIGINT. These lead to the following
WEIGHTEDPATH types: WEIGHTEDPATH<INT>, WEIGHTEDPATH<DOUBLE>, WEIGHTEDPATH<BIGINT>.

● GRAPH
A variable of type GRAPH specifies a graph. A graph can refer to a graph workspace catalog object
specified by workspace name, an inverse graph for an already defined graph, or a subgraph of an already
defined graph. Alternatively, a graph can be created from two input tables containing vertices and edges
accordingly. A variable of type GRAPH must be initialized at the time of declaration. There is no default
initialization for variables of type GRAPH.

Collection Types

A collection is a composite value comprising zero or more elements of the same type. Containers of vertices or
edges can only take elements from a single graph. Container variables cannot be reassigned to a container with
elements from another graph.

● MULTISET
A multiset is an unordered collection. Since a multiset is unordered, there is no ordinal position to
reference individual elements of a multiset. The elements in a MULTISET can be of data type VERTEX,
EDGE, INTEGER, BIGINT, DOUBLE, TIMESTAMP, VARCHAR, NVARCHAR or BOOLEAN. Furthermore, the
elements of a MULTISET can also be of type MULTISET of VERTEX. Such a collection of collections is used
as the return type of the STRONGLY_CONNECTED_COMPONENTS algorithm. Currently, multisets of
multisets are very limited in functionality compared to multisets of non-collection data types.

● SEQUENCE
A sequence is a mutable, ordered collection. It is possible to access and modify any element via its
position, which lies between 1 and the size of the sequence. A new sequence can be constructed from the
concatenation of two sequences or the concatenation of a sequence and a single element. The elements in

16 P U B L I C
SAP HANA Graph Reference

GraphScript Language

a SEQUENCE can be of data type VERTEX, EDGE, INTEGER, BIGINT, DOUBLE, TIMESTAMP, VARCHAR,
NVARCHAR or BOOLEAN.

Data Type Conversions

GraphScript does not support implicit conversions between objects of different data types. Numeric and
character string expressions can be explicitly cast using the cast functions provided in the section Built-In
Functions [page 38].

Typed Literals

A literal is a symbol that represents a specific fixed data value.

Character string literals
A character string literal is enclosed in single quotation marks. The character string literal is prefixed by an N if
it is of type NVARCHAR.

Examples

'Brian' -- VARCHAR '23' -- VARCHAR N'Simon' -- NVARCHAR

Numeric literals
A numeric literal is represented by a sequence of numbers that are not enclosed in quotation marks. Numbers
may contain a decimal point. BIGINT literals need to be suffixed with an L.

Examples

123 -- INT 123L -- BIGINT 123.4 -- DOUBLE

Boolean literals
A Boolean literal can be either true or false. Both literals are keywords in GraphScript and therefore case-
insensitive.

6.2 General Script Structure

A GraphScript program consists of an arbitrary number of statements.

<script> ::= { <statement> }

SAP HANA Graph Reference
GraphScript Language P U B L I C 17

6.3 Integration of GraphScript into Stored Procedure
Environment

GraphScript can be used as SAP HANA stored procedure language. The mandatory language identifier for
GraphScript is GRAPH.

CREATE PROCEDURE myGraphProc() LANGUAGE GRAPH READS SQL DATA AS
BEGIN
 -- here goes the GraphScript program END

6.4 Types

The type of an object is used in a definition statement to introduce new objects with the given type. Once an
object has been declared, the type of the object is immutable.

<primitive_type> ::= | <numeric type>
| VARCHAR
| NVARCHAR
| BOOLEAN
| TIMESTAMP
<numeric type> ::=
| INTEGER
| INT
| BIGINT
| DOUBLE
<vertex_or_edge> ::= VERTEX | EDGE
<weightedpath> ::= WEIGHTEDPATH <lower> <numeric_type> <greater>
<graph> ::= GRAPH
<multiset_type> ::=
 MULTISET <lower> <vertex_or_edge> <greater>
 | MULTISET <lower> <primitive_type> <greater>
 | MULTISET <lower> MULTISET <lower> VERTEX <greater> <greater>
<sequence_type> ::=SEQUENCE <lower> <vertex_or_edge> <greater> | SEQUENCE <lower> <primitive_type> <greater> |

6.5 Comments

GraphScript supports single-line comments as well as multi-line comments.

A single-line comment starts with "--"; all characters that follow in the line are treated as a comment. A multi-
line comment is enclosed in "/*" and "*/".

Int v = 23; -- this is a single line comment

FOREACH e IN Edges(:g) {

18 P U B L I C
SAP HANA Graph Reference

GraphScript Language

/* this is a multi line comment
 Int i = :e.attr;
 Int v = 23;*/ }

6.6 Expressions

An expression is a language construct that returns a value of a given type.

GraphScript supports the following expressions:

● Literal expressions (literal_expr)
● Attribute access expressions (attr_access_expr)
● Local variable expressions (local_var_expr)
● Arithmetic expressions (arithmetic_expr)
● Relational expressions (relational_expr)
● Logical expressions (logical_expr)
● Collection initializer list expressions (collection_init_expr)
● Function expressions (function_expr)
● Set operations (set_operation)
● Concatenation expressions (concat_expr)
● Positional access expressions (index_expr)
● Cell access expressions (cell_expr)
● Filter expressions (filter_expr)
● Projection expressions (proj_expr)
● Closure expressions (clos_expr)

<expr> ::= <literal_expr>
| <attr_access_expr>
| <local_var_expr>
| <arithmetic_expr>
| <relational_expr>
| <logical_expr>
| <collection_init_expr>
| <function_expr>
| <set_operation>
| <concat_expr>
| <index_expr>
| <cell_expr>
| <filter_expr>
| <proj_expr> | <clos_expr>

SAP HANA Graph Reference
GraphScript Language P U B L I C 19

Literal Expressions

A literal expression is a symbol that represents a specific fixed data value.

<int_literal> ::= 0 | <pos_digit> {<digit>} <bigint_literal> ::= <int_literal> L
<double_literal> ::= (0 | <pos_digit> {<digit>}) <dot> <digit> {<digit>}
<numeric_literal> ::= <int_literal> | <bigint_literal> | <double_literal>
<varchar_literal> ::=
 <single_quote> {<any_character>-<singe_quote>} <single_quote>
<nvarchar_literal> ::=
 N<single_quote > {<any_character>-<singe_quote>} <single_quote>
<literal_exp> ::= <numeric_literal> | <varchar_literal> | <nvarchar_literal>

Examples

23 23L
23.5
'Brian' N'Brian'

BNF Lowest Terms Representations

The following list summarizes special characters and symbols that are used in GraphScript.

<comma> ::= , <single_quote> ::= '
<double_quote> ::= "
<l_paren> ::= (
<r_paren> ::=)
<l_curly> ::= {
<r_curly> ::= }
<l_square> ::= [
<r_square> ::=]
<pipe> ::= ||
<semicolon> ::= ;
<colon> ::= :
<dot> ::= .
<equals> ::= =
<minus> ::= -
<plus> ::= +
<lower> ::= <
<lower_equal> ::= <=
<greater> ::= >
<greater_equal> ::= >=
<leads_to> ::= =>
<equal> ::= ==
<unequal> ::= !=
<membership_in> ::= IN
<membership_not_in> ::= NOT IN
<underscore> ::= _
<asterisk> ::= *
<slash> ::= /
<any_character> ::= !! any character
<hash_symbol> ::= #
<dollar_sign> ::= $
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

20 P U B L I C
SAP HANA Graph Reference

GraphScript Language

<pos_digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q |
 r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Identifiers

GraphScript uses identifiers to reference schema names, graph workspace names, and attribute names.
Semantically, GraphScript identifiers are equivalent to SQL identifiers.

<simple_identifier> ::= (<letter> | <underscore>) { <letter> | <underscore> | <digit> | <hash_symbol> | <dollar_sign> }
<special_identifier> ::= <double_quote> { <any_charater> } <double_quote> <identifier> ::= <simple_identifier> | <special_identifier>

Local Variable Expressions

GraphScript supports local variables that split large and complex statements into smaller ones, in order to
improve the overall readability. After the initial assignment or declaration (see Assignment Statements [page
33] in Statements [page 32]), the type of a variable can no longer be modified. A local variable expression
can be used at any place that allows an expression, as long as the corresponding expression types match.
Variable names are case-insensitive. Variables that are used for reading access have a leading colon. Variables
that are used for writing access have no leading colon.

<variable> ::= <letter> { <letter> | <digit> | <underscore> } <variable_reference> ::= <colon> <letter> { <letter> | <digit> | <underscore> } <local_var_expr> ::= <variable_reference>

Examples

aVariable aSecondVariable12 :aVariable

Attribute Access Expressions

An attribute access expression allows you to retrieve the corresponding attribute value for a given local variable
name and a given attribute or temporary attribute name. The attribute name is an identifier, which may be
quoted. The return type of the expression is derived from the underlying specified attribute type.

<attr_access_expr> ::= <variable_reference> <dot> <identifier>

Examples

:i.weight :i."weight"

SAP HANA Graph Reference
GraphScript Language P U B L I C 21

 :i."weight int"

Relational Expressions

Relational expressions are binary expressions that compare the values produced by two expressions against
each other and return a Boolean value. Both expressions have to be of the same type. For types Vertex, Edge,
and Boolean, only equality and inequality comparisons are allowed. For membership testing, the right operand
must be a multiset.

<relational_op> ::= <equal> | <unequal> | <lower> | <greater> | <lower_equal> | <greater_equal> | <membership_in> | <membership_not_in> <relational_expr> ::= <expr> <relational_op> <expr>

Examples

2 > 3 3 == 4
:a.weight > 3 :a.weight NOT IN :set_of_values

Arithmetic Expressions

Arithmetic expressions are binary expressions that take two expressions and an arithmetic operator and
produce a result. Both expressions have to be of the same type.

<arithmetic_op> ::= <plus> | <minus> | <asterisk> | <slash> <arithmetic_expr> ::= <expr> <arithmetic_op> <expr>

String Concatenation

String concatenation is a binary expression that takes two expressions and a concatenation operator and
produces a combined string value. Both expressions have to be of the same character string type.

<concat_op_expr> ::= <expr> <pipe> <expr>

Examples

VARCHAR str1 = 'Basket'; VARCHAR str2 = 'ball'; VARCHAR str3 = :str1 || :str2;

22 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Logical Expressions

Logical expressions are binary expressions that take two expressions and a logical operator and produce a
Boolean result value. Both expressions have to be of the same type.

<logical_op> ::= AND | OR <logical_expr> ::=
<expr> <logical_op> <expr> | NOT <l_paren> <expr> <r_paren>

Examples

(3 == 4) AND (4 == 3) TRUE OR (:a.weight > 3) NOT (3 == 2)

Collection Initializer Expressions

A collection initializer expression can be used to initialize a multiset or a sequence. A multiset or a sequence of
scalars can also be initialized from a table attribute access expression, provided that their element primitive
types match.

<initializer_list> ::= <expr> | <initializer_list> <comma> <expr> <multiset_init_expr> ::=
<l_curly> <initializer_list> <r_curly>
| <multiset_type> <l_paren> <attr_access_expr> <r_paren>
<sequence_init_expr> ::=
<l_square> <initializer_list> <r_square> | <sequence_type> <l_paren> <attr_access_expr> <r_paren>

Examples

Graph g = Graph("MYWORKSPACE"); Multiset<Vertex> vm = { Vertex(:g,1), Vertex(:g,2), Vertex(:g,1) };
Sequence<Vertex> vs = [Vertex(:g,1), Vertex(:g,2), Vertex(:g,1)];
Multiset<Int> mi = Multiset<Int>(:tab."intCol"); Sequence<Int> si = Sequence<Int>(:tab."intCol");

Closure Expressions

A closure expression is an anonymous function with an optional environment, which allows you to capture
variables defined in the same or an outer program scope. All variables from the same or an outer scope are
implicitly captured by reference, that is, they can be modified within the closure expression. Furthermore, a
closure expression takes a set of parameters, which are bound to actual values upon invocation. A closure
expression defines a return type, which can be either specified implicitly (the default return type is Void) or
explicitly. If the return type is different from Void, all reachable code paths must contain a valid return
statement.

<return_type> ::= <type> | VOID

SAP HANA Graph Reference
GraphScript Language P U B L I C 23

 <clos_expr> ::= <l_paren> <typed_paramlist> <r_paren>
 [<leads_to> <return_type>] <l_curly> { <statement> } <r_curly>
<typed_paramlist> ::= <type> <variable> | <typed_paramlist> <comma> <type> <variable>

The body of the closure expression consists of a set of statements. Closure expressions cannot be bound to
variables and can only be defined and used in place in the Shortest_Path built-in algorithm to specify a custom
weight function or in traversal statements to define the actions upon invocation.

Examples

WeightedPath<Int> p = SHORTEST_PATH(:g, Vertex(:g, 1), Vertex(:g, 2), (Edge e) => INT { return :e.weight; });

Function Expressions

A function expression takes a list of parameters and produces a result of the specified type. A function can be
overloaded on the parameters; in other words, there can be multiple function definitions with the same
function name and different parameters. Overloading based solely on the function return type is not supported.
For a complete list of supported built-in functions, see Built-In Functions [page 38].

<function_name> ::= <letter> { <letter> | <underscore> } <function_expr> ::= <function_name> <l_paren> [<parameter_list>] <r_paren> <parameter_list> ::= <expr> | <parameter_list> <comma> <expr>

Function expressions returning graph objects have a special role, because the graph objects logically contain
their vertices and edges. Built-in functions returning graph objects can only be used in definition statements to
initialize graph variables.

The functions Graph, Subgraph, Inversegraph and Shotest_Paths_One_To_All return graph objects.
Shortest_Path returns a WeightedPath whereas Strongly_Connected_Components returns a
Multiset<Multiset<Vertex>>.

Graph
Creates a graph object. Two different variations are available:

<graph_function> ::= 'GRAPH' <l_paren> <schema_name>, <workspace_name> <r_paren> <schema_name> ::= <identifier> <workspace_name> ::= <identifier>

Creates a graph object based on the specified workspace in the specified schema. If the schema parameter is
omitted, then the SQL schema inference rules apply.

<graph_function> ::= 'GRAPH' <l_paren> <edge_table_variable>,
 <source_column_identifier>,
 <target_column_identifier>,
 <edge_id_column_identifier>,
 <vertex_table_variable>,
 <vertex_id_column_identifier> <r_paren>
<edge_table_variable> ::= <variable_reference>
<source_column_identifier> ::= <identifier>
<target_column_identifier> ::= <identifier>
<edge_id_column_identifier> ::= <identifier>

24 P U B L I C
SAP HANA Graph Reference

GraphScript Language

<vertex_table_variable> ::= <variable_reference> <vertex_id_column_identifier> ::= <identifier>

Creates a graph object based on the specified edge and vertex tables. Besides the edge and vertex table
variables, the column identifiers of edge source, edge target, edge key, and vertex key need to be specified.

Examples

Graph g1 = Graph("GREEK_MYTHOLOGY", "GRAPH"); Graph g2 = Graph(:edgeTable, "sourceCol", "targetCol", "edgeIdCol", :vertexTable, "vertexIdCol");

Subgraph

<subgraph_function> ::= 'SUBGRAPH' <l_paren> <parent_graph_variable>, <container_of_vertices> <r_paren>
<parent_graph_variable> ::= <variable_reference> <container_of_vertices> ::= <expr>

Returns the subgraph of the given parent graph induced by the given container of vertices. The subgraph
contains a copy of all vertices in the input vertex container as well as all edges of the parent graph whose
source and target are both in the given vertex container.

