hana-ml
2.16.230323
  • Python Machine Learning Client for SAP HANA
    • Prerequisites
    • SAP HANA DataFrame
    • Machine Learning API
    • End-to-End Example: Using SAP HANA Predictive Analysis Library (PAL) Module
    • End-to-End Example: Using SAP HANA Automated Predictive Library (APL) Module
    • Visualizers Module
    • Spatial and Graph Features
    • Summary
  • Installation Guide
  • hana-ml Tutorials
  • Changelog
  • hana_ml.dataframe
  • hana_ml.algorithms.apl package
    • hana_ml.algorithms.apl.gradient_boosting_classification
    • hana_ml.algorithms.apl.gradient_boosting_regression
    • hana_ml.algorithms.apl.time_series
    • hana_ml.algorithms.apl.classification
    • hana_ml.algorithms.apl.regression
    • hana_ml.algorithms.apl.clustering
  • hana_ml.algorithms.pal package
    • Algorithms
      • PAL Base
        • PALBase
      • Auto ML
        • AutomaticClassification
        • AutomaticRegression
        • AutomaticTimeSeries
        • Preprocessing
      • Unified Interface
        • UnifiedClassification
        • UnifiedRegression
        • UnifiedClustering
        • UnifiedExponentialSmoothing
      • Clustering
        • AffinityPropagation
        • AgglomerateHierarchicalClustering
        • DBSCAN
        • GeometryDBSCAN
        • KMeans
        • KMedians
        • KMedoids
        • SpectralClustering
        • KMeansOutlier
        • GaussianMixture
        • SOM
        • SlightSilhouette
        • outlier_detection_kmeans
      • Classification
        • LinearDiscriminantAnalysis
        • LogisticRegression
        • OnlineMultiLogisticRegression
        • NaiveBayes
        • KNNClassifier
        • MLPClassifier
        • SVC
        • OneClassSVM
        • DecisionTreeClassifier
        • RDTClassifier
        • HybridGradientBoostingClassifier
      • Regression
        • LinearRegression
        • OnlineLinearRegression
        • KNNRegressor
        • MLPRegressor
        • PolynomialRegression
        • GLM
        • ExponentialRegression
        • BiVariateGeometricRegression
        • BiVariateNaturalLogarithmicRegression
        • CoxProportionalHazardModel
        • SVR
        • DecisionTreeRegressor
        • RDTRegressor
        • HybridGradientBoostingRegressor
      • Prepocessing
        • FeatureNormalizer
        • FeatureSelection
        • IsolationForest
        • KBinsDiscretizer
        • Imputer
        • Discretize
        • MDS
        • SMOTE
        • SMOTETomek
        • TomekLinks
        • Sampling
        • ImputeTS
        • PCA
        • CATPCA
        • train_test_val_split
        • variance_test
      • Time Series
        • AdditiveModelForecast
        • ARIMA
        • AutoARIMA
        • CPD
        • BCPD
        • TimeSeriesClassification
        • SingleExponentialSmoothing
        • DoubleExponentialSmoothing
        • TripleExponentialSmoothing
        • AutoExponentialSmoothing
        • BrownExponentialSmoothing
        • Croston
        • CrostonTSB
        • GARCH
        • Hierarchical_Forecast
        • LR_seasonal_adjust
        • LSTM
        • LTSF
        • OnlineARIMA
        • OutlierDetectionTS
        • GRUAttention
        • ROCKET
        • VectorARIMA
        • DWT
        • accuracy_measure
        • BSTS
        • correlation
        • fft
        • dtw
        • fast_dtw
        • intermittent_forecast
        • periodogram
        • stationarity_test
        • seasonal_decompose
        • trend_test
        • wavedec
        • waverec
        • wpdec
        • wprec
        • white_noise_test
      • Statistics
        • bernoulli
        • beta
        • binomial
        • cauchy
        • chi_squared
        • exponential
        • gumbel
        • f
        • gamma
        • geometric
        • lognormal
        • negative_binomial
        • normal
        • pert
        • poisson
        • student_t
        • uniform
        • weibull
        • multinomial
        • mcmc
        • chi_squared_goodness_of_fit
        • chi_squared_independence
        • ttest_1samp
        • ttest_ind
        • ttest_paired
        • f_oneway
        • f_oneway_repeated
        • univariate_analysis
        • covariance_matrix
        • pearsonr_matrix
        • iqr
        • wilcoxon
        • median_test_1samp
        • grubbs_test
        • entropy
        • condition_index
        • cdf
        • ftest_equal_var
        • factor_analysis
        • kaplan_meier_survival_analysis
        • quantile
        • distribution_fit
        • ks_test
        • KDE
      • Association
