Change Log for the SAP HANA Python Client API¶
What’s New and Changed in 1.0.7¶
Supports SAP HANA SP04
Added the following algorithms in PAL package:
association (Apriori, FPGrowth, k-optimal rule discovery, sequential pattern mining).
clustering (affinity propagation, agglomerate hierarchical clustering, Geometry DBSCAN, self-organizing map).
conditional random field (CRF).
cross validation (gradient boosting for classification, gradient boosting for regression, hybrid gradient boosting for classification, hybrid gradient boosting for regression, neural network).
decision trees (gradient boosting for classification, gradient boosting for regression, hybrid gradient boosting for classification, hybrid gradient boosting for regression).
discriminant analysis functions (linear discriminant analysis).
metric functions (r2_score, accuracy_score).
partition (train_test_val_split).
pipeline (run PAL functions in a chain).
preprocessing (missing value imputer).
random distribution sampling functions (bernoulli, beta, binomial, cauchy, chi_squared, exponential, extreme_value, f, gamma, geometric, gumbel, lognormal, negative_binomial, normal, pert, poisson, student_t, uniform, weibull, multinomial).
regression (exponential regression, bi-variate geometric regression, bi-variate natural logarithmic regression, cox proportional hazard model).
social networks (link prediction, pagerank).
statistics functions (inter-quartile range function, pearsonr_matrix, covariance_matrix, f-oneway).
time series (ARIMA, Auto ARIMA, FFT, seasonal_decompose, trend_test, white_noise_test, single/double/triple/auto/Brown exponential smoothing, change-point detection, Croston’s method, linear regression with damped trend and seasonal adjust).
Added functions in dataframe.py: pivot_table(), create_dataframe_from_pandas().
Added visualizers (EDA, M4 sampling).
Fixed bugs in the APL package:
time_series
clustering
gradient_boosting_classification
gradient_boosting_regression