<subgraph_function> ::= 'SUBGRAPH' <l_paren> <parent_graph_variable>, <container_of_edges> <r_paren>
<parent_graph_variable> ::= <variable_reference> <container_of_edges> ::= <expr>

Returns the subgraph of the given parent graph induced by the given container of edges. The subgraph
contains a copy of the given edges as well as all source and target vertices of the given edge container.

All vertices and edges of a subgraph originate from the parent graph, but are different objects. A vertex or edge
of a subgraph has all persistent and temporary attributes of a vertex or edge in the parent graph. Modifications
of temporary attributes in the parent graph are not propagated to the corresponding temporary attributes of a
subgraph and vice versa.

The parent graph of a subgraph can be a subgraph of another graph.

Examples

The following example demonstrates the usage of the subgraph function in combination with temporary
attributes. The temporary attribute pet is defined on graph G before deriving the subgraph OlympianGraph
from G. Thus, it is available in both graphs. As the temporary attribute weapon is added to G after creating
OlympianGraph , accessing this vertex attribute for a vertex of OlympianGraph leads to an error, as
demonstrated. We can, however, add a vertex attribute with the same name and type to OlympianGraph ,
rendering the previously erroneous statement valid. Although vertices Zeus and Zeus2 share the same key,
these are two separate objects and they have different values for the temporal attribute pet.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); ALTER G ADD TEMPORARY VERTEX ATTRIBUTE(VARCHAR pet = '');
Graph OlympianGraph = SUBGRAPH(
 :G, V IN Vertices(:G) WHERE :V."RESIDENCE" == 'Olymp');
ALTER G ADD TEMPORARY VERTEX ATTRIBUTE(VARCHAR weapon = '');
Vertex Poseidon = Vertex(:OlympianGraph, 'Poseidon');
Poseidon.weapon = 'Trident'; -- ERROR:
attribute "weapon" is not defined for OlympianGraph
ALTER OlympianGraph ADD TEMPORARY VERTEX ATTRIBUTE(VARCHAR weapon = '');
Poseidon.weapon = 'Trident'; -- OK
Vertex Zeus = Vertex(:G, 'Zeus');

SAP HANA Graph Reference
GraphScript Language P U B L I C 25

Vertex Zeus2 = Vertex(:OlympianGraph, 'Zeus');
Zeus.pet = 'Eagle';
Zeus2.pet = 'Thunderbird';
Graph MarriedOlympianGraph = SUBGRAPH(:OlympianGraph, E IN Edges(:OlympianGraph) WHERE :E."TYPE" == 'marriedTo');

Inversegraph

<subgraph_function> ::= 'INVERSEGRAPH' <l_paren> <parent_graph_variable> <r_paren> <parent_graph_variable> ::= <variable_reference>

Returns the inverse graph of the given parent graph. All vertices of the parent graph are copied into the
resulting inverse graph without any modification. All edges of the parent graph are copied into the resulting
inverse graph with swapped edge direction. The values for all vertex as well as edge attributes are copied from
the parent graph. Attribute handling is identical to subgraphs.

Although it is possible to derive an inverse graph from a subgraph, we do not support calling the SUBGRAPH
and INVERSEGRAPH function on inverse graphs.

Examples

In the following example, we construct a multiset ZeusNeighbors of all direct neighbors of Zeus independently
of the edge direction using INVERSEGRAPH. Note that we use a FOREACH loop to get the corresponding
vertices in Graph G by key, as using the UNION operation for multisets from different graphs is not permitted.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Multiset<Vertex> ZeusNeighbors = NEIGHBORS(:G, [Vertex(:G, 'Zeus')], 1, 1);
Graph GI = INVERSEGRAPH(:G);
FOREACH V IN NEIGHBORS(:GI, { Vertex(:GI, 'Zeus') }, 1, 1) {
 ZeusNeighbors = :ZeusNeighbors UNION { Vertex(:G, :V."NAME") }; }

The Neighbors function supports reverse traversal as well. A negative distance range specifies that the
incoming edges rather than the outgoing edges are used for the traversal. The same result as above can be
produced using a single Neighbors call with a corresponding distance range.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Multiset<Vertex> ZeusNeighbors = NEIGHBORS(:G, [Vertex(:G, 'Zeus')], -1, 1);

Shortest Path

<sssp_function> ::= 'SHORTEST_PATH' <l_paren> <parent_graph_variable>, <source_vertex>, <target_vertex> [, <clos_expr>] <r_paren>
<parent_graph_variable> ::= <variable_reference>
<start_vertex> ::= <expr> <target_vertex> ::= <expr>

Returns a WeightedPath instance containing a shortest path within the given parent graph (first parameter)
from a start vertex (second parameter) to a target vertex (third parameter). By default, the weight metric of the
SHORTEST_PATH built-in function is hop distance, but it is also possible to supply a custom weight function
(optional fourth parameter).

The weight function takes an edge as parameter and returns a value of a numerical type: INT, BIGINT, or
DOUBLE. The return type matches the WeightedPath weight type. The weight function may contain only a
single statement, which needs to be a return statement. Furthermore, it is only possible to return literals or to
perform edge attribute access. It is currently not possible to access variables defined outside the weight
function.

26 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Like a subgraph, the WeightedPath contains copies of the corresponding vertices and edges from the parent
graph. All vertices and edges of a WeightedPath originate from the parent graph, but are different objects. A
vertex or edge of a WeightedPath has all persistent and temporary attributes of a vertex or edge in the parent
graph at the time of path creation. Modifications of temporary attributes in the parent graph are not
propagated to the corresponding temporary attributes of a WeightedPath and the other way round.

It is possible to define temporary attributes for the vertices and edges of a path.

Examples

The following example demonstrates the usage of the SHORTEST_PATH function. For a more in-depth
explanation of the semantics for temporary attributes of vertices and edges in a path, see the subgraph
example above.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Vertex sourceVertex = Vertex(:G, 'Uranus');
Vertex targetVertex = Vertex(:G, 'Hephaestus');
WeightedPath<BigInt> p = SHORTEST_PATH(:G, :sourceVertex, :targetVertex);
Sequence<Vertex> vertices = VERTICES(:p);
Sequence<Edge> edges = EDGES(:p);
BigInt lengthOfP = Length(:p);
BigInt weightOfP = Weight(:p);
ALTER p ADD TEMPORARY VERTEX ATTRIBUTE (Int vertexAttr = 0);
ALTER p ADD TEMPORARY EDGE ATTRIBUTE (Int edgeAttr = 42);
-- Get first edge of path
Edge e = :edges[1L];
-- Read edge attribute value --> 42 Int edgeAttrValue = :e.edgeAttr;

The following example demonstrates the use of a custom weight function. The first path of type
WeightedPath<Int> is constructed using a weight function depending on a temporary edge attribute. The two
other paths use fixed weights of type BigInt and Double.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Vertex sourceVertex = Vertex(:G, 'Uranus');
Vertex targetVertex = Vertex(:G, 'Hephaestus');
ALTER g ADD TEMPORARY EDGE ATTRIBUTE (Int weight = 1);
WeightedPath<Int> p = SHORTEST_PATH(
 :G, :sourceVertex, :targetVertex, (Edge e)=> INT { return :e.weight;});
WeightedPath<BigInt> p2 = SHORTEST_PATH(
 :G, :sourceVertex, :targetVertex, (Edge e) => BIGINT{ return 42L;});
WeightedPath<Double> p3 = SHORTEST_PATH(:G, :sourceVertex, :targetVertex, (Edge e) => DOUBLE{ return 1.1;});

Shortest paths one to all

<spoa_function> ::= SHORTEST_PATHS_ONE_TO_ALL <l_paren> <parent_graph_variable>, <source_vertex>, <distance_attribute_name> [, <clos_expr>] <r_paren>
<parent_graph_variable> ::= <variable_reference>
<start_vertex> ::= <expr> <distance_attribute_name> ::= <identifier>

Returns a sub-graph of the given parent graph (first parameter) built from the shortests paths from the start
vertex (second parameter) to all other reachable vertices. It contains all the attributes from the parent graph
and an additional vertex attribute (third parameter) containing the distance from the start vertex to each
reachable vertex. The type of the distance attribute is either BIGINT or the return type of the optional weight
function. By default, the weight metric of the SHORTEST_PATHS_ONE_TO_ALL built-in function is hop
distance, but it is also possible to supply a custom weight function (optional fourth parameter). See Shortest
Path for details on the weight function. The resulting sub-graph is a tree, i.e. a directed, acyclic graph where
each vertex has only one incoming edge, except for the start vertex, which has no incoming edge.

SAP HANA Graph Reference
GraphScript Language P U B L I C 27

Examples

The following example demonstrates the usage of the SHORTEST_PATHS_ONE_TO_ALL function.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Vertex sourceVertex = Vertex(:G, 'Uranus'); Graph hierarchy = SHORTEST_PATHS_ONE_TO_ALL(:G, :sourceVertex, "distance");

The following example demonstrates the use of a custom weight function. The first graph is constructed using
a weight function depending on a temporary edge attribute. The two other graphs use fixed weights of type
BigInt and Double.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Vertex sourceVertex = Vertex(:G, 'Uranus');
ALTER g ADD TEMPORARY EDGE ATTRIBUTE (Int weight = 1);
Graph hierarchy = SHORTEST_PATHS_ONE_TO_ALL(
 :G, :sourceVertex, "distance", (Edge e) => INT { return :e.weight;});
Graph hierarchy = SHORTEST_PATHS_ONE_TO_ALL(
 :G, :sourceVertex, "distance", (Edge e) => BIGINT{ return 42L;});
Graph hierarchy = SHORTEST_PATHS_ONE_TO_ALL(:G, :sourceVertex, "distance", (Edge e) => DOUBLE{ return 1.1;});

K-shortest paths

<ksp_function> ::= 'K_SHORTEST_PATHS' <l_paren> <parent_graph_variable>, <source_vertex>, <target_vertex>, <num_paths> [, <clos_expr>] <r_paren>
<parent_graph_variable> ::= <variable_reference>
<start_vertex> ::= <expr>
<target_vertex> ::= <expr> <num_paths> ::= <expr>

Returns a sequence of WeightedPath instances containing the num_paths (fourth parameter) shortest paths
within the given parent graph from a start vertex (second parameter) to a target vertex (third parameter). By
default, the weight metric of the K_SHORTEST_PATHS built-in function is hop distance, but it is also possible to
supply a custom weight function (optional fourth parameter). See Shortest Path for details on the weight
function. The function creates paths that might contain cycles. The paths in the sequence are ordered by
increasing length.

Examples

The following example demonstrates the usage of the K_SHORTEST_PATHS function.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH"); Vertex sourceVertex = Vertex(:G, 'Uranus');
Vertex targetVertex = Vertex(:G, 'Hephaestus');
Sequence<WeightedPath<BigInt>> paths = K_SHORTEST_PATHS(
 :G, :sourceVertex, :targetVertex, 3);
FOREACH p IN :paths {
 -- process the path
 BigInt l = LENGTH(:p);
 BigInt w = WEIGHT(:p);
 FOREACH v in VERTICES(:p) {
 --
 } }

The following example demonstrates the use of a custom weight function. The first path of type
WeightedPath<Int> is constructed using a weight function depending on a temporary edge attribute. The two
other paths use fixed weights of type BigInt and Double.

Graph G = Graph("GREEK_MYTHOLOGY", "GRAPH");

28 P U B L I C
SAP HANA Graph Reference

GraphScript Language

 Vertex sourceVertex = Vertex(:G, 'Uranus');
Vertex targetVertex = Vertex(:G, 'Hephaestus');
ALTER g ADD TEMPORARY EDGE ATTRIBUTE (Int weight = 1);
Sequence<WeightedPath<Int>> paths = K_SHORTEST_PATHS(
 :G, :sourceVertex, :targetVertex, 3, (Edge e) => INT { return :e.weight;});
Sequence<WeightedPath<BigInt>> paths = K_SHORTEST_PATHS(
 :G, :sourceVertex, :targetVertex, 3, (Edge e) => BIGINT{ return 42L;});
Sequence<WeightedPath<Double>> paths = K_SHORTEST_PATHS(:G, :sourceVertex, :targetVertex, 3, (Edge e) => DOUBLE{ return 1.1;});

Strongly connected components

<scc_function> ::= 'STRONGLY_CONNECTED_COMPONENTS' <l_paren> <parent_graph_variable> <r_paren> <parent_graph_variable> ::= <variable_reference>

Returns a multiset of multisets of vertices, representing the strongly connected components in the parent
graph. The foreach loop statement can be used to iterate over the result and access the individual components.
Each strongly connected component is represented as a multiset of vertices and can be used in the same way
as any other multiset of vertices.

Examples

The following example demonstrates the usage of the strongly connected components function. The result of
the function is a container of containers. The built-in function COUNT can be used to determine the total
number of strongly connected components in the result. One can iterate over the result and use a temporary
vertex attribute to store the component number to which the vertex belongs.

Graph g = Graph("GREEK_MYTHOLOGY", "GRAPH"); ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(Int componentNumber);
Multiset<Multiset<Vertex>> sccResult = STRONGLY_CONNECTED_COMPONENTS(:g);
BigInt numComponents = COUNT(:sccResult);
Int componentCounter = 0;
FOREACH component IN :sccResult {
 componentCounter = :componentCounter + 1;
 FOREACH v IN :component {
 v.componentNumber = :componentCounter;
 } }

Filter Expressions

A filter expression evaluates a predicate for each element of an input container. The matching elements are
returned as a multiset. Within the WHERE clause of the filter expression, it is possible to access temporary
variables, and temporary and non-temporary attributes of vertices and edges, to use built-in functions, and to
call functions. For filter expressions on sequence containers, an optional ordinal variable can be used to access
the ordinal position of the element currently being processed.

<filter_expr> ::= <variable> IN <expr> [WITH ORDINALITY AS <variable>] WHERE <expr>

Examples

INT tmp = 2; v IN Vertices(:g) WHERE :v.color == 'green' AND :v.numEyes != 2;

SAP HANA Graph Reference
GraphScript Language P U B L I C 29

v IN Vertices(:g) WHERE :v.id <= COUNT(Vertices(:g)) AND :v.numEyes == :tmp; v IN [Vertex(:g, 1), Vertex(:g, 2)] WITH ORDINALITY AS i WHERE :i > 2;

Is Null Expressions

An Is Null expression allows you to check whether a value has the value null or not. The return type of the
expression is a Boolean value.

<is_null_expression> ::= <expr> IS NULL <is_not_null_expression> ::= <expr> IS NOT NULL

Examples

BOOLEAN is_null = :i."weight" IS NULL;

Set Operations

Set operations are binary expressions that take two expressions and a set operator and produce a multiset.
Both expressions have to produce or be a multiset from the same graph.

<set_op> ::= <union> | <union_all> | <intersect> | <intersect_all> | <except> | <except_all> <set_op_expr> ::= <expr> <set_op> <expr>

Multiset<Vertex> vertices3 = :vertices1 UNION :vertices2; vertices3 = :vertices3 UNION ALL {:v1};

Union all

Returns a multiset containing all entries from both expressions. Duplicates are not removed.

Union

Returns all unique entries from both expressions by removing the duplicates found. UNION has the same
function as UNION ALL with a subsequent DISTINCT.

MULTISET<VERTEX> ms2 = {:v, :v2}; MULTISET<VERTEX> ms1 = {:v}; MULTISET<VERTEX> ms3 = :ms1 UNION :ms2 UNION {:v3};

Intersect all

Returns all entries that are present in both expressions. Duplicates are not removed.

Intersect

Returns all unique entries that are present in both expressions. Duplicates are removed. Intersect has the same
function as INTERSECT ALL with a subsequent DISTINCT.