        • Apriori
        • AprioriLite
        • FPGrowth
        • KORD
        • SPM
      • Recommender System
        • ALS
        • FRM
        • FFMClassifier
        • FFMRegressor
        • FFMRanker
      • Social Network Analysis
        • LinkPrediction
        • PageRank
      • Randking
        • SVRanking
      • Miscellaneous
        • abc_analysis
        • weighted_score_table
        • TSNE
      • Metrics
        • accuracy_score
        • auc
        • confusion_matrix
        • multiclass_auc
        • r2_score
      • Model and Pipeline
        • ParamSearchCV
        • GridSearchCV
        • RandomSearchCV
        • Pipeline
      • Text Processing
        • CRF
        • LatentDirichletAllocation
    • Topics
      • Model Evaluation and Parameter Selection
        • Resampling Methods
        • Search Strategies
      • Successive Halving and Hyperband for Parameter Selection
        • Key Relevant Parameters
      • Biased Linear Models
      • Model State for Real-Time Scoring
      • Local Interpretability of Models
        • SHAP
        • Surrogate
        • Direct Explanation
        • Models/Algorithms in hana_ml.algorithms.pal Packages that Support Local Interpretability
        • Key Relevant Parameters in hana-ml.algorithms.pal Package
      • Explaining the Forecasts of ARIMA
      • Methods for Residual Extraction in Time-Series Outlier Detection
        • 1. Residual from Median Filter
        • 2. Residual from Seasonal Decomposition
        • 3. Residual Extraction from Median Filter and Seasonal Decomposition
        • 4. Meaningless Parameter Combination to be Avoided
      • Methods of Outlier Detection from Residual
        • 1. Z1 Score
        • 2. Z2 Score
        • 3. IQR Score
        • 4. MAD Score
        • 5. Isolation Forest Score
        • 6. DBSCAN
      • Genetic Optimization in AutoML
        • Individual Representation
        • Selection
        • Crossover
        • Mutation
        • Evolutional Iteration Step
        • Control Parameters
      • Probability Density Functions for MCMC Sampling
      • Miscellaneous Topics
        • Early Stop in HGBT
        • Feature Grouping in HGBT
        • Histogram Splitting in HGBT
        • Model Compression for Random Decision Trees
        • Model Compression for Support Vector Machine
        • Seasonalities in Additive Model Forecast
      • Precomputed Distance Matrix as input data in UnifiedClustering
    • Parameter Mappings
  • hana_ml.visualizers package
    • hana_ml.visualizers.eda
    • hana_ml.visualizers.metrics
    • hana_ml.visualizers.m4_sampling
    • hana_ml.visualizers.model_debriefing
    • hana_ml.visualizers.dataset_report
    • hana_ml.visualizers.shap
    • hana_ml.visualizers.unified_report
    • hana_ml.visualizers.visualizer_base
    • hana_ml.visualizers.digraph
    • hana_ml.visualizers.word_cloud
    • hana_ml.visualizers.automl_progress
    • hana_ml.visualizers.automl_report
    • hana_ml.visualizers.time_series_report
  • hana_ml.ml_exceptions
  • hana_ml.model_storage
  • hana_ml.artifacts package
    • AMDP Examples
    • hana_ml.artifacts.deployers.amdp
    • hana_ml.artifacts.generators.abap
    • hana_ml.artifacts.generators.hana
  • hana_ml.docstore package
  • hana_ml.spatial package
  • hana_ml.graph package
  • hana_ml.graph.algorithms package
  • hana_ml.text.tm package
    • hana_ml.text.tm
  • FAQs
hana-ml
  • »
  • hana_ml.algorithms.pal package
  • View page source
Previous Next

hana_ml.algorithms.pal package

  • Algorithms
    • PAL Base
    • Auto ML
    • Unified Interface
    • Clustering
    • Classification
    • Regression
    • Prepocessing
    • Time Series
    • Statistics
    • Association
    • Recommender System
    • Social Network Analysis
    • Randking
    • Miscellaneous
    • Metrics
    • Model and Pipeline
    • Text Processing
  • Topics
    • Model Evaluation and Parameter Selection
    • Successive Halving and Hyperband for Parameter Selection
    • Biased Linear Models
    • Model State for Real-Time Scoring
    • Local Interpretability of Models
    • Explaining the Forecasts of ARIMA
    • Methods for Residual Extraction in Time-Series Outlier Detection
    • Methods of Outlier Detection from Residual
    • Genetic Optimization in AutoML
    • Probability Density Functions for MCMC Sampling
    • Miscellaneous Topics
    • Precomputed Distance Matrix as input data in UnifiedClustering
  • Parameter Mappings

© Copyright 2023, SAP.

Built with Sphinx using a theme provided by Read the Docs.