30 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Except all
Returns all entries that are present in the left-hand expression but not in the right-hand expression. Duplicates
are not removed.

MULTISET<VERTEX> ms2 = {:v, :v2}; MULTISET<VERTEX> ms1 = {:v}; MULTISET<VERTEX> ms3 = :ms1 EXCEPT ALL :ms2;

Except
Returns all unique entries that are present in the left-hand expression but not in the right-hand expression.
Duplicates are removed. Except has the same function as Except ALL with a subsequent DISTINCT.

MULTISET<VERTEX> ms2 = {:v, :v2}; MULTISET<VERTEX> ms1 = {:v}; MULTISET<VERTEX> ms3 = :ms1 EXCEPT :ms2;

Sequence Operations

The sequence type can be used in positional access (index_expr) and concatenation (concat_expr)
operations.

<concat_expr> ::= <expr> || <expr> <index_expr> ::= <expr><l_square><expr><r_square>

Read index access
Reads the value at a certain position of a sequence. Throws an OutOfBoundsRead exception if the index is
larger than the capacity of the sequence. Sequence indices start at 1L.

Sequence<Vertex> vs = [:v, :v2]; Vertex v3 = :vs[2L];

Write index access
Replaces a value at a certain index within a sequence. Throws an OutOfBoundsWrite exception if the index is
larger than the capacity of the sequence.

Sequence<Vertex> vs = [:v, :v2]; vs[3L] = :v;

Concatenation
Concatenates two sequences to form a new sequence. In case of vertices and edges, concatenation of a single
element is possible.

<concat_op_expr> ::= <expr> <pipe> <expr>

Sequence<Vertex> vs = [:v, :v2]; Sequence<Vertex> vs2 = :vs || [:v]; Sequence<Vertex> vs3 = :vs || :v;

SAP HANA Graph Reference
GraphScript Language P U B L I C 31

Table Operations

The table type can be used in cell access (cell_expr) operations. The row count of a table can be
determined using the COUNT function expression.

Cell read access

Reads the value at a certain index position of a specified table column. Returns NULL if the index is larger than
the row count of the table. Cell indices start at 1L.

Int i = :tab."IntColumn"[1L];

Cell write access

Sets the value at a certain index position of a specified table column. If the index is larger than the row count of
the table, then the table is resized accordingly and padded with NULL values if necessary.

tab."IntColumn"[5L] = 123;

Row count

Reads the number of rows of a specified table.

BigInt numRows = COUNT(:tab);

Related Information

Built-In Functions [page 38]
Statements [page 32]

6.7 Statements

The following types of statements are supported in GraphScript:

<statement> ::= <definition>
| <assignment>
| <conditional>
| <foreach_loop>
| <temp_attribute>
| <while_loop>
| <traversal> | <end_traversal>

32 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Temporary Attribute Definition Statements

A temporary attribute can be used to store vertex-centric or edge-centric state information at script runtime.
Read access to temporary attributes is the same as for persistent attributes; write access is only allowed for
temporary attributes.

<attr_spec> ::= <primitive_type> <identifier> [<equals> <expr>] <attr_list> ::= <attr_spec> | <attr_list> <comma> <attr_spec>
<temp_attribute> ::= "ALTER" <identifier> "ADD" "TEMPORARY" <vertex_or_edge> "ATTRIBUTE" <l_paren> <attr_list> <r_paren> <semicolon>

Definition Statements

A definition statement declares and defines a local variable of a specific type. Objects of primitive types are
default-initialized to zero (for numeric values) or to an empty string (for character-based objects). BOOLEAN
values are default-initialized to FALSE. Vertices, edges, and graphs have to be initialized in the declaration. A
variable is visible and accessible in the current scope and all inner scopes, such as in loops and conditional
statements. Variables defined inside loops and conditional statements are not accessible outside the
statements. GraphScript does not support variable shadowing; in other words, a variable defined in an outer
scope cannot be redefined in an inner scope.

<definition> ::= <vertex_or_edge> <variable> <equals> <expression> <semicolon> | <primitive_type> <variable> [<equals> <expression>] <semicolon>
| <graph> <variable> <equals> <expression> <semicolon>
| <multiset_type> <variable> <equals> <expression> <semicolon> | <sequence_type> <variable> <equals> <expression> <semicolon>

Examples

Graph g1 = Graph("MYSCHEMA","MYWORKSPACE"); Graph g2 = Graph("MYWORKSPACE");
Graph g3 = Graph(MYWORKSPACE);
Vertex v = Vertex(:g1,1);
Edge e = Edge(:g1,'3');
Int i;
Double d = 23.5; Varchar s = 'Dave';

Assignment Statements

An assignment statement binds the result of an expression to a local variable. Alternatively, if the left-hand side
of the assignment statement is an attribute access expression, the value of the right-hand side expression is
assigned to the corresponding attribute.

<assignment> ::= <variable> <equals> <expr> <semicolon> | <variable> <equals> <projection_expr> <semicolon> | <attr_access_expr> <equals> <expr> <semicolon>

SAP HANA Graph Reference
GraphScript Language P U B L I C 33

GraphScript is statically typed and the data type of the object that is bound to the variable cannot change
during the lifetime of a single query run. All variables have to be initialized before they can be referenced and
accessed in a GraphScript expression.

Examples

Graph g = Graph("MYWORKSPACE"); Int i;
i = 23;
Vertex v = Vertex(:g,1); v.attr = 23;

Projection Expression

Projection expressions are special expressions that can only be used in assignment statements. The variable of
the assignment statement must be of type table and an output parameter. Projection expressions expect a
container of vertices or a container of edges as an input in addition to an enumeration of projected attributes.
For projection expressions on sequence containers, an optional ordinal variable can be used to access the
ordinal position of the element currently being processed.

<attr_list> ::= <variable_reference> <dot> <identifier> <projection_expr> ::= SELECT <attr_list> FOREACH <variable> IN <expr> [WITH ORDINALITY AS <variable>]

The order of the projected attributes and their types must match the columns of the output parameter type.
Attribute names are ignored and the columns of the output table will be named according to the output
parameter type.

myTable = SELECT :v."NAME", :v.visited FOREACH v in :myVertices; myTable = SELECT :v."NAME", :i FOREACH v in [Vertex(:g, 1)] WITH ORDINALITY AS i;

 Note
● Tables or table types are permitted for IN and OUT parameters.
● Table types need to be created before they are used as parameter types. Inline definitions of table

types in the parameter list are not permitted.

Examples

CREATE TYPE tt AS TABLE(NAME VARCHAR(1000), ATTR INT); CREATE PROCEDURE myTableProc (IN inTab tt, OUT outTab tt)
LANGUAGE GRAPH READS SQL DATA AS
BEGIN
 Int i = :inTab.attr[1L];
 GRAPH g = GRAPH("GREEK_MYTHOLOGY", "GRAPH");
 ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(INT ATTR = :i);
 outTab = SELECT :v."NAME", :v.attr FOREACH v in VERTICES(:g); END;

34 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Conditional Statements

A conditional statement consists of an IF body and an optional ELSE body. Each body can contain a list of
statements (which may be empty), and the list of statements is enclosed in curly braces. If the expression
<expr> in the IF branch evaluates to TRUE, the corresponding statements in the IF body are executed,
otherwise the statements in the ELSE branch are executed.

<conditional> ::= IF <l_paren> <expr> <r_paren> <l_curly> { <statement> } <r_curly> [ELSE <l_curly> { <statement> } <r_curly>]

Examples

IF (2 < 3) { IF (TRUE) {
 INT I;
 } ELSE {
 INT I;
 } }

Foreach Loop Statements

A foreach loop iterates over a container of vertices or edges. The iteration order is not specified and should not
be assumed to be the same for two different script executions. In the loop body, a list of statements can be
specified, which can reference the defined variable in the loop header. The variable scope of the variable is
defined as the inner body of the loop statement; in other words, the variable can no longer be referenced after
the loop statement. Within a foreach loop, the keywords break and continue can be used. For foreach loop
statements on sequence containers, an optional ordinal variable can be used to access the ordinal position of
the element currently being processed. Additionally, a foreach loop statement can be used to iterate over the
result of the STRONGLGY_CONNECTED_COMPONENT function, which is a multiset of multiset of vertices.

<foreach_loop> ::= FOREACH [<l_paren>] <variable> IN <expr> [WITH ORDINALITY AS <variable>] [<r_paren>] <l_curly> { <statement> } <r_curly>

Examples

Graph g = Graph("MYWORKSPACE"); FOREACH v IN { Vertex(:g,1), Vertex(:g,2) } { INT a = :v.attr;
}
FOREACH v IN [Vertex(:g,1), Vertex(:g,2)] WITH ORDINALITY AS i {
 INT a = :i; }

SAP HANA Graph Reference
GraphScript Language P U B L I C 35

While Loop Statements

A while loop repeats the statements specified in the loop body as long as the condition in the loop head
evaluates to true. Within a while loop, the keywords break and continue can be used. Break stops the further
execution of the loop and continue skips to the next loop iteration.

<while_loop> ::= WHILE <l_paren> <expr> <r_paren> <l_curly> { <statement> } <r_curly>

Examples

INT a = 10; WHILE (:a > 0) {
 a = :a - 1; }

Traversal Statements

The traversal statement explores the graph in a breadth-first manner and allows specifying operations to be
performed at each visit of a vertex or an edge during the traversal. The set of operations to be performed is
called a traversal hook. A traversal statement can have any non-empty combination of vertex and edge
traversal hooks, where vertex traversal hooks and edge traversal hooks may only appear once respectively.
Accepted hook signatures can be one of the following parameter combinations: (Vertex) => Void, (Edge) =>
Void, (Vertex,BigInt) => Void, or (Edge,BigInt) => Void. The optional second parameter of type BigInt
corresponds to the traversal depth. The traversal depth is zero-based, that is, the start vertex or vertices have
traversal depth 0.

Variables defined outside a traversal hook can be accessed and modified within the hook.

<traversal> ::= TRAVERSE BFS <expr> FROM <expr> <hook> { <hook> } <semicolon> <hook> ::= ON VISIT VERTEX <clos_expr> | ON VISIT EDGE <clos_expr>

Examples

TRAVERSE BFS :g FROM { Vertex(:g, 1), Vertex(:g, 2) } ON VISIT VERTEX (Vertex v) {
 Int I = :v.attr;
};
TRAVERSE BFS :g FROM Vertex(:g, 1)
 ON VISIT EDGE (Edge e) {
 Int I = :e.attr;
};
TRAVERSE BFS :g FROM Vertex(:g, 1)
 ON VISIT VERTEX (Vertex v) {
 Int I = :v.attr;
 }
 ON VISIT EDGE (Edge e) {
 Int I = :e.attr;
};
TRAVERSE BFS :g FROM Vertex(:g, 1)
 ON VISIT VERTEX (Vertex v, BigInt lvl) {
 v.attr = :lvl;
 }

36 P U B L I C
SAP HANA Graph Reference

GraphScript Language

 ON VISIT EDGE (Edge e, BigInt lvl) {
 e.attr = :lvl; };

END TRAVERSE ALL Statement
The END TRAVERSE ALL statement is only valid inside a traversal hook. When executed, the traversal is
terminated. In case of BFS traversal, this means that no further levels of vertices or edges of the graph are
explored. However, all hooks corresponding to vertices or edges on the current level are still completely
executed.

<end_traversal> ::= END TRAVERSE ALL <semicolon>

Examples

TRAVERSE BFS :g FROM { Vertex(:g, 1), Vertex(:g, 2) } ON VISIT VERTEX (Vertex v) {
 Int I = :v.attr;
 IF (:I > 5) {
 END TRAVERSE ALL;
 }
 }
 ON VISIT EDGE (Edge e) {
 Int I = :e.attr;
 IF (:I > 5) {
 END TRAVERSE ALL;
 } };

END TRAVERSE Statement
The END TRAVERSE statement is only valid inside a traversal hook. When executed, the traversal is stopped at
the current vertex or edge. In case of BFS traversal, this means the following:

● If END TRAVERSE is called from a vertex hook, then all outgoing edges of that vertex are ignored.
● If END TRAVERSE is called from an edge hook, then the target vertex of that edge will not be reached via

this edge. However, it is still possible to reach the target vertex by a different edge.

<end_traversal> ::= END TRAVERSE ALL <semicolon>

Examples

TRAVERSE BFS :g FROM { Vertex(:g, 1), Vertex(:g, 2) } ON VISIT VERTEX (Vertex v) {
 Int I = :v.attr;
 IF (:I > 5) {
 END TRAVERSE;
 }
 }
 ON VISIT EDGE (Edge e) {
 Int I = :e.attr;
 IF (:I > 5) {
 END TRAVERSE;
 } };

SAP HANA Graph Reference
GraphScript Language P U B L I C 37

6.8 Built-In Functions

The following table provides a summary of the built-in functions available in GraphScript.

Function Name Description Function Signature Return Type

VERTEX Constructs a vertex from a
graph and vertex key.

Vertex(Graph, Int)

Vertex(Graph, BigInt)

Vertex(Graph, Varchar)

Vertex(Graph, Nvarchar)

Vertex

EDGE Constructs an edge from a
graph and edge key.

Edge(Graph, Int)

Edge(Graph, BigInt)

Edge(Graph, Varchar)

Edge(Graph, Nvarchar)

Edge

GRAPH Constructs a graph from a
graph workspace.

Graph(Identifier)

Graph(Identifier, Identifier)

Graph

INVERSEGRAPH Constructs an inverse graph
from a graph.

InverseGraph(Graph) Graph

SUBGRAPH Constructs a subgraph of a
graph induced by a set of ver
tices or edges.

Subgraph(Graph, Multiset)

Subgraph(Graph, Sequence)

Graph

SHORTEST_PATH Calculates a shortest path
from start to target vertex.

Shortest_Path (Graph, Ver
tex, Vertex)

WeightedPath<BigInt>

SHORT
EST_PATHS_ONE_TO_ALL

Calculates the shortest paths
from start to all other reacha
ble vertices.

Shortest_Paths_One_To_All
(Graph, Vertex, Varchar)

Graph

K_SHORTEST_PATHS Calculates k shortest paths
from start to target vertex.

K_Shortest_Paths (Graph,
Vertex, Vertex, Int)

Sequence<Weighted
Path<BigInt>>

WEIGHT Calculates the weight for a
WeightedPath.

Weight(WeightedPath<Bi
gInt>)

Weight(WeightedPath<Int>)

Weight(WeightedPath<Dou
ble>)

BigInt

38 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Function Name Description Function Signature Return Type

LENGTH Calculates the length (num
ber of edges) for a Weighted
Path.

Length(WeightedPath<Bi
gInt>)

Length(WeightedPath<Int>)

Length(WeightedPath<Dou
ble>)

BigInt

MULTISET Constructs an empty multi
set of vertices or edges for a
graph. For other types an
empty multiset is not possi
ble.

Multiset(Graph) Multiset

SEQUENCE Constructs an empty se
quence of vertices or edges
for a graph. For other types
an empty sequence is not
possible.

Sequence(Graph) Sequence

COUNT Counts the elements in a
container.

Count(Multiset)

Count(Sequence)

Count(Multiset<Multi
set<Vertex>>)

BigInt

DISTINCT Removes duplicates from a
multiset.

Distinct(Multiset) Multiset

SOURCE Returns the source vertex of
an edge.

Source(Edge) Vertex

TARGET Returns the target vertex of
an edge.

Target(Edge) Vertex

IN_DEGREE Returns the number of in
coming edges of a vertex.

In_Degree(Vertex) BigInt

OUT_DEGREE Returns the number of out
going edges of a vertex.

Out_Degree(Vertex) BigInt

DEGREE Returns the number of in
coming and outgoing edges
of a vertex.

Degree(Vertex) BigInt

IN_EDGES Returns all the incoming
edges of a vertex.

In_Edges(Vertex) Multiset

OUT_EDGES Returns all the outgoing
edges of a vertex.

Out_Edges(Vertex) Multiset

EDGES Returns all the incoming and
outgoing edges of a vertex.

Edges(Vertex) Multiset

IS_REACHABLE Returns whether there is a
path from vertex v1 to vertex
v2.

Is_Reachable(Graph, Vertex,
Vertex)

Bool

SAP HANA Graph Reference
GraphScript Language P U B L I C 39

Function Name Description Function Signature Return Type

NEIGHBORS Returns all reachable vertices
from a start vertex or set of
start vertices in the given dis
tance range. A positive dis
tance range specifies that
the outgoing edges are used
for the traversal. A negative
distance range specifies that
the incoming edges are used
for the traversal. Distance
ranges with a negative left
bound and a positive right
bound are supported as well.

Neighbors(Graph, Vertex, Int,
Int)

Neighbors(Graph, Multiset,
Int, Int)

Neighbors(Graph, Sequence,
Int, Int)

Multiset

STRONGLY_CON
NECTED_COMPONENTS

Computes the strongly con
nected components in a
graph.

Strongly_Connected_Com
ponents(Graph)

Multiset<Multiset<Vertex>>

VERTICES Returns all vertices in a graph
or path.

Vertices(Graph)

Vertices(WeightedPath)

Sequence

EDGES Returns all edges in a graph
or path.

Edges(Graph)

Edges(WeightedPath)

Sequence

EDGES Returns all edges between a
start set or vertex and a tar
get set or vertex in a graph.

Edges(Graph, Multiset, Multi
set)

Edges(Graph, Multiset, Ver
tex)

Edges(Graph, Vertex, Multi
set)

Edges(Graph, Vertex, Vertex)

Edges(Graph, Sequence, Se
quence)

Edges(Graph, Sequence,
Multiset)

Edges(Graph, Multiset, Se
quence)

Edges(Graph, Sequence, Ver
tex)

Edges(Graph, Vertex, Se
quence)

Multiset

INT Casts a double or bigint value
to an integer value. Throws a
conversion error in the event
of value overflows or under
flows.

Int(Int)

Int(Double)

Int(BigInt)

Int

40 P U B L I C
SAP HANA Graph Reference

GraphScript Language

Function Name Description Function Signature Return Type

INTEGER Casts a double or bigint value
to an integer value. Throws a
conversion error in the event
of value overflows or under
flows.

Integer(Int)

Integer(Double)

Integer(BigInt)

Integer

DOUBLE Casts an integer or bigint
value to a double value.

Double(Double)

Double(Int)

Double(BigInt)

Double

BIGINT Casts an integer or double
value to a bigint value.
Throws a conversion error in
the event of value overflows
or underflows.

BigInt(BigInt)

BigInt(Int)

BigInt(Double)

BigInt

VARCHAR Casts an Nvarchar value to a
Varchar value. The second
parameter specifies the
length of the Varchar type
that is returned. Throws a
conversion error if the
Nvarchar value is too large to
fit into the return type.

Varchar(Nvarchar, Int) Varchar

NVARCHAR Casts a Varchar value to an
Nvarchar value. The second
parameter specifies the
length of the Nvarchar type
that is returned. Throws a
conversion error if the Var
char value is too large to fit
into the return type.

Nvarchar(Varchar, Int) Nvarchar

MULTISET Casts a Sequence to a Multi
set. The order of the ele
ments is lost.

Multiset(Sequence) Multiset

SEQUENCE Casts a Multiset to a Se
quence.

Sequence(Multiset) Sequence

TIMESTAMP Creates a timestamp value
from the given character
string. Throws a conversion
error if the character string is
not a valid timestamp value.

Timestamp(Varchar)

Timestamp(NVarchar)

Timestamp

NANOSECOND Extracts the nanosecond
component from a time
stamp value.

Nanosecond(Timestamp) Int

SECOND Extracts the second compo
nent from a timestamp value.

Second(Timestamp) Int

MINUTE Extracts the minute compo
nent from a timestamp value.

Minute(Timestamp) Int

SAP HANA Graph Reference
GraphScript Language P U B L I C 41

Function Name Description Function Signature Return Type

HOUR Extracts the hour component
from a timestamp value.

Hour(Timestamp) Int

DAYOFMONTH Extracts the day-of-month
component from a time
stamp value.

DayOfMonth(Timestamp) Int

MONTH Extracts the month compo
nent from a timestamp value.

Month(Timestamp) Int

YEAR Extracts the year component
from a timestamp value.

Year(Timestamp) Int

6.9 Reserved Keywords

Reserved words are words, which have a special meaning to the GraphScript parser in the SAP HANA database
and cannot be used as variable names and identifiers.

Reserved words should not be used in GraphScript statements for schema and graph workspace object names.
If necessary, you can work around this limitation by delimiting a schema name, a column name, or a graph
workspace name in double quotation marks.

The following table lists all the current reserved words for the GraphScript:

ABS ABSOLUTE ACTION

ADA ADD ADMIN

AFTER ALL ALLOCATE

ALTER ALWAYS AND

ANY ARE ARRAY_AGG

ARRAY_MAX_CARDINALITY ARRAY AS

ASC ASENSITIVE ASSERTION

ASSIGNMENT ASYMMETRIC AT

ATOMIC ATTRIBUTE ATTRIBUTES

AUTHORIZATION AVG

BEFORE BEGIN_FRAME BEGIN_PARTITION

BEGIN BERNOULLI BETWEEN

BIGINT BINARY BLOB

BOOL BOOLEAN BOTH

BREADTH BREAK BY

CALL CALLED CARDINALITY

CASCADE CASCADED CASE

42 P U B L I C
SAP HANA Graph Reference

GraphScript Language

CAST CATALOG_NAME CEIL

CEILING CHAIN CHAR_LENGTH

CHAR CHARACTER_LENGTH CHARACTER_SET_CATALOG

CHARACTER_SET_NAME CHARACTER_SET_SCHEMA CHARACTER

CHARACTERISTICS CHARACTERS CHECK

CLASS_ORIGIN CLOB CLOSE

COALESCE COBOL COLLATE

COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA

COLLATION COLLECT COLUMN_NAME

COLUMN COMMAND_FUNCTION_CODE COMMAND_FUNCTION

COMMIT COMMITTED CONDITION_NUMBER

CONDITION CONNECT CONNECTION_NAME

CONNECTION CONST CONSTRAINT_CATALOG

CONSTRAINT_NAME CONSTRAINT_SCHEMA CONSTRAINT

CONSTRAINTS CONSTRUCTOR CONTAINS

CONTINUE CONTINUE CONVERT

CORR CORRESPONDING COUNT

COVAR_POP COVAR_SAMP CREATE

CROSS CUBE CUME_DIST

CURRENT_CATALOG CURRENT_DATE CURRENT_DEFAULT_TRANS
FORM_GROUP

CURRENT_PATHCURRENT_ROLE CURRENT_TRANS
FORM_GROUP_FOR_TYPE

CURRENT_USER

CURRENT CURSOR_NAME CURSOR

CYCLE

DATE DAY DEALLOCATE

DEC DOUBLE DECIMAL

DECLARE DEFAULT DELETE

DO DENSE_RANK DEREF

DESCRIBE DETERMINISTIC DISCONNECT

DISTINCT DROP DYNAMIC

DATA DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION

DEFAULTS DEFERRABLE DEFERRED

DEFINED DEFINER DEGREE

DEPTH DERIVED DESC

DESCRIPTOR DIAGNOSTICS DISPATCH

SAP HANA Graph Reference
GraphScript Language P U B L I C 43

DOMAIN DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE

EACH EDGE ELEMENT

ELSE END_FRAME END_PARTITION

END END-EXEC ENFORCED

ENUM EQUALS ESCAPE

EVERY EXCEPT EXCLUDE

EXCLUDING EXEC EXECUTE

EXISTS EXP EXPRESSION

EXTERNAL EXTRACT

FALSE FETCH FILTER

FINAL FIRST_VALUE FIRST

FLAG FLOAT FLOOR

FOLLOWING FOR FOREACH

FOREIGN FORTRAN FOUND

FRAME_ROW FREE FROM

FULL FUNCTION FUSION

GENERAL GENERATED GET

GLOBAL GO GOTO

GRANT GRANTED GRAPH

GROUP GROUPING GROUPS

HAVING HIERARCHY HOLD

HOOK HOUR

IDENTITY IF IGNORE

IMMEDIATE IMMEDIATELY IMPLEMENTATION

IMPORT IN INCLUDE

INCLUDING INCREMENT INDICATOR

INITIALLY INNER INOUT

INPUT INSENSITIVE INSERT

INSTANCE INSTANTIABLE INSTEAD

INT INTEGER INTERSECT

INTERSECTION INTERVAL INTO

INVOKER IS ISOLATION

JOIN

KEY KEY_MEMBER KEY_TYPE

LAG LANGUAGE LARGE

LAST_VALUE LAST LATERAL

44 P U B L I C
SAP HANA Graph Reference

GraphScript Language

LEAD LEADING LEFT

LENGTH LEVEL LIKE_REGEX

LIKE LIST LN

LOCAL LOCALTIME LOCALTIMESTAMP

LOCATOR LOWER

MAP MATCH MATCHED

MAX MAXVALUE MEMBER

MERGE MESSAGE_LENGTH MESSAGE_OCTET_LENGTH

MESSAGE_TEXT METHOD MIN

MINUTE MINVALUE MOD

MODIFIES MODULE MONTH

MORE MULTISET MUMPS

NAME NAMES NAMESPACE

NATIONAL NATURAL NCHAR

NCLOB NESTING NEW

NEXT NFC NFD

NFKC NFKD NO

NONE NORMALIZE NORMALIZED

NOT NTH_VALUE NTILE

NULL NULLABLE NULLIF

NULLS NUMBER NUMERIC

NVARCHAR

OBJECT OCCURRENCES_REGEX OCTET_LENGTH

OCTETS OF OFFSET

OLD ON ONLY

OPEN OPTION OPTIONS

OR ORDER ORDERING

ORDINALITY OTHERS OUT

OUTER OUTPUT OVER

OVERLAPS OVERLAY OVERRIDING

PAD PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_POSITION PARAMETER_SPECIFIC_CATALOG PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA PARAMETER PARTIAL

PARTITION PASCAL PATH

PERCENT_RANK PERCENT PERCENTILE_CONT

PERCENTILE_DISC PERIOD PERSISTENT

SAP HANA Graph Reference
GraphScript Language P U B L I C 45

PLACING PLI PORTION

POSITION_REGEX POSITION POWER

PRECEDES PRECEDING PRECISION

PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE

PUBLIC

RANGE RANK READ

READS REAL RECURSIVE

REF REFERENCES REFERENCING

REGR_AVGX REGR_AVGY REGR_COUNT

REGR_INTERCEPT REGR_R2 REGR_SLOPE

REGR_SXX REGR_SXY REGR_SYY

RELATIVE RELEASE REPEATABLE

RESPECT RESTART RESTRICT

RESULT RETURN RETURNED_CARDINALITY

RETURNED_LENGTH RETURNED_OCTET_LENGTH RETURNED_SQLSTATE

RETURNS REVOKE RIGHT

ROLE ROLLBACK ROLLUP

ROUTINE_CATALOG ROUTINE_NAME ROUTINE_SCHEMA

ROUTINE ROW_COUNT ROW_NUMBER

ROW ROWS

SAVEPOINT SCALE SCHEMA_NAME

SCHEMA SCOPE_CATALOG SCOPE_NAME

SCOPE_SCHEMA SCOPE SCROLL

SEARCH SECOND SECTION

SECURITY SELECT SELF

SENSITIVE SEQUENCE SERIALIZABLE

SERVER_NAME SESSION_USER SESSION

SET SETS SIMILAR

SIMPLE SIZE SMALLINT

SOME SOURCE SPACE

SPECIFIC_NAME SPECIFIC SPECIFICTYPE

SQL SQLEXCEPTION SQLSTATE

SQLWARNING SQRT ST_CIRCULARSTRING

ST_COMPOUNDCURVE ST_CURVE ST_CURVEPOLYGON

ST_GEOMCOLLECTION ST_GEOMETRY ST_LINESTRING

46 P U B L I C
SAP HANA Graph Reference

GraphScript Language

ST_MULTICURVE ST_MULTILINESTRING ST_MULTIPOINT

ST_MULTIPOLYGON ST_MULTISURFACE ST_POINT

ST_POLYGON ST_SURFACE START

STATE STATEMENT STATIC

STDDEV_POP STDDEV_SAMP STRUCTURE

STYLE SUBCLASS_ORIGIN SUBMULTISET

SUBSTRING_REGEX SUBSTRING SUCCEEDS

SUM SWITCH SYMMETRIC

SYSTEM_TIME SYSTEM_USER SYSTEM

TABLE_NAME TABLE TABLESAMPLE

TEMPORARY TEXT THEN

TIES TIME TIMESTAMP

TIMEZONE_HOUR TIMEZONE_MINUTE TO

TOP_LEVEL_COUNT TRAILING TRANSACTION_ACTIVE

TRANSACTION TRANSACTIONS_COMMITTED TRANSACTIONS_ROLLED_BACK

TRANSFORM TRANSFORMS TRANSLATE_REGEX

TRANSLATE TRANSLATION TREAT

TREE TRIGGER_CATALOG TRIGGER_NAME

TRIGGER_SCHEMA TRIGGER TRIM_ARRAY

TRIM TRUE TRUNCATE

TYPE TRAVERSE

UESCAPE UNBOUNDED UNCOMMITTED

UNDER UNION UNIQUE

UNKNOWN UNNAMED UNNEST

UPDATE UPPER USAGE

USER_DEFINED_TYPE_CATALOG USER_DEFINED_TYPE_CODE USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA USER USING

VALUE_OF VALUE VALUES

VAR_POP VAR_SAMP VARBINARY

VARCHAR VARYING VERSIONING

VERTEX VIEW VOID

WHEN WHENEVER WHERE

WHILE WIDTH_BUCKET WINDOW

WITH WITHIN WITHOUT

WORK WRITE

YEAR

SAP HANA Graph Reference
GraphScript Language P U B L I C 47

ZONE

6.10 Restrictions for GraphScript Procedures

The table below shows the maximum allowable limit for each entry.

Description Limit

Maximum identifier length 127

Maximum number of temporary attributes per graph 64

Maximum number of variables 10000

Maximum number of graph variables 128

Maximum script length (in bytes) 2 GB

6.11 Complex GraphScript Examples

The following example depicts a more complex example of a GraphScript procedure. It uses the Greek
mythology data set and computes the number of goddesses who live in the underworld.

CREATE PROCEDURE "GREEK_MYTHOLOGY"."GET_NUM_OF_DAUGHTERS_IN_UNDERWORLD" (OUT cnt INT)
LANGUAGE GRAPH READS SQL DATA AS
BEGIN
 Graph g = Graph("GREEK_MYTHOLOGY","GRAPH");
 ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(Bool livesInUnderWorld = false);
 FOREACH e IN Edges(:g) {
 Vertex src = Source(:e);
 Vertex target = Target(:e);
 Bool areGods = :src."TYPE" == 'god' AND :target."TYPE" == 'god';
 IF (:e."TYPE" == 'hasDaughter' AND :areGods) {
 IF (:target.residence == 'Underworld' AND :src.residence != 'Underworld') {
 IF (NOT :target.livesInUnderWorld) {
 cnt = :cnt + 1;
 target.livesInUnderWorld = TRUE;
 }
 }
 }
 }
END;
-- the result here is 1
-- only Persephone is a goddess and lives in the underworld CALL "GREEK_MYTHOLOGY"."GET_NUM_OF_DAUGHTERS_IN_UNDERWORLD"(?);

The following example uses the Greek mythology data set and computes the number of vertices with a non-
NULL residence in the 2-neighborhood of 'Chaos'. Note that this example can be simplified by omitting the

48 P U B L I C
SAP HANA Graph Reference

GraphScript Language

construction of the set neighborsWithResidence , which was included here solely to demonstrate the use of
set operations.

CREATE PROCEDURE "GREEK_MYTHOLOGY"."NEIGHBORS_WITH_RESIDENCE" (OUT cnt BIGINT) LANGUAGE GRAPH READS SQL DATA AS
BEGIN
Graph g = Graph("GREEK_MYTHOLOGY", "GRAPH");
Vertex chaos = Vertex(:g, 'Chaos');
Multiset<Vertex> neighbors = Neighbors (:g,:chaos, 0, 2);
Multiset<Vertex> neighborsWithResidence = Multiset<Vertex>(:g);
FOREACH n IN :neighbors
{
 IF (:n."RESIDENCE" IS NOT NULL)
 {
 neighborsWithResidence = :neighborsWithResidence UNION {:n};
 }
}
cnt = INT(COUNT(:neighborsWithResidence));
END; CALL "GREEK_MYTHOLOGY"."NEIGHBORS_WITH_RESIDENCE"(?);

SAP HANA Graph Reference
GraphScript Language P U B L I C 49

7 openCypher Pattern Matching

openCypher is a declarative graph query language for graph pattern matching developed by the openCypher
Implementers Group (Cypher is a registered trademark of Neo4j, Inc.).

SAP HANA Graph allows you to use openCypher dircetly in SQL and in SAP HANA Calculation Views. This
chapter describes the SQL inteface and the currently supported subset of the openCypher query language. For
a detailed description of how to execute an openCypher query in SAP HANA Calculation Views, see Query
Language [page 77].

Related Information

Query Language [page 77]

7.1 OPENCYPHER_TABLE SQL Function

The OPENCYPHER_TABLE SQL Function enables the embedding of an openCypher query in an SQL query. The
result is returned as a table. The column names and types of this table are determined by both the openCypher
query [page 52] and the graph workspace [page 9].

OPENCYPHER_TABLE is very robust with respect to inconsistent graph workspaces. Errors may occur in rare
cases, but usually the inconsistent parts just wont show in the result.

Syntax

OPENCYPHER_TABLE (<graph_workspace_spec>
 <opencypher_query_spec>)

Syntax Elements

<graph_workspace_spec>
Specifies the graph workspace used with the openCypher query.

<graph_workspace_spec> ::= GRAPH WORKSPACE <graph_workspace>

50 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

<graph_workspace> can be any graph workspace present in the system, identified by an optional schema
name and a workspace name.

<opencypher_query_spec>
Specifies a query in the openCypher language.

<opencypher_query_spec> ::= QUERY <opencypher_query_string>

<opencypher_query_string> is a string or nstring literal that corresponds to a pattern matching query in
the openCypher language. Although <opencypher_query_string> appears to be a normal SQL string, it is
actually part of the query syntax and cannot be replaced with a string expression like most SQL strings. To
parameterize it, dynamic SQL has to be used.

 Note
Since a single-quoted SQL string is used for the openCypher query, single quotes (') inside the openCypher
query have to be escaped by using two single quotes ('').

Examples

The example is based on the Greek mythology graph from section Appendix B - Greek Mythology Graph
Example [page 80].

SELECT * FROM OPENCYPHER_TABLE(GRAPH WORKSPACE "GREEK_MYTHOLOGY"."GRAPH" QUERY '
 MATCH (a)-[e]-(b)
 WHERE a.NAME = ''Hera'' RETURN b.NAME AS Name
 ORDER BY b.NAME
 ')

Name

Ares

Cronus

Hephaestus

Rhea

Zeus

Zeus

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 51

7.2 openCypher Query Language

An openCypher query searches for subgraphs matching the specification given in MATCH clauses and returns
a result table specified in the RETURN clause.

<opencypher_query> ::= <match_clauses> <return_clause> <match_clauses> ::= <match_clause> [{match_clause}]

The total number of MATCH clauses in one openCypher is currently limited to five.

7.2.1 Match Clause

The MATCH clause consists of topological constraints that define the topology (vertices, edges, and paths) of
the matching subgraphs, and an optional filter condition, which allows the user to add additional (non-
topological) constraints. These constraints must be fulfilled by each match in the graph workspace to become
a part of the result.

<match_clause> ::= MATCH <topology_constraints> [WHERE <non_topology_constraints>]
<topology_constraints> ::= <topology_constraint> [{<comma> <topology_constraint>}]

Topological Constraints

Topological constraints is a comma-separated list of vertices and edges. Additionally, one path can be used.

<topology_constraint> ::= <vertex>
| <edge> | <path>

Edges and paths can be directed or undirected. Undirected edges and paths match edges and paths of any
direction. Specification of edges and paths requires source and target vertices.

<vertex> ::= <l_paren> <variable_name> <r_paren> <edge> ::= <source> <directed_edge> <target>
| <source> <undirected_edge> <target>
<path> ::= <variable_name> <equal> <source> <directed_path> <target>
| <variable_name> <equal> <source> <undirected_path> <target>
<source> ::= <vertex> <target> ::= <vertex>

The length of paths must be provided. The minimal and maximal length of a path must be in the range 1 to 15.

<directed_edge> ::= <minus> <edge_var> <minus> <greater> <undirected_edge> ::= <minus> <edge_var> <minus>
<directed_path> ::= <minus> <l_square> <asterisk> <uint> <double_dot> <uint>
<r_square> <minus> <greater>
<undirected_path> ::= <minus> <l_square> <asterisk> <uint> <double_dot> <uint>
<r_square> <minus>

52 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

<vertex_var> ::= <l_paren> <variable_name> <r_paren> <edge_var> ::= <l_square> <variable_name> <r_square>

The following examples show the use of different topological constraints in the MATCH clause:

● One vertex
MATCH (a) RETURN a.NAME AS name

● One directed edge
MATCH (a)-[e]->(b) RETURN e.TYPE AS type

● One undirected edge
MATCH (a)-[e]-(b) RETURN e.KEY AS key

● Directed variable-length path
MATCH p=(a)-[*1..2]->(b) RETURN a.NAME AS aName, b.NAME AS bName

● Undirected variable-length path
MATCH p=(a)-[*5..7]-(b) RETURN a.NAME AS aName, b.NAME AS bName

The following query illustrates the use of an undirected edge:

MATCH (a)-[e]-(b) WHERE a.NAME = 'Hera' RETURN b.NAME AS Name ORDER BY b.NAME

The result of this query is the following table:

Name

Ares

Cronus

Hephaestus

Rhea

Zeus

Zeus

The following query illustrates the use of a directed path:

MATCH p = (a)-[*1..2]->(b) WHERE a.NAME = 'Chaos'
RETURN b.NAME AS Name ORDER BY b.NAME

The path with the name p starts from vertex a and ends at vertex b. It is one or two edges long. This query
returns all vertices that are related to Chaos by outgoing edges. The result is:

Name

Cronus

Gaia

Rhea

Uranus

Uranus

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 53

The following query illustrates the use of multiple MATCH clauses:

MATCH (a)-[e1]-(b) MATCH (b)-[e2]-(c)
WHERE a.NAME = 'Chaos' RETURN c.NAME AS Name ORDER BY c.NAME

This query returns all vertices laying at a distance of two hops from Chaos, ignoring the direction of edges:

Name

Chaos

Cronus

Gaia

Rhea

Uranus

Uranus

 Note
Note that Chaos is among the results, which means that edge variables e1 and e2 match the same edge in
the data graph. It would not be possible if e1 and e2 were defined in the same MATCH clause.

Non Topological Constraints

Non-topological constraints is a Boolean expression that is evaluated on each matched subgraph. This
expression can contain many predicates that are combined by the logical connectives AND, OR, and NOT.

<non_topology_constraints> ::= <condition> <condition> ::= <condition> OR <condition>
| <condition> AND <condition>
| NOT <condition>
| <builtin_function>
| <l_paren> <condition> <r_paren> | <predicate>

Predicates include comparisons (=, <>, >, <, >=, <=), IS NULL, and other Boolean built-in functions.

<predicate> ::= <comparison_predicate> | <attribute access> IS NULL
| <attribute access> CONTAINS <varchar constant>
| <attribute access> STARTS WITH <varchar constant>
| <attribute access> ENDS WITH <varchar constant>
<comparison_predicate> ::=
 <expression> <equals> <expression>
| <expression> <unequal> <expression>
| <expression> <greater> <expression>
| <expression> <smaller> <expression>
| <expression> <greater_equal> <expression>
| <expression> <smaller_equal> <expression>
<expression> ::=
 <attribute access>
| <constant>
| <string_concatenation>

54 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

<attribute access> ::= <variable_name> <dot> <attribute_name>
<variable_name> ::= <identifier>
<attribute_name> ::= <identifier>
<constant> ::= <integer_constant>
| <bigint_constant>
| <double_constant>
| <varchar_constant>
<string_concatenation> ::= <string_concatenation> <plus> <expression> | <expression> <plus> <expression>

The following query illustrates string concatenation and the use of the logical connective NOT. Note that NOT
has higher precedence than AND and OR and is therefore evaluated first.

MATCH (a)-[e]->(b) WHERE a.NAME = 'Cro' + 'nus' AND (e.KEY < 10 OR NOT b.NAME = 'Poseidon')
RETURN b.NAME AS Name ORDER BY b.NAME

The following query illustrates the use of the logical connective OR. Note that OR has lower precedence than
AND.

MATCH (a)-[e]->(b) WHERE a.NAME = 'Cronus' AND e.KEY < 10 OR b.NAME <> 'Poseidon'
RETURN b.NAME AS Name ORDER BY b.NAME

This query returns the targets of all edges, except for two edges that are pointing at Poseidon (32 of 34 edges).

The following query illustrates the use of parentheses to evaluate the OR connective before the AND
connective.

MATCH (a)-[e]->(b) WHERE a.NAME = 'Cronus' AND (e.KEY < 10 OR b.NAME <> 'Poseidon')
RETURN b.NAME AS Name ORDER BY b.NAME

Name

Demeter

Hades

Hera

Rhea

Zeus

The following query illustrates the use of string matching predicates for evaluating male deities.

MATCH (a) WHERE a.NAME ENDS WITH 's' OR a.NAME ENDS WITH 'n'
RETURN b.NAME AS Name ORDER BY b.NAME

Name

Ares

Chaos

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 55

Name

Cronus

Hades

Hephaestus

Poseidon

Uranos

Zeus

7.2.2 Return Clause

The RETURN clause lists expressions over the matched subgraphs that need to be projected into the resulting
table. The optional DISTINCT specifier eliminates duplicate rows from the resulting table. The optional ORDER-
BY clause allows you to sort the resulting rows in ascending or descending order. The optional LIMIT clause of
the RETURN clause truncates the resulting table to the given number of rows (from the top) if the result has
more rows than the given number. Otherwise all the rows are displayed. The optional SKIP clause excludes the
given number of rows from the top of the result. When all three optional clauses are present, the ORDER-BY
clause is applied first, then the SKIP clause, and finally the LIMIT clause.

reformat to: <return_clause> ::= RETURN [DISTINCT] <return_list>
[<order_by_clause>] [<limit_skip_clause>]
<return_list> ::= <return_item> [{<comma> <return_item>}]
<return_item> ::= <return_expression> AS <alias>
<alias> ::= <identifier>
<return_expression ::=
<attribute_access>
| <string_concatenation>
| <aggregate_function> <l_paren> <attribute_access> <r_paren>
| <list_comprehension>
| <object_constructor>
<aggregate_function> ::= COUNT | MAX | MIN | SUM
<order_by_clause> ::= ORDER BY <order_by_list>
<order_by_list> ::= <order_by_item> [{<comma> <order_by_item>}]
<order_by_item> ::= <variable_name> <dot> <attribute_name> [ASC | DESC]
<list_comprehension> ::= <l_square> <variable_name> IN
<relationships_function> <pipe> <expression> <r_square>
<object_constructor> ::= <l_curly> <identifier> <colon> <expr>
[{<comma> <identifier> <colon> <expr>}] <r_curly> <limit_skip_clause> ::= LIMIT <uint> [SKIP <uint>]

If there is more than one return item and at least one aggregation, the result is grouped by the not aggregated
return items. The MAX, MIN and SUM functions need a numeric type as input and the result type corresponds
to the input type. The COUNT function can take any type as input and the result type is always BIGINT.

An example with a complex return clause is:

MATCH (a)-[e]->(b) WHERE e.TYPE = 'hasSon'
RETURN a.NAME AS name, COUNT(b.NAME) AS numSons
ORDER BY a.NAME ASC
LIMIT 5 SKIP 1

56 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

List comprehension is useful for extracting edge attributes of a path. List comprehension constructs a new list
from the given path function returning a list of edges and the given expression that may use the given iterator
variable. It is only permitted in the RETURN clause. The resulting column is a string representation of the list
comprehension result in JSON format. The following expressions are allowed in the list comprehension:
attribute accesses, string concatenations and constants. The following example shows how to use the list
comprehension.

MATCH p = (a)-[*1..2]->(b) WHERE a.NAME = 'Chaos' RETURN [e IN RELATIONSHIPS(p) | e.TYPE] AS result

The result is:

result

["hasDaughter"]

["hasDaughter", "hasSon"]

["hasDaughter", "hasSon"]

["hasDaughter", "hasDaughter"]

["hasDaughter", "isMarried"]

The object constructor can group several expressions into one expression. It is only permitted in the RETURN
clause. The resulting column is a string representation of the object in JSON format. The following example
shows how to use the object constructor.

MATCH (a)-[e]->(b) WHERE a.RESIDENCE = 'Olymp' AND b.RESIDENCE = 'Olymp' AND e.TYPE = 'marriedTo' RETURN { from: e.SOURCE, to: e.TARGET } AS result

The result is:

result

{"from":"Hera","to":"Zeus"}

{"from":"Zeus","to":"Hera"}

{"from":"Aphrodite","to":"Hephaestus"}

{"from":"Hephaestus","to":"Aphrodite"}

The following openCypher query returns the values of the "NAME" attribute of all vertices in the given graph.

MATCH (a) RETURN a.NAME AS name ORDER BY a.NAME ASC

The result of this query is a table containing 15 rows:

Name

Aphrodite

Ares

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 57

Name

Athena

Chaos

Cronus

Demeter

Gaia

Hades

Hephaestus

Hera

Hephaestus

Hera

Persephone

Poseidon

Rhea

Uranus

Zeus

The following query illustrates the use of the LIMIT clause applied to the result from the previous example:

MATCH (a) RETURN a.NAME AS name
ORDER BY a.NAME ASC LIMIT 5

The result of this query is a table containing 5 rows:

Name

Aphrodite

Ares

Athena

Chaos

Cronus

The following query illustrates the use of the SKIP clause applied to the result from the previous example:

MATCH (a) RETURN a.NAME AS name
ORDER BY a.NAME ASC
LIMIT 5 SKIP 1

58 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

The result of this query is the following table:

Name

Ares

Athena

Chaos

Cronus

Demeter

7.2.3 Keywords

All keywords are case-insensitive.

Keywords

MATCH WHERE OR AND NOT

ALL IN RETURN AS ORDER

BY ASC DESC LIMIT SKIP

WITH CONTAINS STARTS ENDS SUM

AVG COUNT MAX MIN

Reserved Keywords:

optional distinct unique detach union

unwind merge create set delete

remove on ascending descending xor

null true false case when

then else end foreach call

constraint assert load csv headers

fieldterminator index yield using drop

profile explain start is

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 59

Attribute Names, Variable Names, Aliases

Attribute names, variable names, and aliases are case-sensitive.

The following query illustrates the case sensitivity of variable names ("a" and "A" are not the same).

MATCH (a), (A) RETURN a.NAME AS name

This query also illustrates a disconnected graph pattern, since vertices "a" and "A" are not connected by any
edge. In other words, there are two connected components, each of them containing one vertex. From a
performance perspective, we recommend that you avoid matching disconnected subgraphs wherever possible,
because the result is the Cartesian product of matches of all connected components (225 rows), which can
easily get very large and use a lot of system resources.

The following query illustrates the case sensitivity of aliases and returns the values of the "NAME" attribute of
all pairs of vertices in the given graph connected by an edge.

MATCH (A)-[e]->(a) RETURN a.NAME AS name, A.NAME as NAME ORDER BY a.NAME ASC, A.NAME DESC

7.2.4 Built-In Functions

SAP HANA Graph supports a subset of openCypher built-in functions and offers a set of SAP HANA specific
built-in functions.

<builtin_function> ::= <opencypher_builtin_function> | <hana_builtin_function>

openCypher built-in functions are case-insensitive. SAP HANA specific built-in functions are defined in the SYS
namespace and are case-sensitive.

<hana_builtin_function> ::= SYS <dot> <text_contains_function> <opencypher_builtin_function> ::= <all_function> | <relationships_function>

RELATIONSHIPS

The RELATIONSHIPS function takes a path variable and returns a collection of all edges in the path.

<relationships_function> ::= RELATIONSHIPS <l_paren> <variable_name> <r_paren>

60 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

ALL

The ALL function returns a Boolean result and can be used as a predicate in a WHERE clause. This function
returns true if the given condition is true for all elements in the given collection. Otherwise it returns false.

<all_function> ::= ALL <l_paren> <variable_name> IN <relationships_function> WHERE <condition> <r_paren>

The following example shows how to use the ALL function. If you are only interested in Chaos' daughters and
daughters of daughters, you can use an additional edge filter for all edges of a path.

MATCH p = (a)-[*1..2]->(b) WHERE a.NAME = 'Chaos' AND ALL(e IN RELATIONSHIPS(p) WHERE e.TYPE='hasDaughter')
RETURN b.NAME AS Name ORDER BY b.NAME

The result is:

Name

Gaia

Rhea

SYS.TEXT_CONTAINS

The function SYS.TEXT_CONTAINS makes advanced text search capabilities available in openCypher.

<text_contains_function> ::= TEXT_CONTAINS <l_paren> <variable_name> <dot> <attribute_name> <comma> <varchar_constant> <comma> <varchar_constant> <r_paren>

This function returns a Boolean result and can be used as a predicate in a WHERE clause of an openCypher
query.

The first parameter is a vertex or directed edge attribute of types VARCHAR or NVARCHAR. The second
parameter is a string literal that specifies the search pattern, and the third parameter is a string literal
specifying one of the three available search modes: EXACT, LINGUISTIC, or FUZZY. The search pattern might
contain reserved operators (-,?,",*,OR,%) that have special meaning, depending on the search mode.

Here are two examples of how to apply the TEXT_CONTAINS function:

MATCH (a) WHERE SYS.TEXT_CONTAINS(a.name,'Philip','FUZZY(0.8)') RETURN a.id

MATCH (a)-[e]->(b) WHERE SYS.TEXT_CONTAINS(e.color,'b*','EXACT') RETURN a.id

Moreover, the user can create a full-text index for any VARCHAR or NVARCHAR column in the vertex or edge
table to transform the search into a full-text search. More information about the full-text search and how to
create a full-text index can be found in the SAP HANA Search Developer Guide and in the SAP HANA SQL
Reference Guide.

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 61

There are the following limitations:

● Undirected edges are not supported.
● The function only supports graph workspaces on top of column store tables.
● The search pattern must not contain single quotes or brackets.

Exact search
In the EXACT search mode the search term must match the entire search pattern to return a column entry as a
match. In this search mode, the user can specify the search pattern as a complex predicate using the following
specific operators. Some operators are useful only in a full-text search.

● With a minus sign (-), SAP HANA searches in columns for matches that do not contain the term
immediately following the minus sign.

● The question mark (?) replaces a single character in a search term (for example, cat? would match cats).
● Terms within the quotation marks (" ") are not tokenized and are handled as a string. Therefore, all search

matches must be exact.
● The or-operator (OR) matches contain at least one of the terms joined by the OR operator.
● The asterisk sign (*) replaces 0 or more characters in a search term (for example, cat* would match cats

and catalogs).
● The space operator () matches contain both of the terms joined by a space operator.

Examples for complex search patterns in the EXACT search mode are:

SYS.TEXT_CONTAINS(a.color,'red','EXACT') SYS.TEXT_CONTAINS(a.color,'-red','EXACT')
SYS.TEXT_CONTAINS(a.color,'red*','EXACT')
SYS.TEXT_CONTAINS(a.color,'?ed','EXACT')
SYS.TEXT_CONTAINS(a.color,'red OR blue','EXACT')
SYS.TEXT_CONTAINS(a.color,'red blue','EXACT') SYS.TEXT_CONTAINS(a.color,'"red blue"','EXACT')

Linguistic search
A linguistic search finds all words that have the same word stem as the search term. It also finds all words for
which the search term is the word stem. When you execute a linguistic search, the system has to determine the
stems of the searched terms. It will look up the stems in the stem dictionary. The hits in the stem dictionary
point to all words in the word dictionary that have this stem.

SYS.TEXT_CONTAINS(a.attribute,'produced','LINGUISTIC')

A linguistic search for 'produced' will also find 'producing' and 'produce'.

Fuzzy search
Fuzzy search is a fast and fault-tolerant search feature in SAP HANA. A fuzzy search returns records even if the
search term contains additional or missing characters or other types of spelling errors. The first parameter, the
fuzzy score, defines how different the search pattern can be. It is a floating point number between 0 and 1 and
the larger the number, the less difference is allowed. Moreover, the fuzzy search mode takes many additional
parameters that define how the fuzzy score is calculated.

SYS.TEXT_CONTAINS(a.name,'Philip','FUZZY(0.8)') SYS.TEXT_CONTAINS(a.name,'Philip','FUZZY(0.8, option1=value1, option2=value2)'

A fuzzy search for 'Philip' with an appropriate fuzzy score also returns vertices with the name 'Philipp'. This
provides the user the possibility to query dirty data, for example, querying misspelled names.

62 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

The following table shows additional options to influence fuzzy search results. Some options are only usable
with or without a full-text index and many options conflict with each other or need to be combined with
different options. For more detailed information about these options, see the SAP HANA Search Developer
Guide.

OPTIONS VALUES DESCRIPTION

similarCalculationMode typeahead, symmetricsearch, sub
stringsearch, searchcompare, search,
compare

Defines the impact of wrong characters,
additional characters in search pattern,
and additional characters in data for the
fuzzy score

termMappingTable unquoted sql identifier Defines terms that are used to extend a
search to generate additional results

stopWordTable unquoted sql identifier Defines terms that are less significant
for a search and are therefore not used
to generate results

abbreviationSimilarity 0..1 Defines the similarity that is returned
for a matching initial character

andSymmetric true, false Symmetric content search for 'ABC'
finds 'ABCD' and 'AB'

andThreshold 0..1 Determines the percentage of tokens
that need to match

(de)composeWords 1..5 Control sensitivity regarding compound
spelling

searchMode alphanum, housenumber, postcode Search for special formats

Related Information

SAP HANA Search Developer Guide
SAP HANA SQL and System Views Reference

7.2.5 Basic Building Blocks

Basic Rules

<identifier> ::= <simple_identifier> | <special_identifier> <simple_identifier> ::= (<letter> | <underscore>)
 {<letter> | <underscore> | <digit>}
<special_identifier> ::=
<backtick> { (<any_char> - <backtick>) | <backtick><backtick> }<backtick>
<integer_constant>::
<uint>
| <minus> <uint>
<bigint_constant> ::= <uint>
| <minus> <uint>

SAP HANA Graph Reference
openCypher Pattern Matching P U B L I C 63

https://help.sap.com/viewer/691cb949c1034198800afde3e5be6570/2.0.04/en-US/ce86ef2fd97610149eaaaa0244ca4d36.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/b4b0eec1968f41a099c828a4a6c8ca0f.html

<double_constant> ::= (<zero> | <pos_digit> {<digit>}) <dot> <digit> [{<digit}]
| <minus> (<zero> | <pos_digit> {<digit>}) <dot> <digit> [{<digit}]
<uint> ::= <zero>
| <positive_digit> [{digit}]
<varchar_constant> ::= <single_qoute> { (<any_char> -
 (<single_qoute> | <backslash>)) | <escaped_char> } <single_quote>
<escaped_character> ::= <backslash> <single_quote> | <backslash> <backslash>

BNF Lowest Terms Representations

<backtick> ::= ` <dot> ::= .
<double_dot> ::= ..
<comma> ::= ,
<minus> ::= -
<l_paren> ::= (
<r_paren> ::=)
<l_curly> ::= {
<r_curly> ::= }
<l_square> ::= [
<r_square> ::=]
<greater> ::= >
<equal> ::= =
<lower> ::= <
<lower_equal> ::= <=
<greater> ::= >
<greater_equal> ::= >=
<unequal> ::= <>
<asterisk> ::= *
<single_quote> ::= '
<double_quote> ::= "
<backslash> ::= \
<zero> ::= 0
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<positive_digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q |
 r | s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H | I | J |
 K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z <any_char> ::= any character !!

64 P U B L I C
SAP HANA Graph Reference

openCypher Pattern Matching

8 Graph Algorithms

SAP HANA Graph provides a graph calculation node that can be used in calculation scenarios.

This node allows you to execute one of the available actions on the given graph workspace and provide results
as table output.

Calculation scenarios can be created with plain SQL as shown in the following section or with tools such as the
SAP HANA Modeler (see SAP HANA Modeling Guide) or a native SAP HANA Graph Viewer (see Appendix A –
SAP HANA Graph Viewer [page 79]).

A graph node has the following parameters:

Parameter Value

schema Graph workspace schema (for example "GREEK_MYTHOL
OGY")

workspace Graph workspace name (for example "GRAPH")

action One of the following actions: GET_NEIGHBORHOOD,
GET_SHORTEST_PATHS_ONE_TO_ALL, GET_SHORT
EST_PATH_ONE_TO_ONE, GET_STRONGLY_CON
NECTED_COMPONENTS, MATCH_SUBGRAPHS

In case of an inconsistent graph workspace, the calculation scenario will exit with an error.

To use the graph node, a user needs SELECT privileges on the given graph workspace.

Each action has a set of additional parameters. The remainder of this section describes the available actions
and their additional parameters.

Related Information

SAP HANA Modeling Guide (SAP HANA XS advanced model)
SAP HANA Modeling Guide (SAP HANA web workbench)
SAP HANA Modeling Guide (SAP HANA studio)

8.1 Neighborhood Search (Breadth-First Search)

The GET_NEIGHBORHOOD graph action retrieves the neighboring vertices within the given radius (depth) from
the given start vertices.

This action allows you to specify multiple start vertices, choose traversal direction, setting filters on vertices
and edges, and setting minimum and maximum depth (radius) of the neighborhood.

SAP HANA Graph Reference
Graph Algorithms P U B L I C 65

https://help.sap.com/viewer/e8e6c8142e60469bb401de5fdb6f7c00/2.0.04/en-US/509dce3fd6f44a839e9c0ae83dc62d04.html
https://help.sap.com/viewer/57a523b496cc4531a3676f5d94644899/2.0.04/en-US/c85779168a61404b92cb041197df80fb.html
https://help.sap.com/viewer/fc5ace7a367c434190a8047881f92ed8/2.0.04/en-US/b06adc3dec9a4cbfb4c232d7ff6c4353.html

This action has the following additional parameters:

Parameter Value

startVertices Set of start vertex keys

direction Traversal direction, can use one of the following values: any ,
incoming , outgoing

minDepth Minimum depth (radius) of the neighborhood. 0 means the
start vertices are included into the result.

maxDepth Maximum depth (radius) of the neighborhood.

vertexFilter Vertex filter expression comparable to SQL's where-clause
on the vertex table (default: empty)

edgeFilter Edge filter expression comparable to SQL's where-clause on
the edge table (default: empty)

depthColumn Depth column name (default: "DEPTH")

The output includes the following:

Parameter Value

vertex table Contains the set of explored vertices with vertex key and the
depth level of the neighborhood.

The SQL statement used in the following code sample creates a calculation scenario with a single graph node
with the GET_NEIGHBORHOOD action on the graph workspace "GREEK_MYTHOLOGY"."GRAPH" . This scenario
traverses the underlying graph using all outgoing edges starting from vertex 'Chaos' and returns vertices with
minimum depth 0 and maximum depth 2 from the start vertex.

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE" USING ' <?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
 <calculationScenario schema="GREEK_MYTHOLOGY" name="GET_NEIGHBORHOOD_EXAMPLE">
 <calculationViews>
 <graph name="get_neighborhood_node" defaultViewFlag="true"
 schema="GREEK_MYTHOLOGY" workspace="GRAPH" action="GET_NEIGHBORHOOD">
 <expression>
 <![CDATA[{
 "parameters": {
 "startVertices": ["Chaos"],
 "direction":"outgoing",
 "minDepth": 0,
 "maxDepth": 2
 }
 }]]>
 </expression>
 <viewAttributes>
 <viewAttribute name="NAME" datatype="string"/>
 <viewAttribute name="DEPTH" datatype="int"/>
 </viewAttributes>
 </graph>
 </calculationViews>
 </calculationScenario>
</cubeSchema>
' WITH PARAMETERS ('EXPOSE_NODE'=('get_neighborhood_node', 'GET_NEIGHBORHOOD_EXAMPLE'));

66 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

The following SQL statement executes the calculation scenario and orders the resulting vertices by depth in
reverse order.

SELECT * FROM "GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE" ORDER BY "DEPTH";

The result of this operation is the following vertex table:

NAME DEPTH

Chaos 0

Gaia 1

Uranus 2

Cronus 2

Rhea 2

The same result can be obtained through the SAP HANA Graph Viewer web tool (see Appendix A – SAP HANA
Graph Viewer [page 79]).

The following SQL statement deletes the calculation scenario and its corresponding view:

DROP CALCULATION SCENARIO "GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE" CASCADE;

 Note
The SAP HANA Graph Viewer can be used to create the calculation scenario, execute the neighborhood
search on the selected graph workspace with specific parameters and to visualize the result. Afterwards
the generated calculation scenario can be reused in all kinds of SQL queries.

8.2 Shortest Path

These actions provide the information for the shortest path.

8.2.1 Shortest Path (One-to-All)

The action GET_SHORTEST_PATHS_ONE_TO_ALL returns the shortest paths from the provided start vertex to
all reachable vertices in the graph - also known as single-source shortest path (SSSP). The resulting shortest
paths form a tree structure with the start vertex at the root. All other vertices carry the shortest distance
(smallest weight) information. The non-negative edge weights are read from the column provided in the edge
table.

SAP HANA Graph Reference
Graph Algorithms P U B L I C 67

This action has the following additional parameters:

Parameter Need Value

startVertex mandatory Start vertex key

inputWeightColumn optional A column in the edge table that con
tains edge weights. If omitted, edge
weights are set to 1.

outputWeightColumn optional Output weight (shortest distance) col
umn name (default: "WEIGHT")

sourceColumn optional Name in output table that contains the
source of the traversed edge; Default:
source column name of graph work
space

targetColumn optional Name in output table that contains the
target of the traversed edge; Default:
target column name of graph work
space

direction optional Traversal direction, can use one of the
following values: any, incoming, outgo
ing

The output consists of the following:

Parameter Value

vertex table Contains vertex keys and corresponding smallest weights
(shortest distances)

edge table Optional edge table with shortest path(s)

The SQL statement used in the following code sample creates a calculation scenario with a single graph node
with the action GET_SHORTEST_PATHS_ONE_TO_ALL on the workspace "GREEK_MYTHOLOGY"."GRAPH".
This scenario calculates shortest paths from the vertex 'Chaos' to all other vertices. Since input weight column
parameter is not specified, the weight of each edge is considered as 1.

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SSSP_EXAMPLE" USING ' <?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
 <calculationScenario schema="GREEK_MYTHOLOGY" name="SSSP_EXAMPLE">
 <calculationViews>
 <graph name="sssp_node" defaultViewFlag="true" schema="GREEK_MYTHOLOGY"
 workspace="GRAPH" action="GET_SHORTEST_PATHS_ONE_TO_ALL">
 <expression>
 <![CDATA[{
 "parameters": {
 "startVertex": "Chaos",
 "outputWeightColumn": "DISTANCE"
 }
 }]]>
 </expression>
 <viewAttributes>
 <viewAttribute name="NAME" datatype="string"/>
 <viewAttribute name="DISTANCE" datatype="int"/>
 </viewAttributes>
 </graph>

68 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

 </calculationViews>
 </calculationScenario>
</cubeSchema> ' WITH PARAMETERS ('EXPOSE_NODE'=('sssp_node', 'SSSP_EXAMPLE'));

The following SQL statement executes the calculation scenario and sorts the result by the output weight
column "DISTANCE".

SELECT * FROM "GREEK_MYTHOLOGY"."SSSP_EXAMPLE" ORDER BY "DISTANCE";

The result of this operation is the vertex table with an additional column for shortest distance:

NAME DISTANCE

Chaos 0

Gaia 1

Uranus 2

Cronus 2

Rhea 2

Zeus 3

Poseidon 3

Hades 3

Aphrodite 3

Demeter 3

Hera 3

Ares 4

Athena 4

Hephaestus 4

Persephone 4

 Note
The same results can also be obtained by executing GET_NEIGHBORHOOD action with startVertices equal
to 'Chaos', direction equal to 'outgoing', minDepth equal to '0', maxDepth equal to '*', and depthColumn
equal to 'DISTANCE'.

The following SQL statement drops the calculation scenario and all its views.

DROP CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SSSP_EXAMPLE" CASCADE;

The following statement creates a calculation scenario that returns both vertices and edges of shortest paths
from the start vertex 'Chaos' to all other vertices in the graph workspace "GREEK_MYTHOLOGY"."GRAPH".

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SSSP2_EXAMPLE" USING ' <?xml version="1.0"?>
<cubeSchema version="3" operation="createCalculationScenario">
 <calculationScenario schema="GREEK_MYTHOLOGY" name="SSSP2_EXAMPLE">
 <calculationViews>
 <multipleOutputGraph name="sssp2_node" defaultViewFlag="false"

SAP HANA Graph Reference
Graph Algorithms P U B L I C 69

 schema="GREEK_MYTHOLOGY" workspace="GRAPH"
 action="GET_SHORTEST_PATHS_ONE_TO_ALL">
 <expression>
 <![CDATA[{
 "parameters": {
 "startVertex": "Chaos",
 "outputWeightColumn": "DISTANCE"
 }
 }]]>
 </expression>
 <outputs>
 <output name="vertices">
 <attributes>
 <attribute name="NAME" datatype="string"/>
 <attribute name="DISTANCE" datatype="int"/>
 </attributes>
 </output>
 <output name="edges">
 <attributes>
 <attribute name="KEY" datatype="int"/>
 <attribute name="SOURCE" datatype="string"/>
 <attribute name="TARGET" datatype="string"/>
 </attributes>
 </output>
 </outputs>
 </multipleOutputGraph>
 <projection name="projectVertices" defaultViewFlag="true">
 <inputs>
 <input name="sssp2_node" outputName="vertices"/>
 </inputs>
 <attributes>
 <attribute name="NAME" datatype="string"/>
 <attribute name="DISTANCE" datatype="int"/>
 </attributes>
 </projection>
 <projection name="projectEdges" defaultViewFlag="false">
 <inputs>
 <input name="sssp2_node" outputName="edges"/>
 </inputs>
 <attributes>
 <attribute name="KEY" datatype="int"/>
 <attribute name="SOURCE" datatype="string"/>
 <attribute name="TARGET" datatype="string"/>
 </attributes>
 </projection>
 </calculationViews>
 </calculationScenario>
</cubeSchema>
' WITH PARAMETERS ('EXPOSE_NODE'=('projectVertices', 'SSSP2_EXAMPLE'));
CREATE COLUMN VIEW "GREEK_MYTHOLOGY"."SSSP2_EXAMPLE_EDGES" WITH PARAMETERS (
 indexType=11,
 'PARENTCALCINDEXPACKAGE'='GREEK_MYTHOLOGY',
 'PARENTCALCINDEX'='SSSP2_EXAMPLE', 'PARENTCALCNODE'='projectEdges');

The following SQL statement executes the calculation scenario and returns edges of all shortest paths ordered
by edge keys.

SELECT * FROM "GREEK_MYTHOLOGY"."SSSP2_EXAMPLE_EDGES" ORDER BY "KEY";

70 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

The result of this operation is the edge table containing edge keys, source vertex keys and target vertex keys:

KEY SOURCE TARGET

1 Chaos Gaia

2 Gaia Uranus

3 Gaia Cronus

5 Gaia Rhea

7 Cronus Zeus

9 Cronus Hera

11 Cronus Demeter

13 Cronus Poseidon

15 Cronus Hades

17 Zeus Athena

18 Zeus Ares

20 Uranus Aphrodite

21 Zeus Hephaestus

23 Zeus Persephone

The following SQL statement drops the calculation scenario and all its views.

DROP CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SSSP2_EXAMPLE" CASCADE;

 Note
The SAP HANA Graph Viewer can be used to create the calculation scenario, execute the shortest path
algorithm on the selected graph workspace with specific parameters and to visualize the result. Afterwards
the generated calculation scenario can be reused in all kinds of SQL queries.

8.2.2 Shortest Path (One-to-One)

The action GET_SHORTEST_PATH_ONE_TO_ONE returns the shortest path from the provided start vertex to
the provided target vertex - also known as single-source single-target shortest path (SSSTSP).

The resulting table contains all vertices of the shortest path between the start vertex and the target vertex with
the distance from the start vertex.

If there is more than one shortest path between the two vertices, only one of them is returned.

The non-negative edge weights are read from the column provided in the edge table.

Parameter Need Value

startVertex mandatory Start vertex key

SAP HANA Graph Reference
Graph Algorithms P U B L I C 71

Parameter Need Value

targetVertex mandatory Target vertex key

inputWeightColumn optional A column in the edge table that con
tains edge weights. If omitted, edge
weights are set to 1.

outputWeightColumn optional Output weight (shortest distance) col
umn name (default: "WEIGHT")

sourceColumn optional Name in output table that contains the
source of the traversed edge. Default:
source column name of graph work
space

targetColumn optional Name in output table that contains the
target of the traversed edge. Default:
target column name of graph work
space

Direction optional Traversal direction, can use one of the
following values: any, incoming, outgo
ing

orderingColumn optional Name of the column that contains the
unweighted distance. Default: ORDER
ING

Examples

DROP CALCULATION SCENARIO "GREEK_FAMILY"."SSSTSP_EXAMPLE" cascade; CREATE CALCULATION SCENARIO "GREEK_FAMILY"."SSSTSP_EXAMPLE" USING '
<?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
<calculationScenario schema="GREEK_FAMILY" name="SSSTSP_EXAMPLE">
<calculationViews>
<graph name="ssstsp_node" defaultViewFlag="true" schema="GREEK_FAMILY"
 workspace="GRAPH" action="GET_SHORTEST_PATH_ONE_TO_ONE">
<expression>
<![CDATA[{
"parameters":
{
"startVertex":
"Chaos",
"targetVertex":
"Zeus",
"outputWeightColumn":
"DISTANCE"
}
}]]>
</expression>
<viewAttributes>
<viewAttribute name="ORDERING" datatype="Fixed" length="18" sqltype="BIGINT"/>
<viewAttribute name="SOURCE" datatype="string"/>
<viewAttribute name="TARGET" datatype="string"/>
<viewAttribute name="DISTANCE" datatype="int"/>
</viewAttributes>
</graph>

72 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

</calculationViews>
</calculationScenario>
</cubeSchema> ' WITH PARAMETERS ('EXPOSE_NODE'=('ssstsp_node', 'SSSTSP_EXAMPLE'));

The following SQL statement executes the calculation scenario and sorts the result by the column
"ORDERING":

select * from "GREEK_FAMILY"."SSSTSP_EXAMPLE" order by ORDERING;

The result of this operation is the following table:

ORDERING SOURCE TARGET DISTANCE

1 Chaos Gaia 1

2 Gaia Rhea 2

3 Rhea Zeus 3

8.3 Strongly Connected Components

Action GET_STRONGLY_CONNECTED_COMPONENTS calculates strongly connected components (SCC) in the
given graph workspace.

A directed graph is said to be strongly connected if every vertex is reachable from every other vertex. The
strongly connected components of an arbitrary directed graph form a partition into subgraphs that are
themselves strongly connected.

The only output of this action is a table containing the vertex key column and a "COMPONENT" column
containing strongly connected component indices. All vertices with the same component index belong to the
same strongly connected component.

This action has the following additional parameters:

Parameter Value

componentColumn Component index column name (default: "COMPONENT")

The output consists of the following:

Parameter Value

vertex table Contains vertex key column and component index column

The SQL statement used in the following code sample creates a calculation scenario with a single graph node
with the GET_STRONGLY_CONNECTED_COMPONENTS action on the graph workspace
"GREEK_MYTHOLOGY"."GRAPH".

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SCC_EXAMPLE" USING ' <?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
 <calculationScenario schema="GREEK_MYTHOLOGY" name="SCC_EXAMPLE">

SAP HANA Graph Reference
Graph Algorithms P U B L I C 73

 <calculationViews>
 <graph name="scc_node" defaultViewFlag="true" schema="GREEK_MYTHOLOGY"
 workspace="GRAPH" action="GET_STRONGLY_CONNECTED_COMPONENTS">
 <expression>
 </expression>
 <viewAttributes>
 <viewAttribute name="NAME" datatype="string"/>
 <viewAttribute name="COMPONENT" datatype="int"/>
 </viewAttributes>
 </graph>
 </calculationViews>
 </calculationScenario>
</cubeSchema> ' WITH PARAMETERS ('EXPOSE_NODE'=('scc_node', 'SCC_EXAMPLE'));

The following SQL statement executes the calculation scenario and sorts the result by the component index.

SELECT * FROM "GREEK_MYTHOLOGY"."SCC_EXAMPLE" ORDER BY "COMPONENT";

The result of this statement is the following table.

NAME COMPONENT

Athena 1

Ares 2

Aphrodite 3

Hephaestus 3

Hades 4

Persephone 4

Zeus 5

Hera 5

Demeter 6

Poseidon 7

Rhea 8

Cronus 8

Gaia 9

Uranus 9

Chaos 10

The same result can be obtained through the SAP HANA Graph Viewer web tool (see Appendix A – SAP HANA
Graph Viewer [page 79]).

In our example, the fifteen vertices are partitioned into ten strongly connected components, because there are
five couples and the 'marriedTo' relationship goes in both directions, forming a cycle of two vertices.

The following SQL statement deletes the calculation scenario and its corresponding view.

DROP CALCULATION SCENARIO "GREEK_MYTHOLOGY"."SCC_EXAMPLE" CASCADE;

74 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

8.4 Graph Algorithm Variables

Graph variables allow to parameterize calculation scenarios, so that the same graph action can be called with
different parameters.

Using the graph variables, a user needs to create only one calculation scenario for a combination of the graph
workspace and the graph action.

The following SQL statement illustrates a parameterized calculation scenario for the GET_NEIGHBORHOOD
graph action and the "GREEK_MYTHOLOGY"."GRAPH" graph workspace that uses graph variables.

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE2" USING '
<?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
 <calculationScenario schema="GREEK_MYTHOLOGY"
 name="GET_NEIGHBORHOOD_EXAMPLE2">
 <calculationViews>
 <graph name="get_neighborhood_node" defaultViewFlag="true"
 schema="GREEK_MYTHOLOGY" workspace="GRAPH" action="GET_NEIGHBORHOOD">
 <expression>
 <![CDATA[{
 "parameters": {
 "startVertices": $$startVertices$$,
 "direction":"$$direction$$",
 "minDepth": $$minDepth$$,
 "maxDepth": $$maxDepth$$,
 "vertexFilter" : "$$vertexFilter$$",
 "edgeFilter" : "$$edgeFilter$$"
 }
 }]]>
 </expression>
 <viewAttributes>
 <viewAttribute name="NAME" datatype="string"/>
 <viewAttribute name="DEPTH" datatype="int"/>
 </viewAttributes>
 </graph>
 </calculationViews>
 <variables>
 <variable name="$$startVertices$$" type="graphVariable"/>
 <variable name="$$direction$$" type="graphVariable">
 <defaultValue>outgoing</defaultValue>
 </variable>
 <variable name="$$minDepth$$" type="graphVariable">
 <defaultValue>0</defaultValue>
 </variable>
 <variable name="$$maxDepth$$" type="graphVariable"/>
 <variable name="$$vertexFilter$$" type="graphVariable">
 <defaultValue></defaultValue>
 </variable>
 <variable name="$$edgeFilter$$" type="graphVariable">
 <defaultValue></defaultValue>
 </variable>
 </variables>
 </calculationScenario>
</cubeSchema>
' WITH PARAMETERS (
 'EXPOSE_NODE'=('get_neighborhood_node', 'GET_NEIGHBORHOOD_EXAMPLE2'));

SAP HANA Graph Reference
Graph Algorithms P U B L I C 75

The following SQL statement executes the calculation scenario
"GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE2" with the specific parameter values.

SELECT * FROM "GREEK_MYTHOLOGY&quot."GET_NEIGHBORHOOD_EXAMPLE2" (placeholder."$$startVertices$$" => '["Chaos"]',
placeholder."$$direction$$" => 'outgoing',
placeholder."$$minDepth$$" => '0',
placeholder."$$maxDepth$$" => '2',
placeholder."$$vertexFilter$$" => '', placeholder."$$edgeFilter$$" => '');

The graph variables $$direction$$, $$minDepth$$, $$vertexFilter$$ and $$edgeFilter$$ all have
defined default values and therefore can be omitted when executing the calculation scenario.

SELECT * FROM "GREEK_MYTHOLOGY"."GET_NEIGHBORHOOD_EXAMPLE2" ORDER BY "DEPTH" WITH PARAMETERS (
 'placeholder' = ('$$startVertices$$', '["Chaos"]'),
 'placeholder' = ('$$maxDepth$$', '2'));

 Note
The SAP HANA Graph Viewer can be used to create the calculation scenario, execute the strongly
connected component algorithm on the selected graph workspace with specific parameters, and visualize
the result. Afterwards the generated calculation scenario can be reused in all kinds of SQL queries.

8.5 Pattern Matching

Pattern matching is a kind of graph query, which involves finding all the subgraphs (within a graph) that match
the given pattern.

SAP HANA Graph provides two options for executing graph pattern queries. The first option is to use the
graphical pattern editor in SAP Web IDE for SAP HANA. The second option is to describe the pattern in
openCypher query language.

8.5.1 Graphical Pattern Editor

The SAP Web IDE for SAP HANA offers a graphical editor for composing pattern matching queries.

A graphical pattern contains a set of vertex variables, a set of edge variables, a set of filter conditions, a
projection list, an order-by list, a limit, and an offset.

The result of a graphical pattern matching query is a projection of subgraphs within a given graph workspace
that match the given pattern. The columns of the result table correspond to the projection list of the given
pattern. Every row in the result table corresponds to a matching subgraph.

The following example represents a subgraph pattern that contains three vertices and three edges. The first
two vertices A and B are connected with an edge filtered by attribute TYPE of value marriedTo. The third vertex
C is connected to the first two vertices through incoming edges and vertex C is filtered by attribute NAME on
value Ares. The pattern searches for parents of god Ares.

76 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

When projecting on the key column of each edge, the following table shows the result:

A B C

Zeus Hera Ares

Hera Zeus Ares

 Note
We get the same matching subgraph twice because our pattern has a symmetry (or two automorphisms, to
be precise). In other words, we do not specify which of the two is the father and which is the mother in our
data, and therefore both options are valid answers (see Appendix B: Greek Mythology Graph Example). The
symmetry in this particular query can be avoided by adding an extra condition on A and B vertices: A.NAME
< B.NAME .

8.5.2 Query Language

The action MATCH_SUBGRAPHS allows you to execute pattern matching queries written in the supported
subset of the openCypher Query Language [page 52] on the given graph workspace.

 Note
openCypher queries provide different results than graphical pattern matching. In graphical pattern
matching, the uniqueness of edges and vertices is enforced. In contrast, the semantic of an openCypher
query only enforces the uniqueness of edges.

expression A query string written in the supported subset of the open
Cypher query language containing one MATCH clause and
one RETURN clause.

SAP HANA Graph Reference
Graph Algorithms P U B L I C 77

The output consists of the following:

result table Every row corresponds to a matching subgraph. Every row
contains attributes of vertices and edges specified in the RE
TURN clause.

The SQL statement used in the following code sample creates a calculation scenario with a single graph node
with the MATCH_SUBGRAPHS action on the graph workspace "GREEK_MYTHOLOGY"."GRAPH". The
openCypher query searches for the married parents of the Greek god Ares. Note that single quotes inside the
query need to be properly escaped when creating a calculation scenario.

CREATE CALCULATION SCENARIO "GREEK_MYTHOLOGY"."MATCH_SUBGRAPHS_EXAMPLE" USING ' <?xml version="1.0"?>
<cubeSchema version="2" operation="createCalculationScenario"
 defaultLanguage="en">
<calculationScenario schema="GREEK_MYTHOLOGY" name="MATCH_SUBGRAPHS_EXAMPLE">
<calculationViews>
<graph name="match_subgraphs_node" defaultViewFlag="true"
 schema="GREEK_MYTHOLOGY" workspace="GRAPH" action="MATCH_SUBGRAPHS">
<expression>
<![CDATA[
MATCH (A)-[E1]->(B), (A)-[E2]->(C), (B)-[E3]->(C) WHERE E1.TYPE = ''marriedTo''
 AND C.NAME = ''Ares'' RETURN A.NAME AS PARENT1_NAME, B.NAME AS PARENT2_NAME
]]>
</expression>
<viewAttributes>
<viewAttribute name="PARENT1_NAME" datatype="string"/>
<viewAttribute name="PARENT2_NAME" datatype="string"/>
</viewAttributes>
</graph>
</calculationViews>
</calculationScenario>
</cubeSchema>' WITH PARAMETERS ('EXPOSE_NODE'=('match_subgraphs_node','MATCH_SUBGRAPHS_EXAMPLE'));

The following SQL statement executes the calculation scenario and orders the results by the first parent's
name and then by the second parent's name.

SELECT "PARENT1_NAME", "PARENT2_NAME" FROM "GREEK_MYTHOLOGY"."MATCH_SUBGRAPHS_EXAMPLE" ORDER BY "PARENT1_NAME", "PARENT2_NAME";

78 P U B L I C
SAP HANA Graph Reference

Graph Algorithms

9 Additional Information

This section provides additional information.

9.1 Appendix A – SAP HANA Graph Viewer

The Graph Viewer is a native SAP HANA application that provides an interface to interact with and visualize
graph workspaces in SAP HANA.

9.1.1 Install SAP HANA Graph Viewer

SAP HANA Graph Viewer is an additional tool for SAP HANA Graph that can be downloaded from the SAP
Software Downloads.

1. Open the SAP Software Downloads.
2. Search for "SAP HANA Graph Viewer".
3. Download the HCOGRAPHVIEWER<nn_n>-<mmm>.ZIP file and unpack it.
4. Save the HCOGRAPHVIEWER.tgz file on your client.
5. Open the SAP HANA studio.
6. Choose File > Import.
7. Choose SAP HANA Content > Delivery Unit.
8. Select Client.
9. Browse to the file HCOGRAPHVIEWER.tgz, select it, and choose Finish.

For more information, see SAP Note 2306732 - SAP HANA Graph Viewer and Deploy a Delivery Unit Archive
(*.tgz) in the SAP HANA Administration Guide.

 Note
After the installation, the SAP HANA Graph Viewer can be accessed via the URL http://
<WebServerHost>:80<SAPHANAinstance>/sap/hana/graph/viewer/

The SAP HANA Graph Viewer supports the following Web browsers: Chrome and Mozilla Firefox.

Related Information

SAP Note 2306732
SAP Software Downloads

SAP HANA Graph Reference
Additional Information P U B L I C 79

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2306732
http://help.sap.com/disclaimer?site=https%3A%2F%2Flaunchpad.support.sap.com%2F%23%2Fsoftwarecenter

Deploy a Delivery Unit Archive (*.tgz)
SAP HANA Administration Guide

9.2 Appendix B - Greek Mythology Graph Example

You can use the following SQL statements to create the Greek mythology graph example.

CREATE Vertex Table MEMBERS and Edge Table RELATIONSHIPS

CREATE SCHEMA "GREEK_MYTHOLOGY"; CREATE COLUMN TABLE "GREEK_MYTHOLOGY"."MEMBERS" (
 "NAME" VARCHAR(100) PRIMARY KEY,
 "TYPE" VARCHAR(100),
 "RESIDENCE" VARCHAR(100)
);
CREATE COLUMN TABLE "GREEK_MYTHOLOGY"."RELATIONSHIPS" (
 "KEY" INT UNIQUE NOT NULL,
 "SOURCE" VARCHAR(100) NOT NULL
 REFERENCES "GREEK_MYTHOLOGY"."MEMBERS" ("NAME")
 ON UPDATE CASCADE ON DELETE CASCADE,
 "TARGET" VARCHAR(100) NOT NULL
 REFERENCES "GREEK_MYTHOLOGY"."MEMBERS" ("NAME")
 ON UPDATE CASCADE ON DELETE CASCADE,
 "TYPE" VARCHAR(100));

CREATE Graph Workspace GRAPH

CREATE GRAPH WORKSPACE "GREEK_MYTHOLOGY"."GRAPH" EDGE TABLE "GREEK_MYTHOLOGY"."RELATIONSHIPS"
 SOURCE COLUMN "SOURCE"
 TARGET COLUMN "TARGET"
 KEY COLUMN "KEY"
 VERTEX TABLE "GREEK_MYTHOLOGY"."MEMBERS" KEY COLUMN "NAME";

INSERT Rows into Vertex Table MEMBERS

INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE") VALUES ('Chaos', 'primordial deity');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE")
 VALUES ('Gaia', 'primordial deity');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE")
 VALUES ('Uranus', 'primordial deity');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")

80 P U B L I C
SAP HANA Graph Reference

Additional Information

https://help.sap.com/viewer/6b94445c94ae495c83a19646e7c3fd56/2.0.04/en-US/89edac23b75344f0b61fd73fa94ec7f4.html
https://help.sap.com/viewer/6b94445c94ae495c83a19646e7c3fd56/2.0.04/en-US/330e5550b09d4f0f8b6cceb14a64cd22.html

 VALUES ('Rhea', 'titan', 'Tartarus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Cronus', 'titan', 'Tartarus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Zeus', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Poseidon', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Hades', 'god', 'Underworld');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Hera', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Demeter', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Athena', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Ares', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Aphrodite', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE")
 VALUES ('Hephaestus', 'god', 'Olympus');
INSERT INTO "GREEK_MYTHOLOGY"."MEMBERS"("NAME", "TYPE", "RESIDENCE") VALUES ('Persephone', 'god', 'Underworld');

INSERT Rows into Edge Table RELATIONSHIPS

INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (1, 'Chaos', 'Gaia', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (2, 'Gaia', 'Uranus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (3, 'Gaia', 'Cronus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (4, 'Uranus', 'Cronus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (5, 'Gaia', 'Rhea', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (6, 'Uranus', 'Rhea', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (7, 'Cronus', 'Zeus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (8, 'Rhea', 'Zeus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (9, 'Cronus', 'Hera', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (10, 'Rhea', 'Hera', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (11, 'Cronus', 'Demeter', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (12, 'Rhea', 'Demeter', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (13, 'Cronus', 'Poseidon', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (14, 'Rhea', 'Poseidon', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (15, 'Cronus', 'Hades', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (16, 'Rhea', 'Hades', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (17, 'Zeus', 'Athena', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (18, 'Zeus', 'Ares', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")

SAP HANA Graph Reference
Additional Information P U B L I C 81

 VALUES (19, 'Hera', 'Ares', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (20, 'Uranus', 'Aphrodite', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (21, 'Zeus', 'Hephaestus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (22, 'Hera', 'Hephaestus', 'hasSon');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (23, 'Zeus', 'Persephone', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (24, 'Demeter', 'Persephone', 'hasDaughter');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (25, 'Zeus', 'Hera', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (26, 'Hera', 'Zeus', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (27, 'Hades', 'Persephone', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (28, 'Persephone', 'Hades', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (29, 'Aphrodite', 'Hephaestus', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (30, 'Hephaestus', 'Aphrodite', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (31, 'Cronus', 'Rhea', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (32, 'Rhea', 'Cronus', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE")
 VALUES (33, 'Uranus', 'Gaia', 'marriedTo');
INSERT INTO "GREEK_MYTHOLOGY"."RELATIONSHIPS"("KEY", "SOURCE", "TARGET", "TYPE") VALUES (34, 'Gaia', 'Uranus', 'marriedTo');

9.3 Appendix C - Notation

The syntactic notation used in this guide is an extended version of BNF ("Backus Naur Form").

In a BNF language definition, each syntactic element of the language (known as a BNF nonterminal symbol) is
defined by means of a production rule. This defines the element in terms of a formula consisting of the
characters, character strings, and syntactic elements that can be used to form an instance of the formula.

The following table explains the symbols used and their meanings:

Symbol Meaning

<> A character string enclosed in angle brackets is the name of a syntactic element (BNF nontermi
nal) of the GraphScript language.

::= The definition operator is used in a production rule to separate the element defined by the rule
from its definition. The element being defined appears to the left of the operator and the formula
that defines the element appears to the right.

[] Square brackets indicate optional elements in a formula. The portion of the formula within the
brackets may be explicitly specified or may be omitted.

{} Braces group elements in a formula. Curly braces indicate that the expression may be repeated
zero or more times.

82 P U B L I C
SAP HANA Graph Reference

Additional Information

Symbol Meaning

| The alternative operator. The vertical bar indicates that the portion of the formula following the bar
is an alternative to the portion preceding the bar. If the vertical bar appears at a position where it is
not enclosed in braces or square brackets, it specifies a complete alternative for the element de
fined by the production rule. If the vertical bar appears in a portion of a formula enclosed in braces
or square brackets, it specifies alternatives for the contents of the innermost pair of these braces
or brackets.

!! Introduces normal English text. This is used when the definition of a syntactic element is not ex
pressed in BNF.

- The minus operator. The horizontal bar excludes the result of the formula following the bar from
valid rules that are defined in front of the bar. The scope of this operator is equivalent to the scope
of the alternative operator.

Spaces are used to separate syntactic elements. Multiple spaces and line breaks are treated as a single space.
Apart from those symbols with special functions (see above), other characters and character strings in a
formula stand for themselves. In addition, if the symbols to the right of the definition operator in a production
consist entirely of BNF symbols, then these symbols stand for themselves and do not take on their special
meaning.

Pairs of braces and square brackets may be nested to any depth, and the alternative operator may appear at
any depth within such a nest.

A character string, which forms an instance of any syntactic element, can be generated from the BNF definition
of that syntactic element by performing the following steps:

● Select any one option from those defined in the right-hand side of a production rule for the element and
replace the element with this option.

● Replace each ellipsis, and the object it applies to, with one or more instances of that object.
● For every portion of the string enclosed in square brackets, either delete the brackets and their contents or

change the brackets to braces.
● For every portion of the string enclosed in braces, apply steps 1 through 5 to the substring between the

braces, then remove the braces.
● Apply steps 1 through 5 to any BNF nonterminal symbol that remains in the string.

The expansion or production is complete when no further nonterminal symbols remain in the character string.

The left normal form derivation of a character string CS in the source language character set from a BNF
nonterminal NT is obtained by applying steps 1 through 5 above to NT, always selecting the leftmost BNF
nonterminal in step 5.

SAP HANA Graph Reference
Additional Information P U B L I C 83

Important Disclaimer for Features in SAP
HANA

For information about the capabilities available for your license and installation scenario, refer to the Feature
Scope Description for SAP HANA.

84 P U B L I C
SAP HANA Graph Reference

Important Disclaimer for Features in SAP HANA

https://help.sap.com/viewer/de855a01ee2248dfb139088793f8802a/latest/en-US
https://help.sap.com/viewer/de855a01ee2248dfb139088793f8802a/latest/en-US

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

SAP HANA Graph Reference
Important Disclaimers and Legal Information P U B L I C 85

www.sap.com/contactsap

© 2019 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAP HANA Graph Reference
	Content
	1 SAP HANA Graph Reference
	2 Introduction
	3 SAP HANA Graph Data Model
	4 Graph Workspaces
	4.1 Create and Drop Graph Workspaces
	4.2 Export and Import Graph Workspaces

	5 Graph Data Modification
	6 GraphScript Language
	6.1 Data Types
	6.2 General Script Structure
	6.3 Integration of GraphScript into Stored Procedure Environment
	6.4 Types
	6.5 Comments
	6.6 Expressions
	6.7 Statements
	6.8 Built-In Functions
	6.9 Reserved Keywords
	6.10 Restrictions for GraphScript Procedures
	6.11 Complex GraphScript Examples

	7 openCypher Pattern Matching
	7.1 OPENCYPHER_TABLE SQL Function
	7.2 openCypher Query Language
	7.2.1 Match Clause
	7.2.2 Return Clause
	7.2.3 Keywords
	7.2.4 Built-In Functions
	7.2.5 Basic Building Blocks

	8 Graph Algorithms
	8.1 Neighborhood Search (Breadth-First Search)
	8.2 Shortest Path
	8.2.1 Shortest Path (One-to-All)
	8.2.2 Shortest Path (One-to-One)

	8.3 Strongly Connected Components
	8.4 Graph Algorithm Variables
	8.5 Pattern Matching
	8.5.1 Graphical Pattern Editor
	8.5.2 Query Language

	9 Additional Information
	9.1 Appendix A – SAP HANA Graph Viewer
	9.1.1 Install SAP HANA Graph Viewer

	9.2 Appendix B - Greek Mythology Graph Example
	9.3 Appendix C - Notation

	Important Disclaimer for Features in SAP HANA
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

